

[54] TORPEDO CONTROL

[75] Inventors: **Robert E. Francois**, Mountlake Terrace; **William R. Davis**; **Wayne M. Sandstrom**, both of Seattle, all of Wash.

[73] Assignee: **The United States of America as represented by the Secretary of the Navy**, Washington, D.C.

[22] Filed: **Oct. 30, 1962**

[21] Appl. No.: **234,584**

[52] U.S. Cl. **114/20 R**; **114/25**

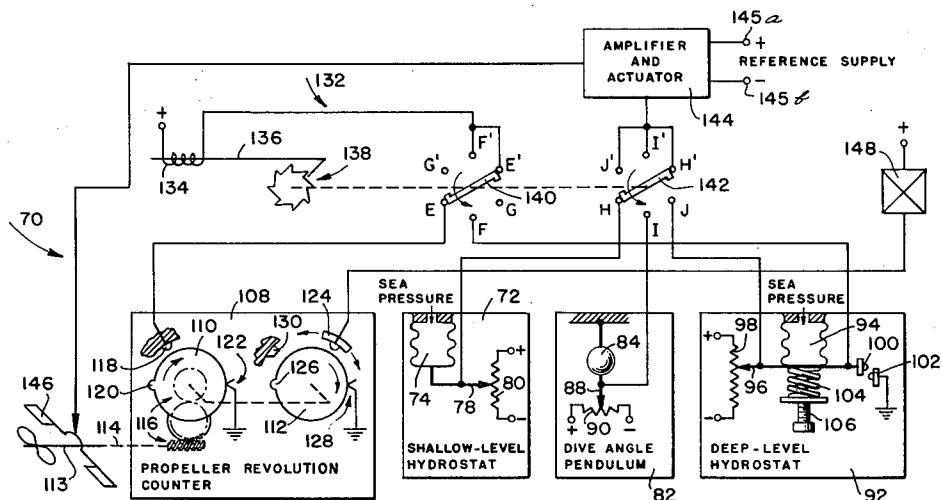
[51] Int. Cl. **F42b 19/00**; **F42b 19/04**

[58] Field of Search..... **114/25, 23, 20 R, 21, 21 W**

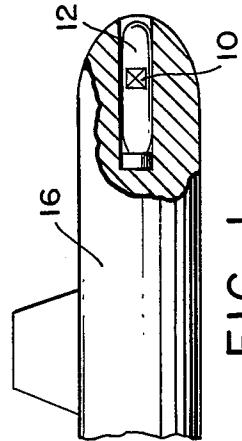
[56] References Cited

UNITED STATES PATENTS

1,816,768	7/1931	Elia.....	114/23
2,341,287	2/1944	Pookhir et al.	114/23
2,363,363	11/1944	Rubisow.....	114/23
2,537,929	1/1951	Daley et al.	114/25


Primary Examiner—Stephen C. Bentley
Attorney, Agent, or Firm—Richard S. Sciascia; Ervin F. Johnston

EXEMPLARY CLAIM


1. The method of effecting control and guidance of an anti-submarine torpedo of the type having a high yield warhead, said torpedo being launched from a hunter submarine against a submerged target submarine, said warhead when exploded beneath the surface of the water having explosive properties such that the maximum distance at which a predetermined damage inflicting effect occurs increases in a predetermined manner in accordance with the depth at which the warhead is exploded, said method comprising the steps:

- placing the hunter submarine at a torpedo launching depth and launching the torpedo thereat and thereafter maintaining the hunter submarine at said depth or above until the warhead is exploded, said launching depth being above a predetermined depth from the surface of the water, said explosive properties defining a hunter submarine safety surface of revolution, said surface of revolution being generated by an upwardly convex curve, the upper end of which is rotated about the periphery of a circle on the surface of the water formed around a vertical axis passing through the hunter submarine, the volume of water within and the volume of water surrounding the hunter submarine safety surface of revolution constituting an unsafe-to-detonate volume of water, and a safe-to-detonate volume of water, respectively,
- guiding the torpedo outwardly from the hunter submarine along a first substantially horizontal course,
- guiding said torpedo downwardly and outwardly through the safe-to-detonate volume along a second slant dive course at a fixed dive angle after the torpedo travels across said surface of revolution and into the safe-to-detonate volume,
- guiding the torpedo along a third horizontal course at a desired explosion depth after the torpedo dives to said explosion depth, said desired explosion depth being chosen to provide optimum damage inflicting effects upon the target submarine at various depths within said predetermined range of depths over which the target submarine may maneuver, and
- detonating the warhead at a desired distance from the hunter submarine along said second or third courses within said safe-to-detonate volume.

3 Claims, 5 Drawing Figures

SHEET 1 OF 2

—
FIG.

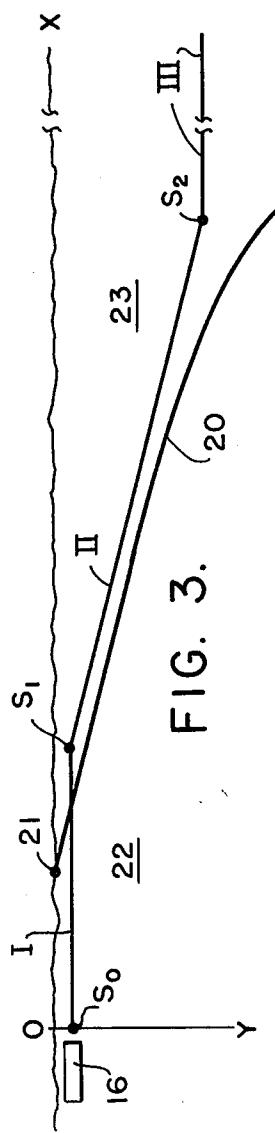


FIG. 3.

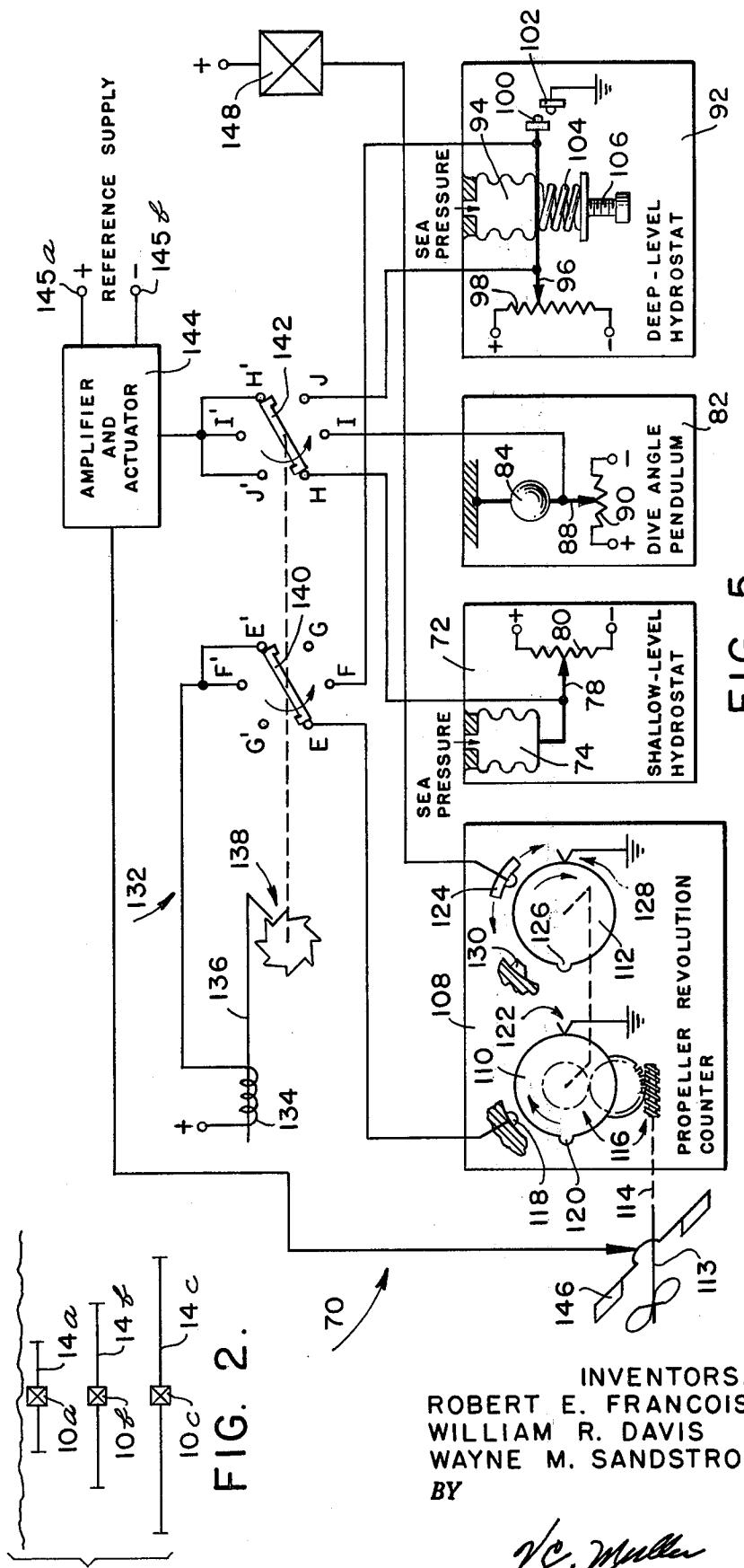
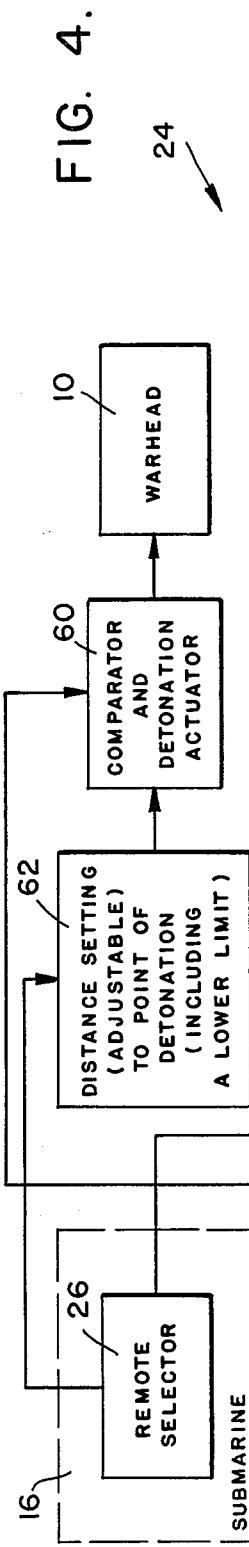



FIG. 5.

INVENTORS.
ROBERT E. FRANCOIS
WILLIAM R. DAVIS
WAYNE M. SANDSTROM
BY

W.C. Muller
ATTORNEY.

INVENTORS.
 ROBERT E. FRANCOIS
 WILLIAM R. DAVIS
 WAYNE M. SANDSTROM
 BY

J.C. Muller
 ATTORNEY.

TORPEDO CONTROL

This invention relates to naval torpedoes of the type that produce a high yield explosion, and more particularly to control apparatus for use with same when intended to be fired from a "hunter-killer" submarine.

An important tactical application of a high yield torpedo is in connection with hunter-killer submarine attacks against a submerged enemy submarine. As is well known, a submarine is of relatively frail structure, and with the enormity of the explosive effect of a high yield underwater explosion, the safety of the hunter-killer submarine which launches the high yield torpedo is a major consideration.

An object of the present invention is to provide control apparatus for a torpedo, of the type referred to, which permits warhead detonation at minimum ranges and at depths providing maximum explosive effect.

Another object is to provide control apparatus in accordance with the preceding objective which may be constructed with existing control system components and is simple and reliable in operation.

Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

FIG. 1 is a side elevation of a submarine, with portions cut away to show a high yield warhead type torpedo in a launching tube ready to be fired;

FIG. 2 diagrammatically compares the effects of explosions of the high yield torpedo warhead in the torpedo of FIG. 1, at various depths;

FIG. 3 diagrammatically illustrates attack trajectories obtainable with the apparatus of FIGS. 4 and 5 and shows a graphical relationship between minimum standoff distance and depth of explosion, with the ordinate of the graph, OY, in an exaggerated scale;

FIG. 4 is a block diagram of torpedo control apparatus forming the subject of the invention; and FIG. 5 is a schematic diagram of another embodiment of control apparatus.

Referring now to FIGS. 1 and 2, it has been found that the effects from an underwater explosion of a high yield warhead 10 of a torpedo 12 increase as the depth at which the explosion takes place is increased. Thus a series of independent high yield explosions from warheads 10a, 10b, and 10c FIG. 2, detonated at progressively greater depths would produce progressively longer "lethal ranges" 14a, 14b, and 14c. This variation of explosive effect with variation of depth must also be considered from the standpoint of the safety of the submarine 16 that launches the torpedo 12. In considering such safety of the launching vessel, however, the lethal range 14 is not the factor to employ, since the launching vessel could receive substantial damage even though at ranges greater than the lethal range. Instead, the factor to be employed is the "minimum standoff distance" at which there is no reasonable likelihood of causing undesired damage. Through test findings and analytical techniques it has been determined that curve 20, FIG. 3 is a representative plot of minimum standoff distance for a submarine 16 that launches a high yield torpedo at point S₀, where the launching submarine remains substantially disposed in the vicinity of point S₀ and in a relatively shallow layer of water adjacent the surface until the warhead explodes. Curve 20 is derived from a plot of points with their abscissal values along

axis OX representing minimum standoff distance and their ordinal values along axis OY representing depth of explosion. Certain relationships are observable. Curve 20 originates at the surface of the water at a predetermined point 21 and extends outwardly and downwardly therefrom and it has an upwardly convex shape. In three dimensional terms, point 21 defines a circle formed around a vertical axis OY passing through submarine 16, and curve 20 defines a surface of revolution generated by rotating the curve about the periphery of the circle. This surface of revolution divides the body of water surrounding the submarine into an unsafe-to-detonate zone 22 and a safe-to-detonate zone 23. As mentioned, curve 20 is a plot for the conditions where submarine 16 lies within a depth layer adjacent the surface. A nominal range of depths for such depth layer is from the surface extending down to a depth of 100 feet. The advantage of remaining in shallow water is that the hull and other equipment of the submarine are less vulnerable to damage from an underwater explosion when at a shallow depth.

Referring now to FIG. 4, disposed in torpedo 12 is apparatus 24 for controlling the torpedo in depth and for detonating warhead 10. Disposed in launching submarine 16 is remote selector 26 comprising control circuits for presetting certain adjustable elements of apparatus 24, remote selector 26 being connected to the elements of apparatus 24 through conventional separable connections which become separated after the torpedo leaves the launching tube.

A comparator and steering signal generator 28, for steering the torpedo at a fixed shallow depth level, has an associated reference unit 30 providing a predetermined reference depth or depth setting. The depth of torpedo 12 during its run is measured by a depth measuring instrument 32, and comparator 28 compares such depth with the reference depth and produces an error or shallow-level steering signal 33, in accordance with departures of the depth of torpedo 12 from the depth setting. When steering signal 33, through switching arrangements to be hereinafter described, is coupled into an amplifier and elevator actuator 34, it is there amplified and converted into appropriate mechanical motion of the torpedo elevators (not shown) to provide required corrections in depth to bring the depth of the torpedo into correspondence with the depth setting of reference unit 30. The depth setting of reference unit 30 is a fixed value, nominally within the range of 50 to 100 feet.

In a similar mode of operation, a second comparator and steering signal generator 36, for steering the torpedo along a slant course, has a reference unit 38 providing a fixed reference dive angle. Comparator 36 compares the dive angle of the torpedo, supplied by a dive angle measuring instrument 40, with the predetermined reference to produce a slant course steering signal 41 to steer the torpedo along a dive course having a fixed dive angle when comparator 36 is connected to amplifier and elevator actuator 34. The part that slant course signal 41 plays in the overall scheme of control will become apparent as the description proceeds. For the moment it is sufficient to state that a slant-course II, FIG. 3, is initiated at a predetermined point S₁ somewhat beyond the horizontal distance from launch point S₀ to curve 20 and that the dive angle of reference unit 38 is so chosen that the torpedo trajectory will always

be beyond the upwardly convex curve 20. In a preferred form the angle of dive is 5½°.

Also in a similar mode of operation, the third comparator and signal generator 44, for steering the torpedo at a fixed deep level, has an associated preselectively adjustable reference unit 46 providing a predetermined depth setting. Comparator 44 compares the depth indicated by instrument 32 with the reference depth and produces a deep-level steering signal 47. The depth setting of reference unit 46 is chosen to optimize explosive effectiveness of the warhead charge 10 in consideration of various factors including: (1) the aforementioned variation of lethal range in accordance with depth of explosion, (2) the depth limit of the torpedo due to its hull and equipment limitations, and (3) the range of depths within which an enemy submarine is believed to be constrained by reason of limits in its hull structure. Normally the setting of reference unit 46 remains fixed at such optimum value. However, to accommodate depths of the ocean floor which may be less than such optimum value, reference unit 46 is made adjustable and may be preset to lesser depths from remote control 26.

A transfer switch 48 has a first set of input and output contacts A,A' and a second set of input and output contacts B,B', with contacts A,A' initially in an electrically closed condition and contacts B,B' in an electrically open condition. Switch 48 is operatively controlled by a comparator and switch actuator 50 having an associated reference unit 52 which provides a predetermined distance setting at which comparator 50 is actuated. When the distance the torpedo has traveled from its point of launching S_0 , FIG. 3, reaches the value of predetermined setting of unit 52, as measured by a distance measuring instrument 54, comparator 50 actuates transfer switch 48 into a condition in which contacts A,A' are open and contacts B,B' are closed. The distance setting of reference unit 52 is the distance from the launching point S_0 to a point S_1 that is somewhat beyond a horizontal distance from the launching point to curve 20.

A similar transfer switch 56 has a set of contacts C,C' in initially closed condition and a set of contacts D,D' in an initially open condition and is controlled by a comparator and switch actuator 58. Reference unit 46 which is the same unit that provides the depth setting for steering signal 41 provides the reference depth at which actuator 58 is actuated. When depth measuring instrument 32, indicates that the torpedo has reached a point S_2 , FIG. 3, at the depth setting of reference unit 46, comparator 58 actuates transfer switch 56 into a condition in which contacts C,C' are open and contacts D,D' are closed.

To complete the circuits for connecting the various steering signals to amplifier and elevator actuator 34, the output of unit 28 is connected to contact A, the output of unit 36 is connected to contact B, contact B' is connected to contact C, the output of unit 44 is connected to contact D, and contacts A', C' and D' are connected to the input of unit 34.

Operation of the portion of apparatus 24 thus described is such that shallow-level steering signal 33 from comparator 28 is initially connected to amplifier and actuator 34 through closed contacts A,A', and upon launch of torpedo 12 at point S_0 , FIG. 3, the torpedo follows at the depth setting of unit 30. After the torpedo has traveled to point S_1 , switch actuator 50

opens contacts A,A' which disconnects steering signal 31, and closes contact B,B' which connects slant dive steering signal 41 to amplifier and actuator 34 through initially closed contacts C,C' of switch 56. Thereupon the torpedo is steered along slant course II with the fixed dive angle called for by unit 38. After the torpedo has dived along slant course II to a point S_2 , having a depth equal to the present depth of reference unit 46, switch actuator 58 opens contacts C,C', which disconnects signal 41, and closes contacts D,D' which connects deep-level signal 47 to unit 34. Thereafter the torpedo remains at a fixed depth course III under control of the signal from unit 44.

Warhead 10 may be detonated at any preselectable point along slant course II or deep level III by means of a comparator and detonation actuator 60 and an associated preselectively adjustable reference unit 62 which provides a predetermined distance setting at which detonation of the warhead takes place. When the distance measuring instrument indicates that the torpedo has traveled a distance equal to the setting of reference unit 62, the comparator 60 fires the warhead. It is to be understood that the slope of slant course II of the torpedo trajectory is so slight the distance traveled may be considered the range for purpose of fire control without need to compensate for the slope. Reference unit 62 is adjusted from remote selector 26 prior to launching of torpedo 12. However, the adjustment has a lower limit equal to the distance from launch point S_0 to point S_1 , to prevent possible detonation in the unsafe-to-detonate zone 22. If desired, however, the warhead could if necessary be detonated at any point beyond the horizontal distance from point S_0 to curve 20.

It will be understood that conventional torpedo control apparatus for steering the torpedo in azimuth is employed concurrently with the depth steering controls described. Also, to avoid any possibility of damage to submarine 16 through a circular run of the torpedo, conventional anticircular run cutout circuits are employed to disarm the torpedo if it deviates from its predetermined azimuth course by an undesired amount.

It will be apparent that at short ranges control apparatus 24 maintains the torpedo in shallow water, thereby permitting the torpedo to be used at minimum standoff distances; at intermediate ranges slant course II provides maximum lethal range of the torpedo consistent with safety of the launching submarine; and at long ranges the torpedo runs at a relative deep level giving optimum lethal range to its warhead. Also, the maneuverability and accuracy requirements of the trajectory scheme of the present invention are well within the capability of existing torpedo control components, and the inherent simplicity of the system provides maneuverability high reliability and safety to the launching submarine.

Referring now to FIG. 5, another embodiment further illustrative of the invention comprises mechanism 70 carried by a torpedo. A shallow-level hydrostat unit 72 comprises a hydrostatic bellows 74 which expands and contracts under changes in sea pressure and an associated potentiometer type voltage pick-off including a wiper arm 78 affixed to the movable end of the bellows 74 and a stationary potentiometer winding 80. Potentiometer winding 80 is so placed that wiper 78 is at its electrical center or reference position when the sea pressure corresponds to the predetermined depth of course I, FIG. 3. A dive angle pendulum unit 82 com-

prises a pendulum 84 and an associated voltage pick-off including a wiper arm 88 affixed to the pendulum for movement therewith and a stationary potentiometer winding 90. Winding 90 is so placed that wiper arm 88 engages its electrical center when the torpedo is at the predetermined angle of slant course II. A preselectably adjustable deep-level hydrostat unit 92 comprises an adjustable spring loaded bellows 94, a potentiometer type voltage pick-off having a wiper 96 and a stationary winding 98, and a set of contacts comprising a contact 100 carried by the bellows and a stationary contact 102. Bellows 94 is of the adjustable type which act against the force of a compressed spring 104, and is so calibrated that a sea pressure corresponding to the depth of deep level course III causes potentiometer arm 96 to engage the center of the winding 98 and contact 100 to engage contact 102 when adjustment screw 106 is in its full tight position. By slackening off screw 106, unit 92 may be preselectably adjusted to decrease the depth of deep-level course III in order to accommodate shallow ocean floors.

A propeller revolution counting unit 108 comprises first timing wheel 110 and second preselectively adjustable timing wheel 112, both wheels being coupled to torpedo propeller shaft 113 through a coupling, symbolically shown by dashed line 114, and reduction gears 116. Since a torpedo moves a substantially constant distance for each revolution of its propeller, the number of turns of the propeller is a measure of the distance the torpedo has traveled from its point of launching. A stationary contact 118 is disposed adjacent the periphery of wheel 110 where it may be engaged by a contact 120 on the periphery of wheel 110 after the wheel has turned a predetermined angular distance corresponding to travel by the torpedo from launch point S_0 to point S_1 , FIG. 3. Engagement of contacts 118 and 120 returns contact 118 to ground potential through a wiper contact 122.

Similarly, a selectively positionable contact 124 is disposed adjacent the periphery of timing wheel 112 in position where it may be engaged by a contact 126 on the periphery of the wheel to return contact 124 to ground through a wiping contact 128. Contact 124 is movable between angular positions corresponding to various distances along slant course II and deep-level course III. A limit stop 130 provides a lower limit of adjustment corresponding to the distance from launch point S_0 to point S_1 .

A solenoid operated selector switch 132 is controlled by action of a solenoid 134. Each time solenoid 134 is energized, an armature 136 is attracted operating a pawl and ratchet 138, which causes a first and second switching arm 140, 142 to each "step" or rotate one-sixth of a revolution in a counter-clockwise direction. Three sets of diametrically opposed contacts E,E', F,F', G,G', are equiangularly placed around the circle described by arm 140 in positions engageable with corresponding stepping positions of arm 140, and in similar manner, three sets of contacts H,H', I,I', J,J', are placed about the circle of revolution of arm 142. Stationary contact 118 of timing wheel 110 is connected to contact E, and contact 100 of the deep-level hydrostat 92 is connected to contact F. Contacts E' and F' are connected, via a common conductor, to solenoid 134, and thence to a positive power source. Potentiometer wiper 78 of the shallow-level hydrostat 72 is connected to contact H, potentiometer wiper 88 of the

pendulum unit 82 is connected to contact I, and potentiometer wiper 96 of the deep-level hydrostat 92 is connected to contact J. Contacts H', I' and J' are connected, via a common conductor, to the input of an amplifier and actuator device 144. Device 144 has a reference input comprising input terminals 145a, 145b and a reference voltage source applies equal positive and negative potentials, relative to ground, to terminals 145a, 145b, respectively. The reference voltage source is also connected across potentiometer windings 80, 90 and 98, so that the center point of these windings are essentially at a zero potential. Thus any deviation or departure of the torpedo from the predetermined depth or dive angle setting of units 72, 82 and 92 causes their respective wiper arms to be at a potential having a polarity and magnitude representing the magnitude and direction of deviation. Amplifier actuator 144 amplifies such voltage and converts it into appropriate mechanical movement of depth control surfaces 146 to bring about a correction in depth steering to cause the torpedo to return to the predetermined depth or dive angle called for by the one of units 72, 82 or 92 connected to the actuator at the time.

Contact 124 adjacent timing wheel 112 is series connected with a warhead detonations circuit 148 and a positive source of potential, forming a firing circuit to detonate the warhead upon engagement of contacts 124 and 126.

The operation of control mechanism 70 is such that contacts H,H' of selector switch 132 initially apply the potential at wiper arm 78 of unit 72 of the amplifier actuator 144, causing the torpedo to steer along a shallow-level course I upon being launched. Upon the propeller having turned through a number of revolutions corresponding to the distance of travel to point S_1 , contact 120 on timing wheel 110 engages contact 118. This causes solenoid 134 of selector switch 132 to be energized through contacts E,E' and steps arms 140 and 142 to their next position. Thereupon the potential at wiper arm 88 is applied to amplifier and actuator 144 through contacts I,I' causing the torpedo to follow slant course II. When, in the course of the dive of the torpedo along slant course II, the hydrostatic sea pressure becomes sufficient to cause bellows 94 to move contact 100 into engagement with contact 102, solenoid 134 is again energized and arms 140, 142 are stepped. Thereafter the potential at wiper arm 96 is applied to amplifier and actuator 144 through contacts J,J' steering the torpedo along deep-level course III. When at some point along slant course II or deep level course III, depending on the position of adjustable contact 124, the latter engages contact 126 the warhead detonator 148 is actuated and the warhead explodes.

Obviously many modifications and variations of the present invention are possible in the light of the above teachings. For example, a wire guided type of torpedo such as disclosed in copending application, Ser. No. 66,366, filed by Julian H. Ray, 31 October 1960, and entitled "Wire Guided Torpedo," may be employed. In such case remote selector 26, FIG. 4, could be in continuous communication with torpedo to provide selective control of the adjustment of elements of the apparatus 24 throughout the torpedo run. Also with such a guidance wire link, certain elements of the apparatus shown as in the torpedo could be located at a remote station. It is therefore to be understood that within the

scope of the appended claims the invention may be practiced otherwise than as specifically described.

What is claimed is:

1. The method of effecting control and guidance of an anti-submarine torpedo of the type having a high yield warhead, said torpedo being launched from a hunter submarine against a submerged target submarine, said warhead when exploded beneath the surface of the water having explosive properties such that the maximum distance at which a predetermined damage inflicting effect occurs increases in a predetermined manner in accordance with the depth at which the warhead is exploded, said method comprising the steps:

- a. placing the hunter submarine at a torpedo launching depth and launching the torpedo thereat and thereafter maintaining the hunter submarine at said depth or above until the warhead is exploded, said launching depth being above a predetermined depth from the surface of the water, said explosive properties defining a hunter submarine safety surface of revolution, said surface of revolution being generated by an upwardly convex curve, the upper end of which is rotated about the periphery of a circle on the surface of the water formed around a vertical axis passing through the hunter submarine, the volume of water within and the volume of water surrounding the hunter submarine safety surface of revolution constituting an unsafe-to-detonate volume of water, and a safe-to-detonate volume of water, respectively, 20
- b. guiding the torpedo outwardly from the hunter submarine along a first substantially horizontal course, 30
- c. guiding said torpedo downwardly and outwardly through the safe-to-detonate volume along a second slant dive course at a fixed dive angle after the torpedo travels across said surface of revolution and into the safe-to-detonate volume, 35
- d. guiding the torpedo along a third horizontal course at a desired explosion depth after the torpedo dives to said explosion depth, said desired explosion depth being chosen to provide optimum damage inflicting effects upon the target submarine at various depths within said predetermined range of depths over which the target submarine may maneuver, and 45
- e. detonating the warhead at a desired distance from the hunter submarine along said second or third courses within said safe-to-detonate volume.

2. In combination with a torpedo adapted to be launched from a hunter submarine disposed at a depth above a predetermined depth from the surface of the water, and against a submerged target submarine which may maneuver within a predetermined range of depths,

55

- a. a high yield warhead, said warhead when exploded beneath the surface of the water having explosive properties such that the maximum distance at which a predetermined damage inflicting effect occurs increases in a predetermined manner in accordance with the depth at which the warhead is exploded, said explosive properties and said predetermined range within which the target submarine may maneuver defining a desired depth at which to explode the warhead to produce optimum damage inflicting effects upon the target target at various depths within said predetermined range of depths,
- d. a depth of explosion placement and steering programmer for sequentially initiating various courses in depth, said explosive properties of the warhead defining a hunter submarine safety surface of revolution, said surface of revolution being generated by an upwardly convex curve, the upper end of which is rotated about the periphery of a circle on the surface of the water formed around a vertical axis passing through the hunter submarine, the volume of water disposed within and the volume of water surrounding the hunter submarine safety surface of revolution constituting an unsafe-to-detonate volume of water, and a safe-to-detonate volume of water, respectively, said programmer being operative to steer said torpedo outwardly from the submarine along a first substantially horizontal course until the torpedo has traveled across said surface of revolution and a predetermined horizontal distance beyond the surface of revolution into the safe-to-detonate volume of water, thence operative to steer the torpedo along a second slant dive course at a fixed dive angle downwardly and outwardly through the safe-to-detonate volume until after the torpedo has reached said desired depth at which to explode the warhead, and thence operative to steer the torpedo along a third horizontal course through said safe-to-detonate volume, and
- c. adjustable means for detonating the warhead at a desired distance from the hunter submarine along the second or third courses within said safe-to-detonate volume.

3. Apparatus in accordance with claim 2, wherein said torpedo is of the type having a propulsion system including a propeller, wherein,

- d. the magnitude of fixed dive angle of the second slant dive course is approximately 5°.
- e. said depth of explosion placement and steering programmer and said adjustable means for detonating the warhead both being responsive to number of revolutions of the propeller.

* * * * *

60

65