(54) 发明名称
一种丙氨酰谷氨酰胺注射液和复方氨基酸注射液的药物组合物

(57) 摘要
本发明涉及一种丙氨酰谷氨酰胺注射液和复方氨基酸注射液的药物组合物，尤其是组合应用包装，包括丙氨酰谷氨酰胺注射液和复方氨基酸注射液。使用时将丙氨酰谷氨酰胺注射液和复方氨基酸注射液联合应用，静脉滴注。本发明的组合应用包装大大方便了临床应用的需求。
1. 一种包含减少肝功能损害副作用的丙氨酰谷氨酰胺注射液和复方氨基酸注射液的药物组合物。

2. 根据权利要求1所述的药物组合物，其特征在于包装规格为丙氨酰谷氨酰胺注射液50ml：10g和复方氨基酸注射液250ml。

3. 根据权利要求1所述的药物组合物，其特征在于包装规格为丙氨酰谷氨酰胺注射液100ml：20g和复方氨基酸注射液500ml。

4. 根据权利要求1-3任一项所述的药物组合物，其特征在于复方氨基酸注射液为18种结晶氨基酸配制而成的灭菌水溶液，包含酪氨酸0.11-0.35g，丙氨酸1.88-6.20g，亮氨酸3.79-12.50g，脯氨酸1.0-3.3g，异亮氨酸1.7-5.6g，甘氨酸3.24-10.70g，苯丙氨酸2.83-9.35g，色氨酸0.39-1.30g，缬氨酸1.36-4.50g，蛋氨酸1.06-3.50g，门冬氨酸115-3.80g，半胱氨酸0.44-1.00g，谷氨酸1.97-6.50g，精氨酸2.63-7.90g，组氨酸2-6g，盐酸赖氨酸3.33-12.40g，苏氨酸1.97-6.50g，丝氨酸0.67-2.20g，依地酸二钠0.1-0.2g，亚硫酰氯2-2g，山梨醇20-40g，注射用水1000ml。

5. 一种制备复方氨基酸注射液的方法，其特征在于包括以下步骤：
 (1) 取约全量的约60%注射用水煮沸加入适量山梨醇使溶解，再加入约0.15%（g/ml）活性炭煮沸20分钟，回滤脱色20分钟后滤入稀配罐；
 (2) 稀配罐中滤入山梨醇液后随即通入氮气，同时再加入另外约全量40%的已经用0.15%（g/ml）活性炭煮沸混合20分钟预处理过的注射用水与山梨醇液合并，并冷却水使合并液冷却至60℃时开始投料；
 (3) 先将适量的混合均匀的依地酸二钠和亚硫酸氢钠的稳定剂分为两等份，将其中一份稳定剂投入混合液中，然后按上述配方顺序将各氨基酸逐个投入使溶解，至氧量在时温度在约50℃以下方能投入，氨基酸投料完毕，加入另一份稳定剂；
 (4) 用约10%氢氧化钠液缓缓加入以调节pH值5.8-6.2，添加注射用水至全量，加入0.15%（g/ml）活性炭搅拌脱色20分钟，循环过滤30分钟；
 (5) 滤至可见异物合格后，灌装，封口，灭菌，即得。

6. 一种制备丙氨酰谷氨酰胺注射液的方法，其特征在于包括以下步骤：
 (1) 浓配：向浓缩罐中加入处方量30%的注射用水，加入处方量的丙氨酰谷氨酰胺，搅拌使之溶解，加入处方量0.1%（g/ml）的已湿润的药用炭，搅拌30分钟，过滤脱炭，滤入稀配罐，用注射用水多次冲洗浓配罐，并滤入稀配罐；
 (2) 稀配：向稀配罐中补加至处方量90%的注射用水，用0.1mol/L盐酸溶液或氢氧化钠溶液调节pH值为5.4-6.0，加入处方量0.1%（g/ml）的已湿润的药用炭，补加注射用水至全量，搅拌30分钟；
 (3) 中间品检测：检测滤液的pH值及丙氨酰谷氨酰胺的含量；
 (4) 灌装：用0.22μm的微孔滤膜精滤，灌装，封口；
 (5) 灭菌：121℃热压灭菌15分钟，快速喷淋降温，出库，自然冷却至室温；
 (6) 灯检、包装、全检、入库。

7. 根据1所述的药物组合物，其特征在于该药物组合物可以为组合应用包装。

8. 根据权利要求1-7任一项所述的药物组合物在制备治疗氨基酸类营养补充药物中的应用，具有促进人体蛋白质代谢正常，纠正负氮平衡，补充蛋白质，加快伤口愈合的作用。
9. 根据权利要求1所述的药物组合物，使用时将丙氨酰谷氨酰胺注射液和复方氨基酸注射液联合应用，静脉滴注。
一种丙氨酰谷氨酰胺注射液和复方氨基酸注射液的药物组合物

技术领域
[0001] 本发明涉及一种丙氨酰谷氨酰胺注射液和复方氨基酸注射液的药物组合物，具体涉及一种包含减少肝功能损害副作用量的丙氨酰谷氨酰胺注射液和复方氨基酸注射液的组合应用包装，属于医药技术领域。

背景技术
[0002] L-谷氨酰胺（L-Glutamine, Gln）是一种体内必需的氨基酸，也是体内含量最多的氨基酸，在蛋白质、核酸合成中具有重要作用。Gln 在血浆中的含量高达 0.8 ～ 0.9 毫摩尔/升，约占游离氨基酸总量的 20%。Gln 是肠粘膜上皮细胞、肾小管上皮细胞和免疫活性细胞等代谢活跃细胞的能量来源；被认为是机体的氮源运载工具，在体内各组织间转运氮源，发挥清除氮等有毒物质等重要功能。
[0003] 丙氨酰谷氨酰胺在体内经二肽酶作用迅速分解释放出 L-谷氨酰胺，供给机体物质合成或能量消耗使用，其生物利用度高，没有积累作用。
[0004] 丙氨酰谷氨酰胺注射液为丙氨酰谷氨酰胺的灭菌水溶液，为无色澄清液体，是一种肠外营养药，为接受肠外营养的病人提供谷氨酰胺。
[0005] 目前，国内关于丙氨酰谷氨酰胺注射液和复方氨基酸注射液的配伍应用都是由用药单位分别从不同的生产厂家采购，临床应用时配伍到一起，这样大大降低了临床应用的方便性。然而，丙氨酰谷氨酰胺在输注前，一般是与可配伍的氨基酸溶液或含有氨基酸的输液按 0.2g/ml 进行溶解并称为一体积，然后与载体溶液一起输注。
[0006] 专利文献 CN201223558Y 公开了一种盐酸氨基酸注射液和丙氨酰谷氨酰胺注射液的双室输液袋，使用时在双室袋内两种溶液混合，混合后共同输注，极易产生降解，导致容易产生肝损害。
[0007] 当前影响临床使用的最大障碍是丙氨酰谷氨酰胺加复方氨基酸静脉滴注致肝损害（药物不良反应杂志，2009 年 6 月第 11 册第 3 期，208-209 页）。
[0008] 为了克服现有技术中丙氨酰谷氨酰胺和复方氨基酸组合存在的难以解决的技术问题，本发明人提出了一种新的丙氨酰谷氨酰胺和复方氨基酸的药物组合物及其应用包装，并对其配方进行改进，实现了大大降低肝损害的作用。

发明内容
[0009] 本发明的目的之一，提供了一种新的丙氨酰谷氨酰胺注射液和复方氨基酸注射液的药物组合物。
[0010] 本发明的目的之一，提供了一种丙氨酰谷氨酰胺注射液和复方氨基酸注射液的组合应用包装。
[0011] 本发明的目的之一，提供了一种包含减少肝功能损害副作用量的丙氨酰谷氨酰胺注射液和复方氨基酸注射液的组合物及其应用包装。
进一步地，该组合包装中还可包含丙氨酰谷氨酰胺注射液和复方氨基酸注射液，这样就大大方便了临床应用的需要，同时对用药单位的采购和配药也提供了很大的方便，节约了成本。

作为本发明的优选实施方式，本发明的包装规格为丙氨酰谷氨酰胺注射液50ml：10g和复方氨基酸注射液250ml。

作为本发明的优选实施方式，本发明的包装规格为丙氨酰谷氨酰胺注射液100ml：20g和复方氨基酸注射液500ml。

本发明提供的丙氨酰谷氨酰胺注射液为无色澄清液体。其制备方法为：

（1）浓配：向浓配罐中加入处方量30%的注射用水，加入处方量的丙氨酰谷氨酰胺，搅拌使之溶解，加入处方量0.1%(g/ml)的已湿润的药用炭，搅拌30分钟，过滤脱炭，滤入稀配罐，用注射用水多次冲洗浓配罐，并滤入稀配罐；

（2）稀配：向稀配罐中补加至处方量90%的注射用水，用0.1mol/l盐酸溶液或氢氧化钠溶液调节pH值为5.4~6.0，加入处方量0.1%(g/ml)的已湿润的药用炭，补加注射用水至全量，搅拌30分钟；

（3）中间品检测：检测滤液的pH值及丙氨酰谷氨酰胺的含量；

（4）灌装：用0.22μm的微孔滤膜精滤，灌装，封口；

（5）灭菌：121℃热压灭菌15分钟，快速喷淋降温，出柜，自然冷却至室温；

（6）灯检、包装、检漏、入库。

本发明提供的复方氨基酸注射液为18种结晶氨基酸配制而成的灭菌水溶液，包含酪氨酸0.11~0.35g，丙氨酸1.88~6.20g，亮氨酸3.79~12.50g，脯氨酸1.0~3.3g，异亮氨酸1.7~5.6g，甘氨酸3.24~10.70g，苯丙氨酸2.83~9.35g，色氨酸0.39~1.30g，缬氨酸1.36~4.50g，蛋氨酸1.06~3.50g，门冬氨酸115~3.80g，半胱氨酸0.44~1.00g，谷氨酸1.97~6.50g，精氨酸2.63~7.90g，组氨酸2~6g，盐酸赖氨酸3.33~12.40g，苏氨酸1.97~6.50g，组氨酸0.67~2.20g，依地酸二钠0.1~0.2g，亚硫酸氢钠1~2g，山梨醇20~40g，注射用水1000ml。

进一步优选地，本发明提供的复方氨基酸注射液为18种结晶氨基酸配制而成的灭菌水溶液，包含酪氨酸0.23g，丙氨酸4.04g，亮氨酸8.15g，脯氨酸2.2g，异亮氨酸3.7g，甘氨酸6.97g，苯丙氨酸6.10g，色氨酸0.85g，缬氨酸2.94g，蛋氨酸2.28g，门冬氨酸2.48g，半胱氨酸0.72g，谷氨酸4.24g，精氨酸5.27g，组氨酸4g，盐酸赖氨酸7.87g，苏氨酸4.24g，组氨酸1.44g，依地酸二钠0.15g，亚硫酸氢钠1.5g，山梨醇30g，注射用水1000ml。

本发明所采用的复方氨基酸注射液的制备方法为：

（1）取适量的约60%注射用水煮沸加入适量山梨醇使溶解，再加入约0.15%(g/ml)活性炭煮沸20分钟，回滤脱色20分钟后滤入稀配罐。

（2）稀配罐中灌入稀配液，再加入另外约全量40%的氯化钠溶液，加入15%的山梨醇使稀配液煮沸30分钟，再加入约0.15%(g/ml)活性炭煮沸吸附20分钟预处理过的注射用水与山梨醇液合并，开冷却后滤出合并溶液冷却至30℃时开始投料。

（3）将适量的混合均匀的依地酸二钠和亚硫酸氢钠的稳定剂分为二等份，将其
中一份稳定剂投入合并液中,然后按上述配方顺序将各氨基酸逐个投入使溶解,至色氨酸时应控制温度在约 50℃以下能投入氨基酸投料完毕,加入另一份稳定剂与氯化钠。

[0029] 4 用约 10%氢氧化钠液缓慢加入以调节 pH 值 5.8～6.2，添加注射用水至全量,加入 0.15%（g/ml）活性炭搅拌脱色 20 分钟,循环过滤 30 分钟。

[0030] 5 滤至可见异物合格后,灌装,封口,灭菌,即得。

[0031] 本发明还提供了一种丙氨酰谷酰胺胶注射液和复方氨基酸注射液的组合应用包装在制备治疗氨基酸类营养补充药物中的应用，具有促进人体蛋白质代谢正常，纠正负氮平衡，补充蛋白质，加快伤口愈合的作用。

[0032] 现有技术中丙氨酰谷氨酰胺和复方氨基酸组合已经广泛应用，但是两者几乎都是以液体形式存在，特别是丙氨酰谷氨酰胺的注射液在贮藏期间的更容易产生分解，因此再混合使用后，产生难以预料的副作用。

[0033] 通过下文的比较试验证明了本发明的产品具有料不到的降低肝损的副作用。本发明益处：

[0034] 1 本发明的组合应用包装大大方便了临床用药的需要。

[0035] 2 本发明的组合应用包装对用药单位的采购配药也提供了方便，节约了成本。

[0036] 3 本发明的组合应用包装现用现配，对每个单独药物的稳定性大有好处，可以提高药品的临床应用质量和生物利用度。

[0037] 4 本发明的组合具有显著地降低肝损伤的益处。

具体实施方式

[0038] 实施例 1 组合包装药物的制备

[0039] 组合：丙氨酰谷氨酰胺注射液 50ml：10g 和复方氨基酸注射液 250ml

[0040] 制备过程：

[0041] 1. 丙氨酰谷氨酰胺注射液的制备

[0042] 1.1 浓配：向浓腌罐中加入 15L 注射用水,加入 10000g 丙氨酰谷氨酰胺,搅拌使之溶解,加入 500g 已湿润的药用炭,搅拌 30 分钟,过滤脱炭,滤入稀配罐,用注射用水多次冲洗浓配罐,并滤入稀配罐；

[0043] 1.2 稀配：向稀配罐中补加注射用水至 45L,用 0.1mol/L 氢氧化钠溶液调节 pH 值至 5.7,加入 500g 已湿润的药用炭,补加注射用水至全量,搅拌 30 分钟；

[0044] 1.3 中间品检测：检测滤液的 pH 值及丙氨酰谷氨酰胺的含量；

[0045] 1.4 灌装：用 0.22μm 的微孔滤膜精滤，灌装 50ml/ 瓶,封口；

[0046] 1.5 灭菌：121℃热压灭菌 15 分钟，快速喷淋降温，出柜，自然冷却至室温；

[0047] 1.6 灯检、包装、全检、入库。

[0048] 2. 复方氨基酸注射液的制备

[0049] 1. 取 60L 注射用水煮沸加入山梨醇 2000g 使溶解，再加入 90g 活性炭煮沸 20 分钟，回滤脱色 20 分钟后滤入稀配罐。

[0050] 2. 稀配罐中滤入山梨醇液后即通入氮气，同时再加入另外 40L 经用 60g 活性炭煮沸吸附 20 分钟预处理过的注射用水与山梨醇液合并，开冷却水使合并液冷却至 60℃时
开始投料。

[0051] (3) 先将混合均匀的依地酸二钠 10g 和亚硫酸氢钠 200g 一分为二份，将其中一份
投入合并液中，然后按顺序将酪氨酸 0.11g、丙氨酸 1.88g、亮氨酸 3.79g、脯氨酸 1.0g、异亮
氨酸 1.7g、甘氨酸 3.24g、苯丙氨酸 2.82g、色氨酸 0.39g、缬氨酸 1.36g、蛋氨酸 1.06g、门冬
氨酸 115g、半胱氨酸 0.44g、谷氨酸 1.97g、精氨酸 2.63g、组氨酸 2g、盐酸赖氨酸 3.33g、苏
氨酸 1.97g、丝氨酸 0.67g，逐个投入使溶解，至色氨酸时应控制温度在 50℃以下方能投入，
氨基酸投料完毕，加入另一份稳定剂。

[0052] (4) 用 10% 氢氧化钠液缓缓加入以调节 pH 值 5.9，添加注射用水至全量，加入
150g 活性炭搅拌脱色 20 分钟，循环过滤 30 分钟。

[0053] (5) 滤至可见异物合格后，灌装，250ml/ 瓶，封口，121℃热压灭菌 20 分钟，即得。

[0054] 实施例 2 组合包装药物的制备

[0055] 组合 : 丙氨酸谷氨酰胺注射液 100ml：20g 和复方氨基酸注射液 500ml

[0056] 制备过程：

[0057] 1、丙氨酰谷氨酰胺注射液的制备

[0058] (1) 浓配 : 向浓配罐中加入 30L 注射用水，加入 20000g 丙氨酰谷氨酰胺，搅拌使之
溶解，加入 1000g 已湿润的药用炭，搅拌 30 分钟，过滤脱炭，滤入稀配罐，用注射用水多次冲
洗浓配罐，再滤出稀配罐；

[0059] (2) 稀配 : 向稀配罐中补加注射用水至 90L，用 0.1mol/L 氢氧化钠溶液调节 pH 值
为 5.8，加入 1000g 已湿润的药用炭，补加注射用水至全量，搅拌 30 分钟；

[0060] (3) 中间品检测 : 检测滤液的 pH 值及丙氨酰谷氨酰胺的含量；

[0061] (4) 灌装 : 用 0.22μm 的微孔滤膜精滤，灌装 100ml/ 瓶，封口；

[0062] (5) 灭菌 : 121℃ 热压灭菌 15 分钟，快速喷淋降温，出库后，自然冷却至室温；

[0063] (6) 灯检、包检、全检、入库。

[0064] 2、复方氨基酸注射液的制备

[0065] (1) 取 60L 注射用水煮沸加入盐酸 4000g 使溶解，再加入 90g 活性炭煮沸 20 分
钟，回流脱色 20 分钟后滤入稀配罐。

[0066] (2) 稀配罐中滤入盐酸溶液后随即通入氮气，同时再加入另外 40L 经用 60g 活性炭
煮沸除去 20 分钟预处理过的注射用水与盐酸溶液合并，开冷却水使合并液冷却至 60℃时
开始投料。

[0067] (3) 先将混合均匀的依地酸二钠 20g 和亚硫酸氢钠 100g 一分为二份，将其中一份
投入合并液中，然后按顺序将酪氨酸 0.35g、丙氨酸 6.20g、亮氨酸 12.50g、脯氨酸 3.3g、异
亮氨酸 5.6g、甘氨酸 10.70g、苯丙氨酸 9.35g、色氨酸 1.30g、缬氨酸 4.50g、蛋氨酸 3.50g、
门冬氨酸 3.80g、半胱氨酸 1.00g、谷氨酸 6.50g、精氨酸 7.90g、组氨酸 6g、盐酸赖氨酸
12.40g、苏氨酸 6.50g、丝氨酸 2.20g，逐个投入使溶解，至色氨酸时应控制温度在 50℃以下
方能投入，氨基酸投料完毕，加入另一份稳定剂。

[0068] (4) 用 10% 氢氧化钠液缓缓加入以调节 pH 值 6.1，添加注射用水至全量，加入
150g 活性炭搅拌脱色 20 分钟，循环过滤 30 分钟。

[0069] (5) 滤至可见异物合格后，灌装，500ml/ 瓶，封口，121℃热压灭菌 20 分钟，即得。

[0070] 实施例 3 组合包装药物的制备
组合：丙氨酰谷氨酰胺注射液 100ml：20g 和复方氨基酸注射液 500ml

制备过程：

1. 丙氨酰谷氨酰胺注射液的制备

（1）浓配：向浓配罐中加入 30L 注射用水，加入 20000g 丙氨酰谷氨酰胺，搅拌使之溶解，加入 1000g 已湿润的药用炭，搅拌 30 分钟，过滤脱炭，滤入稀配罐，用注射用水多次冲洗浓配罐，并滤入稀配罐；

（2）稀配：向稀配罐中补加注射用水至 90L，用 0.1mol/L 氢氧化钠溶液调 pH 值至 5.9，加入 1000g 已湿润的药用炭，补加注射用水至全量，搅拌 30 分钟；

（3）中间品检测：检测滤液的 pH 值及丙氨酰谷氨酰胺的含量；

（4）灌装：用 0.22μm 微孔滤膜精滤，灌装 100ml/瓶，封口；

（5）灭菌：121℃热压灭菌 15 分钟，快速喷淋降温，密检，自然冷却至室温；

（6）灯检、包装、全检、入库。

2. 复方氨基酸注射液的制备

（1）取 60L 注射用水煮沸加入山梨醇 3000g 使溶解，再加入 90g 活性炭煮沸 20 分钟，回滤脱色 20 分钟后滤入稀配罐。

（2）稀配罐中滤入山梨醇液后随即通入氮气，同时再加入另外 40L 经用 60g 活性炭煮沸吸附 20 分钟预处理过的注射用水与山梨醇液合并，开冷气回合液冷却至 60℃时开始投料。

（3）先将混合均匀的依地酸二钠 15g 和亚硫酸氢钠 150g 一分为二，将其中一份投入合并液中，然后按顺序将氯化钠 0.23g，丙氨酸 4.04g，亮氨酸 8.15g，脯氨酸 2.2g，异亮氨酸 3.7g，甘氨酸 6.97g，苯丙氨酸 6.10g，色氨酸 0.85g，缬氨酸 2.94g，蛋氨酸 2.28g，门冬氨酸 2.48g，半胱氨酸 0.72g，谷氨酸 4.24g，精氨酸 5.27g，组氨酸 4g，盐酸赖氨酸 7.87g，苏氨酸 4.24g，丝氨酸 1.44g，逐个投入使溶解，至色氨酸时应控制温度在 50℃以下能投入，氨基酸投料完毕，加入另一份稳定剂。

（4）用 10%氢氧化钠液缓缓加入以调节 pH 值 6.0，添加注射用水至全量，加入 150g 活性炭搅拌脱色 20 分钟，循环过滤 30 分钟。

（5）滤至可见异物合格后，灌装，500ml/瓶，封口，121℃热压灭菌 20 分钟，即得。

对比例 I 组合包装药物的制备

组合：丙氨酰谷氨酰胺注射液 100ml：20g 和复方氨基酸注射液 500ml

制备过程：

1. 丙氨酰谷氨酰胺注射液的制备

（1）配液：向配液罐中加入 80L 注射用水，加入 20000g 丙氨酰谷氨酰胺，搅拌使之溶解，加入 2000g 已湿润的药用炭，搅拌 30 分钟，过滤脱炭，补加注射用水至 90L，用 0.1mol/L 氢氧化钠溶液调 pH 值至 5.9，补加注射用水至全量，搅拌均匀；

（2）中间品检测，检测滤液的 pH 值及丙氨酰谷氨酰胺的含量；

（3）灌装，用 0.22μm 微孔滤膜精滤，灌装 100ml/瓶，封口；

（4）灭菌：121℃热压灭菌 15 分钟，快速喷淋降温，密检，自然冷却至室温；

（5）灯检、包装、全检、入库。

2. 复方氨基酸注射液的制备
（1）向配液罐中加入 90L 注射用水，然后加入山梨醇 3000g、依地酸二钠 15g 和亚硫酸氢钠 150g，搅拌至全部溶解，然后按顺序将氯化胺 0.23g、丙氨酸 4.04g、亮氨酸 8.15g、脯氨酸 2.2g、异亮氨酸 3.7g、甘氨酸 6.97g、苯丙氨酸 6.10g、色氨酸 0.85g、缬氨酸 2.94g、蛋氨酸 2.88g、门冬氨酸 2.48g、半胱氨酸 0.72g、谷氨酸 4.24g、精氨酸 5.27g、组氨酸 4g、盐酸赖氨酸 7.87g、苏氨酸 4.24g、丝氨酸 1.44g，逐个投入使溶解；

（2）用 10% 氢氧化钠液缓缓加入以调节 pH 值 6.0，添加注射用水至全量，加入 150g 活性炭搅拌脱色，20 分钟，循环过滤 30 分钟。

（3）滤至可见异物合格后，灌装，500ml/瓶，封口，121℃ 热压灭菌 20 分钟，即得。

试验例 1 肝功能损伤比较

对 45 例入院使用丙氨酰谷氨酰胺注射液和复方氨基酸注射液的药物组合物的患者进行调查，一组为使用实施例 3 制备的丙氨酰谷氨酰胺注射液和复方氨基酸注射液药物组合物 15 例（简称组合 1），另一组为使用对比例 1 制备的丙氨酰谷氨酰胺注射液和复方氨基酸注射液 15 例（简称组合 2），第三组使用市售的丙氨酰谷氨酰胺注射液（江苏正大丰海制药有限公司，批号 110603-1）和复方氨基酸注射液（江苏康宝制药有限公司，批号 20111002）15 例（组合 3）。使用方法为将丙氨酰谷氨酰胺注射液和复方氨基酸注射液分别静脉滴注。使用疗程为 5 天，使用前后分别对两组患者肝功能进行检查，15 例患者平均检查结果如下：

表 1 肝功能检查结果

<table>
<thead>
<tr>
<th>组合</th>
<th>用药前 (0 天)</th>
<th>用药后 (5 天)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALT</td>
<td>AS</td>
</tr>
<tr>
<td>组合 1</td>
<td>10.4U/L</td>
<td>18.5U/L</td>
</tr>
<tr>
<td>组合 2</td>
<td>11.5U/L</td>
<td>17.9U/L</td>
</tr>
<tr>
<td>组合 3</td>
<td>11.2U/L</td>
<td>17.5U/L</td>
</tr>
</tbody>
</table>

（4）由以上结果可以看出，使用组合 2 和 3 的丙氨酰谷氨酰胺注射液和复方氨基酸注射液的 15 例患者用药 5 天后肝功能出现异常，变化较大；而使用组合 1 丙氨酰谷氨酰胺注射液和复方氨基酸注射液的 15 例患者各项检测指标变化很小，肝功能没有出现异常现象。

【组合 2】和【组合 3】的患者停药后肝功能恢复正常，说明组合 2 和组合 3 丙氨酰谷氨酰胺注射液和复方氨基酸注射液能够对患者的肝功能产生损伤，这是因为组合 2 和组合 3 中丙氨酰谷氨酰胺注射液和复方氨基酸注射液制备工艺不同于本发明，导致质量较差，很容易降解，其降解产物导致肝细胞受损；组合 1 丙氨酰谷氨酰胺注射液和复方氨基酸注射液采用本发明的制备工艺制得，制剂质量合格，远远优于组合 2 和组合 3，相比之下稳定了很多，几乎无降解，所以没有出现肝功能异常现象。