A splash minimizing lid assembly for a container comprises a lid and a baffle insert with a number of openings. The lid comprises a continuous lid bead having a horizontal portion and a radially extending portion. The lid snaps onto the brim of the container and sandwiches the baffle insert between the horizontal portion of the lid bead and the brim. The bead is designed to accommodate the baffle insert which can be snapped into the bead, wherein the height of the bead should be sufficient to accommodate the thickness of the baffle insert and the brim of the container. The lid typically stacks or nests in a conventional manner separately from the baffle insert. The baffle insert can be snapped into the lid bead when the lid is used to close a container. The lid and the baffle insert can be manufactured from the same material.
SPLASH RESISTANT LID WITH A SNAP-ON BAFFLE

BACKGROUND OF INVENTION

[0001] The invention relates to containers with lids designed to prevent splashing and spillage of liquids stored in the containers. More particularly, the invention relates to a cover assembly comprising a lid and a baffle insert designed to minimize splashing and spillage of the liquids from the containers during transportation.

[0002] In the growing take-out food market segment beverages and other hot and cold liquids are often transported between the point of sale or distribution and the place of consumption. Typically hot and cold beverages are poured into a disposable container and closed with a snap-on lid keeping the container closed by engaging with the upper brim of the container. It often happened that the transported liquids jiggle and splash during transportation, causing the liquids to spill out of the cup or container and cause inconvenience, damage or injury. To prevent such undesirable results from happening, many cups and containers are provided with a spill and splash resistant lid or cover designed to prevent leakage and splashing from the container. Generally, such splash and spill resistant lids comprise a removable cover with a peripheral portion snap fitting tightly over the brim of the cup or container. The tightly fit lid prevents the undesirable spillage of the liquids out of the container, while allowing a person to drink or sip the liquids through the lid remaining on the cup. A sip opening and a vent opening are punched in the lid to allow the person to drink from the cup with the lid on. The openings are typically configured and designed to prevent the spillage of the liquids when the cup transported or unintentionally moved. Such lids are often used on disposable cups and other containers taken by persons to, or served on, moving vehicles, boats, airplanes, trains and other means of transportation.

[0003] One of the problems associated with the snap-on lids is that while they considerably reduce the spillage, splashing of a hot beverage or another liquid through a sip opening can happen every time a container is moved. Typical for designs of snap-on disposable lids, a sip opening is positioned close to the edge of the lid, while a vent opening is positioned either in the center of the lid or near the edge of the lid oppositely from the sip opening. To prevent spillage from the containers covered by such lids, a baffle or a splash guard is disposed above the liquid. For example, U.S. Pat. No. 4,213,537 to Caccavale describes a lid and a disc insert for a take-out hot food container. The lid and a disc-shaped insert are assembled either in a snap-on or press-fit engagement in order to define an insulating air space between the insert and the top of the lid to provide a degree of insulation for the hot food inside the container. To enable air ventilation, the insert has one or more vent holes. At least one bead is formed on the side wall of the lid to snap on and engage a retention member of the container. The insert itself is spaced apart from the container and is retained in assembly with the lid by a spaced apart bead in a snap-on engagement. The lid itself has one or more vent holes disposed out of registry or vertical alignment with the insert vent holes.

[0004] Another example of a container lid is described in U.S. Pat. No. 4,322,014 to Philip. In that patent both a drinking opening and a vent opening have a baffle arrangement such that the axis of the baffle, taken along the fluid flow lines, forms a straight line and does not follow the contour or radius of the exterior of the lid, making it a rather complicated design. Similarly, U.S. Pat. No. 2,761,301 to Tellier, U.S. Pat. No. 3,313,447 to Spencer, and U.S. Pat. No. 3,549,044 to Lerner describe an anti-splash guard which can be inserted downwardly into a container to minimize a risk of spillage from a container onto a person. Those anti-splash guards are pressed a considerable distance into the containers, minimizing the usable space which could be filled with a beverage or other liquid.

[0005] It would therefore be desirable to provide a splash resistant assembly for a container, allowing a person to transport the container without spilling the liquid from it and drink the liquid through the sip hole of the same lid after transporting the container to the place of consumption. In particular, dome-shaped hot drink lids are known for allowing a hot or cold liquid to splash or spill out when the cups or containers covered by such lids are shaken or jostled during transportation or handling. Therefore, a need exists to provide a spill and splash resistant lid assembly for the take out food market to minimize the risk of spillage while transporting a cup of soup or beverage. It would also be desirable if a splash resistant lid assembly having a simple design and not taking up usable space of the container could be provided.

SUMMARY OF INVENTION

[0006] To address the above-described and related needs, the present invention provides an assembly comprising a lid and a baffle insert. In a preferred embodiment of the invention, the assembly comprises a dome-shaped lid and a disc-shaped baffle insert. In particular, the invention comprises a cover assembly for a container which has a side wall with a brim disposed around the top portion of the side wall. The cover assembly comprises a lid having a lid peripheral portion with a continuous lid bead running around the peripheral portion. The lid bead has a horizontal brim portion, which can be annular, and a downwardly extending peripheral skirt portion configured to engage with the curved or rolled brim in a snap fitting manner. A baffle made of a flexible material comprises a baffle peripheral portion, a first horizontal surface, which can be annular, and a plurality of openings disposed along the baffle peripheral portion. The configuration of the baffle is such that the baffle can be inserted into the lid by engaging the baffle peripheral portion in a snap fit relationship with the continuous radial lid bead and by engaging the first horizontal surface of the baffle in a fitting relationship with the horizontal portion of the lid when the baffle peripheral portion is retained between the horizontal portion of the lid and the brim. In the case of an annular disc-shaped baffle insert, the openings are disposed along the circumference of the peripheral portion of the baffle. In one of the embodiments of the invention an additional opening is provided in the center of the disc-shaped baffle insert.

[0007] The lid and the baffle can be made of the thermoplastic or paper material and be of approximately the same thickness. Since the lid is preferably used with drinking cups or soup bowls, the lid comprises a drinking, or sip, opening in the dome portion of the lid. It is important to note that the size of the openings provided around the periphery of the
The baffle insert should be generally smaller than that of the sip opening in the dome portion of the lid. Such a relationship between the size of the sip opening and the size of the openings around the periphery of the baffle insert greatly reduces the spillage from splashing while still making it possible and convenient for a person to drink through the lid. The openings in the baffle control the splashing while allowing access the liquid to the sip opening when the container is tilted for drinking.

When the splash-resistant lid assembly is snapped onto a container, it provides a splash-resistant container assembly. The container itself has a side wall with a top portion and a curled or rolled brim disposed along the top portion of the side wall. The brim extends radially outward from the top portion of the side wall and circumferes the top portion of the container. The lid has a lid peripheral portion with a continuous radial lid bead having a horizontal portion and a downwardly extending peripheral skirt portion. The continuous radial lid bead preferably engages with the brim in a snap fitting manner when the lid closes the container. A baffle insert has a baffle peripheral portion which may be disposed in the downwardly extending peripheral skirt portion of the lid bead between the rim and the horizontal portion of the lid bead when the insert is snapped into the lid bead. The baffle insert has a plurality of openings disposed around the baffle peripheral portion to prevent the liquid inside the container from splashing and spilling out of the container. The configuration of the baffle is such that when the baffle is inserted into the lid, the baffle peripheral portion engages in a snap fit relationship with the continuous radial lid bead.

According to the inventive method, assembling a lid with a baffle insert for the above-described container comprises providing a lid with a lid peripheral portion and a continuous peripheral lid bead around the peripheral portion. The peripheral lid bead comprises an annular horizontal portion and a downwardly extending peripheral skirt portion, the bead configured to engage with the rim in a snap fitting manner. Furthermore, the method comprises providing a baffle insert having a horizontal surface, a baffle peripheral portion, and a plurality of openings disposed around the baffle peripheral portion. Inserting the baffle insert into the lid comprises snapping the baffle peripheral portion into the downwardly extending peripheral skirt portion of the lid bead in a snap fitting manner in such a way that the horizontal surface engages in the fitting relationship with the horizontal portion of the lid bead.

Providing the components for a splash-resistant container comprises providing a container with a side wall having a top portion and a brim disposed along the top portion of the side wall. The container can be any suitable receptacle use to store and transport liquids. For example, in the food industry such a container can be a cup, a bowl or anything else suitable for cold and hot drinks, soups and other liquids. Furthermore, the method comprises providing a lid with a lid peripheral portion and a continuous radial lid bead comprising a horizontal portion and a downwardly extending peripheral skirt portion. The bead is configured to engage with the rim in a snap fitting manner. In particular, the outside diameter of the baffle is greater than the outside diameter of the cup and greater than the inside diameter of a ridge disposed below the lid skirt. At the same time, the outside diameter of the baffle is smaller than the inside diameter of the lid skirt. Providing a baffle insert with a horizontal surface, a baffle peripheral portion, and a plurality of openings disposed around the baffle peripheral portion is intended to reduce splashing of the liquid from the container. The configuration of the baffle is such that the baffle can be inserted into the lid by engaging the baffle peripheral portion in a snap fit relationship with the continuous radial lid bead and by engaging the first horizontal surface of the baffle in a fitting relationship with the horizontal portion of the lid when the baffle peripheral plug insert is retained between the horizontal portion of the lid and the rim.

A method of assembling a splash-resistant container according to the present invention comprises providing a container with a side wall having a top portion and a rim disposed along the top portion of the side wall, and providing a lid with a lid peripheral portion and a continuous radial lid bead. The radial lid bead comprises a horizontal portion and a downwardly extending peripheral skirt portion and is configured to engage with the rim in a snap fitting manner. Providing a baffle insert with a horizontal surface, a baffle peripheral portion, and a plurality of openings disposed along the baffle peripheral portion is the step intended to reduce the splashing of the liquid from the container. Reducing splashing is accomplished by inserting the baffle insert into the lid by snapping the baffle peripheral portion into the downwardly extending peripheral skirt portion of the lid bead in a snap fitting manner in such a way that the horizontal surface is in a fitting relationship with the horizontal portion of the lid bead. Alternatively, a user can proceed by disposing the baffle insert on the container in such a way that the peripheral portion of the baffle insert is in registry with the rim. Finally, snap-fitting the lid onto the rim and sandwiching the baffle peripheral portion of the horizontal surface between the horizontal portion of the lid and the rim closes the container in a desired splash-minimizing manner.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a cross-sectional view of an assembly comprising a lid with a baffle according to the present invention.

FIG. 2a is a top view of a baffle with a plurality of holes.

FIG. 2b is a top view of an alternative baffle.

FIG. 3 is a top view of a lid.

FIG. 4 is a cross-sectional view of an assembly of the present invention as used with a cup.

FIG. 5 is a detailed view of section A of a snap-on fitted engagement of a lid, baffle and cup.

DETAILED DESCRIPTION

Referring now to FIG. 1, an illustrated cover assembly designated as 10 comprises a lid 15 and a baffle 11. The terms “baffle” and “baffle insert” are used throughout this description interchangeably. Lid 15 can be made of any
material conventionally used for manufacturing lids. For example, a thermoplastic material is generally one of the suitable choices. In the particular embodiment illustrated in FIG. 1, lid 15 has a raised dome portion 36 which makes it convenient for a person to drink out of a cup closed by lid 15. There is no requirement that portion 36 of lid 15 be exactly as shown in FIG. 1 and FIG. 3, which depict the particular lid for the purpose of illustration. Dome portion 36 of FIG. 1 has a horizontal surface 12 and a ridge 17 of different widths 16 and 15. Depending on the application, ridge 17 can have a uniform width. A sip portion is disposed in ridge 17 of width 16. It is contemplated by the present invention that the sip portion can be a sip opening 14 disposed in dome portion 36. It is also contemplated that the sip portion can be preconfigured (perforated, sealed, scored, or precut) to become sip opening 14 when a user pokes the sip portion with a straw, or tears back the perforated portion, or unseals the sip portion to form the sip opening. Opening 14 can be a larger size opening for consuming soups, or it can be smaller size opening for consuming beverages. A depression 21 located in horizontal surface 12 (also called a “nose nook”) is provided for the user’s nose clearance when the lid is tilted at a steep angle. A vent opening can also be provided in lid 15 in any convenient location. As illustrated in FIG. 1 and FIG. 3, sip opening 14 is located off the center of dome portion 36 to make it convenient for a person to drink through lid 15. It is contemplated that sip opening 14 can be located anywhere on horizontal surface 12 as may be designed for certain use. In the particular embodiment shown in FIGS. 1 and 3 opening 14 is a larger size opening suitable for consuming soups. A frusto-conical sloping surface 13 joins dome portion 36 with a continuous lid bead 19. Lid bead 19 has a horizontal portion 20 and a downwardly extending peripheral skirt portion 22 which, in turn, joins a lower skirt 24 outwardly flaring of the lid.

Baffle 11 inserted into lid bead 19 has a plurality of openings more clearly illustrated in FIG. 2a. Baffle 11 can be characterized by a peripheral portion 34 and a center 35. In a preferred embodiment the thickness of baffle 11 is substantially uniform. As shown in the particular example of FIG. 2a, openings 26 are disposed along peripheral portion 34 and in center 35 of the baffle. The size of openings 26 is generally smaller than the size of sip opening 14 in the lid. Such a relationship between the smaller size of the openings in the baffle insert and the larger size of the sip opening makes it possible for the baffle to restrict the liquid from splashing from the container covered by the lid during transportation, while still providing a sufficiently large sip opening for a person to drink through the lid when the container is tilted for drinking. It is also desirable that openings 26 in the baffle are not in registry with sip opening 14, preventing the splashed liquid from spilling over through the sip opening during transportation, but allowing a person to drinking through the lid when a container is tilted. To accomplish non-registry of openings 26 and sip opening 14, keying of the baffle and skirt portion 22 can be used. For example, as shown in FIG. 2b, baffle 11 can be provided with one or more notches 23 (FIG. 2b shows two notches 23 for illustration, but not for limitation) aligned with the corresponding number of protrusions 25 on the inside surface of lid bead 19. The shape of one or more notches 23 and the corresponding shape of one or more protrusions 25 can be any convenient shape as long as the keying function is accomplished. Keying of baffle 11 and lid bead 1 be obtained by visual inspection. Baffle 11 and lid 15 can be manufactured from the same or different flexible materials suitable for a particular application.

In the particular examples of FIGS. 1 and 2a, lid 15 and baffle 11 are annular, meaning that peripheral portion 34 of the baffle is annular, or disc-shaped, and can be characterized by a circumference along which openings 26 are disposed. Continuous lid bead 19 as illustrated in FIG. 1 is also annular and accommodates peripheral portion 34 in a snap-fitting relationship. It should be noted that while the traditional shape of lids and cups in the food industry is circular, the present cover assembly invention can be successfully utilized with lids, baffles and containers of different geometric shapes (square, triangular and others).

Illustrated in FIGS. 1 and 3 is a top view of one of the possible embodiments of a lid used in the cover assembly of the present invention. Ridge 17 has sip opening 14 and has sloping surface 13 joining with continuous lid bead 19. The lid bead is shown to have horizontal portion 20 and downwardly facing skirt portion 22 which, in turn, joins a lower skirt 24 outwardly flaring of the lid.

Shown in FIG. 4 is a splash-resistant container assembly with the lid and baffle insert provided in accordance with the present invention. Container 40 can be any receptacle suitable for carrying liquids, such as a cup, a bowl, a can or any similar object. Container 40 can be of any suitable size and shape dictated by how the container is used. As one of the examples, food containers used in the take-out food industry can be disposable or non-disposable cups and bowls. Typically, such cups and bowls have cylindrical or conical or frusto-conical shape and are made of foamed polystyrene or paper. A liquid 32, such as a hot or cold drink beverage or soup, is usually poured into the volume of container 40. Container 40 comprises a side wall 30 having a top portion 31 and a brim 28. As shown in FIG. 4 and in more detail in FIG. 5, brim 28 extends radially outwardly from top portion 31 to receive lid bead 19 in a snap-fitting manner. Baffle 11 is inserted into the lid by engaging baffle peripheral portion 34 into lid bead 19 in a snap-fit relationship. Downwardly extending peripheral skirt portion 22 receives peripheral portion 34 of the baffle which remains securely inserted into lid bead 19. Continuous lid bead 19 is then snapped onto brim 28 of container 40, securing cover assembly 10 on top portion 31 of side wall 30 of the container and sandwiching peripheral portion 34 of baffle 11 between horizontal portion 20 of continuous lid bead 19 and brim 28. As can be seen in FIG. 4, baffle 11 of uniform thickness becomes securely inserted between the lid and brim 28. The smaller openings 26 in baffle 11 prevent the splashing of liquid 32 from container 40 and spilling out of container 40 through sip opening 14. The baffle does not take up space in container 40, maximizing the amount of liquid 32 that can be poured into and transported in container 40. When container 40 is tilted, openings 26 will let liquid 32 pass through them so that a person can drink liquid 32 through larger sip opening 14. A preferred shape of container 40 is cylindrical or frusto-conical, the preferred shape lid bead 19 of cover assembly 10 is annular, and the preferred shape of baffle insert 11 is a circular disc. The described preferred shapes should not be considered as limiting, since other shapes of the container, the lid bead and the baffle insert can be utilized in a splash-resistant cover assembly and container of the present invention.
A more detailed view of section A (shown as a dashed circle in FIG. 4) is illustrated in FIG. 5. There side wall 30 with top portion 31 has brim 28 shown with peripheral portion 34 of baffle 11 retained between horizontal portion 20 of lid bead 19 and the brim. It can be seen from the detailed view in FIG. 5 that the height of lid bead 19, and in particular of downwardly extending peripheral skirt portion 22, should be sufficient to house peripheral portion 34 of baffle 11 and brim 28 in a snap-fitting engagement. In particular, baffle 11 in such a snap-fit engagement has the outside diameter OD, of container 40 and larger than the inside diameter ID, of baffle 11 is smaller that the internal diameter ID, of skirt portion 22. The described relation between OD, and ID, respectively, provide for retaining the baffle between horizontal portion 20 of lid bead 19 and brim 28.

Lids 15 of the type shown in FIGS. 1 and 4 can be transported and delivered to the place of use in conventional nested stacks. When the lid is used to close a cup or a bowl, the baffle can be snapped into the lid to form the cover assembly of the present invention and to close the container.

The present invention also provides for a method of assembling the cover assembly shown and described with regard to FIGS. 1-5. The method comprises providing lid 15 with a peripheral portion having continuous radial bead 19, comprising horizontal portion 20 and skirt portion 22. Furthermore, the method comprises providing baffle insert 11 having horizontal surface 38, baffle peripheral portion 34 and a plurality of openings 26 disposed along baffle peripheral portion 34. In one of the embodiments of the method, one of the openings 26 is disposed in center 35 of baffle 11. Furthermore, the method comprises inserting baffle 11 into lid 15 by snapping baffle peripheral portion 34 into downwardly extending peripheral skirt portion 22 of lid bead 19 in a snap-fitting manner. Horizontal portion 20 engages in a fitting relationship with baffle peripheral portion 34, making it possible to provide a secure splash-resistant cover assembly. As described above, the shape of lid 15 can be of any suitable shape. FIGS. 1 and 4 illustrate a lid with dome portion 36 as a particular example of the lid. Providing lid 15 comprises providing sip opening 14 of a size larger than that of openings 26 disposed in the baffle insert, which preferably is of uniform thickness. In the particular embodiment of the invention, continuous lid bead 19 and baffle insert 11 are made of a flexible thermoplastic material and are of annular shape.

The cover assembly described above is typically used to provide a splash resistant container. The method of providing a splash-resistant container comprises providing container 40 with side wall 30 having top portion 31 and brim 28. Container 40 can be any receptacle suitable for carrying liquids, such as a cup, a bowl, a can or any similar object. Providing container 40 comprises providing a container of any suitable size and shape dictated by how the container is used. As one of the examples, food containers used in the take-out food industry can be disposable or non-disposable cups and bowls. Typically, such cups and bowls have cylindrical or conical or frusto-conical shape and are made of foamed polyethylene or paper. Liquid 32, as shown in FIG. 4, such as a hot or cold drink beverage or soup, is usually poured into the volume of container 40. Furthermore, the method comprises providing lid 15 with a lid peripheral portion having continuous radial bead 19. Bead 19 comprises horizontal portion 20 and downwardly extending peripheral skirt portion 22 configured to engage with brim 28 in a snap-fitting manner. The method also comprises providing baffle 11 having horizontal surface 38, baffle peripheral portion 34 and a plurality of openings 26 disposed along baffle peripheral portion 34.

Assembling splash resistant container 40 further comprises inserting baffle 11 into lid 15 by snapping baffle peripheral portion 34 into downwardly extending peripheral skirt portion 22 of lid bead 19 in a snap-fitting relationship. Alternatively, baffle 11 can be disposed on container 40 in such a way that peripheral portion 34 is in registry with brim 28 before lid 15 is snapped on container 40. Finally, snap-fitting lid 15 onto brim 28 sandwiches baffle peripheral portion 34 between horizontal portion 20 of lid 15 and brim 28 of container 40. More particularly, snap-fitting lid 15 onto brim 28 comprises snapping baffle peripheral portion 34 into downwardly extending peripheral skirt portion 22 of lid bead 19 in a snap-fitting manner, causing horizontal surface 38 (at baffle peripheral portion 34) to engage in the fitting relationship with horizontal portion 20 of lid bead 19.

While particular embodiments of the present invention have been shown and described, changes and modifications may be made to such embodiments without departing from the true scope of the invention.

1. A cover assembly for a container having a side wall with a brim, the cover assembly comprising:
 a lid having a lid peripheral portion comprising a continuous radial lid bead having a horizontal portion and a downwardly extending peripheral skirt portion, the continuous radial lid bead being configured to engage with the brim in a snap-fitting manner, and
 a baffle of a flexible material comprising a baffle peripheral portion, a first horizontal surface, and a plurality of openings disposed along the baffle peripheral portion, the configuration of the baffle being such that the baffle can be inserted into the lid by engaging the baffle peripheral portion in a snap-fitting relationship with the continuous radial lid bead and by engaging the first horizontal surface of the baffle in a fitting relationship with the horizontal portion of the lid when the baffle peripheral portion is retained between the horizontal portion of the lid and the brim.

2. The cover assembly of claim 1, wherein the peripheral portion of the lid and the baffle peripheral portion are annular.

3. The cover assembly of claim 2, further comprising a first opening disposed in the center of the baffle and wherein the plurality of openings are disposed along the circumference of the annular baffle peripheral portion.

4. The cover assembly of claim 1, wherein the lid further comprises a dome portion with a sip portion and a vent portion and wherein the size of the sip portion is larger than that of the plurality of openings disposed along the baffle peripheral portion.

5. The cover assembly of claim 4, wherein the sip portion is a sip opening.

6. The cover assembly of claim 4, wherein the sip portion is preconfigured to be opened by a user to form the sip opening.
7. The cover assembly of claim 1, wherein the lid and the baffle are made of a thermoplastic material.

8. The cover assembly of claim 1, wherein the baffle has a substantially uniform thickness.

9. A splash-resistant container assembly comprising:
 a container having a side wall with a top portion and a brim disposed along the top portion of the side wall, the brim extending radially outwardly from the top portion of the side wall;
 a lid having a lid peripheral portion comprising a continuous radial lid bead having a horizontal portion and a downwardly extending peripheral skirt portion, the continuous radial lid bead engaging with the brim in a snap fitting manner; and
 a baffle insert having a baffle peripheral portion disposed in the downwardly extending peripheral skirt portion of the lid bead between the brim and the horizontal portion of the lid bead, the baffle insert comprising a plurality of openings disposed along the baffle peripheral portion, the configuration of the baffle being such that the baffle is inserted into the lid by engaging the baffle peripheral portion in a snap fitting relationship with the continuous radial lid bead.

10. The splash-resistant container of claim 9, wherein the side wall and the brim of the container are generally circular, and wherein the peripheral portion of the lid is generally circular.

11. The splash-resistant container of claim 9, wherein the lid further comprises a sip portion and a vent opening.

12. The splash-resistant container of claim 11, wherein the sip portion is a sip opening.

13. The splash-resistant container of claim 11, wherein the sip portion is preconfigured to be opened by a user to form the sip opening.

14. The splash-resistant container of claim 10, wherein the baffle peripheral portion is generally annular and wherein the plurality of openings is disposed along the circumference of the annular baffle peripheral portion and wherein an additional opening is spaced apart from the circumference.

15. The splash-resistant container of claim 12, wherein the size of the sip opening is larger than that of the plurality of openings disposed along the baffle peripheral portion.

16. The splash-resistant container of claim 9, wherein the baffle insert has a substantially uniform thickness.

17. A method of assembling a lid with a baffle insert for a container having a side wall and a brim, the method comprising:
 providing a lid having a lid peripheral portion with a continuous radial lid bead, the radial lid bead comprising a horizontal portion and a downwardly extending peripheral skirt portion and being configured to engage with the brim in a snap fitting manner;
 providing a baffle insert having a horizontal surface, a baffle peripheral portion, and a plurality of openings disposed along the baffle peripheral portion; and
 inserting the baffle insert into the lid by snapping the baffle peripheral portion into the downwardly extending peripheral skirt portion of the lid bead in a snap fitting manner in such a way that the horizontal surface is in the fitting relationship with the horizontal portion of the lid bead.

18. The method of assembling as in claim 17, wherein providing the lid further comprises providing a vent opening and a dome portion of the lid having a sip.

19. The method of assembling as in claim 18, wherein the sip portion is a sip opening.

20. The method of assembling as in claim 18, wherein the sip portion is preconfigured to be opened by a user to form the sip opening.

21. The method of assembling as in claim 19, wherein providing the lid comprises providing the sip opening of a size larger than the size of the plurality of openings in the baffle insert.

22. The method of assembling as in claim 17, further comprising providing the baffle insert of a substantially uniform thickness.

23. The method of assembling as in claim 17, wherein the side walls and the brim of the container are generally annular and wherein the baffle peripheral portion is generally annular.

24. The method of assembling as in claim 22, wherein providing the plurality of through openings comprises disposing the opening along the circumference of the baffle peripheral portion.

25. The method of assembling as in claim 17, further comprising providing the lid and the baffle insert made of a thermoplastic material.

26. A method of providing a splash-resistant container comprising:
 providing a container comprising a side wall having a top portion and a brim disposed along the top portion of the side wall;
 providing a lid having a lid peripheral portion with a continuous radial lid bead, the radial lid bead comprising a horizontal portion and a downwardly extending peripheral skirt portion and being configured to engage with the brim in a snap fitting manner; and
 providing a baffle insert having a horizontal surface, a baffle peripheral portion, and a plurality of openings disposed along the baffle peripheral portion, the configuration of the baffle being such that the baffle can be inserted into the lid by engaging the baffle peripheral portion in a snap fit relationship with the continuous radial lid bead and by engaging the first horizontal surface of the baffle in a fitting relationship with the horizontal portion of the lid when the baffle peripheral portion is retained between the horizontal portion of the lid and the brim.

27. The method of claim 26, wherein providing the lid and the baffle insert comprises providing shaped annularly the peripheral portion of the lid and the baffle peripheral portion.

28. The method of claim 27, wherein providing the baffle insert with the plurality of openings further comprises providing the plurality of openings disposed along the circumference of the annular baffle peripheral portion and providing an additional opening spaced apart from the circumference.

29. The method of claim 26, wherein providing the lid further comprises providing a dome portion of the lid with
a sip opening in the dome portion, the sip opening being larger than the openings disposed along the baffle peripheral portion.

30. The method of claim 26, further comprising providing the lid and the baffle insert made of a thermoplastic material.

31. The method of claim 26, wherein providing a container comprises providing a cup or soup bowl.

32. A method of assembling a splash-resistant container, the method comprising:

- providing a container comprising a side wall having a top portion and a brim disposed along the top portion of the side wall;
- providing a lid having a lid peripheral portion with a continuous radial lid bead, the radial lid bead comprising a horizontal portion and a downwardly extending peripheral skirt portion and being configured to engage with the brim in a snap fitting manner;
- providing a baffle insert having a horizontal surface, a baffle peripheral portion, and a plurality of openings disposed along the baffle peripheral portion;
- inserting the baffle insert into the lid by snapping the baffle peripheral portion into the downwardly extending peripheral skirt portion of the lid bead in a snap fitting manner in such a way that the horizontal surface is in the fitting relationship with the horizontal portion of the lid bead; and
- snap fitting the lid onto the brim, thereby sandwiching the baffle peripheral portion of the horizontal surface between the horizontal portion of the lid and the brim.

33. The method of assembling as in claim 32, wherein providing the container, the lid and the baffle insert comprises providing the brim, the peripheral portion of the lid, and the baffle peripheral portion shaped annularly.

34. The method of assembling as in claim 33, wherein providing the baffle insert with the plurality of openings comprises providing the plurality of openings disposed along the circumference of the annular baffle peripheral portion and providing an additional opening spaced apart from the circumference.

35. The method of assembling as in claim 32, wherein providing the lid further comprises providing a vent opening and a dome portion of the lid with a sip portion in the dome portion, the sip portion being a sip opening.

36. The method of assembling as in claim 32, wherein providing the lid further comprises providing a vent opening and a dome portion of the lid with a sip portion in the dome portion, the sip portion being preconfigured to be opened by a user to form the sip opening, the sip opening being larger than the openings disposed along the baffle peripheral portion.

37. The method of assembling as in claim 32, wherein providing the container comprises providing a cup or a soup bowl.

38. A method of assembling a splash-resistant container, the method comprising:

- providing a container comprising a side wall having a top portion and a brim disposed along the top portion of the side wall;
- providing a lid having a lid peripheral portion with a continuous radial lid bead, the radial lid bead comprising a horizontal portion and a downwardly extending peripheral skirt portion and being configured to engage with the brim in a snap fitting manner;
- providing a baffle insert having a horizontal surface, a baffle peripheral portion, and a plurality of openings disposed along the baffle peripheral portion;
- disposing the baffle insert on the container in such a way that the peripheral portion of the baffle insert is in registry with the brim; and
- snap fitting the lid onto the brim, thereby sandwiching the baffle peripheral portion between the horizontal portion of the lid and the brim and thereby snapping the baffle peripheral portion into the downwardly extending peripheral skirt portion of the lid bead in a snap fitting manner in such a way that the horizontal surface is in a fitting relationship with the horizontal portion of the lid bead.

39. The method of assembling as in claim 38, wherein providing the container, the lid and the baffle insert comprises providing the brim, the peripheral portion of the lid, and the baffle peripheral portion of annular shape.

40. The method of assembling as in claim 38, wherein the baffle insert with the plurality of openings comprises providing the plurality of openings disposed along the circumference of the annular baffle peripheral portion and providing an additional opening spaced apart from the circumference.

41. The method of assembling as in claim 38, wherein providing the lid further comprises providing a vent opening and a dome portion of the lid with a sip portion in the dome portion, the sip portion being a sip opening.

42. The method of assembling as in claim 38, wherein providing the lid further comprises providing a vent opening and a dome portion of the lid with a sip portion in the dome portion, the sip portion being preconfigured to be opened by a user to form the sip opening, the sip opening being larger than the openings disposed along the baffle peripheral portion.