发明名称
灰尘检测系统以及数码相机

摘要
本发明提供一种灰尘检测系统以及数码相机，其包括接收器，灰尘提取模块，存储器，以及图像校正模块。接收器接收图像信号，灰尘提取模块根据图像信号产生灰尘图像信号。存储器存储对应于灰尘提取模块在初始化时提取的、包括灰尘的子图像的固有缺陷图像的固有缺陷图像信号。图像校正模块根据固有缺陷图像信号以及正常灰尘图像信号，产生校正的灰尘图像信号。正常灰尘图像信号对应于灰尘提取模块在初始化后提取的、包括灰尘的子图像的正常灰尘图像。校正的灰尘图像是从其中删除了固有缺陷图像中的灰尘的子图像的正常灰尘图像。
1、一种灰尘检测系统，包括：
接收图像信号的接收器，成像装置根据捕捉到的光学图像产生所
述图像信号；
灰尘提取模块，通过根据图像信号在光学图像中提取灰尘的子图
像产生灰尘图像信号；
存储器，存储对应于所述灰尘提取模块在初始化时提取的、包括
灰尘的子图像的固有缺陷图像的固有缺陷图像信号；以及
图像校正模块，根据所述固有缺陷图像信号以及正常灰尘图像信
号，产生校正的灰尘图像信号，所述校正的灰尘图像信号对应于校正
的灰尘图像，所述正常灰尘图像信号对应于所述灰尘提取模块在所述
初始化后提取的、包括灰尘的子图像的正常灰尘图像信号，所述校正
的灰尘图像是从其中删除了所述固有缺陷图像中的灰尘的子图像的所
述正常灰尘图像。

2、如权利要求1所述的灰尘检测系统，其中，
根据检测的缺陷区域确定固有缺陷区域，所述检测的缺陷区域是
在所述固有缺陷图像中检测到灰尘的区域；以及
所述图像校正模块通过在所述正常灰尘图像的所述固有缺陷区域
中删除灰尘的子图像，产生所述校正的灰尘图像信号。

3、如权利要求2所述的灰尘检测系统，其中帧区域被确定为所述
固有缺陷区域，包括所述整体固有缺陷图像的帧位于所述帧区域，以
及所述帧具有第一宽度。

4、如权利要求2所述的灰尘检测系统，其中所述固有缺陷区域被
确定，从而所述固有缺陷区域包括所述检测的缺陷区域以及所述固有
缺陷区域大于所述检测的缺陷区域。

5、如权利要求2所述的灰尘检测系统，其中所述固有缺陷区域被
确定，从而所述成像装置到所述拍摄光学系统的出瞳的距离越近，在从拍摄光学系统的光轴和所述成像装置的交点朝向所述检测的缺陷区域的方向，所述固有缺陷区域从所述检测的缺陷区域放大的越大，所述拍摄光学系统安装在所述成像装置的光接收表面一侧。

6、如权利要求3所述的灰尘检测系统，其中所述帧区域被确定，从而对于所述成像装置的所述出瞳的距离越近，所述第一宽度就越宽。

7、如权利要求2所述的灰尘检测系统，其中所述固有缺陷区域被确定，从而所述固有缺陷区域大于当光圈打开时的所述检测的缺陷区域，所述光圈安装在所述成像装置的光接收表面一侧。

8、如权利要求1所述的灰尘检测系统，进一步包括第一确定模块，该第一确定模块确定可调整的参数的值，所述可调整的参数影响通过成像装置捕捉的整个图像中的目标的子图像的可见性，所述目标位于所述成像装置的表面的周围区域，所述可调整的参数被确定，从而与捕捉所述固有缺陷图像时相比，更多的降低捕捉所述正常灰尘图像时的可见性。

9、如权利要求8所述的灰尘检测系统，其中所述可调整的参数是光圈的光圈尺寸，该光圈安装在所述成像装置的光接收面一侧，所述第一确定模块确定所述尺寸，从而捕捉所述正常灰尘图像时所述尺寸大于捕捉所述固有缺陷图像时的所述尺寸。

10、一种灰尘检测系统，包括：

接收图像信号的接收器，成像装置根据捕捉到的光学图像产生所述图像信号；

第二确定模块，根据所述图像信号切定是否所述整体光学图像包括的部分区域包括灰尘的子图像；

存储器，存储对应于所述部分区域的固有缺陷区域信号，所述第二确定模块根据初始化产生的所述图像信号确定了所述部分区域是包
括灰尘的子图像；

控制器，该控制器命令所述第二确定模块延缓确定是否对应所述固有缺陷区域信号的所述部分区域包括所述灰尘的子图像。

11、一种数码相机，包括：

接收图像信号的接收器，成像装置根据捕捉到的光学图像产生所述图像信号；

灰尘提取模块，通过根据所述图像信号在所述光学图像中提取灰尘的子图像产生灰尘图像信号；

开关，命令所述灰尘提取模块产生灰尘图像信号；

存储器，存储对应于所述灰尘提取模块在初始化时提取的、包括灰尘的子图像的固有缺陷图像的固有缺陷图像信号；以及

图像校正模块，根据所述固有缺陷图像信号以及正常灰尘图像信号，产生校正的灰尘图像信号，所述校正的灰尘图像信号对应于校正的灰尘图像，所述正常灰尘图像信号是所述灰尘提取模块对所述开关的操作产生的所述灰尘图像信号，所述校正的灰尘图像是从其中删除了所述固有缺陷图像中的灰尘的子图像的正常灰尘图像，所述正常灰尘图像对应于所述正常灰尘图像信号。
灰尘检测系统以及数码相机

技术领域

本发明涉及一种根据拍摄的图像检测粘附在安装在例如数码相机的照相装置的成像装置上的灰尘的灰尘检测（detection）系统。

背景技术

在可以更换镜头的数码相机中，例如单反相机，当从机身上去除镜头时候，灰尘可以意外的进入照相机机身。进入机身的灰尘可以粘附到成像装置或成像装置的滤光片上。当粘附（adhere）这样的灰尘时，所述灰尘会显示在拍摄的图像上。

即使灰尘在拍摄的图像上是可见的，一些灰尘通过直接视觉观察是不可见的。日本未审查专利申请 No. 2005-341381 中提出了一种确定是否附着（attach）了这样的灰尘的数码相机。如果检测到灰尘，则通过警告建议使用者去除灰尘。

在成像装置的生产过程中或者在成像装置向照相机机身的安装过程中，在红外截止滤光片或者低通滤光片上有可能产生微小的缺陷（flaw），或者微小的灰尘会进入这些滤光片之间。在制造之后，这种微小的缺陷和灰尘是难以去除的。从而，如果在制造之后的照相机的质量检查中，缺陷或者灰尘在拍摄的图像上是可见的，那么照相机就不能通过检验。

充分小的缺陷和灰尘在拍摄的图像上是不可见的并且是不会造成问题的。然而，这样的缺陷和灰尘的图像会通过在上述专利公开的灰尘检测功能的边缘增强信号处理被放大（exaggerate），从而允许用户识别缺陷或灰尘。由于如上文所述，这样的缺陷和灰尘不能被去除，所以即使在清洁滤光片或成像装置之后，也不希望用户检测到它们。

发明内容

由此，本发明的目的是提供一种根据拍摄的图像检测制造时伴随
的灰尘和缺陷（固有缺陷，intrinsic flaw）以外的灰尘的灰尘检测系统。

根据本发明，提供一种灰尘检测系统，其包括接收器，灰尘提取模块（extraction block），存储器，以及图像校正模块。接收器接收图像信号。成像装置根据捕捉到的光学图像产生图像信号。灰尘提取模块通过根据图像信号在光学图像中提取灰尘子图像产生灰尘图像信号。存储器存储对应于所述灰尘提取模块在初始化时提取的包括灰尘的子图像的固有缺陷图像的固有缺陷图图像信号。图像校正模块根据固有缺陷图像信号以及正常灰尘图像信号，产生校正的灰尘图像信号。校正的灰尘图像信号对应于校正的灰尘图像。正常灰尘图像信号对应于所述灰尘提取模块在初始化后提取的、包括灰尘的子图像的正常灰尘图像。校正的灰尘图像是，从其中删除了固有缺陷图像中的灰尘的子图像的正常灰尘图像。

此外，根据检测的缺陷区域确定固有缺陷区域。检测的缺陷区域是在固有缺陷图像中检测到灰尘的区域。图像校正模块通过在正常灰尘图像的固有缺陷区域中删除灰尘子图像，产生校正的灰尘图像信号。

此外，灰尘检测系统包括第一确定模块。第一确定模块确定可调整的参数的值。可调整的参数影响通过成像装置捕捉的整个图像中的目标的子图像的可见性。目标位于成像装置的表面的周围区域。可调整的参数被确定，从而捕捉正常灰尘图像时的可见性相比捕捉固有缺陷图像时被更多的降低。

附图说明

本发明的目的和优点将从下面的说明参考附图，更好的得到理解，其中：

图 1 是显示根据本发明的第一到第三实施例的，具有灰尘检测系统的数码相机的部分内部结构的剖面图；
图 2 是显示第一和第二实施例的图像处理模块的内部结构的块图；
图 3 是显示第一实施例的灰尘图像处理模块的内部结构的块图；
图 4 说明正常灰尘图像；
图 5 说明检测的缺陷区域的放大；
图6描述了固有缺陷图像；
图7描述了固有缺陷区域；
图8说明了具有局部加黑的灰尘子图像的正常灰尘图像；
图9说明了校正的灰尘图像；
图10是说明第一实施例中的通过系统控制器产生固有缺陷图像信号以及将其存储在闪速存储器的执行过程的流程图；
图11是说明在第一实施例的灰尘警告模式中通过系统控制器执行的过程的流程图；
图12是显示第二实施例中的灰尘图像处理模块的内部结构的块图；
图13显示了检测的缺陷区域的放大和光圈值之间的关系；
图14显示了检测的缺陷区域的放大和出瞳及成像装置间的距离之间的关系；
图15显示了作为固有缺陷区域确定的帧宽度和出瞳的位置及成像装置间的距离之间的关系；
图16是说明第二实施例中在灰尘警告模式通过系统控制器执行的过程的流程图；
图17是说明第二实施例中在灰尘警告模式通过系统控制器的执行的过程的流程图；
图18是显示第一和第三实施例中的图像处理模块的内部结构的块图；
图19是显示第三实施例中的图像处理模块的内部结构的块图；
图20是说明第三实施例中在灰尘警告模式通过系统控制器的执行的过程的流程图。

具体实施方式
本发明参考附图中显示的实施例在下面进行详述。
在图1中，数码相机10是单反相机，以及包括镜头单元20和照相机模块30。镜头单元20能够连接到照相机模块30或从照相机模块30分开。在图1中，水平和竖直方向分别对应于数码相机的10从前到后的方向以及竖直方向。在下面的描述中，完整图像的一部分被定义
为子图像。

镜头单元 20 包括镜头单元驱动机构 21（第一确定模块）以及拍摄光学系统 22。此外，镜头存储器（未示出）安装在镜头单元 20 上。镜头存储器存储拍摄光学系统 22 的信息，例如最大光圈值、最小光圈值、焦距、最小模糊圆（circle of confusion）、出瞳位置等等。

通过在机身 31 中安装反射镜 32、成像装置 33、监视器 34、图像处理模块 40、五棱镜 35、目镜 36、以及其它组件形成照相机模块 30。镜头单元周期性的和照相机模块 30 通讯，于是拍摄光学系统的 22 的信息存储在安装在照相机模块 30 中的闪速存储器（在图 1 中未示出）中。当执行诸如光圈控制的特定功能时，使用拍摄光学系统 22 的信息。在镜头单元 20 和照相机模块 30 具有一致的照相机中，拍摄光学系统 22 上的信息被直接存储在照相机模块 30 的闪速存储器中。

拍摄光学系统 22 包括多个镜头，包括聚焦镜头和变焦镜头，以及光圈 23。通过沿着拍摄光学系统 22 的光轴移动聚焦镜头，调整聚焦。通过沿光轴移动变焦镜头，调整焦距。此外，通过调整光圈 23 的光圈尺寸，可以调整入射光的量。镜头单元驱动机构 21 移动聚焦镜头以及变焦镜头，以及调整光圈 23 的光圈尺寸。

安装反射镜 32 从而反射镜 32 绕垂直于拍摄光学系统 22 的光轴的轴旋转。在拍摄准备模式，反射镜 32 保持在光轴上，从而光轴和反射镜 32 的平面表面的之间的角度是 45 度。

五棱镜 35 安装在反射镜 32 之上。成像装置 33 安装在反射镜 32 的后面。目镜 36 安装在五棱镜 35 的后面。

在拍摄准备模式，从目标反射的光穿过拍摄光学系统 22，并被反射镜 32 所反射。反射的光学图像经五棱镜 35 投射到目镜 36 上。在目镜 36 可以观察光学图像。

通过按下释放按钮（未示出），执行释放操作。在释放操作中，反射镜 32 向上转动，快门（未示出）打开，以及目标的光学图像形成在成像装置 33 的光接收表面（light-receiving surface）上。

成像装置 33 覆盖有红外截止滤光片（未示出）和光学低通滤光片（未示出）。密封元件（未示出）安装在成像装置和红外截止滤光片之间，以及红外截止滤光片和光学低通滤光片之间，以防止灰尘进入它
们之间的空间。

成像装置 33 根据到达光接收表面上的整个光学图像产生图像信号。图像信号传送到图像处理模块 40，以及进行预定数据处理。图像处理模块 40 连接到监视器 34。对应于从图像处理模块 40 传送的图像信号的图像显示在监视器 34 上。

接下来，说明图像处理模块 40 的结构。如图 2 所示，图像处理模块 40 包括 A/D 转换器 41（接收器），正常图像处理模块 42，灰尘图像处理模块 50，D/A 转换器 43，以及其它组件。

数码相机 10 具有多翼个操作模式，包括拍摄模式，显示模式以及灰尘警告模式。根据用户输入到输入模块 37（开关）的指令而改变操作模式。根据输入到输入模块 37 的指令，系统控制器 38（控制器）控制包括数码相机 10 的图像处理模块 40 的每个组件。

当数码相机 10 的操作模式变化到拍摄模式，数码相机 10 的所有组件切换到拍摄准备模式。在拍摄准备模式，当释放按钮按下，反射镜 32 以及快门如上述被推动，以及驱动成像装置 33，从而产生图像信号的一个帧。

产生的图像信号被传送到图像处理模块 40，如上文所述。被传送到图像处理模块 40 的模拟图像信号被 A/D 转换器 41 接收并进行数字化处理。在系统控制器 38 的控制下，作为结果的图像数据被传送到正常图像处理模块 42。

正常图像处理模块 42 执行图像数据上的预定数据处理，例如白平衡处理和灰度（gamma）校正。经过预定数据处理的图像数据存储在可移动存储器 39 中。

当数码相机 10 的操作模式改变到显示模式时，存储在可移动存储器 39 中的图像数据经正常图像处理模块 42 被传送到 D/A 转换器 43。D/A 转换器 43 转换数字图像信号到图像信号，以及传送到监视器 34，对应于接收的图像信号的图像被显示在监视器 34 上，如上文所述。

在灰尘警告模式，粘附在成像装置 33 的表面上的灰尘被拍摄以及显示在监视器 34 上，如下文所述。

当数码相机 10 的操作模式改变到灰尘警告模式时，调整镜头单元 20 从而被拍摄的物体在图像中是可以辨别的。例如，根据光圈优先模
式执行自动曝光控制。光圈 23 的光圈尺寸被调整从而使拍摄光学系统 22 的 F 数是 F16（相当于 APEX 系统中的光圈值 8）。此外，快门速度被调整，从而曝光被校正。

在调整光圈尺寸之后，执行释放操作，以及产生图像信号。在灰尘警告模式，应当拍摄均匀的场，从而检测粘附在成像装置 33 上的灰尘。在灰尘警告模式，建议（instruct）用户对准花样较少的表面拍摄，从而在灰尘警告模式中所有的在释放操作之后的操作的执行假定拍摄的目标没有花样。

在灰尘警告模式，通过成像装置 33 产生的图像信号，在此后称为正常灰尘图像信号，被传送到图像处理模块 40，如同在拍摄模式。传送的正常灰尘图像信号被 A/D 转换器 41 数字化处理。在灰尘警告模式，在系统控制器 38 的控制下，正常灰尘图像数据被传送到灰尘图像处理模块 50。

灰尘图像处理模块 50 通过在正常灰尘图像数据上执行预定的数据处理，产生校正的灰尘图像数据。如下面所述，校正的灰尘图像数据对应于仅包括粘附在成像装置 33 上的可去除的灰尘的子图像的整个区域的校正的灰尘图像。校正的灰尘图像数据被传送到 D/A 转换器 43。D/A 转换器 43 将校正的灰尘图像数据转换为模拟信号，然后校正的灰尘图像信号被传送到监视器 34。在监视器 34 上显示正确的灰尘图像。

接下来，在下面通过说明灰尘图像处理模块 50 的结构来详细解释通过灰尘图像处理模块 50 执行的预定数据处理。如图 3 所示，灰尘图像处理模块 50 包括分辨率转换电路 51，边界增强（edge enhancement）电路 52，二元化电路 53（灰尘提取模块），放大电路 54，闪速存储器 55（存储器），以及灰尘图像校正电路 56（图像校正模块）。

从 A/D 转换器 41 输出的正常灰尘图像数据被输入到分辨率转换电路 51。分辨率转换电路 51 降低正常灰尘图像数据的图像分辨率，通过成像装置 33 的有效像素数减小正常灰尘图像数据的像素数。例如，图像分辨率从百万像素降低到 VGA 分辨率。通过降低图像分辨率，在通常的拍摄环境下不会被识别出的非常小的灰尘的图像将被删除。

降低分辨率的正常灰尘图像数据被传送到边界增强电路 52。边界增强电路 52 在接收到的正常灰尘图像数据上执行边界增强处理，以及
拍摄的光学图像的清晰度增加。

进行了边界增强处理的正常灰尘图像数据被传送到二元化电路 53。第一，二元化电路 53 计算正常灰尘图像数据的每个像素的亮度数据分量的平均亮度以及标准偏差，此后称为 σ。平均亮度是正常灰尘图像数据的亮度数据分量的数据水平（data level）的平均值。

在计算平均亮度和 σ 之后，二元化电路 53 将每个像素的亮度数据分量的值转换为图像处理模块 50 所允许的最低或最高水平的其中之一，在该实施例中分别是 0 和 255。初始时大于或等于第一值的值被计算为平均亮度加 $n\times\sigma$ (n 是正整数)，初始时小于或等于第二值的初始值被计算为平均亮度减 $n\times\sigma$，被转换为最低水平。另一方面，初始时大于第二值以及小于第一值的值被转换为最高水平。

只要在灰尘警告模式拍摄花样少的目标，如果没有灰尘，通常可以预期用于产生光学图像的像素的亮度数据分量的值的范围在第二和第一值之间。从而，二元化到最低水平的像素预期对应于附着灰尘的位置。另一方面，二元化到最高水平的像素预期对应于没有灰尘的位置接下来，通过选择二元化值为最低水平的像素而提取没有灰尘的光学图像。

通过二元化电路 53 而二元化的正常灰尘图像数据被传送到灰尘图像校正电路 56。灰尘图像校正电路 56 通过校正接收的正常灰尘图像数据，使用存储在闪速存储器 55 的固有缺陷图像数据，产生校正的灰尘图像数据。

在下面详细解释正常灰尘图像数据的校正。当在灰尘警告模式配设花样少的目标时，通过成像装置 33 捕捉正常灰尘图像（包括如图 4 所示的一些灰尘的多个子图像）。正常灰尘图像不仅包括可去除的灰尘的子图像，也包括不可去除的在红外截止滤光片和光学低通滤光片上的小缺陷的子图像，以及在成像装置和红外截止滤光片之间以及红外截止滤光片和光学低通滤光片之间的不可去除的小灰尘。

在制造商的调整过程之中，完整的光学图像，仅包括不可去除的小缺陷和作为固有缺陷图像被捕捉的小灰尘的子图像。根据成像装置 33 捕捉的固有缺陷图像的固有缺陷图像数据存储在闪速存储器 55 中。附带提及，如上文所述，闪速存储器 55 接收和存储拍摄光学系统 22
的信息。

根据下面的方法产生固有缺陷图像数据，并存储在闪速存储器 55。首先，在制造数码相机 10 之后的初始化操作中，镜头单元 20 的参数被适当的调整以产生固有缺陷图像信号。被选择以产生固有缺陷图像信号的参数是允许成像装置 33 捕捉图像的参数，其中图像的周围比旨在用于灰尘警告模式的图像清晰。例如，光圈 23 的光圈大小可以调节，从而拍摄光学系统 22 的 F 数是 F22。

在初始化操作中，花样少的目标被选择和拍摄，如在灰尘警告模式中。由于初始化操作在通常被认为没有灰尘的洁净的房间中进行的，在初始化操作中作为固有缺陷图像的完整图像被捕捉，该完整图像包括仅具有不可去除的小缺陷和小灰尘的子图像。

根据捕捉的固有缺陷图像而产生的图像信号被按顺序传送到 A/D 转换器 41，分辨率转换电路 51，边界增强电路 52，以及二元化电路 53，上述电路在图像数据上分别执行上述的数据处理，如在灰尘警告模式中。

二元化电路 53 用于提取固有缺陷图像而执行的提取数据处理的图像数据，与灰尘警告模式不同，被传送到放大电路 54。

放大电路 54 放大每个被提取的灰尘图像。例如，灰尘的原始的子图像从灰尘的子图像的中心被一个、两个或三个像素的向外放大，如图 5 所示。

被捕捉的灰尘的子图像的位置和尺寸根据镜头单元 20 的参数而变化。每个灰尘的原始的子图像被放大从而在固有缺陷图像中的灰尘的子图像可以从正常灰尘图像中删除，即使镜头单元 20 的参数改变。根据初始化操作和灰尘警告模式之间的参数的区别，确定固有缺陷图像中的灰尘的子图像的放大程度。

下面给出放大率确定方法的一个例子。有不同类型的镜头单元 20 和根据镜头单元 20 的镜头参数不同的调整范围。光圈 23 的光圈尺寸以及灰尘警告模式中的出瞳的位置是根据镜头单元 20 的类型而预定的。

在灰尘警告模式下，对比初始化操作时的光圈尺寸，而按光圈 23 的光圈尺寸按比例确定放大率。此外，在灰尘警告模式下，放大率与
出瞳的位置与成像装置 33 的光接收表面之间的距离成反比，比较初始
化操作中的距离。
在整个固有缺陷图像中的灰尘所在位置的检测缺陷区域被放大，
以及放大的检测缺陷区域被定义为固有缺陷区域。通过放大，放大电
路 54 产生固有缺陷图像数据，所述固有缺陷图像数据具有 0 亮度等级
分量以及位于固有缺陷区域，以及其他位置的像素数据具有 255 的亮
度分量。
例如，根据如图 6 所述的固有缺陷图像，对应于整个图像的图像
信号包括每个灰尘的原始子图像，该被放大和变黑（见图 7）的每个灰
尘的原始子图像被作为固有缺陷图像数据被产生并存储在闪速存储器
55 中。此外，具有帧的区域也被确定为固有缺陷区域，所述帧包括原
始捕捉的整个图像以及具有第一宽度。当灰尘图像校正电路 56 接收正
常灰尘图像数据时，存储在闪速存储器 55 中固有缺陷图像数据通过灰
尘图像校正电路 56 被读取。
在输入到灰尘图像校正电路 56 的正常灰尘图像数据中，位于每个
灰尘颗粒的子图的像素的亮度数据分量的值为零，以及如图 8 所示，
每个灰尘颗粒的子图像表现为黑色。灰尘图像校正电路 56 将用于像素
的亮度数据分量的数据等级转换为 255，所述像素在正常灰尘图像数据
中位于固有缺陷区域的相同的位置。
通过亮度数据分量的转换，从正常灰尘图像中检测到在固有缺陷
区域检测到的灰尘的子图像。然后，如图 9 所述，灰尘的子图像位于
固有缺陷区域（见虚线）的对应于校正的灰尘图像的校正的灰尘图像
数据从正常灰尘图像中删除。如上文所述，校正的灰尘图像信号经 D/A
转换器 43 被传送到监视器 34，以及校正的灰尘图像被显示在监视器
34 上。
接下来，使用图 10 的流程图解释了在第一实施例中，通过系统控
制器 38 执行的过程产生固有缺陷图像数据。
在制造照相机模块 30 之后的初始化操作中，固有缺陷图像数据被
产生以及存储在闪速存储器 55 中，如上文所述。在初始化操作之前，
出瞳调整到预定位置的，设置为 F22 的 F 数 (等于 9 的光圈值) 的初
始化镜头通过制造者被连接到照相机模块 30 上。此外，数码相机 10
被固定，从而花样少的入射到成像装置 33 上的目标的光学图像占据整个有效图像区域。

在这样的参数下，开始产生固有缺陷图像数据。在步骤 S100，系统控制器 38 驱动成像装置 33 以产生成像装置 33 捕捉的对应于整个光学图像的图像信号。产生的图像信号被控制从而被传送到灰尘图像处理器模块 50。

在步骤 S101，系统控制器 38 在灰尘图像处理器模块 50 命令分辨率转换电路 51 转换接收的图像数据的图像分辨率到 VGA。

在步骤 S101 之后的步骤 S102，系统控制器 38 命令边界增强电路 52 执行图像数据的边界增强处理。

边界增强处理之后，处理继续到步骤 S103。在步骤 S103，系统控制器 38 命令二元化电路 53 二元化多个包括图像数据的像素数据的亮度数据分量。

在步骤 S103 之后的步骤 S104，系统控制器 38 命令放大电路 54通过放大检测的缺陷区域产生固有缺陷图像数据，所述检测的缺陷区域根据二元化的亮度数据分量被提取。

在产生固有缺陷图像数据之后，处理进行到步骤 S105。在步骤 S105，系统控制器 38 命令闪速存储器 55 以存储产生的固有缺陷图像数据。当固有缺陷图像数据被存储时，过程终止。

接下来，在第一实施例的灰尘警告模式中，通过系统控制器 38 执行的过程使用图 11 所示的流程图进行解释。

当用户向输入模块 37 输入命令以开始灰尘警告模式时，灰尘警告模式处理开始。在开始灰尘警告模式之前，固定数码相机 10，从而花样少的入射到成像装置 33 上的目标的光学图像占据整个有效图像区域。

在步骤 S200，系统控制器 38 命令镜头单元驱动机构 21 从而调整光圈 23 的光圈尺寸，从而拍摄光学系统 22 的 F 数是 F16。

在调整光圈尺寸之后，处理继续到步骤 S201，在步骤 S201，系统控制器 38 确定快门速度，从而曝光适合于选择的光圈的尺寸。

在确定快门速度之后，处理继续到步骤 S202，在步骤 S202，系统控制器 38 驱动成像装置 33 以捕捉将作为正常灰尘图像信号的图像，
如步骤 S100 中。此外，产出的正常灰尘图像信号被传输到灰尘图像处理模块 50。

在步骤 S203-S205，系统控制器 38 命令分辨率转换电路 51，边界增强电路 52，二元化电路 53 执行正常灰尘图像数据的图像分辨率转换，边界增强处理，以及亮度数据分量的二元化，如步骤 S101-S103 中。

在亮度数据分量的二元化之后，处理进行到步骤 S206。在步骤 S206，系统控制器 38 命令灰尘图像校正电路 56 读取存储在闪存存储器 55 中的固有缺陷图像数据。

在步骤 S206 之后的步骤 S207，系统控制器 38 命令灰尘图像校正电路 56 通过校正正常灰尘图像数据，产生校正的灰尘图像数据，所述正常灰尘图像数据使用在步骤 S206 读取的固有缺陷图像数据，在步骤 S203-S205 进行数据处理。

在结束校正正常灰尘图像数据之后，处理过程到 S208。在步骤 S208，系统控制器 38 命令图像处理模块 40 向监视器 34 输出校正的灰尘图像信号，以及系统控制器 38 命令监视器 34 显示校正的灰尘图像。当校正的灰尘图像显示在监视器 34 上时，灰尘警告模式终止。

在上述第一实施例中，在捕捉固有缺陷图像之后进入的灰尘可以被检测。

此外，在上述第一实施例中，从检测的缺陷区域放大的位于固有缺陷区域的灰尘的子图像被检测。如果镜头单元 20 的参数改变，缺陷和灰尘的尺寸和位置也改变。然而，在上述第一实施例中，位于固有缺陷区域的灰尘的子图像被检测。因此，即使参数不同于初始化时的参数，缺陷的子图像以及固有缺陷图像中的灰尘可以被准确的去除。

此外，在上述第一实施例中，位于被确定为固有缺陷区域的帧区域的灰尘的子图像，从正常灰尘图像中被检测。在正常灰尘图像的捕捉中，出瞳和成像装置 33 的光接收表面之间的距离越远，显示在传感器上的光轴的子图像就越大。从而，在初始化操作中由于到光轴的距离而被包括在固有图像中的灰尘的子图像，如果出瞳距离改变，在正常灰尘图像上会显示为接近光轴。与这样的现象相反，在上述第一实施例中，通过删除位于固有缺陷区域确定的帧的区域的灰尘的子图
像，从正常灰尘图像中删除一些未在整体固有缺陷图像中被捕捉的灰尘的子图像。

此外，在上述第一实施例中，确定捕获固有缺陷图像的光圈 23 的光圈尺寸，从而 F 数是 F22，其小于确定为 F 数为 16 的、捕捉正常灰尘图像的光圈尺寸。从而，在正常灰尘图像中模糊的，无法分辨的一些灰尘能够在固有缺陷图像中被分辨。由此，在整体固有缺陷图像中的灰尘的子图像能够在整体的正常灰尘图像中的灰尘的可见子图像中被充分的删除。

接下来解释第二实施例的具有灰尘检测系统的数码相机。第二实施例和第一实施例的主要区别是确定固有缺陷区域的方法。主要参考不同于第一实施例的结构而进行第二实施例的解释。这里，相同的附图标记用于表示对应于第一实施例的结构。

第二实施例中的数码相机 10 具有镜头单元 20 和照相机模块 30，如第一实施例中。此外镜头单元 20 包括镜头单元驱动机构 21 以及拍摄光学系统 22，如第一实施例中。此外，照相机模块 30 包括反射镜 32、成像装置 33、监视器 34、图像处理模块 40、五棱镜 35、目镜 36、以及其它机身 31 中的组件。如第一实施例中。除了图像处理模块 40 以外，这些组件在照相机模块 30 的结构和功能与第一实施例相同。

与第一实施例不同，一些存储在镜头单元 20 中的镜头存储器 24 中的信息用于灰尘警告模块。镜头单元驱动机构 21 包括检测聚焦透镜和变焦透镜的位置的镜头传感器，以及检测光圈 23 的光圈尺寸的光圈传感器。聚焦透镜和变焦透镜的检测的位置存储在镜头存储器 24 中作为位置数据。此外，检测的光圈尺寸也存储在镜头存储器 24 中作为 Av 数据。

图像处理模块 40 包括 A/D 转换器 41，正常图像处理模块 42，灰尘图像处理模块 500，D/A 转换器 43，如第一实施例中。在第二实施例中的灰尘图像处理模块 500 与第一实施例中不同。

如图 12 所示，灰尘图像处理模块 500 包括分辨率转换电路 51，边界增强电路 52，二元化电路 53，灰尘图像校正电路 54，闪速存储器 550，以及固有缺陷区域确定电路 57。

分辨率转换电路 51，边界增强电路 52，二元化电路 53，以及灰尘
图像校正电路 56 的功能与第一实施例相同。从而分辨率转换电路 51 转换正常灰尘图像数据的图像分辨率，边界增强电路 52 执行边界增强处理，二元化电路 53 二元化正常灰尘图像数据的亮度数据分量，以及正常灰尘图像校正电路 56 根据存储在闪速存储器 550 的固有缺陷图像数据校正正常灰尘图像数据。

产生固有缺陷图像数据的方法以及在第二实施例中确定固有缺陷区域的方法与第一实施例不同。闪速存储器 550 直接连接到二元化电路 53，与第一实施例不同。在与第一实施例相同的透镜单元 20 的相同参数下捕捉固有缺陷图像，A/D 转换器 41，分辨率转换电路 51，边界增强电路 52，二元化电路 53，根据捕捉到的图像在产生的图像信号中执行数据处理。

与第一实施例不同，二元化图像数据存储在闪速存储器 550 中作为固有缺陷图像数据。在第二实施例中，对应于整个图像（见图 6）的，包括被变黑的每个灰尘颗粒的原始子图像的图像数据存储在闪速存储器 550 中作为固有缺陷图像数据，而在第一实施例中的对应整个图像的、包括被放大以及变黑的（见图 7）每个灰尘颗粒的原始子图像的图像数据存储在闪速存储器 55 中作为固有缺陷图像数据。

在初始化操作中，初始化镜头的出瞳的 Av 数据以及位置数据被写入闪速存储器 550，而不像第一实施例中。

当执行灰尘警告模式时，固有缺陷区域确定电路 57 读取存储在闪速存储器 550 中的出瞳的固有缺陷图像数据、Av 数据以及位置数据。

此外，当执行灰尘警告模式时，对于当前附加的、从镜头存储器 24 经系统控制器 38 捕捉正常灰尘图像可交换镜头，固有缺陷区域确定电路 57 读取 Av 数据以及位置数据，所述 Av 数据以及位置数据分别对应于聚焦镜头的位置和光圈 23 的光圈值。固有缺陷区域确定电路 57 根据聚焦透镜在捕捉的正常灰尘图像上确定出瞳的位置。

接下来，固有缺陷区域确定电路 57 确定根据读取数据、灰尘的子图像应当从整体正常灰尘图像中删除的固有缺陷区域。通过放大检测的缺陷区域确定固有缺陷区域，其中灰尘的每个子图像根据光圈值和出瞳位置，位于整体固有缺陷图像中。

如图 13 所示，与捕捉到的固有缺陷图像相比，在捕捉到的正常灰
尘图像上与光圈值成反比放大每个检测的缺陷区域。

如图14所示，与捕捉到的固有缺陷图像相比，在捕捉到的正常灰尘图像上，在拍摄光学系统22的光轴和成像装置33的交点相反的方向上放大每个检测的缺陷区域，与出瞳和成像装置33的光接收表面之间的距离成反比。

此外，如图15所示，与捕捉到的固有缺陷图像相比，在捕捉到的正常灰尘图像上，待确定的帧区域作为固有缺陷区域被加宽，与出瞳和成像装置33的光接收表面之间的距离成反比。

对应于区域确定为变黑的固有缺陷区域的图像的图像数据，被传送到灰尘图像校正电路56，以及该灰尘图像校正电路使用接收到的图像数据校正正常灰尘图像数据，如第一实施例。

接下来，通过系统控制器38执行处理，以产生固有缺陷图像数据，在第二实施例中使用图16的流程图进行解释。

在初始化操作之前，镜头设置为F22的F数，以及出瞳调整为初始化操作的预定位置，通过制造者连接到照相机模块30，如第一实施例中。此外，数码相机10被固定从而花样少的入射到成像装置33上的目标的光学图像占据整个有效图像区域。

然后，开始产生固有缺陷图像数据。在步骤S300～S303，系统控制器38控制成像装置33以及每个电路，从而根据捕捉到的固有缺陷图像产生的图像信号执行预定的数据处理，与第一实施例中的步骤S100～S103相同。

在步骤S304，系统控制器38控制镜头存储器24以及闪速存储器550从而在步骤S300捕捉到的光学图像的出瞳的位置和光圈值从镜头存储器24到闪速存储器550通信，以及作为数据存储在闪速存储器550中。

在步骤S305，系统控制器38命令闪速存储器550存储图像数据，该图像数据在步骤S301和S302作为固有缺陷图像数据进行预定的数据处理。当固有缺陷图像数据存储到闪速存储器550时，处理终止。

接下来，第二实施例的灰尘警告模式，通过系统控制器38执行处理，在这里使用图17的流程图进行解释。

当用户向输入模块37输入命令以开始灰尘警告模式时，灰尘警告
模式处理开始。在开始灰尘警告模式之前，固定数码相机 10，从而花样少的入射到成像装置 33 上的目标的光学图像占据整个有效图像区域。

在步骤 S400，系统控制器 38 命令镜头单元驱动机构 21 从而调整光圈 23 的光圈尺寸，从而拍摄光学系统 22 的 F 数是在调节范围内的小于 F22 的最大 F 数。在步骤 S400 之后的步骤 S401-S405，系统控制器 38 命令每个组件在正常灰尘图像数据上产生并执行预定的数据处理，如第一实施例中的步骤 S201-S205。

在完成正常灰尘图像数据上的预定数据处理之后，过程进行到步骤 S406。步骤 S406，系统控制器 38 命令固有缺陷区域确定电路 57 从闪速存储器 550 读取固有缺陷图像数据、Av 数据以及位置数据。此外，系统控制器 38 命令固有缺陷区域确定电路 57 从镜头存储器 24 读取在步骤 S402 捕捉到的光学图像的出瞳的 Av 数据以及位置数据。

在步骤 S406 之后的步骤 S407，系统控制器 38 命令固有缺陷区域确定电路 57 根据正常灰尘图像数据和步骤 S406 读取的一些数据确定固有缺陷区域。在步骤 S407 之后的步骤 S408，系统控制器 38 命令灰尘图像校正电路 56 根据步骤 S407 确定的固有缺陷区域校正常灰尘图像数据，以及产生校正的灰尘图像数据。

当正常灰尘图像数据校正完成时，过程进行到步骤 S409。在步骤 S409，系统控制器 38 命令图像处理模块 40 向监视器 34 输出校正的灰尘图像信号，以及系统控制器 38 命令监视器 34 显示校正的灰尘图像。当校正的灰尘图像显示在监视器 34 时，灰尘警告模式的处理终止。

在上述第二实施例中，在固有缺陷图像被捕捉之后引入的灰尘也可以被检测。

此外，在上述第二实施例中，固有缺陷区域的尺寸根据光圈值被确定。在整体正常灰尘图像中，灰尘的子图像的尺寸具有反比于光圈值的尺寸，所述光圈值与 F 数等价。检测的缺陷区域反比于光圈值被放大。从而，即使执行灰尘警告模式的光圈值不同于捕捉固有缺陷的图像的光圈值，进入滤光片的灰尘的子图像在制造时可以从正常灰尘图像中被删除。

此外，在上述的第二实施例中，根据出瞳的位置确定固有缺陷区
域的尺寸。在正常灰尘图像中的灰尘的子图像的尺寸和到光轴的表面距离，随着出瞳到成像装置 33 的光接收表面的距离的减小而增加。出瞳到光接收表面的位置越近，检测到的缺陷区域在与光轴相反的方向就放大的越大。从而，即使在执行灰尘警告模式下，出瞳距离也与捕捉到固有缺陷图像时的出瞳距离不同，在制造时进入滤光片的灰尘的子图像也可以通过正常灰尘图像被删除。

此外，在上述第二实施例中，作为固有缺陷区域的待检测的帧的宽度根据出瞳的位置被确定。当出瞳进一步远离成像装置 33 的光接收表面，待捕捉的图像的整体区域变大。从而，在固有缺陷图像中未显示的缺陷或灰尘的子图像，可以被捕捉作为正常灰尘图像。然而，在上述第二实施例中，随着出瞳到光接收表面的距离的增大，帧的宽度被设置为更大。作为结果，在制造时进入滤光片的灰尘的子图像也可以从正常灰尘图像中删除。

此外，在上述第二实施例中，在捕捉到的固有缺陷图像中的光圈 23 的光圈尺寸适当的变化，以及小于捕捉正常灰尘图像的光圈尺寸，如第一实施例中。从而固有缺陷图像中的灰尘的子图像能够在整体正常灰尘图像中，从灰尘的可见子图像中有效的删除。

接下来，解释第三实施例的具有灰尘检测系统的数码相机。第三实施例和第一实施例的主要区别在于附着的可去除灰尘的宣告方法。主要参考与第一实施例不同的结构来解释第三实施例。这里，相同的附图标记用于表示对应于第一实施例的结构。

第三实施例中的数码相机 10 具有镜头单元 20 和照相机模块 30，如第一实施例中。此外，镜头单元 20 包括镜头单元驱动机构 21 以及拍摄光学系统 22，如第一实施例中。此外，照相机模块 30 包括反射镜 32、成像装置 33，监视器 34，图像处理模块 400，五棱镜 35、目镜 36，以及其它机身 31 中的组件，如第一实施例中。除了图像处理模块 400 以外，这些组件在照相机模块 30 的结构和功能与第一实施例相同。

如图 18 所示，图像处理模块 400 包括 A/D 转换器 41，正常图像处理模块 42，D/A 转换器 43，如第一实施例中。此外图像处理模块 400 包括灰尘检测模块 60，与第一实施例中不同。

在拍摄和显示模式下，每个组件执行的操作与第一实施例中相同。
通过用户向输入模块 37 输入命令，数码相机 10 切换到灰尘警告模式，然后开始通过成像装置 33 和灰尘检测模块 60 分别执行释放操作和预定图像处理操作。

当数码相机 10 的操作模式切换到灰尘警告模式，镜头单元 20 的参数，例如光圈 23 的光圈尺寸被调整。在结束镜头单元 20 的参数调整之后，执行释放操作，而产生图像信号。

在灰尘警告模式中，成像装置 33 产生的图像信号被传送到图像处理模块 400 作为正常灰尘图像信号，如第一实施例中。图像处理模块 400 经 A/D 转换器 41 向灰尘检测模块 60 传送接收到的正常灰尘图像信号。

如图 19 所示，灰尘检测模块 60 包括分辨率转换电路 51，边界增强电路 52，二元化电路 53，放大电路 54，闪速存储器 55，以及确定电路 61（第二确定模块），以及警告图像产生电路 62。

在正常灰尘图像数据上通过分辨率转换电路 51，边界增强电路 52，二元化电路 53 执行第一实施例的相同的数据处理。从而正常灰尘图像包括的多个像素的亮度数据分量被转换为 0 或 255。像素的转换的亮度数据分量被按顺序传送给确定电路 61。

根据第一实施例相同的方法产生的固有缺陷图像数据被存储在闪速存储器 55 中。固有缺陷图像数据的相同像素的亮度数据分量，作为正常灰尘图像数据的接收的亮度数据分量被传送到确定电路 61。

如果接收的固有缺陷图像数据的亮度数据分量的值是 255，像素在固有缺陷区域之外。然后，确定电路 61 确定是否灰尘在正常灰尘图像中被检测，根据正常灰尘图像数据的亮度数据分量的值。如果正常灰尘图像数据的亮度数据分量的数据等级是 0，那么确定电路 61 确定灰尘存在。

另一方面，如果接收的固有缺陷图像数据的亮度数据分量的值是 0，像素在固有缺陷区域之内。然后，确定电路 61 延缓确定在正常灰尘图像中是否存在灰尘。

如果在正常灰尘图像的一帧中检测到灰尘，产生警告图像的命令被传送到警告图像产生电路 62。当警告图像产生电路 62 接收到命令时，警告图像产生电路 62 产生警告图像数据，该警告图像数据对应于
警告灰尘附着于成像装置 33 的警告图像。警告图像数据经 D/A 转换器 43 被传送到监视器 34，以及然后警告图图像显示在监视器 34 上。

接下来，使用流程图 20 解释在第三实施例中系统控制器 38 在灰尘警告模式下的执行过程。在这里，根据显示在图 10 中的第一实施例相同的方法，产生固有缺陷图像数据并预先储存在闪速存储器 55 中。

当用户向输入模块 37 输入命令以开始灰尘警告模式时，灰尘警告模式处理开始。在开始灰尘警告模式之前，固定数码相机 10，从而花样少的入射到成像装置 33 上的目标的光学图像占据整个有效图像区域。

在步骤 S500-S505，系统控制器 38 控制每个组件执行相同的操作，例如确定镜头单元 20 的参数，捕捉光学图像，并在产生的图像数据上进行预定数据处理，如第一实施例中的步骤 S200-S205。此外，系统控制器 38 命令灰尘检测模块输入按顺序进行预定数据处理的正常灰尘图像数据的亮度数据分量。

在紧接步骤 S505 的步骤 S506，系统控制器 38 命令确定电路 61 按顺序读取存储在闪速存储器 55 的固有缺陷图像数据的亮度数据分量。在步骤 S506 之后的步骤 S507，系统控制器 38 命令确定电路 61 确定接收的亮度数据分量的像素是否位于固有缺陷区域。

如果像素在固有缺陷区域之外，那么处理进行到步骤 S508。在步骤 S508，根据正常灰尘图像数据的亮度数据分量，系统控制器 38 命令确定模块 61 确定是否被捕捉的灰尘的子图像在整体正常灰尘图像中。如果像素在固有缺陷区域之中，或者在确定模块 61 完成确定之后，过程进行到步骤 S509。

在步骤 S509，系统控制器 38 命令确定电路 61 确定是否在步骤 S507 的用于正常灰尘图像的一帧的所有像素的亮度数据分量的确定都完成了。

如果不是所有亮度数据分量的确定都完成了，那么过程返回到步骤 S505，以及重复步骤 S506-S509，直到所有亮度数据分量的确定都完成了。如果所有亮度数据分量的确定都完成了，过程进行到 S510。

在步骤 S510，系统控制器 38 命令确定电路 61 确定是否灰尘的子图像至少在步骤 S508 确定的一个像素中被捕捉。如果灰尘的子图像被
捕捉，过程继续进行到 S511。在步骤 S511 中，系统控制器 38 命令警告图像产生电路 62 产生警告图像数据，以及命令监视器 34 显示警告图像。如果灰尘的子图像未在任何像素中被捕捉，或者当警告图像显示在监视器 34 中，灰尘警告模式的过程终止。

在上述第三实施例中，在捕捉到固有缺陷图像以后引入的灰尘能够被检测。

用于捕捉正常灰尘图像以及固有缺陷图像的光圈值被预定，从而值与上述第一到第三实施例中的值不同。然而，镜头单元 20 的用于捕捉正常灰尘图像和固有缺陷图像之间的参数是预定的，从而彼此不同。只要镜头单元 20 的参数改变，从而灰尘的子图像在捕捉的正常灰尘图像中的可见性相比于在捕捉的固有缺陷图像中降低，在固有缺陷图像中的灰尘的所有的子图像能够有效的从正常灰尘图像中删除。

用于捕捉正常灰尘图像以及固有缺陷图像的光圈值被预定，从而在上述第一到第三实施例中，捕捉正常灰尘图像的光圈值小于捕捉固有缺陷图像的光圈值。然而，光圈值不是必须在捕捉正常灰尘图像的光圈值以及捕捉固有缺陷图像的光圈值之间变化。当然，优选的变化光圈值，从而能够有效的从正常灰尘图像删除固有缺陷图像的灰尘的子图像。但是，即使光圈值不变化，在固有缺陷图像上的大多数子图像可以被去除。

在上述第一和第二实施例中，通过在整体固有缺陷图像中删除位于固有缺陷区域中的灰尘的子图像，从正常灰尘图像中删除固有缺陷图像中的灰尘的子图像。但是，根据任何其他方式，也可以从正常灰尘图像中删除固有缺陷图像中的灰尘的子图像。

环绕被捕捉的固有缺陷图像的整体区域的帧所在的区域在上述第一和第二实施例中被确定为固有缺陷区域。但是，区域并非一定要被确定为固有缺陷区域。如上文所述，优选确定帧的区域为固有缺陷区域，从而有效的从正常灰尘图像中删除固有缺陷图像中的灰尘的子图像。然而，即使区域没有被确定为固有缺陷区域，固有缺陷图像中的大多数灰尘的子图像可以被去除。

在第一和第三实施例中，放大的检测的缺陷区域被确定为固有缺陷区域。然而，检测的缺陷区域可以被确定为固有缺陷区域而无需放
大。只要镜头单元 20 在捕捉的固有缺陷图像和正常灰尘图像上的参数相等，固有缺陷图像中的灰尘的子图像能够从正常灰尘图像中删除，而无需放大检测的灰尘图像。此外，即使镜头单元 20 的参数不同，一些固有缺陷图像的灰尘的子图像也能够从正常灰尘图像中删除。

在第二实施例中，根据出瞳的位置放大固有缺陷区域。然而，固有缺陷区域也可以不根据出瞳的位置放大。只要捕捉的固有缺陷图像和正常灰尘图像上的出瞳位置相等，固有缺陷图像的灰尘的子图像也能够从正常灰尘图像中删除而无需调整。此外，即使出瞳的位置不同，一些固有缺陷图像的灰尘的子图像也能够从正常灰尘图像中删除。

在第二实施例中，根据出瞳的位置改变作为固有缺陷区域的待确定的帧的宽度。然而，宽度也可以不根据出瞳的位置改变。如上文所述，优选改变帧的宽度从而固有缺陷图像中的灰尘的子图像能够有效的从正常灰尘图像中删除。然而，即使不改变宽度，固有缺陷图像中的大部分灰尘的子图像能够被删除。

在第二实施例中，固有缺陷图像中放大灰尘的子图像的放大率根据光圈值确定。放大率可以是常数而无论光圈值如何变化。只要捕捉的固有缺陷图像和正常灰尘图像上的光圈值相等，固有缺陷图像中的灰尘的子图像能够从正常灰尘图像中删除而无需改变放大率。此外，即使光圈值不同，固有缺陷图像中的一些灰尘的子图像也能够从正常灰尘图像中删除。

虽然参考附图在这里描述了本发明的实施例，显然本领域技术人员无需背离本发明的保护范围就可以做出变体和改变。
图 1
3-像素放大的灰尘的子图像
2-像素放大的灰尘的子图像
1-像素放大的灰尘的子图像
无放大的灰尘的子图像
固有缺陷图像

图 6
校正的灰尘图像
开始

捕捉光学图像～S100

转换图像分辨率～S101

边界增强～S102

二元化～S103

放大～S104

在闪速存储器中存储～S105

结束

图 10
图 11
大宽度的帧
中等宽度的帧
小宽度的帧
零宽度的帧

捕捉的固有缺陷图像

出瞳和成像装置之间的距离

图 15
图 16
图19

D/A转换器 -> 警告图象产生电路
警告图象产生电路 -> 确定电路
确定电路 -> 二元化电路
二元化电路 -> 放大电路
放大电路 -> 闪速存储器
闪速存储器 -> 系统控制器

分频器 -> 转换电路
转换电路 -> A/D转换器