

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2204012 C 2007/03/06

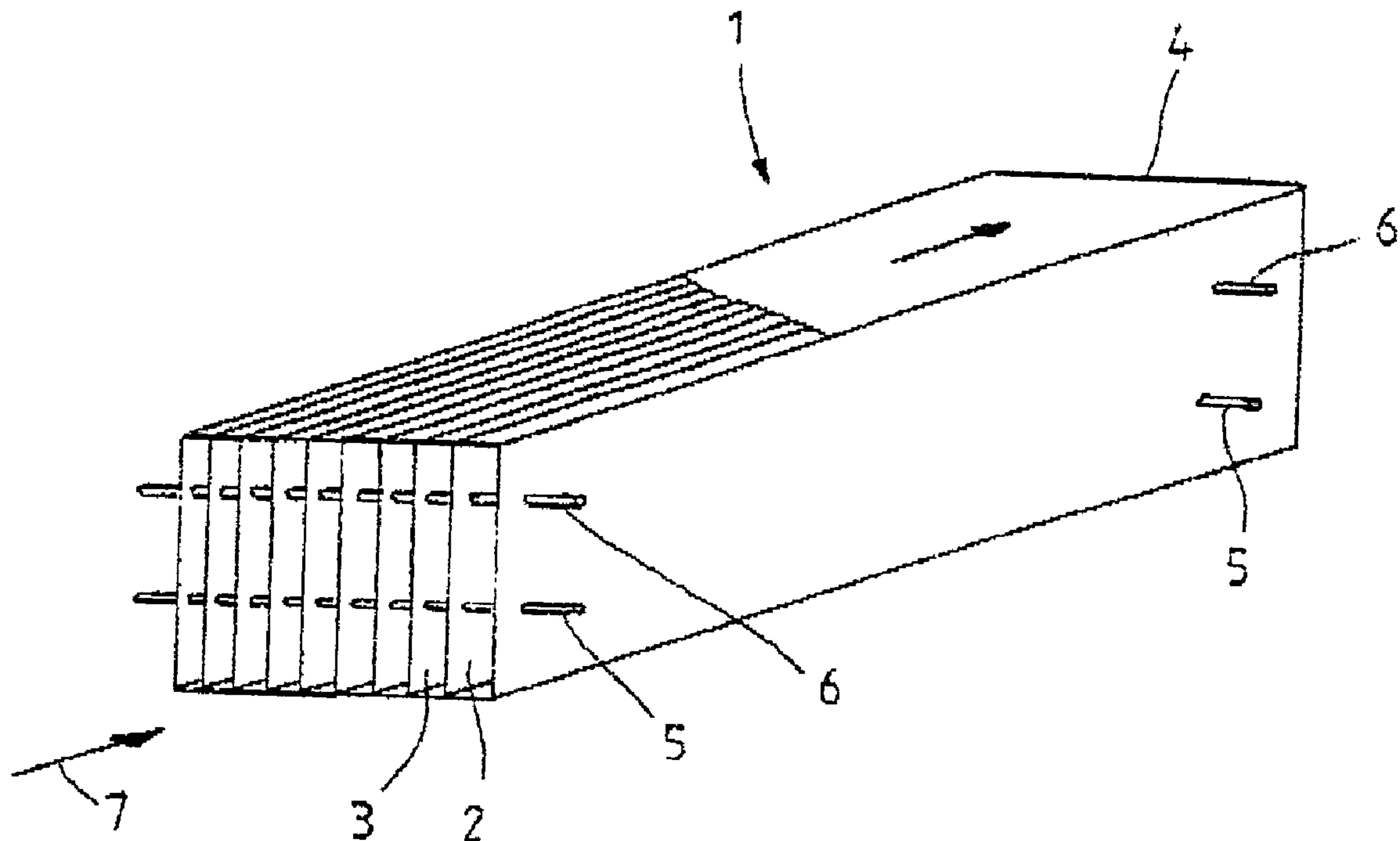
(11)(21) 2 204 012

(12) BREVET CANADIEN
CANADIAN PATENT

(13) C

(86) Date de dépôt PCT/PCT Filing Date: 1996/06/19
(87) Date publication PCT/PCT Publication Date: 1997/01/03
(45) Date de délivrance/Issue Date: 2007/03/06
(85) Entrée phase nationale/National Entry: 1997/04/29
(86) N° demande PCT/PCT Application No.: EP 1996/002651
(87) N° publication PCT/PCT Publication No.: 1997/000116
(30) Priorités/Priorities: 1995/06/19 (DE195 22 104.4);
1995/06/19 (DE195 22 103.6);
1995/06/19 (DE195 22 102.8)

(51) Cl.Int./Int.Cl. B01D 45/00 (2006.01)


(72) Inventeur/Inventor:
FORSTER, MALTE E.C., DE

(73) Propriétaire/Owner:
FORSTER, MALTE E.C., DE

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : PROCEDE ET DISPOSITIF DE SEPARATION DES GOUTTES DE LIQUIDE CONTENUES DANS UN
COURANT GAZEUX

(54) Title: A PROCESS AND AN APPARATUS FOR REMOVING DROPLETS OF LIQUID FROM A FLOW OF GAS

(57) Abrégé/Abstract:

A process and device are disclosed for separating liquid droplets from a gas stream. Shaped elements that form very narrow flow passages are inserted into the flow path of the gas.

(S7) Abstract

A process and device are disclosed for separating liquid droplets from a gas stream. Shaped elements that form very narrow flow passages are inserted into the flow path of the gas.

FILE, ~~ENTITLED~~ THIS AMENDED
TEXT TRANSLATION

WO 97/00116

PCT/EP96/02651

A Process and an Apparatus for Removing Droplets
of Liquid from a Flow of Gas

5 The present invention relates to a process for removing droplets of liquid that are dispersed in a gas. In addition, the present invention relates to an apparatus for carrying out this process.

10 In particular, the present invention relates to the removal of droplets of liquid having diameters that are smaller than $10\mu\text{m}$. It is a known fact that the removal of droplets of liquid from a gas phase presents considerable difficulties as their diameters become smaller, and in particular when they reach diameters that are less than 15 $10\mu\text{m}$. However, the removal of small droplets of this kind is both desirable and necessary in various branches of industry.

20 DE 42 14 094 C1 describes a droplets remover that is used to remove droplets from a flow of gas that is charged with liquid. This is an undulating profile with a flow line that is similar to a sinus wave. This known apparatus is suitable for drops of larger diameter and is based on the principle of direct flow against a wall as a consequence of the inertia of the drops. A droplet

WO 97/00116

PCT/EP96/02651

remover that operates on the same principle is known from DE 78 15 425 U1. This document proposes that in order to reduce the size of the drops that are to be removed, the sinusoidal passages be fitted with transverse stiffening plates and have corrugated plates at the edges so that the plates can be manufactured to be as thin as possible and thus easy to shape.

5 All sorts and types of dust separators, for example filtering separators, electrode separators, cyclone-type separators and the like are suitable for removing droplets. However, laminar and centrifugal separators are preferred, especially for removing droplets. When this is done, as in the droplet removal systems described above, 10 the flow of gas is forced to change direction although the droplets do not conform to this change because of their inertia, and thus are deposited on the wall of the channel. However, if the droplets are smaller than 10 μm , such a system cannot be used effectively, since the 15 droplets are almost unaffected by inertia as they follow the flow of gas.

20 Areas of use in which small droplets of this kind have to be removed from the gas phase are found, for example, in the domain of power-station technology, for example, in 25

25476-193

gas turbines, which operate at extremely high working temperatures, and the like. Even the smallest droplet can cause considerable damage or reductions of service life in the apparatuses that are used, as a function of the gas 5 velocity.

Proceeding from this prior art, it is the task of the present invention to describe a process for removing droplets of liquid from a flow of gas, which can remove droplets of a size smaller than 10 μm , regardless of the 10 temperature range, using simple means. In addition, an apparatus for carrying out this process is described.

According to the invention there is provided a method for separating liquid drops having diameters smaller than 10 μm from a gas stream, said method comprising the step 15 of introducing into a gas stream having a temperature greater than 600°C. shaped elements having narrow channels through which the gas stream flows, wherein said shaped elements are comprised of a material that becomes conductive at high temperatures, and further comprising the step of 20 selecting a width of said narrow channels based on the velocity of the gas stream such that turbulence is generated along the flow path causing the liquid drops to strike the channel walls and deposit thereon.

According to another aspect the invention provides 25 an apparatus for separating liquid drops having diameters smaller than 10 μm from a gas stream, said apparatus comprising a plurality of shaped elements having narrow channels through which a gas stream having a temperature greater than 600°C. flows, said shaped elements combined to 30 a compound structure, wherein said shaped elements are

25476-193

comprised of a material that becomes conductive at high temperatures, and wherein a width of said narrow channels is selected based on the velocity of the gas stream such that turbulence is generated along the flow path causing the 5 liquid drops to strike the channel walls and deposit thereon.

The solution according to the present invention uses the effect that gas flowing in a pipe moves at flow velocities that are a function of the distance from the 10 wall. The molecules of gas in the immediate vicinity of the wall will be retarded to a velocity of almost 0

WO 97/00116

PCT/EP96/02651

whereas higher velocities will occur as the distance from the wall increases. If the channels are made narrow enough, there will be considerable turbulence along the flow path. Since the droplets of liquid that are 5 discussed herein follow the flow of gas with almost no inertia, they will strike a wall statistically and be deposited there.

It is advantageous that the width of the channels be so narrow that, taking the velocity of the gas into 10 consideration, the probability of gas/surface contact is maximized. As a special advantage it is proposed that the width of the channels be made variable and adjustable. According to a further advantageous proposal embodied in 15 the present invention the width of the channels can vary along the flow path.

In the sense of the present invention, droplets are the preferred area of application. The present invention is 20 suitable for each kind of particle, even if these are in other aggregate or intermediate states as a function of the temperature.

A preferred proposal made by the present invention is 25 such that the channels are formed in a stack of plates.

WO 97/00116

PCT/EP96/02651

This can be done in a simple matter. As an alternative or in addition to this, bodies can be combined to form the channels. A laminar sub-stratum that occurs in the vicinity of the wall can be taken into account by appropriate configuration of the surface. The adhesion of the droplets to the wall is affected by molecular interaction, which is referred to as wetting. Thus, by suitable selection of the material for the surface of the bodies or the plates around which the flow passes, it is possible to exert considerable influence on this adhesion. In addition, coalescence to form a film of liquid facilitates removal by reducing surface tension.

The surface configuration can be selected taking factors relevant to adhesion into account. Within the context of the present invention, these factors are the question of the wettability or non-wettability of a surface, on the one hand, and management of the liquid that collects on these surfaces, on the other. As an example, a surface can be so configured that the droplets run together and form large-area, easily managed units that can no longer be stripped off the surface, or the surface can be such that the droplet that land on it remain separated, as far as possible, and can thus be picked up again by the flow.

The surfaces can be smooth, rough, porous or of any other

WO 97/00116

PCT/EP96/02651

configuration. The surface itself can be of a compact, foam, fibrous, or similar structure.

From the standpoint of the apparatus itself, in order to use the effect described above, it is proposed that--in the simplest case--the gas flows through the particularly narrow channels of a stack parallel to the plates that are arranged next to each other, so that the probability of gas/surface contact is maximized. In addition to the selection of the material for the wall, the dimensions that are decisive for removal are the width of the channel that can be set up, and the velocity of the flow of gas. The two last-named factors are dependent on the material constants of the gas and the actual operating parameters such as pressure and temperature. Thus, it is possible to optimize removal by taking these parameters into account.

As an alternative, it is proposed that geometrical variations, for example, triangular or round bodies or combinations of these, can be used in place of plates. The channels must not of necessity be rectilinear, rather, the path of the flow can be curved. It is also possible to use separator profiles to the extent that the geometry permits the required narrow width of the

WO 97/00116

PCT/EP96/02651

channels. The direction of the flow can also be matched to requirements, for example, direct flow or with the gases flowing in the opposite direction to the liquid that is removed, and by the position of the separator relative to the horizontal or the vertical plane.

Generally speaking, ceramic materials are classified as electrical insulators, their conductivity depending both on their composition and on the temperature. However, one cannot find good insulating properties in all ceramics in each temperature range. Thus, for example, ceramics that contain zirconium oxide have been found to be materials that display markedly differing changes in conductivity at temperatures above 600°C compared to good insulators; as the temperature increases, these materials rapidly move into a range of conductors with resistances in the kilo-ohm range. This effect is particularly marked in the case of fusion-cast ceramics and is obviously based on easier electron motility that is brought about by the particular structure of the material. The use of oxides from the series of secondary-group elements, for example zirconium oxide and the like, is thus preferred.

In addition to the materials referred to above, it is also possible to use other ceramics or ceramic-like

WO 97/00116

PCT/EP96/02651

5

materials, for example, non-oxide ceramics such as carbides, silicides, nitrides, or the like. In addition, it is within the scope of the present invention to amplify the effect of the charge-generating surface that is based on high temperature by the application of additional current.

10

The effect referred to as thermo-emission is used to build up a field between at least two surfaces of the type described above.

15

Particles contained in a flow of gas can be deflected, collected, neutralized, or otherwise influenced using the process according to the present invention. According to this process, the surfaces can be formed on one wall of a section of the flow, on an additional element, or on a structural element that is to be arranged in the area of the flow.

20

The process according to the present invention makes use of particular material properties under appropriate temperature and flow conditions in order to deflect droplets of the smallest diameters that are contained in a flow of gas, to collect these, or otherwise influence

WO 97/00116

PCT/EP96/02651

them, the measures according to the present invention being economical and simple to realize.

5 Additional advantages and features of the present invention are set out in the following description, which is based on the drawing appended hereto. The drawing shows the following:

10 Figure 1: a perspective diagrammatic view of one embodiment of a separator.

Figure 1 is a diagrammatic view of a plate packet that comprises a plurality of parallel plates, with unobstructed channels left between them. The intervening 15 spaces are adjustable, to which end adjusting bolts and washers can be used. These attachment areas can lie outside the areas through which the gas flows or, in contrast to this, they can be covered so as to facilitate the flow of gas.

20 The plates 2, 3 can be manufactured from materials that generate different charges when hot gas flows between them, so that an electrical field can be built up. This can greatly facilitate the removal of droplets of liquid, 25 as described above. The separator 1 incorporates the

WO 97/00116

PCT/EP96/02651

plates 2, 3 that are arranged within a housing 4 by means of adjusting bolts 5, 6 in such a way at they can be adjusted to form suitably narrow channels. In the embodiment that is shown, the direction of the flow is indicated by the arrow 7.

The plates can be suspended in cross sections of the flow, inserted into grooves, or otherwise secured. The plates can be used as conducting-insulating plates as emitters or can be used with reversed polarity.

WO 97/00116

PCT/EP96/02651

Reference Numbers

- 1 - separator
- 2 - plates
- 3 - plate
- 4 - housing
- 5 - adjusting bolt
- 6 - adjusting bolt
- 7 - direction of gas flow

25476-193

CLAIMS:

1. A method for separating liquid drops having diameters smaller than 10 μ m from a gas stream, said method comprising the step of introducing into a gas stream having a temperature greater than 600°C. shaped elements having narrow channels through which the gas stream flows, wherein said shaped elements are comprised of a material that becomes conductive at high temperatures, and further comprising the step of selecting a width of said narrow channels based on the velocity of the gas stream such that turbulence is generated along the flow path causing the liquid drops to strike the channel walls and deposit thereon.
2. A method according to claim 1, wherein in the step of selecting a width of said channels includes maximizing a probability of gas/surface contact.
3. A method according to claim 2, wherein the width of said channels is variable.
4. A method according to claim 2, wherein in a flow direction of the gas stream the width of said channels changes.
5. A method according to claim 1, wherein said channels are formed in a stack of plates.
6. A method according to claim 1, wherein said channels are formed between surfaces of bodies.
7. A method according to claim 6, wherein the surfaces are porous.

25476-193

8. A method according to claim 1, wherein said shaped elements have a foam structure.

9. A method according to claim 1, wherein said shaped elements have a fibrous structure.

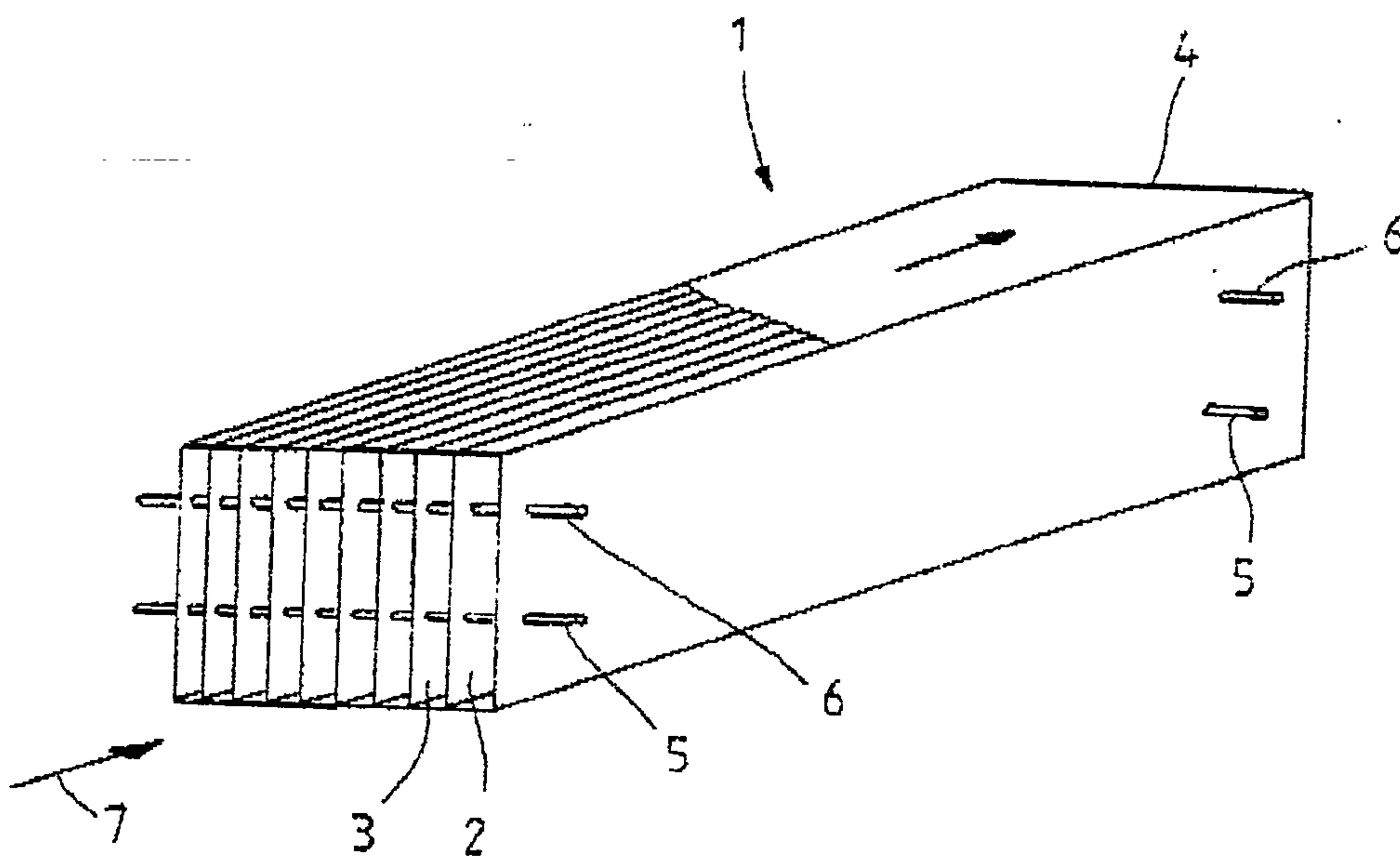
5 10. A method according to claim 1, wherein said shaped elements are made of ceramic material.

11. An apparatus for separating liquid drops having diameters smaller than $10\mu\text{m}$ from a gas stream, said apparatus comprising a plurality of shaped elements having 10 narrow channels through which a gas stream having a temperature greater than 600°C . flows, said shaped elements combined to a compound structure, wherein said shaped elements are comprised of a material that becomes conductive at high temperatures, and wherein a width of said narrow 15 channels is selected based on the velocity of the gas stream such that turbulence is generated along the flow path causing the liquid drops to strike the channel walls and deposit thereon.

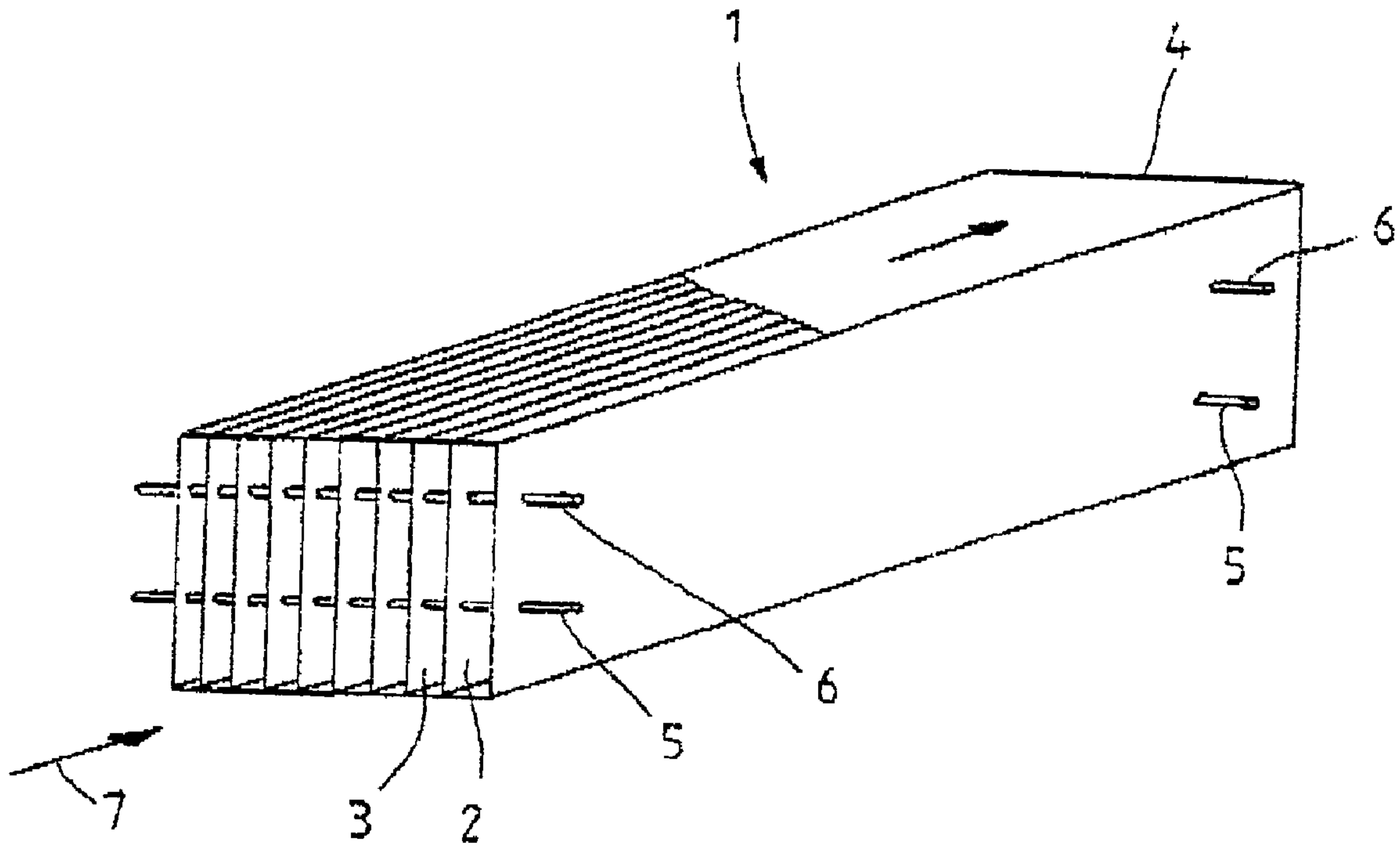
12. An apparatus according to claim 11, wherein said 20 shaped elements are stackable plates.

13. An apparatus according to claim 11, wherein said shaped elements are arranged such that a spacing between neighboring ones of said shaped elements is changeable.

14. An apparatus according to claim 11, wherein said 25 shaped elements are made of ceramic material.


FETHERSTONHAUGH & CO.
OTTAWA, CANADA

PATENT AGENTS


WO 97/00116

PCT/EP96/02651

1/1

Patent Agents
Fetherstonhaugh & Co.

