(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
12 April 2007 (12.04.2007)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

‘ﬂb’ A0 0 R0

(10) International Publication Number

WO 2007/041703 Al

(51)

21

(22)
(25)
(26)
(30)

(1)

(72)

International Patent Classification:
GOGF 17/21 (2006.01) GOGF 17/00 (2006.01)

International Application Number:
PCT/US2006/039100

International Filing Date: 4 October 2006 (04.10.2006)

Filing Language: English
Publication Language: English
Priority Data:

60/723,467 4 October 2005 (04.10.2005) US
11/343,351 31 January 2006 (31.01.2006) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: SCHRIER, Evan; One Microsoft Way,
Redmond, Washington 98052-6399 (US). SALESIN,
David, H.; One Microsoft Way, Redmond, Washington
98052-6399 (US). JACOBS, Charles, E.; One Microsoft
Way, Redmond, Washington 98052-6399 (US). WADE,
Geraldine, G.; One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

(81)

(34)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: MULTI-FORM DESIGN WITH HARMONIC COMPOSITION FOR DYNAMICALLY AGGREGATED
DOCUMENTS
Ve 100
104
TEMPLATE
110
102 106
HIGH
) R P QUALITY
INTERFACE < » LAYOUT ENGINE [« > LAYOUT
N
v 108

CONTENT

0-7/041703 A1 |V V0 00O OO 0

(57) Abstract: An architecture employed to create a high quality document, which is a document that looks good given the type(s)
& of content to be displayed in the document and the size/dimensions of the displayed document. The architecture can utilize high
O fevel templates that broadly define layout constraints to adapt the content to multiple sizes and dimensions with a wide variety of
content in a wide variety of formats. Additionally, high level descriptions of high quality documents can be translated into low level
constraints for use with an AGDBL system, dramatically reducing the number of templates required by that system while at the same
a time increasing the functionality of the templates and the ease with which the templates can be created and maintained.

WO 2007/041703 A1 | HINIA!] DA 000 0 0000 0 O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations” appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gazette.

claims and to be republished in the event of receipt of

amendments

WO 2007/041703 PCT/US2006/039100

Title: MULTI-FORM DESIGN WITH HARMONIC COMPOSITION FOR
DYNAMICALLY AGGREGATED DOCUMENTS

BACKGROUND
[0001] Commercially printed publications, such as newspapers and
magazines, significantly use grid-based page layouts and designs. In the 1920s and
1940s, designers Mondrian and Le Corbusier created ordered grid-based design
systems for printing various types of document content. These grid-based design
systems were further improved in Switzerland after World War 11 and, in the 1950s
and 1960s, rapidly spread throughout the world as the standard for commercial
publications. Today, grid-based design systems remain universally implemented in a
variety of publication systems.
[0002] Several successful software systems exist that support grid-based page
designs. Products such as MICROSOFT PUBLISHER offered by Microsoft
Corporation of Redmond, Washington, QUARKXPRESS® offered by Quark, Inc. of
Denver, Colorado, and ADOBE PAGEMAKER® offered by Adobe Systems
Incorporated of San Jose, California have become the industry standards for
commercial publishing and desktop publishing. Although these software systems are
adequate for their intended purpose, the actual mapping of page elements, such as
text, images, and sidebars, to grid positions within a document layout remains a
manual process. Typically, grid-based document layout is customized for one
specific page size, such as an 8% -by-11 inch sheet of paper. There is, however, no
obvious way for these customized layouts to adapt to a range of page sizes and other
viewing conditions in a graceful manner (i.e., also referred to herein as “document-
reflow™).
[0003] Because grid-based document layout account for both static fixed size
and manual process, grid-based design systems generally do not support “document-
reflow.” Systems that do support the reflowing of document content, such as
Microsoft Word and hypertext mark-up language (HTML), typically consider the
document content as a single, one-dimensional flow that snakes from one page to the

next. Thus, these types of systems can lose the original grid-based document layout.

WO 2007/041703 PCT/US2006/039100

Such a difficulty can arise as well with systems that utilize multiple orientations with
different form factors.

[0004] The difficulty of generalizing grid-based designs explains the generally
inferior nature of on-screen layouts compared to similar printed layouts. As screen
resolutions of display devices begin to match the resolution quality of a printed page,
there arises a need to easily and automatically adapt grid-based document designs to
arbitrarily-sized electronic displays. “Harmonic composition” can be used to define a
set of rules and constraints applied to the placement of objects, such as (but not
limited to) text and image within the grid based system so as to keep relationship and
proportion of elements for optimal viewing and readabilty for dynamically aggregated
documents. This can be a unique factor in the development and design of an effective
high quality adaptive layout. This difficulty is arguably one of the greatest remaining
impediments to creating on-line reading experiences that rival those of ink on paper.
On-screen reading experience may eventually surpass the experience of reading
paper, because computers provide a multitude of opportunities for customization and
style, as well as capabilities such as animation and interactivity.

[0005] Adaptive grid-based document layout requires flexible pagination for
the mapping of document content to a set of discrete pages. The discrete pages may
be subject to various constraints such as the sequential ordering of words in a stream
of text, the finite capacity of the pages, and the dependencies between the content
within a document (e.g., textual references to figures or tables). Finding a desirable
pagination is often difficult when one or more additional types of content, such as
figures or tables, are involved.

[0006] To acquire optimal pagination, a measure of succesé must be defined
for each of the appropriate sets of discrete pages. Pagination has the “optimal
subproblem” property and, therefore, is solvable by dynamic programming. Any
optimal solution of 7 pages would inherently contain an optimal solution of #-1 pages.
Typically, a dynamic programming paginator starts with an empty solution set and
incrementally adds and solves a subproblem (e.g., a subset of discrete pages) to find
an appropriate set of discrete pages. Additionally, the dynamic programming
paginator keeps a table of each subproblem’s score (e.g., a measure of success based

on a predetermined metric) and a pointer back to the preceding subproblem in the

WO 2007/041703 PCT/US2006/039100

optimal solution. A new subproblem is evaluated by scanning the table for the
preceding subproblem with the best score that may properly precede the new
subproblem. Accordingly, the dynamic programming paginator evaluates each of the
possible predecessors of each new subproblem. Unfortunately, there may be a
significant number of predecessors of each new subproblem to evaluate, with a vast
majority not even qualifying as valid predecessors of the new subproblem. Therefore,
the dynamic programming paginator inefficiently conducts evaluations of unusable
prede;:essor subproblems and, thus, slows down the speed of pagination.

[0007] Moreover, in today’s computer environment there is a rapid expansion
of devices and displays in both form and aspect ratio. Content and information are
poured into tiny wrist displays, portable hand-held devices, digital fabrics, work
stations and even large wall mounted displays. As part of this trend the personal
computer has emerged as an important reading medium. In fact, reading onscreen has
become a principal form of gathering information in our society today.

[0008] However, many of our current methods of designing documents for the
web, or these devices with dramatically different display sizes and shapes, fall short
of efficiently utilizing the new dynamic real estate offered by the many varieties of
displays. Most web formats do not perform well over multiple displays. This is in
part due to the influence of static print based design media on readability for the
screen. Vast bodies of information are available in print form, and the advantage and
importance of good document design is well known in the print world as aiding
communication, readability and marketability because it attracts and holds viewers’
attention. While good quality, grid-based design is commonplace in print, it is not
prevalent in online documents. Accordingly, new multi-level design concepts need to
be explored to take account of the display characteristics of screen size, ratio and
orientation. '

[0009] The internet makes it very easy to assemble documents out of
information from many disparate sources and display it together on a single screen.
Search engines and news aggregators do this and display their results as an HTML
web page. However, it would be preferable to instead display these results in a well
designed, attractive way that rivals the quality designs commonly seen in print. Earlier

work made it possible to display grid-based designs that adapt to different viewing

WO 2007/041703 PCT/US2006/039100

conditions, but the designs didn’t always transfer well to different content and were
prohibitively difficult to produce.
[0010] Thus, previous work allowed users to design grid-based document
layouts which adapt to different window dimensions, but the document layouts were
specified in a low level language that was difficult to create and maintain. For
example, a “style” could be designed to be a collection of constraint-based templates,
each of which can display a certain collection of content at a designated range of
screen sizes. As a document window was resized, the template’s constraint system
resizes each display element until a threshold is crossed, at which point another
template was used. However, the objective of previous systems was for document
styles to be re-usable for multiple documents. While this was true to an extent, in
practice it was found that many layouts would not look good if the figure dimensions
were significantly different than ones used in the original design. Designing a robust
style that could handle any combination of visual elements required huge numbers of
templates to be designed, one for each possible combination of elements and element
variations.
[0011] Accordingly, the previous adaptive document éystem has allowed
designers to build documents that adapt to different screen sizes and formats, but
suffered from two critical problems. First, it was very difficult to work with the
actual document layouts, both to create new designs and to modify existing designs.
Second, document layouts did not adapt very well to disparate selections of content
without being modified by designers or editors prior to publication.
[0012] Layouts in printed media have the benefit of designers and editors who
customize the final product by altering both the layout and the content. A single,
static design template is unlikely to look very good for different types of content
where titles or headlines are different lengths and graphics are different dimensions,
even though most of the design elements on the page may be the same. One of the
main challenges in multi-level design of this nature is to maintain quality layouts,

. since there is no editor making sure everything in a layout looks good and
customizing things when necessary, the designs should be able to accommodate

multiple ways to display content and distinguish which method is best at any time.

WO 2007/041703 PCT/US2006/039100

SUMMARY
[0013] The following presents a simplified summary of the claimed subject
matter in order to provide a basic understanding of some aspects of the claimed
subject matter. This summary is not an extensive overview of the invention. It is not
intended to identify key/critical elements of the invention or to delineate the scope of
the invention. Its sole purpose is to present some concepts of the claimed subject
matter in a simplified form as a prelude to the more detailed description that is
presented later.
[0014] The claimed subject matter disclosed and claimed herein, in one aspect
thereof, comprises an architecture that can facilitate easily designing and displaying
rich, grid-based designs and/or high quality layouts that adapt to many different
viewing conditions and content selections. To the accomplishment of the foregoing,
templates can be employed that describe at a high level the constraints of the layout.
These templates can be much easier to produce and maintain, while increasing the
flexibility of the layouts, allowing them to better adapt to disparate content. As well,
the applicability of the architecture can be increased over previous systems (e.g.,
“Adaptive Grid-Based Document Layout” (AGBDL), Jacobs, et al. 2003) by
broadening the types of content which can be displayed, particularly focusing on
content aggregated from a variety of sources on the internet.
[0015] In accordance with an aspect of the claimed subject matter, templates
can be defined with high level constructs that are easy to understand and use.
Accordingly, the task of designing and/or maintaining the templates can be practical
for graphic designers who may not have an extensive technical background.
Additionally, the resulting designs can be easily understandable and maintainable by
other designers, even those who did not help to create the template. The templates
created can be employed with both static documents and dynamic documents obtained
from a variety of web-based sources. The templates can be employed for multi-level
design layouts as well, that, for example, can produce documents with multiple layers
of content.
[0016] In accordance with another aspect, the resulting document layouts can
be high quality layouts (e.g., layouts that “look good™), and retain their visual appeal
at different display sizes while employing disparate types of content. High quality

WO 2007/041703 PCT/US2006/039100

layouts can be designed such that they do not compromise semantic flow, brand
identity, image and text correlation, advertising themes and the like.

[0017] In accordance with another aspect of the claimed subject matter, the
templates can be flexible enough to handle a wide variety of content that may be
found in an aggregated document without requiring a large number of templates to be
designed and maintained. Rather, a single template can define a number of possible
configurations of elements and/or content, greatly reducing the number of templates
needed to provide flexible designs. Furthermore, the templates described at a high
level can be translated into the low level constraints employed by other systems. The
architecture can supply constraint systems automatically to implement common
behaviors in adaptive documents, rather than requiring each designer to code them by
hand.

[0018] Moreover, the architecture can allow graphic designers to easily design
high-quality document layouts that adapt to different screen sizes, even when the
precise content to be displayed is unknown. Additionally, the concept of a document
ca{n be expanded to include references to external sources that will likely not be in a
uniform format. Accordingly, the architecture can make it easy to produce multi-level
design architecture based on high-quality, grid-based adaptive designs with enough
flexibility to handle content that is aggregated from multiple sources, and can be
unknown at design time.

[0019] To the accomplishment of the foregoing and related ends, certain
illustrative aspects of the claimed subject matter are described herein in connection
with the following description and the annexed drawings. These aspects are
indicative, however, of but a few of the various ways in which the principles of the
‘invention can be employed and the claimed subject matter is intended to include all
such aspects and their equivalents. Other advantages and novel features of the
invention will become apparent from the following detailed description of the

invention when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS V
[0020] FIG. 1 illustrates a system that facilitates adapting a document layout

that can be displayed at multiple sizes and dimensions with a wide variety of content.

WO 2007/041703 PCT/US2006/039100

[0021] FIG. 2 illustrates a block diagram of a system that facilitates the
creation, modification and/or storage of a template.

[0022] FIG. 3 illustrates a layout engine that generates a high quality layout
based at least in part upon semantic flow, brand identity, image and text correlation,
and/or advertising themes.

[0023] FIG. 4 illustrates a system that facilitates adapting a document layout
that can be displayed based upon the dimensions of an output device.

[0024] FIG. 5 illustrates a system that creates a high quality layout based upon
a template specified with high level constructs, and translates the layout into low level

constraints a low level engine can use to create the high quality layout.

[0025] FIG. 6 illustrates a system that selects a template and/or to arranges
content on a layout in order to produce a high quality layout.

[0026] FIG. 7 illustrates a layout engine that employs Extensible Stylesheet
Language Transformation (XSLT) to translate from a source format.

[0027] FIG. 8 illustrates an exemplary flow chart of procedures that facilitates
for arranging content to create a high quality layout.

[0028] FIG. 9 displays a block diagram representation of an adaptive grid-
based document layout environment.

[0029] FIG. 10 displays a block diagram representation of a computing
environment and computer systems thereof which the present invention may utilize.
[0030] FIG. 11 displays a block diagram representation of a document Jayout
including adaptive layout styles and templates.

[0031] FIG. 12 displays a block diagram representation of an adaptive
template.

[0032] FIG. 13 displays a block diagram representation of a document content

including content streams.

[0033] FIG. 14 displays a block diagram representation of a content stream
including content items.

[0034] FIGS.15A-15B display a flowchart representation of a method of
applying document content to templates.

[0035] FIGS.16A-16C display flowchart representations of a method of

flowing content into elements within the document layout.

WO 2007/041703 PCT/US2006/039100

[0036] FIGS.17A-17C display flowchart representations of a method of self-
sizing elements within the document layout.

[0037] FIG. 18 displays a flowchart representation of a method of scoring a
template based on how well the document content fits the template.

[0038] FIGS. 19A-19D display a flowchart representation of a method of
optimally paginating document content into an adaptive grid-based document layout.
[0039] FIG. 20 illustrates a schematic block diagram of an exemplary

computing environment.

DESCRIPTION OF THE INVENTION"
[0040] The claimed subject matter is now described with reference to the
drawings, wherein like reference numerals are used to refer to like elements
throughout. In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the
invention. It may be evident, however, that the claimed subject maiter may be
practiced without these specific details. In other instances, well-known structures and
devices are shown in block diagram form in order to facilitate describing the claimed
subject matter. /
[0041] As used in this application, the terms “component” and “system” are
intended to refer to a computer-related entity, either hardware, a combination of
hardware and software, software, or software in execution. For example, a
component may be, but is not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a program, and/or a
computer. By way of illustration, both an application running on a server and the
server can be a component. One or more components may reside within a process
and/or thread of execution and a component may be localized on one computer and/or
distributed between two or more computers.
[0042] As used in this application, the terms “design” or “layout” refer
generally to how content is arranged within a document. As used herein design and
layout can be substantially interchangeable. For example, both a document design

and a document layout can refer to how content is arranged in the document.

WO 2007/041703 PCT/US2006/039100

[0043] As used in this application, the phrase “high level” generally refers to a
programming language or programming constructs that are more user-friendly than
Jlow level languages or constructs, and may be to some extent platform-independent.
High level constructs can provide abstractions to low level operations to avoid the
complexity that is otherwise necessary to implement the operations. Generally, an
assembly language, as well as pure Hyper Text Markup Language (HTML) and other
“loose” coding formats are consider to be low level, whereas the output format after
applying an Extensible Stylesheet Language Transformation (XSLT) is considered to
be high level.

[0044] ' As used herein, the term “high quality” means that a resulting output is
determined to look good given the present display dimensions and the present content.
High quality can refer to a layout or design or a specific location within the layout for
which specific content will be inserted. For example, a high quality layout is one that
is determined to look good at the present display dimension with the present content
whereas a high quality location is a location for which specific content can be
introduced while maintaining the high quality character of the overall layout or
design. It isto be appreciafed that high quality character of a layout or location may
require meeting additional conditions as well, such as not compromising semantic
flow, brand identity, image and text correlation, advertising themes and the like. It is
also to be understood that these additional conditions can be based upon
considerations described infra, such as non-rectangular templates and elements,
column balancing, unbreakable paragraphs and atomic sub-documents, and
interactivity.

[0045] The embodiments described herein relate to a system for adaptive
display of web-based, aggregated data, and template improvements for an Adaptive
Grid-Based Document Layout system. A system for aggregating internet content and
displaying it using the Adaptive Grid-Based Document Layout (AGBDL) system is
provided that allows data to be displayed in a wide range of high-quality visual
formats that can adapt automatically to different display sizes. The system can use
any of a number of content sources including but not limited to RSS news feeds,
internet search engine results, internet news aggregator back-ends such as MSN

Newsbot, and content “scraped” directly from content web-sites such as newspapers

WO 2007/041703 PCT/US2006/039100

and magazines. This can be done by expanding the notion of a document, as
described in the original AGBDL work in also detailed infra.
[0046] The subject architecture can support documents that consist ofa

_ number of separate documents and that can be arranged into a multi-level hierarchy of
parent-documents and embedded sub-documents. Each component document can be
comprised of a combination of native and external sources that can be translated at
load time into the native document format of the system, either through an XSLT
translation that can be specified for each individual source, or through a helper
program that might be a web-scraper or some other data gathering or processing
agent. External sources can be specified at multiple levels in the document. An
external source can be loaded as an entire document (top-level or sub-document), as a
particular content stream in a document, or as a single content item in a particular
content stream. Furthermore, an external source can be included in a document
entirely or in part. For instance, a single content stream can be selectively loaded
from a given source after translation.
[0047] In support of this, the document schema has been expanded to allow an
AGBDL document to reference external sources in the ways described above. When
a document is parsed and loaded, any sub-documents or other external content
specified can be translated (if necessary) and then recursively parsed and loaded as
well. Sub-documents are defined as complete AGBDL documents on their own,
referencing their own set of display templates that are used as sub-templates in the
enclosing document. At display time, the sub-document is passed a screen region in
which the document should be rendered. The sub-document can recursively paginate
and then lays itself out in the given region as if it were a top-level document in the
given window. The sub-document can be distinct from other external content that is
loaded as data in the enclosing document because the latter can be displayed in the
parent document using the parent document’s templates like any other content.
[0048] Regarding adaptive templates in the AGBDL system (described in
detail below), expansions in connection with the following are provided: High-level
template design, extended template adaptability (templates adapting to content), and
template parameters and outputs. All three of these categories can facilitate the

authoring and maintaining of “document styles”. Styles can be defined as a collection

10

WO 2007/041703 PCT/US2006/039100

of templates that together cover the range of layouts in which a document may be
rendered.
[0049] High-level template design can allow constraint-based templates to be
specified using high-level constructs that are interpreted by the system to generate the
low-level details, including each display element’s dimensions and location as well as
the individual constraints that control the element’s display features, relationships to
other display-elements, and adaptive behaviors.
[0050] Conventionally, such as in the AGBDL system, the templates needed
to be specified by writing XML code that described each display-element, constraint,
and attribute occurring in each template. The template authoring tool made it
(arguably) easier to write and modify templates via a GUI interface, but the author
was still required to specify all of the same details via this other method.
[0051] The subject innovation can allow document specification using high
level constructs such as adaptive column grids and relative relationships between
elements. A column grid can be defined using combinations of proportional and
absolute column widths, and rules can be specified controlling which columns are '
instantiated at any given page width. Display elements can then be placed spanning
one or more of these columns or portions of these columns, which can then be related
to other elements through, for example, “over” and “under” assignments. A single

, statement can specify or imply a collection of parameters from which many low-level
constraints are generated automatically at load-time. Other parameters can be
specified establishing attributes of elements such as margins and padding that are used
to generate additional constraints.
[0052] Documents or pages often contain collections of similar display
elements, such as multiple columns of text, which share many parameter values.
Aspects of the claimed subject matter can allow an element to be described once and
then instantiated multiple times. Each instance can have a subset of its details over-
ridden, such as its location information. Additionally, the description language is
reorganized so that all constraints relating to a particular element can be included in
the element description making it easier for a user to understand and maintain the

template.

11

WO 2007/041703 PCT/US2006/039100

[0053] Extended template adaptability can allow each individual template to
cover a wider range of display dimensions and document content. Previously, each
template had a fixed set of display elements, requiring a specific set of content, and
the elements would be adapted through the constraint system to cover a range of page
dimensions. Each different content assortment, such as the number of figures on the
page, would require a different template. A figure with a landscape aspect ratio
would use a different template than a figure with a portrait aspect ratio. Handling
multiple figures on a page with potentially different aspect ratios or resolutions would
require increasing numbers of templates to handle the possible combinations of figure
types appearing in various orders in the content streams. A single template would
also have a fixed number of columns in the original system, requiring new templates
handling all of the possible permutations of figure types for each number of columns a
page may possess. The total number of templates required for a flexible “style” grew
exponentially as the possible dimensions in which a template adapts increased,
making the creation of a broadly applicable style cumbersome and the maintenance of
it very difficult.

[0054] The subject template definition has a number of new features that
address these issues. Optional elements can allow different content selections to be
handled by a single template. Elements can be combined into “Or” groups that can
allow a template to instantiate only one element from a set of possible choices each
time the template is used. Or groups can use one of several algorithms for deciding
which element to choose in a given layout, including best-fit, first-fit, first-good-fit
and similar algorithms.

[0055] Additionally, the new templates can now have a variable number of
columns. The column definition described above can include rules for the inclusion
of adaptive columns based upon specific page thresholds or thresholds can be
calculated by the components of the architecture based upon minimum column
widths. Column priorities can be specified that control which columns are
instantiated at particular page sizes. Columns that are not used at a particular page
width can be collapsed to zero width by the constraint system so that elements that

span them are either reduced in width or eliminated completely at that page size.

12

WO 2007/041703 PCT/US2006/039100

Together, the optional elements and adaptive column grids can reduce the number of
templates and the associated maintenance dramatically.

[0056] Another extension to the template system can allow parameters to be
passed back and forth between parent templates and the sub-templates laid out inside
them. The parameters and returned values can be placed in the constraint cache of the
receiving template so they can be referenced by elements like any other constraint
value. These parameters can be used, for example, to set the number of columns in a
sub-template, flag the inclusion or exclusion of optional elements, or control the way
figures are displayed in the child. The parameters passed to a sub-template may be
immediate values or may be constraints in the parent template’s system that can be
evaluated at call time.

[0057] As well, a style-sheet can be passed as a parameter to a sub-template so
a parent document can directly control many of the typesetting details used in the
child. Returned parameters can inform the parent template of otherwise hidden
details of the child’s layout, such as where the top or bottom of a figure lies, or where
a headline or title ends. The parent can then align other display elements to features
in a sub-template or ensure that two unrelated figures in separate sub-templates are
not placed side-by-side.

[0058] As will be appreciated by those skilled in the art, there are other
improvements that add to the power of the templates, particularly for displaying
hierarchal compound documents as described above. For instance, “And” groups
allow a collection of elements to consume from a single content atom allowing greater
flexibility in laying out and organizing documents. This can allow, for example, a
feature photograph to be pulled out of an individual news story and displayed on the
front page of a newspaper in a separate element than the rest of the story. Another
feature can pass the Graphical Display Interface (GDI) region of the hosting element
to the sub-template being used in the element, rather than the rectangular bounding
box passed by previous systems. This aspect can allow the sub-template to flow its
text around overlapping elements in the parent template or to choose an un-occluded
element from an OR group to display a picture.

[0059] As described supra, other embodiments can provide for high-level

constructs for template specification to facilitate more powerful ways to describe

13

WO 2007/041
703 PCT/US2006/039100

desired behavior of the column grid, such as a specific range of desired sizes for each
column, including a collection of fixed-size choices. In addition, priorities can be
specified for resolving over-constrained and under-constrained situations, using
automatically generated margins for example. Embodiments can support
automatically-generated vertical grids similar to the columns but following different
rules and heuristics, and adaptive sub-grids dividing individual grid-columns, and
additional top-level grids to allow layouts with different collections of elements
controlled by different grids. Individual elements can be instantiated multiple times
and it is contemplated to be able to build a group of elements that can all be
instantiated together multiple times. ‘

[0060] Specifying a consistent constraint system in the presence of optional
elements (and OR groups of elements) can quickly become very complex and tricky,
what is also contemplated is to develop constructs to work out the correct system and
automatically build it into a template given a description of the desired result.

[0061] Additionally, it is also contemplated to add more interactivity to
Adaptive Display Layout (ADL) documents by allowing end users to resize individual
display elements as they view the content, or add new data into an element, as well as
to extend the adaptive-column-count behavior to use more sophisticated methods to
choose which columns to include at a given size, based upon the content present. This
could involve rendering each possible selection of columns and choosing the best
based upon a layout score.

[0062] ~ As briefly detailed supra, according to one aspéct, the claimed subject
matter can extend the previous AGBDL document system in three general ways. First,
the template system was improved, making the templates more powerful and
requiring far fewer templates to cover an even wider range of content, and at the same
time making the templates easier to write and maintain. In addition, the document
definition was expanded to allow a document to gather content from multiple
locations and for individual documents to be assembled into hierarchies of parent and
child documents. Finally, the layout engine (e.g., the low level engine in the AGBDL
system) was updated to provide support for new features often specific to the new
domains. These extensions and other aspects of the claimed subject matter will now

be described.

14

WO 2007/041703 PCT/US2006/039100

Templates

[0063] There are three primary aspects of the templates. First, the templates
can be specified using a high-level language making templates easier to author,
understand and maintain. Second, the templates can be adaptable to the available
content, rather than requiring separate templates for every possible variation, and
combination of variations of content in a single layout. Third, the templates can have
the capability of extending over a larger range of screen dimensions decreasing the
numbet of similar templates which must be written and maintained.

[0064] Templates in the AGBDL system were very difficult to write and to
understand because they were written in a very low-level language. Each individual
constraint was specified explicitly and many constraints were required for every
element on a page. Constraint systems for sophisticated adaptations, such asa
variable number of columns, were prohibitively difficult to write, and deciphering
another author’s templates was too hard. The template design tool provided a GUI for
template design, but it mostly provided only low-level support, still requiring most
constraints to be independently set. Furthermore, its output was very difficult to
understand and edit, making it difficult to customize a design beyond the capability of
fhe tool.

[0065] According to one embodiment, the claimed subject matter employs
templates that capitalize on the native strengths of high level constructs, thus
including more powerful building blocks in the template language itself. High-level
primitives in the new language can be compiled into basic structures when the
template is loaded by the system, or they can be read by the updated layout engine
directly. Many parts of the constraint system can be inferred from the new primitives
and are automatically generated. The system can also automaticaliy generate

complicated constraint systems for well known, useful tasks.

High Level Template Description
[0066] Both the original AGBDL system and the claimed subject matter can
define templates as Extensible Markup Language (XML) documents. In the original

system the template description was organized into sections. All elements were

15

WO 2007/041703
PCT/US2006/039100

described by <element> nodes inside the parent <elements> node, and all constraints
were described by <constraint> nodes inside the parent <constraints> node. High
level templates can retain the two sections, and can also allow an author to
alternatively define a constraint inside of any element node. This flexibility can allow
the template to group constraints which describe a specific element directly with the
element, and place global constraints in the general section.

[0067] Rather than require authors to specify each constraint individually, a
number of 'child nodes can be defined, which can be placed under element nodes to
implicitly define several individual constraints applying to the parent. For instance,
margins and padding can be specified for an element with single nodes qontaining

some of the attributes shown in the examples, infra.

<margin all="5" sides="5" ends="5" left="5" right="5" top="5"
bottom="5" />

<padding all=”page.default.padding" left="page.width * 0.05"
/> \

[0068] Specific assignments will typically always override more general ones.
Any value that is not defined by an attribute can be assumed to be zero. The author
can assign attributes to immediate values or to expressions referencing other
constraints. The constraints controlling the sizing and placement of an element can be
specified with a single location node, again using a subset of the possible attributes.
If a node is under-constrained after parsing the location node, an error is usually
generated.

[0069] As illustrated in the following example, “gver” and “under” attributes
can be employed to assign elements based on the position of other elements. For
example, the “over” attribute aligns the top of the current element with the bottom of
the named element, and the “under” attribute aligns the bottom of the element with

the named element’s top.

<location left="page.left” right=”page.left+column.width"
top="header.bottom” height="300" />

16

WO 2007/041703 PCT/US2006/039100

<location center="page.center”” width="250" under="header”

over="footer” />

[0070] It is common to divide a document into a coarse grid of columns. As a
document’s width changes there are only a few likely behaviors which most columns
will use to adapt. For example, the columns might all grow equally as the page
widens, or shrink equally as the page narrows. The columns might also grow and
shrink according to some fixed proportions. Alternatively or additionally, some
columns might remain a fixed width while other columns resize or the extra width
might be absorbed into gutters and margins around the columns. It is to be
appreciated that the template language can contain tools to define grids that adapt
using combinations of the behaviors listed above, or even other likely or desired
behaviors. Aspects of the claimed subject matter can automatically generate the
constraint system necessary to implement the defined behaviors for the columns. For
instance, the template designer can create a <grid> node which defines the number
and default behavior of the member columns, and then any number of column nodes
can be created under the grid node which can define alternate behaviors for individual

columns, as in the example below:

<grid id="maingrid” columns="4" type="proportional”
margin="10">

<column n="2" proportion="3.0" />

<column n="4" type="fixed” width="200" />

</grid>

[0071] The above grid node can define a column grid of four columns. The
first three columns are defined to grow proportionally with the page, and the second
column is three times wider than each of the other two. The fourth column always
remains fixed at 200 pixels width. When the grid node is parsed, constraints defining
grid lines named, e.g., “maingrid.grid0” through “maingrid.grid4” can be created.

The constraint system to locate each of the grid lines as the page width changes can be
automatically generated. Further constraints can be made by defining columns

relative to the grid lines named, e.g., “maingrid.columnl.right”,

17

WO 2007/041703
PCT/US2006/039100

“maingrid.columnl.left”, efc. A template author can reference these names directly in
constraints defining elements, or else can place a “column” attribute in location nodes
that implies left and right constraints as is done in the latter two of the following

examples.

<location left="maingrid.column2.left”
right=”maingrid.column2.right" top="page.top”
bottom="page.bottom” />

<location column="maingrid.columnl” top="page.Lop”
bottom="page.bottom” />

<location column="column2-column3” under="masthead”

height="300"/>

[0‘072] The dash (“-) in the second location column example indicates here
that the element spans both columns 2 and 3. If there is only one grid defined, the
name prefix can be left off of column and grid names, as is done in the second
example above and they will be assumed to refer to the single grid. Spans of columns
can be used in addition to individual columns. Additional constraints can be created
for each column which can be used in locating elemeﬁts. These can include, but are
not limited to “column.width” and “column.center” as well as the fractional column
lines “column. 1third”, “column.2third”, “column.1quarter”, and so on.

[0073] It is typical to have many similar elements on a page that share many if
not most properties in common, such as text columns on a multi-column page, divider
graphics and figure elements. The element definitions can be reused by placing
multiple <location> nodes under a single <element> node. Each location node can
create a new instance of the parent element that is sized and located with the
additional node’s attributes. Element names can have a 1-based index, assigned in the
order in which the location node appears, appended to their names so that instances
can be distinguished in constraint expressions.

[0074] When constraints are defined in an element with multiple
instantiations, it is often necessary for each instance to use a unique name for each
constraint. Macros can be made available to facilitate the multiple instantiations. The

string “!THIS!” appearing in a constraint name or expression can evaluate to the name

18

WO 2007/041703 PCT/US2006/039100

of the instance being processed at the time. “!LAST!” can evaluate to the previous
element, which makes it easy to chain or stack the elements. Starting a name with a
period (“.”) generally assumes the name of the current instance precedes the period.
[0075] Using multiple location nodes can be a concise and efficient way to
make duplicate elements, but it can also be useful to allow variations in some of the
instances. For example, some otherwise identical elements might have different z-
layer (described below) requirements or may consume from different content streams.
For this reason, any property defined in the element node can be overridden in a
Jocation node. Properties which consist of a single value, such as layer or style ID can
be overridden by setting an attribute on the location node. More complicated
properties, such as preconditions, can be overwritten by placing a precondition node
under the location node. The following example shows an element instantiated three

times with properties overwritten on the second two.

<element id="text.column” layer="2" recomputeHeight="true”>

<content content-src="body” />

<style id="normal” />

<padding sides="10" ends="5" />

<margin all="8" />

<location column="columnl” under="header”
height="page.bottom-!THIS!.top” />

<location column="column2” under="header”
height="page.bottom-!THIS!.top” layer="3"/>

<location column="column3” under="header”
height="page.bottom—!THIS!.top” >

<padding all="0" top="5"/>

</location>

<constraint var="!THIS!.area” value="!THIS!.height *
ITHIS! . .width” />

</element>

[0076] In the AGBDL system it was common to create a new family of
templates for each count of columns supported on a single page. A family of

templates would be selected by a range of page widths. A one column family of

19

WO 2007/041703
PCT/US2006/039100

templates might be used for narrow pages and when the page width increased beyond
a given threshold then the system would switch to a two column family. Each family
would contain multiple templates covering different combinations of and locations for
content on the page. Often most visual elements in these families are the same with
the exception of the number of columns.

[0077] This similarity between families can leveraged by defining an adaptive
grid that not only resizes columns as the page width changes, but can also vary the
number of columns on the page. This can be achieved by placing an <adaptive> node
beneath a grid definition node in a template. When the adaptive node is present the
column count in the grid node can serve as a maximum number of columns. A rule
can be placed in the adaptive node to determine how many columns are activated at
any given page width. Rules can be specified, for example, either minColumnWidth
or maxColumnWidth. The minColumnWidth rule can instruct the template to use the
maximum number of columns, which typically all have a standard width of at least a
given threshold. Since columns may have different proportional sizes, the actual size
of each column can be divided by the column’s proportion value when checking for
minimum and/or maximum width.

[0078] The author can give any or all columns a priority that controls the
order in which columns are dropped when the page is not wide enough to include all
of the columns. A default priority can be applied when no priority is specified. For
example, a default priority can be set to drop columns from right to left. To assign
different priorities the author can include a priority attribute in the grid definition
node with a comma-delimited list of priority values to assign to columns from left to
right. Alternatively, the author can include a priority attribute in the column
definition nodes of the grid definition. The priority is typically an integer value. For
a given page layout, generally only columns with a priority value less than or equal to
the number of active columns are included.

[0079] When adaptive columns are dropped from an instantiation of the
template, the constraint system will generally collapse the column to zero width.
Elements which have a zero width at layout time typically will not consume content
or contribute to the template score. If an element spans multiple columns, the element

will most likely only appear to span those columns that are active in any given layout.

20

WO 2007/041703 PCT/US2006/039100

[0080] Sometimes a designer would like to place an element in the left- or
right-most column of a page with adaptive columns. To make this easy, location
nodes can recognize special keywords in the column attribute, for example “leftmost”

and “rightmost”.

Template Adaptation to Content

[0081] Templates can adapt to different configurations of content in a number
of ways. AGBDL templates could have a number of preconditions placed upon them
which indicate the circumstances, including the precise content requirements, in |
which each template could be used. In contrast, aspects of the claimed subject matter
can allow preconditions to be placed on individual elements in a template in addition
to the template as a whole. These element preconditions can allow elements to be
conditionally included in a layout depending upon the available content, the viewing
conditions, or any other constraints in the system. It may be useful to penalize the
template’s objective score when an optional element is not used. A special constraint
value named, e.g., “element-name.active” can be automatically added to the
template’s constraint system for every element. The value for element-name.active
can be set, for éxample, to one when the element is included in the layout and zero
when the element is not. This constraint value can be tested to consider the presence
of any elements in determining the template’s objective score. Preconditions set on
an element node generally apply to all inst‘ances of the element. Precondition nodes
can also be placed inside location nodes to add additional preconditions or to override
any that are set on the element node.

[0082] Element preconditions can allow multiple elements to be individually
controlled, but it is often useful to tie the control of elements together, and the
elements can be grouped together in several constructs. AND groups can allow
several elements to be controlled by a single set of preconditions. Similarly, OR
groups can allow a number of layout elements to be defined, only one of which will
be included in any instance of the template. Several options and/or algorithms can be -
supported to decide which instance to use when multiple options are possible. The
First-Fit algorithm can use the first element in the group for which all specific

pfeconditions are met. The Best-Fit algorithm can evaluate each group member and

21

WO 2007/041703 PCT/US2006/039100

uses the element which returns the best objective layout score. The First-Good-Fit
algorithm can use the first element in the group that returns a layout score above a
given threshold.

[0083] It is to be appreciated that the author should use caution when
designing templates with optional elements so that the constraint relationships
between elements remain valid and produce the desired results whether or not any
individual element is present in a given instantiation of a template. Fixed-size
elements can retain their dimensions when not instantiated but variable-height
elements, those defined with recomputeHeight="true”, are generally resized to zero
height. Constraints defining the boundaries of an OR group can be automatically
specified to be the same as the boundaries of whichever member element is selected
for each layout.

[0084] In accordance with another aspect, a method of adapting templates to
content can be provided. This method addresses adapting style characteristics, like
typeface and size, to particular content. The style for a block of text can be assigned
to a display element when the template is designed. This is typically not a problem,
but in some applications, such as displaying headlines on a newspaper page, the visual
appearance of the text is critical to its effectiveness. In printed newspapers, a page
editor will write headlines to fill the available space, controlling the line breaking and
balance. Random headlines placed across columns of differing sizes will often break
poorly and/or fail to fill lines, creating poor quality layouts.

[0085] In accordance with another aspect of the claimed subject matter, this
difficulty can be mitigated by allowing the style in the template to adapt to the
available content at display time. The designer can specify a list of possible styles to
use with a given element, and the layout engine can try each one, generating an
objective score for each. The style that produces the best score will most often be
used in the actual layout. However, the same text and template combination will
likely choose different styles at different page dimensions. Method for evaluating text
layout can be employed to determine the best style. For example, the results of an
optimal line-breaker’s scoring function, scaled by the font size of the particular style
can be utilized. The optimal line-breaker measures the white-space remaining in each

line, expressed as a number of character widths. Since the character width usually

22

WO 2007/041703 PCT/US2006/039100

depend upon the font size, without scaling, larger fonts would tend to produce smaller

(better) scores.

Document Representation

[0086] Document representation has been expanded to enable the display of
data drawn from a wide variety of sources in a high quality fashion. The documents
are typically structured identically to the original AGBDL system (discussed below),
but with added capabilities.

[0087] Since there is no standard format for data on the internet, support for
on the fly translation of data sources through, e.g., XSLT. XSLT is a system which
translates a source document (generally an XML document) into a new result
document by applying a series of rules specified by a translation file. Any arbitrary
XML data can be transformed into a document that can then be displayed given a set
of approprizite templates that can be referenced by the resulting document. In this
way any XML data, web page that has well-formed XML source, or other type of data
capable of automatic translation can be loaded directly from the internet if an XSLT
translation exists.

[0088] A user may specify a translation file as a parameter to our viewer
together with a document path or Universal Resour;:e Locator (URL). Alternatively, a
user can associate a path or URL prefix with a translation file by placing an entry in a
registry, such as an operating system registry. This association can automatically
facilitate the XSLT transformation to be applied to the input document whenever the
named path or a URL beginning with the prefix is loaded.

[0089] Conventionally, one limitation of XSLT translations is that they will
only operate on well-formed XML, which many HTML web pages are not. A user
may therefore specify an alternative translation program, such as a web-scraper,
which can preprocess the specified data before parsing it. In some exemplary
applications, both a specialized web scraper and an XSLT translation that operates
upon the scraper’s output are employed to produce the final document.

[0090] The basic structure of a document usually organizes the content into a
collection of content streams, which can define ordered sequences of data. Content

can be a stream of text, images or compound items, which can contain a collection of

23

WO 2007/041703 PCT/US2006/039100

sub-streams of their own laid out recursively using sub-templates. A template which
displays compound elements generally must supply a list of templates which may be
used to lay out the individual streams of the compound element.

[0091] It is often useful to have flexibility provided for the manner in which
external content is included in a document. Most any content stream in a document
can be an external stream that can be loaded from a supplied path or URL.
Additionally or alternatively, external references can be specified for individual
content items in a single content stream. Virtually all external references can have an
associated XSLT translation or other pre-processing agent specified with the link.
Most any referenced document can be loaded entirely as a compound item or else
individual streams can be extracted from the document. For example, in a news
aggregator one might have a collection of streams that contain individual news stories
loaded from individual sources, and then a single stream that extracts each of their
headlines to build a table of contents.

[0092] Although not provided for in the AGBDL system, aspects of the
claimed subject matter can introduce the concept of a sub-document, which can be
defined as a compound element that includes its own list of display templates. A sub-
document can use its own templates when it is rendered rather than templates
specified in the parent template. With the inclusion of sub-documents, virtually any
document can now be thought of as a hierarchy of parent and child documents.

[0093] - At each node in the document tree the designer can choose whether the
parent or child document controls the layout by supplying the templates. It is not
always desirable to have this be an all or nothing choice. Rather, there general
methods for influencing the layout of a sub-document from the parent template. One
way is for the parent to override the stylesheet of the child template. In an aggregated
document modeled after a typical newspaper, it is usually desirable to vary the style
of headlines so that they are easily differentiated when they appear side by side. The
parent template can ensure this by passing different stylesheets to the elements in
which the stories will appear.

[0094] Another method for influencing a child document’s layout is by
parameter passing. Parameters passed to child templates can be entered into the

child’s constraint system before the template is instantiated. The parameter values

24

WO 2007/041703 PCT/US2006/039100

can be derived from the parent’s constraint system or can be specified directly. These
passed constraint values can be used in any number of ways by the child document.
They can be included in preconditions for individual elements in the sub-template, or
can be referenced by other constraints that control the location and sizing of elements.
In other examples we use parameters to suppress the display of large graphics in non-
featured sub-documents, but include them when it is displayed as a top-level
document or as a sub-document in a featured role. One could also use parameters to
align features in a sub-document with features on the parent page or in another sub-
document. Designers can similarly specify return values from a sub-template which
can be entered into the parent template’s constraint system after the sub-template is
evaluated.

[0095] A feature of sub-documents and compound elements is that they can
now be paginated independently. Successive pages of a sub-document can be
accessed by turning the pages of the sub-document in place, or can be laid out on
successive pages of the parent document. The first method can allow a user to read an
entire sub-documented news story on a parent- front page without jumping to an
interior page. It can also allow an index to be larger than the space allocated on its
page but still have all of its data accessible. Other uses can include, for example,

multi-page advertisements or side-bars that reside on a single page of the parent.

Non—-Rectangular Templates and Elements

[0096] Templates in both the original AGBDL system and the subject
innovation are generally defined as rectangles with an origin, width and height. There
are many occasions, however, when a non-rectangular element is desired. Such
functionality can be accomplished in a single template by layering the elements in a z-
order, where sections of higher-layer elements are differenced out of lower-layer
elements which they overlap. Elements can be evaluated in descending layer order.
Before each element is laid out, the GDI regions of all previously laid out elements
can be subtracted from the current element’s GDI region. This can be done with a
single operation if the regions of the completed elements are accumulated by, e.g.,
union operations that arrange them into a single region as each is completed. This

operation can allow any text in later elements to flow around other overlapping

25

WO 2007/041703 PCT/US2006/039100

elements, although images will typically still be occluded. Element regions are not
usually subtracted directly from regions in sub-templates, however. Instead, the
accumulated union of element’s regions can be passed to the sub-templates in lower
layers, and this parent region can seed the accumulated region in those sub-templates.
In this manner text can flow around overlapping elements in higher level templates.
[0097] The subtracting of the parent region can handle part of the difficulty of
overlapping sub-templates by re-flowing the text, but it is also desirable to avoid
occluding images or sub-templates in the child. Thus, there is no easy way to flow
images out of the way, so instead it is determined whether an element is occluded
(partially or wholly), and reflect that in the objective score of the element. If the
template’s author chooses to include the element’s score in the full template’s score,
then the template can be disregarded if another template is available with no occluded
element. In the alternative or in addition, several locations for the occluded element
can be included in one template in a best-fit OR group, in which case a non-occluded
location would generally be chosen if one is available.
[0098] Occluded elements are detected by differencing out the parent region

. from the element’s GDI region, and then comparing the resulting region to the
original. A template author can include an attribute on any element specifying a
penalty to be applied to the element’s objective score if an overlap occurs when it is
laid out.
[0099] In another aspect, the parent region can be employed to provide further
flexibility in the documents. The parent region can initialize the top-level template of
the application window’s system clipping region of an operating system. This can
allow the system to flow document text around over-lapping windows of other
applications on the desktop, and potentially to move occluded images out of their
way. The best results can be obtained by inflating any overlapping regions slightly to
provide a margin next to any reflowed text.
[00100] The procedures described above can allow sub-documents to occupy
non-rectangular elements, but this is still not always enough to produce a high quality
layout. On a newspaper front page, for instance, one may want to prominently feature
a photo from a lead story, and the union of the photo and the rest of the article may

not form a convenient rectangle. While a bounding rectangle can always be drawn

26

WO 2007/041703 PCT/US2006/039100

around the elements, it is often difficult to design a template that can have large or
irregular regions subtracted out yet still look as it is intended. This difficulty can be
solved more easily by forming an AND group of several elements, wherein all of the
elements consume content from a single compound content item or sub-document.
This can allow for effectively laying out a sub-document in a region of any arbitrary
shape. In the example of the featured story on a newspaper page, it was desired that
one element consume from the photo stream and the other element to consume
everything else. For this common case, a consumeRemainder attribute can be
recognized and employed. A designer can place this attribute on an element in an
AND group, which tells the system to use all of the content in that element that was

not consumed by other members of the element’s group.

Domain-specific challenges

[00101] In this section, some of the difficulties specific to laying out
aggregations of content are described, as well as some of the techniques developed for
dealing with these difficulties.

Column balancing

[00102] When laying out multiple stories or articles on a multicolumn layout,
there can be many options for how to arrange the stories in relation to one another.
One common way to divide a page (or portion of a page) between two stories is to
split the page horizontally, placing the second story below the bottom of the first.
When using this type of layout, one must distribute the content evenly between the
columns allotted for it, so that each column ends at the same vertical position.
[00103] In the implementation, this can be achieved via a simple iterative
layout algorithm, triggered when a group of elements (and AND group) representing
the columns on the page is tagged with the balanceColumns property. Below, is
described how this iterative algorithm works for laying out a single story and keeping
its bottom as even as possible.

[00104] First, page is laid out using, for example, the standard greedy layout
method. If the content completely fills the page, then the columns are balanced and
this layout can be used as the final result. Otherwise, the total unused vertical space

left in the elements to be balanced is measured. This total amount of extra space can

27

WO 2007/041703 PCT/US2006/039100

be divided by the number of columns to give an initial guess for the amount that each
column in the balanced result will be underfilled. Next, this measure of vertical
underfill can be subtracted from the bottom of the elemeﬁts, to yield a cutoff location
where we expect the bottom of the balanced text to be. The new bottom of each of
the elements can then be set to this calculated cutoff position to perform the layout
again. If all the text is consumed and the text is balanced (the last column is allowed
to be underfilled by up to 1 line less than the number of columns and still be
considered “balanced”), this layout can be used. If, however, the columns fail to be
properly balanced, the cutoff position can be adjusted — raised if the last columns is
too sparse, lowered if there is not enough room for all the content — by performing the
layout procedure again. This procedure can be iterated until converging on a balanced
layout. |

[00105] Finally, the new bottom for the elements can be set to be just below
any content laid out in that element. This can prevent elements from having an

unpredictable height based on the exact cutoff value the iteration converged on.

Unbreakable paragraphs and atomic sub-documents

[00106] For some situations, it may not make sense to break a piece of content
over a page boundary. For example, when the content is nﬁerely a one-sentence
summary, spanning 2 or 3 lines, it may be preferable to just move the entire piece to
the next page. In the specific case of a newspaper-like front page, there may be many
small boxes that serve as highlights of the interior or other sections of the newspaper.
The contents of these small boxes are typically short summaries of individual stories,
as described above. It usually looks much better to avoid splitting these brief
summaries across page boundaries. Thus, to accomplish this, either content chunks
can be tagged with a property that means “do not split this piece of content across
either page or element boundaries.”, or elements can be tagged with another property
that means “only accept content items which can be entirely displayed here.” The
content in question may be an individual paragraph, or a compound item containing

multiple streams of data, perhaps representing a photo and caption or a side-bar.

Interactivity

28

WO 2007/041703 PCT/US2006/039100

[00107] Electronic documents need not be restricted to mimicking paper
documents. Automatically adapting to different screen dimensions is something that
paper documents cannot do, but even after the display size is fixed, the document
need not assume all the properties of paper documents. For example, content
subscribers have long become accustomed to using hyper-links in online documents,
but there are other ways a reader can interact with an electronic document as well.
[00108] As part of the interactivity, hyper-links can be supported in documents,
and links can be targeted to other documents. This includes native documents and
documents that can be translated at load time as described in the “Document
Representation” section above. A hyperlink may contain a reference to an XSLT
translation or another helper program, in addition to the path or URL of the target
content. Hyperlinks may also reference URLs that are not readable, in which case a
web-browser can be launched to display the content when the link is activated.
Finally, hyperlinks can also point to content internal to the document, in which case
the page containing the reference can be displayed.

[00109] When activating a hyperlink in a compound document (e.g., a
document containing sub-documents), there are several possible behaviors. Ifthe link
is in the top-level document then the whole document can be replaced by the
referenced document. If the link is in a sub-document it may be desirable to replace
only the sub-document with the referenced document. This is typically the default
behavior of the system, but the designer can specify any sub-document element as a
“launcher” element, which can cause an activated link in that element to replace the
top-level document or another indicated sub-document instead. This feature can be
useful for a sub-document that implements an index or a table of contents. An author
makes an element a launcher by setting the “launcher” attribute to true in any element
or location node. Launcher elements can facilitate linked documents to replace the
top level document unless the “target” attribute is also set on the element. The
“target” attribute can be set to the name of another element in the template, and the
linked document can then replace the sub-document currently displayed in the named
element.

[00110] Another way of activating links is to drag and drop the links into sub-

document elements on the page. On a page containing a collection of multiple sub-

29

WO 2007/041703 PCT/US2006/039100

documents, like, for example, a newspaper, a user can thereby pull a story out of an

index and drop it into one of the story locations on the page.

Results

[00111] A number of document/applications have been described that
demonstrate the range and power of the subject innovation. The applications include
an adaptive version of the online magazine Slate, a news-reader that takes stories from
the New York Times RSS feed, scrapes the full content from their website, and
displays the stories in the format of a broadsheet newspaper, and a front-end for the
internet news-aggregator MSN NewsBot that makes database requests over the
internet to retrieve current breaking news updates from thousands of web sources, and
can operate as an adaptive front page gateway to aggregate individual adaptive sub-
documets. Other implementations can include, for example, an MSN Search front-
end that presents search results in a high-quality adaptive display.

[00112] The Slate magazine implementation demonstration was built using the
AGBDL template system. It required 74 templates to implement pages covering 1 to
3 columns layouts. The New York Times demo uses the new template system and
implements layouts of 1 to 6 columns but requires only 5 templates. Each of the five
templates is about a quarter the size of the templates produced for the Slate demo.
[00113] Referring now to FIG. 1, a system 100 that facilitates adapting a
document layout that can be displayed at multiple sizes and dimensions with a wide
variety of content is depicted. Generally, the system 100 can include an interface 102
that receives a template 104. The template 104 can be a high level description of
constraints for a document layout. The layout engine 106 can interpret the template
104 and, based upon the high level constraints of the template 104, determine where
to place content 108 within a document in order to produce a high quality document
110.

[00114] As detailed above, a high quality document is a document in which the
displayed output is determined to look good given the present display dimensions and
the content. The determination of whether the displayed output looks good can be
based upon the overall visual effects as well as other attributes discussed in more

detail with reference to FIGS. 3 and 6, infia. Accordingly, the layout engine 106

30

WO 2007/041703 PCT/US2006/039100

typically requires prior knowledge of the type(s) of content to be arranged and the
display dimensions of the arrangement prior to creating the high quality layout 110.
However, it is to be appreciated that the template 104 need not have prior knowledge
and typically does not have prior knowledge of either the type(s) of content or the
display dimensions when the template 104 is created or when the template 104 is
received by the layout engine 106.

[00115] Turning now to FIG. 2, a system 200 generally comprising a user
interface 202, a template 104 and a template store 204 is illustrated. The user
interface 202 can facilitate creation, design and/or modification of templates, such as
template 104. Similarly, the template store 204 can store templates such as template
104. It is to be appreciated that the user interface 202 can be either text based or a
graphical user interface (GUI) that can be employed to construct the template 104 via
high level constraint parameters and provide storage for the templafe 104 vig, e.g., the
template store 204. It should also be appreciated that although only a single template
104 is depicted in FIG. 2, the interface 102 can be employed to create, design and/or
modify any number of templates 104. Similarly, the template store 204 can store a
plurality of templates 104 that can be retrieved by the user interface 202 to be
modified and/or supplied e.g., to the layout engine 106 (FIG. 1) or the paginator 602
(FIG. 6).

[00116] - The template 104 can consist of a number of parameters, such as a
definition of the screen elements for a layout (e.g., high level constructs that describe
the elements as well as supplying what type(s) of content those elements can be used
for), and a constraint system that can control how the elements are arranged with
respect to one another (e.g., the over and under commands described supra).
Accordingly, the template 104 provides a high level language that can be employed to
"specify many different aspects of a layout. As well, this high level language can be a
more natura} description language, easier to author while at the same time capable of
expreésing broader concepts with fewer statements. In addition, this high level
language can be translated into a low level description as described in more detail
with respect to FIG. 5 below. .

[00117] Referring now to FIG. 3, a system 300 that generally includes the
layout engine 106 capable of producing the high quality layout 110 is depicted. As

31

WO 2007/041703 PCT/US2006/039100

described above, the layout engine 106 can receive a template (not shown) that
provides high level constraints to be adhered to in the creation of the high quality
layout 110. However, the layout engine 106 must actually arrange the content 108
such that the arrangement adheres to the overriding constraints of the template as well
as the conditions necessary so that the output is a high quality layout 110.

[00118] Typically, the layout engine 106 will examine the type and/or types of
content 108 as well as the display dimensions for the high quality layout 110 before
determining how to arrange the content 108. In some cases (e.g., depending on the
type(s) of content or other factors), the layout engine 106 can employ other
considerations such as semantic flow 302, brand identity 304, item and text
correlation 306 and advertising themes 308. In some instances, a layout will not be a
high quality layout 110 unless at least one of semantic flow 302, brand identity 304,
item and text correlation 306 and advertising themes 308 are considered.

[00119] Semantic flow 302 can generally refer to the actual meanings of words
and, hence, typically relies on the meaning of words relative to other words.
Accordingly, some content 108 elements or types, such as newspaper headlines have a
strong semantic rationale for keeping words together to prevent ambiguity, even
though splitting them up to arrange the words in different locations may provide for a
simpler solution for the layout arrangement. For example, there can be an effective
semantic flow 302 rationale to avoid placing a line break right after a negating prefix
or word.

[00120] The layout engine 106 can also consider brand identity 304 when
generating a high quality layout 110. For example, the content 108 could be a
trademark that consists of two related images that overlap in a well recognized pattern
or the brand requires other content 108 (e.g., the well known Intel trademark that
includes a graphic swirl, the text “Intel Inside” and four audio tones) to be fully
illustrative. If each images and/or other content are not arranged properly, then the
layout can lose some of the effects and/or meaning that other design media with
design editors can otherwise achieve.

[00121] In addition, the layout engine 106 can also consider item and text
correlation when creating a high quality layout 110. For example, newspapers will

generally provide a small caption describing items. As well, images (e.g., items)

32

WO 2007/041703 PCT/US2006/039100

could have callouts to indicate features of the picture or text spoken by the characters
in the photograph. In those cases, it is important to consider the location of certain
text in relation to an item.

[00122] Similarly, the layout engine 106 can consider advertising themes 308
in producing high quality layouts 110. Advertising themes 308 can rely on any of the
several examples given above regarding items 302-306, and for similar reasons can
require additional analysis by the layout engine 106. However, it is to be appreciated
that advertising themes 308 can require conditions that might otherwise contradict
other considerations. It is also to be understood that the above examples are merely
illustrative and in no way intended to be limiting. Other applications could be
employed without departing from the scope and spirit of this invention.

[00123] Referring briefly to FIG. 4, a system 400 that facilitates adapting a
document layout that can be displayed at multiple sizes and dimensions with a wide
variety of content is shown. The system 400 generally includes a layout engine 106,
content 108, a high quality layout 110 and an output device 402. The output device
402 can be virtually any device capable of displaying digital content from tiny wrist
displays, portable hand-held devices, digital fabrics, work stations, wall mounted
displays and even very large displays for roadside billboards and buildings.
Typically, the layout engine 106 will determine the size and dimension of the high
quality layout 110 based upon the output device 402.

[00124] Turning now to FIG. 5, a system 500 that generally comprises the
template 104, the layout engine 106, the content 108, the high quality layout 110 and
a low level engine 502 is depicted. The low level engine 502 can apply the content
108 to an adaptive grid-based layout based upon low level constraints. However, the
low level engine 502 does not have the capability to accept a high level template 104,
but, if provided enough detail and abstraction (e.g., by the layout engine 106), the low
level engine can produce a high quality layout 110. The low level engine 502 is
described in detail below in the AGBDL system. As described supra, the layout
engine 106 can determine how to arrange content 108 based upon the high level
constraints provided in the template 104 (as well as based upon additional conditions,
if any) in order to produce a high quality layout 110. Once the exact layout is known
that will produce a high quality layout 110, the layout engine 106 can also translate

33

WO 2007/041703 PCT/US2006/039100

this information into low level constraints such that the low level engine 502 can
produce the high quality layout 110.

[00125] FIG. 6 illustrates a system 600 that facilitates adapting a document
layout that can be displayed at multiple sizes and dimensions with a wide variety of
content. The system 600 generally includes the interface 102, the template 104, the
layout engine 106, content 108, the high quality layout 110, and a paginator 602. The
paginator 602 is described in detail infra in the AGBDL section; however, in this
context the paginator 602 provides a level of abstraction for the layout engine 106.
For example, the paginator 602 receives the content 108 and also communicates with
the interface 102 in order to select the template 104 that will be used for the given
content 108. It is to be appreciated that the paginator 602 could alternaﬁvely retrieve
the template 104 directly from e.g., the template store 202 of FIG. 2. The layout
engine 106 receives the template 104 and the content 108 and arranges the content
108 in order to produce a high quality layout 110. In essence, the paginator 602 can
determine which template 104 to use for each document and/or each page of the
document and the layout engine 106 can determine how to arrange the actual content
108 in a manner that is consistent with a high quality layout 110.

[00126] Turning now to FIG. 7, a system 700 for producing a high quality
layout 110 is illustrated. AGenerally, the system 700 includes a layout engine 106 that
receives content 108. According to an exemplary embodiment, the content 108 can
be of disparate type(s), aggregated from multiple sources. For example, content 108
can be retrieved from a content store 702 such as a data store; streaming media 704
such as from a hardware device; and web content 706, which can be a wide variety of
content types. Accordingly, since the content 108 can be supplied from various
sources, the source format 708 of the content 108 will conceivably vary considerably.
Therefore, the layout engine 106 can receive the content 108 formatted in the source
format 708 and can translate the source format into a format the layout engine 106 can
employ to produce a high quality layout 110. The source format 708 by, e.g., XLST,
and the translation can be performed automatically as described supra.

[00127] FIG. 8 illustrates methodology 800 in accordance with the claimed
subject matter. While, for purposes of simplicity of explanation, the methodologies

are shown and described as a series of acts, it is to be understood and appreciated that

34

WO 2007/041703 PCT/US2006/039100

the claimed subject matter is not limited by the order of acts, as some acts may occur
in different orders and/or concurrently with other acts from that shown and described
herein. For example, those skilled in the art will understand and appreciate that a
methodology could alternatively be represented as a series of interrelated states or
events, such as in a state diagram. Moreover, not all illustrated acts may be required
to implement a methodology in accordance with the claimed subject matter.
Additionally, it should be further appreciated that the methodologies disclosed
hereinafter and throughout this specification are capable of being stored on an article
of manufacture to facilitate transporting and transferring such methodologies to
computers. The term article of manufacture, as used herein, is intended to encompass
a computer program accessible from any computer-readable device, carrier, or media.
[00128] With reference now to FIG. 8, an exemplary computer implemented
methodology 800 for arranging content to create a high quality layout is illustrated.
At 802, a template for a document layout can be chosen. Typically, the template is
defined in a high level language and can be selected from a template store by one of
an interface, a paginator and a layout engine. At 804, a display size for the document
can be determined. It is to be appreciated that this determination can be made based
upon the screen size of an output device and/or a region within. At 806, content for
the document can be received. As previously described, the content can come from a
wide range of sources such as a content store, streaming media, the Internet, efc., and
can exist in a wide \variety of formats that may be inconsistent with the format of a
high quality layout and, thus, require appropriate translation.

[00129] At 808, the available locations for the specific content can be
determined by employing the high level constraints supplied, e.g., by a template, as
well as the display size for the ultimate high quality layout. It is to be appreciated that
many available locations for specific content can exist. At 810, a high quality
location can be selected from the available locations determined at 808. As set forth
above, a high quality location is one in which the location for which specific content
can be introduced while maintaining the high quality character of the overall layout.
It is to be understood that selecting a high quality location can rely upon numerous
criteria. For example, the high quality locations can be determined based upon at

least one of a series of algorithms such as best fit, first fit, first good fit, and the like.

35

WO 2007/041703 PCT/US2006/039100

Such a determination can also rely on other conditions such as semantic flow, brand
identity, item and text correlation, advertising themes, as well as others. At step 812,

a high quality layout can be created.

AGBDL System

[00130] FIG. 9 displays a block diagram representation of an adaptive grid-
based document layout environment 900 in accordance with an exemplary
embodiment of the claimed subject matter. The adaptive grid-based document layout
environment 900 comprises an adaptive grid-based document system 902, style sheet
storage unit 906, and template storage unit 908. The adaptive grid-based document
layout environment 900 is supported by hardware and software components similar to
those found in well-known computing systems, environments, and/or configurations
described more fully below with reference to FIG. 10. The adaptive grid-based
document system 902 comprises a paginator 602, low level engine 502, template
authoring tool 910, and user interface 912.

[00131] - The style sheet storage unit 906 communicatively connecté to the
adaptive grid-based document system 902 via the low level engine 502. The style
sheet storage unit 906 stores style sheet data used to specify the styling of text within
document content 904. The style sheets storage unit 906 comprises a memory device
capable of Storing and retrieving data including, but not limited to, random access
memory (RAM), flash memory, magnetic memory devices, optical memory devices,
hard disk drives, removable volatile or non-volatile memory devices, optical storage
mediums, magnetic storage mediums, or RAM memory cards. Alternatively, the style
sheets stofage unit 906 may comprise a remote storage facility accessible through a
wired and/or wireless network system. Additionally, the style sheets storage unit 906
may comprise a memory system including a multi-stage system of primary and
secondary memory devices, as described above. The primary memory device and
secondary memory device may operate as a cache for each other or the second
rriemory device may serve as a backup to the primary memory device. In yet another
arrangement, the style sheets storage unit 906 may comprise a memory device
configured as a simple database file or as a searchable, relational database using a

query language, such as SQL.

36

WO 2007/041703 PCT/US2006/039100

[00132] The template storage unit 908 communicatively connects to the
adaptive grid-based document system 902 via the paginator 602 and the template
authoring tool 910. The template storage unit 908 stores a plurality of templates
1106, wherein each template 1106 may be used to define the layout of a single page
of document content 904. The layout of the document content may include pages laid
out according to one or more templates 1106. The template storage unit 908
comprises a memory device similar to the memory devices described above with
reference to the style sheet storage unit 906.

[00133] The paginator 602 communicatively connects to the low level engine
502 and template storage unit 908. The paginator 602 is configured with hardware
and software (see FIG. 10) appropriate to perform tasks and provide capabilities and
functionality as described herein. Additionally, the paginator 602 may receive
document content 904 for processing into an adaptive grid-based layout. The
document content 904 may be represented by a variety of content streams 1303 that
identify various content types such as, but not limited to, body text, images, inline
figures, sidebars, captions, media, and other appropriate document content 904.
Generally, the paginator 602 determines a mapping of document content 904 onto
individual templates 1106, which may include, but is not limited to, the globally
optimal pairing of document content 904 with templates 1106.

[00134] The low level engine 502 communicatively connects to the paginator
602 and style sheets storage unit 906. The low level engine 502 is configured with
hardware and software (see FIG. 10) appropriate to perform tasks and provide
capabilities and functionality as described herein. The low level engine 502 may
receive document content 904 and templates 1106 from the paginator 602 for
processing. Typically, the low level engine 502 formats document content 904
automatically by use of templates 1106 (e.g., applies templates 1106 to the document
content 904) and thereby creates adaptive grid-based documents 914. Additionally,
the low level engine 502 may be used to determine a quality score for each part (e.g.,
each page) of the adaptive grid-based document 914 created from the application of
templates 1106 to the document content 904.

[00135] In operation, the adaptive grid-based document system 902 via the

paginator 602 receives document content 904 to be processed and templates 1106

37

WO 2007/041703 PCT/US2006/039100

from the template storage unit 908. The paginator 602 provides the document content
904 and templates 1106 to the low level engine 502 for rendering of actual page
layouts. In an alternative embodiment of the claimed subject matter, the low level
engine 502 is communicatively connected to the template storage unit 908 and,
therefore, the low level engine 502 receives templates 1106 directly from the template
storage unit 908. The low level engine 502 applies style sheets from the style sheets
storage unit 906 and templates 1106 to the document content 904 and determines a
quality score based on the results. The low level engine 502 provides the paginator
602 with all valid template 1106 sequences (e.g., all template 1106 sequences that
successfully and completely adapt the document content 904 to a grid-based
document layout) and their corresponding quality scores. The paginator 602
computes either some desirable sequence‘ of templates 1106 or the globally optimal

| sequence of templates 1106 based on the quality scores provided by the low level
engine 502. After determining a pairing of content with a sequence of templates
1106, the paginator 602 provides the document content 109 and the optimal sequence
of templates 1106 to the low level engine 502. The low level engine 502
automatically formats the document content 904 according to the optimal sequence of
templates 1106. The resulting adaptive grid-based document 914 is then provided by
the adaptive grid-based document system 902 to the appropriate destination (e.g.,
displayed to the user, provided to another program module, or saved to a file).
[00136] The template authoring tool 910 communicatively connects to the ,
template storage unit 908 and a user interface 912. The template authoring tool 910 is
configured with hardware and software (see FIG. 10) appropriate to perform tasks and
provide capabilities and functionality as described herein. The user interface 912
provides a user with a set of windows, icons, commands, and/or menus for creating or
modifying templates 1106 within the template storage unit 908. Through use of the
template authoring tool 910 and the user interface 912, a user may draw and arrange
layout elements, specify how the elements adapt to different page sizes, preview the
adaptation interactively, and set template 1106 preconditions 1109 and constraint-
based relationships 1115.
[00137] In operation, the user interface 912 presents a schematic representation

of a template 1106 that may be interactively resized. Creating a new layout element

38

WO 2007/041703 PCT/US2006/039100

1112 within the template 1106, generally, requires the user to draw a region on the
user interface 912 display and then manipulate the region to a desired size, position,
and layer. To maintain the integrity of the adaptive templates 1106, most elements
1112 of the template 1106 require constraint-based relationships 1115.

[00138] While creating or editing a template, the user may specify page-level
constraints by defining a page grid by drawing horizontal or vertical guides and then
using a snap-dragging interface to constrain the elements relative to the grid. The
horizontal or vertical guides may be designed to either scale relative to the page or
maintain a constant offset. Guides may also be dependent on other guides, allowing a
user to define a hierarchical grid. Specifically, the user interface 912 supports
different types of user operations including, but not limited to: (1) if the user adds a
new guide without first selecting any other guides, then the new guide’s position is
defined relative to the entire page; (2) if the user selects a single existing guide before
creating a new guide, then the new guide’s position is defined as a constant offset
from the selected guide; and (3) if the user selects two existing guides before creating
a new guide, then the new guide’s position is defined relative to the two selected
guides. The user interface 912 may also provide user operations that allow the user to
specify constraints directly between elements without the use of guides. For example
and not limitation, the user may constrain the bottom of one element to coincide with
the top of another element. To address situations where an element’s size is
determined by the content flowed into that element (and not the geometry of the page
alone), the user may utilize the template authoring tool 910 to constrain one of the
element’s dimensions and then specify that the other dimension be determined from
document content 904.

[00139] After creating a custom template 1106, the user may specify additional
preconditions based on the value of any variable in a constraint system. The
suitability of a template 1106 for document content 904 depends on the use of
preconditions and a scoring function. Once a user sets the content sources of an
element 1112 of the template 1106, the content preconditions for a template 1106 may
be automatically computed. Additionally, a user may add attribute preferences to
elements 1112 that influence the quality score that the page template 1106 receives

for a given selection of document content 904. When the user specifies more than one

39

WO 2007/041703 PCT/US2006/039100

attribute of an element 1112, the user may rank the attributes in order of importance
via the user interface 912.

[00140] The template authoring tool 910 may then automatically construct a
scoring function that the low level engine 502 evaluates for different selections of
document content 904 that may possibly be flowed into the element. Given the user-
specified ranking of attributes in order of importance, the template authoring tool 910
may associate each attribute with a digit in the score, with higher order digits
corresponding to more important attributes. When the low level engine 502 evaluates
a selection of content, the score may be computed by associating a “1” with all
matching attributes, and a “0” with all non-matching attributes. More specifically, if
“al” through “aN” are the N user-specified attribute preferences in order of
importance, then the scoring function is constructed by the authoring system as
follows: S = match(al,b1)*(10°(N-1)) + match(a2,b2)*(10"(N-2))...+
match(aN,bN)*(1070), where S is the quality score of a particular selection of content
being evaluated, b1 through bN are the actual attribute values associated with the
selection of content, and match(a,b) is a function that returns “1” when “a” equals “b”
and “0” otherwise. Thus, this scoring function returns a better or worse score,
depending on how well the content matches the attributes specified by the user. The
scoring function ensures that more important attributes are given strict priority over
less important attributes. For example and not limitation, a selection of content that
matches a particular attribute “A” results in a better score than other selections of
content that do not match attribute “A” but potentially do match less important
attributes.

[00141] One skilled in the art will recognize that scoring functions may be
implemented in a variety of ways. For example and not limitation, each attribute of
an element may be associated with a digit in the final score. The importance of the
attribute determines its corresponding digit, with the most important attribute being
associated with the most significant digit. Consequently, an attribute that is the k-th
most important attribute will correspond with the k-th most significant digit in the :
final score. For a particular selection of content, the scoring function may associate a
“1” with the digits that correspond to matching attributes and a “0” with the digits that

correspond to non-matching attributes. The scoring function, therefore, ensures that a.

40

WO 2007/041703 PCT/US2006/039100

piece of content that matches the most important attribute has a higher (i.e., better)
score than any other selection of content that does not match the most important
attribute.

[00142] Different templates 1106 within a layout style 1103 often include
common characteristics (e.g., elements, preconditions, and constraints). Accordingly,
the template authoring tool 910 may support a system or model of template 1106
inheritance that simplifies the modification of common characteristics across several
templates 1106 without actually changing each of the templates 1106 individually.
For example and not limitation, a user may create a new template 1106 (e.g., a child
template 1106) that inherits characteristics of a pre-existing template 1106 (e.g., a
parent template 1106). The child template 1106 automatically includes all of the
elements, preconditions, and constraints of the parent template 1106. Next, the user
may add additional elements, preconditions, and constraints to the child template
1106 in order to create the desired custom template 1106. If the user wants to change
one of the properties that is common between the parent and child templates 1106,
then the user need only modify the properties of the parent template 1106, because the
modification will propagate via inheritance to all child templates 1106 of the parent
template 1106. The inheritance model simplifies the management of a large number
of templates 1106 and helps to maintain consistency between the templates 1106.
[00143] One skilled in the art will recognize that connecting communicatively
may include any appropriate type of connection including, but not limited to, analog,
digital, wireless and wired communication channels. Such communication channels
include, but are not limited to, copper wire, optical fiber, radio frequency, infrared,
satellite, or other media.

[00144] FIG. 10 displays a block diagram representation of a computing
environment 1000 and computer systems 1010, 1080 thereof which the claimed
subject matter can utilize in accordance with an exemplary embodiment thereof. The
computing environment 1000 and computer systems 1010, 1080 thereof represent
only one example of a suitable computing environment and computer systems for the
practice of the claimed subject matter and are not intended to suggest any limitation as
to the scope of use or functionality. of the invention. Nor should the computer systems

1010, 1080 be interpreted as ‘having any dependency or requirement relating to any

41

WO 2007/041703 PCT/US2006/039100

one or combination of components illustrated in the exemplary computing
environment 1000.

[00145] Hence, it should be understood that the subject invention is operational
with numerous other general purpose or special purpose computing system
environments or configurations. Examples of well-known computing systems,
environments, and/or configurations that may be appropriate or suitable for use with
the claimed subject matter include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer electronics, network personal
computers, minicomputers, mainframe computers, distributed computing
environments that include any of the above systems or devices, and the like.

[00146] Aspects of the claimed subject matter may also be described in the
general context of comprising computer-executable instructions, such as program
modules, being executed by a computer system. Generally, program modules include
routines, programs, programming, objects, components, data, data structures, etc. that
perform particular tasks or implement particular abstract data types. Features of the
subject invention may be practiced in distributed computing environments where
tasks are performed by remote processiﬁg devices that are linked through a
communications network. In a distributed computing environment, program modules
may be located in both local and remote computer storage media, including, without
limitation, in memory storage devices.

[00147] With reference to FIG. 10, an exemplary computing environment 1000
of the claimed subject matter includes a general purpose computing device in the form
of a computer system 1010. Components of computer system 1010 may include, but
are not limited to, a processing unit 1020, a system memory 1030, and a system bus
1021 that couples various-system components including the system memory 1030 to
the processing unit 1020 for bi-directional data and/or instruction communication.
The system bus 1021 may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. By way of example, and not limitation, such
architectlires.\include the Industry Standard Architecture (ISA) bus, Micro Channel
Architecture \(MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards

42

WO 2007/041703 PCT/US2006/039100

Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus
(i.e., also known as the “Mezzanine bus”). '

[00148] Computer system 1010 typically includes a variety of computer-
readable media. Computer-readable media may comprise any available media that
may be accessed by, read from, or written to by éomputer system 1010 and may
include both volatile and nonvolatile, removable and non-removable media. By way
of example, and not limitation, computer-readable media may comprise computer
storage media and communication media. Computer storage media includes both
volatile and nonvolatile, removable and non-removable media implemented in any
method or technology for storage of information such as computer-readable
instructions, data, data structures, program modules, programs, programming, or
routines. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape,
magneto-optical storage devices, magnetic disk storage or other magnetic storage
devices, or any other medium which may be used to store the desired information and
which may be accessed by computer system 1010. Communication media typically
embodies computer-readable instructions, data, data structures, program modules,
programs, programming, or routines in a modulated data signal such as a carrier wave
or other transport mechanism and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. By way of
example, and not limitation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. Combinations of any of the above are also
included within the scope of computer-readable media.

[00149] The system memory 1030 includes computer storage media in the form
of volatile and/or nonvolatile memory such as read only memory (ROM) 1031 and
random access memory (RAM) 1032. A basic input/output system 1033 (BIOS),
containing the basic routines that direct the transfer of information between elements
within computer 1010, such as during start-up, is typically stored in ROM 1031.
RAM 1032 typically stores data and/or program instructions that are immediately

43

WO 2007/041703 PCT/US2006/039100

accessible to and/or presently being operated on by processing unit 1020. By way of
example, and not limitation, FIG. 10 illustrates operating system 1034, application
programs 1035, other program modules 1036, and program data 1037 which may be
resident in RAM 1032, in whole or in part, from time-to-time.

[00150] The computer 1010 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 10
illustrates a hard disk drive 1041 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 1051 that reads from or writes to a
rémovable, nonvolatile magnetic disk 1052, and an optical disk drive 1055 that reads
from or writes to a removable, nonvolatile optical disk 1056 such as a CD ROM or
other optical media. Other removable/non-removable, volatile/nonvolatile computer
storage media that may be included in the exemplary computing environment 1000
include, but are not limited to, magnetic tape cassettes, flash memory cards, digital
versatile disks, digital video tape, solid state RAM, solid state ROM, and the like.
The hard disk drive 1041 is typically connected to the system bus 1021 through a non-
removable memory interface such as interface 1040, and magnetic disk drive 1051
and optical disk drive 1055 are typically connected to the system bus 1021 by a
removable memory interface, such as interface 1050.

[00151] The drives 1041, 1051, 1055 and their associated computer storage
media described above and illustrated in FIG. 10, provide storage of computer-
readable instructions, data, data structures, program modules, programs,
programming, or routines for computer system 1010. In FIG. 10, for example, hard
disk drive 1041 is illustrated as storing operating system 1044, application programs
10435, other program modules 1046, and program data 1047. Note that these
components may either be the same as or different from operating system 1034,
application programs 1035, other program modules 1036, and program data 1037.
Operating system 1044, application programs 1045, other program modﬁles 1046, and
program data 1047 are given different numbers to illustrate that, at a minimum, they
are different copies of operating system 1034, application programs 1035, other
program modules 1036, and program data 1037. A user may enter commands and
information into computer system 1010 through connected input devices such as a

keyboard 1062 and pointing device 1061, commonly referred to as a mouse, trackball

44

WO 2007/041703 PCT/US2006/039100

or touch pad. Other connected input devices (not shown) may include a microphone,
Joystick, game pad, satellite dish, scanner, or the like. These and other input devices
are often connected to the processing unit 1020 through a user input interface 1060
that is coupled to the system bus 1021, but may be connected by other interface and
bus structures, such as a parallel port, game port or a universal serial bus (USB). A
monitor 1091 or other type of display device is also connected to the system bus 1021
via an interface, such as a video interface 1090. In addition to the monitor 1091,
computer system 1010 may also include other peripheral output devices such as
speakers 1097 and printer 1096, which may be connected through an output
peripheral interface 1095.

[00152] The computer system 1010 may operate in a networked environment
using bi-directional communication connection links to one or more remote computer
systems, such as a remote computer system 1080. The remote computer system 1080
may be a personal computer, a laptop computer, a server computer, a router, a
network PC, a peer device or other common network node, and typically includes
many or all of the elements described above relative to the computer system 1010,
although only a memory storage device 1081 of remote computer system 1080 has
been illustrated in FIG. 10. The bi-directional communication connection links
depicted in FIG. 10 include a local area network (LAN) 1071 and a wide area network
(WAN) 1073, but may also include other networks. Such networks are commonplace
in offices, enterprise-wide computer networks, intranets and the Internet.

[00153] When communicatively connected to a LAN 1071, the computer
system 1010 connects to the LAN 1071 through a network interface or adapter 1070.
When communicatively connected to a WAN 1073, the computer system 1010
typically includes a modem 1072 or other means for establishing a communication
link over the WAN 1073, such as the Internet. The modem 1072, which may be
internal or external, may be connected to the system bus 1021 via the user input
interface 1060, or other appropriate mechanism. In a networked environment,
program modules depicted relative to the computer system 1010, or portions thereof,
may be stored in the remote memory storage device 1081. By way of example, and
not limitation, FIG. 10 illustrates remote application programs 1085 as residing in

memory storage device 1081. It will be appreciated that the network connections

45

WO 2007/041703 PCT/US2006/039100

shown are exemplary and other means of establishing a bi-directional communication
link between the computers may be used. .

[00154] FIG. 11 displays a block diagram representation of a document layout
including adaptive layout styles 1103 and templates 1106 in accordance with an
exemplary embodiment of the claimed subject matter. Document content 904 is
formatted into a particular document layout by use of templates 1106 (e.g., sometimes
referred to herein as “adaptive templates 1106”) stored in the template storage unit
908. Each template 1106 is responsible for defining the layout for a single page of
content across a range of page dimensions. In the exemplary embodiment of the
claimed subject matter, the template 1106 supports a protocol whereby alternative
document content (e.g., a wider version of an image or an optimal drawing) may be
automatically chosen if it improves the overall page layout of the document. Also,
each template 1106 is designed to adapt to a range of display dimensions, as well as to
other types of viewing conditions, such as an increase in font size.

[00155] Each templatefl 106, additionally, may comprise layout elements 1112,
constraint-based relationships 1115, and preconditions 1109. A layout element 1112
represents a particular region within the page of the template 1106 in which content
may be placed. A constraint-based relationship 1115 of the template 1106 helps to
define the relationships between elements 1112. A precondition 1109 of the template
1106 characterizes the suitability of the template 1106 for the particular content of a
document or the characteristics of a page. The layout elements 1112, constraint-based
relationships 11185, and preconditions 1 109 are more fully described below with
reference to FIG. 12.

[00156] In one embodiment of the claimed subject matter, document layout is
described using a set of templates 1106. When the document content 904 is applied to
the templates 1106, an adaptive grid-based document 914 is produced in an optimal
format. For example, the present system may support a wide-range of modern, grid-
based layout styles such as designs used for the New York Times, the New Yorker, the
Washington Post, Newsweek, or Time magazine. Each of the layout styles 1103 (e.g.,
sometimes referred to herein as an “adaptive layout style 1103”) is defined by a
collection of templates 1106 that implement the particular characteristics of the

particular layout style 1103.

46

WO 2007/041703 PCT/US2006/039100

[00157] As illustrated in FIG. 11, an adaptive layout style 1103 A is represented
by a set of templates 1106A, 1106Ax. The ellipsis between adaptive template “A;”
1106A, and adaptive template “An 1106Ay illustrates that a plurality of adaptive
.templates 1106 may exist within adaptive layout style “A” 1103A and, therefore, the
adaptive layout style “A” 1103A is not limited to the two adaptive templates 1106A;,
1106Ay as shown in FIG. 11. Similarly, the ellipsis between adaptive template “Z;”
1106Z, and adaptive template “Zy" 1106Zy illustrates that a plurality of adaptive
templateé 1106 may exist within adaptive layout style “Z” 1103Z and, therefore is not
limited to the two templates 1106Z;, 1106Zy as shown in FIG. 11. Additionally, one
adaptive layout style 1103A may comprise a different number of adaptive templates
1106 than another adaptive layout style 1103Z.

[00158] The adaptive layout styles 1103 are stored in the template storage unit
908. Each adaptive layout 1103 identifies a set of templates 1106 associated
therewith. The ellipsis between adaptive layout style “A” 1103 A and adaptive layout
style “Z” 1103Z illustrates that a plurality of adaptive layout styles 1103 may exist
within the template storage unit 908 and, therefore, is not limited to the two adaptive
layout styles 1103A, 1103Z as shown in FIG. 11. For example and not limitation,
adaptive layout styles 1103 and adaptive templates 1106 may be represented within
the claimed subject matter by XML.

[00159] FIG. 12 displays a block diagram representation of an adaptive
template 1106 in accordance with an exemplary embodiment of the claimed subject
matter. Each adaptive template 1106 within the template storage unit 908 may
comprise layout elements 1112, constraint-based relationships 1115 for defining
relationships between elements 1112, and preconditions 1109 that characterize the
suitability of the template 1106 for the particular content of a document.

[00160] A layout element 1112 represents a particular region within the page of
the template 1106 in which content may be placed. Typically, the elements 1112
within a grid-based document layout are rectangular regions of the template 1106
page. Each layout element 1112 comprises a specified source stream variable 1209,
element z-order placement variable 1212, and layout templates variable 1215. The
specified source stream variable 1209 specifies which content may be used within the

element 1112. For example and not limitation, the specified source stream variable

47

WO 2007/041703 PCT/US2006/039100

1209 may specify that only an image may be placed within the element 1112 of the
template 1106. In an alternative embodiment of the claimed subject matter, multiple
elements 1112 use content from the same content stream 1303 (described below with
reference to FIG. 13). In such an arrangement, a flow is established and the content
of the content stream 1303 is distributed from one element 1112A; to the next element
1112A,.

[00161] The element z-order placement variable 1212 of an element 1112
allows each element 1112 to specify its place in an element 1112 z-order. Generally,
elements 1112 that are higher in the z-order sit atop lower elements 1112 within the
document layout and, consequently, the area region of the higher elements 1112 is
subtracted from the area region of the elements 1112 underneath. In effect, the
element z-order placement variable 1212 enables grid-based page designs to have
overlapping elements 1112, or regions that appear to cut out other elements’ 1112
regions. For example, the text in a document layout may flow around a figure. The
figure is in a higher z-order than the text and, thus, the figure seems to cut out some of
the region reserved for the text. Wrapping text around a figure or image is a
technique used within grid-based document layouts.

[00162] The layout templates variable 1215 allows each element 1112 to
specify a layout template 1106 (or a collection of layout templates 1106) that may be
used to layout content atoms. A content atom comprises a content item 1306 that is
made up of multiple content streams 1303 (e.g., text, figures, or images). More
specifically, a content atom comprises a logical grouping of content which contains
one or more elements 1112 or content streams 1303 of one or more content types, all
of which are considered to be a single item in some parent content item 1306. For
example and not limitation, the element 1112 may represent a sidebar which includes
text, figures, and images. Through the layout templates variable 1215, the template
1106 may support fully recursive layout and, thus, may support everything from a
figure/caption combination to recursive embedding of content.

[00163] The constraint-based relationships 1115 (e.g., sometimés referred to
herein as “constraints 1115”) of a template 1106 may be used to at least partially
define the relationships between elements 1112. The size and placement of each

element 1112 in a template 1106 is determined by evaluating a set of interdependent

48

WO 2007/041703 PCT/US2006/039100

constraint-based relationships 1115 that, when considered together, form a directed
acyclic graph. The constraint-based relationships 1115 comprise constraint input
variables 1218 and constraint output variables 1221 whose values are determined by a
mathematical expression in terms of other constraint variables 1218, 1221.
Additionally, the constraint-based relationships 1115 comprise constraint internal
variables 1224 whose values may be used when computing values for the constraint
output variables 1221. One skilled in the art will recognize that this type of
configuration is known as a “one-way constraint system.” In the exemplary
embodiment of the claimed subject matter, however, each template 1106 encodes
two-dimensional relationships among layout elements 1112 as constraints 1115 that
must be resolved to evaluate a particular layout.

[00164] The constraint input variables 1218 instruct the template 1106 about
the context in which the template 1106 will be used. For example and not limitation,
the constraint input variables 1218 may indicate the width and height dimensions of
the template 1106 or of an element 1112 within the template 1106. Additionally, the
constraint input variable 1218 may include custom attributes (e.g., attributes defined
by a user through the template authoring tool 910) regarding the document content.
In aspects of the claimed subject matter, a constraint system (not shown) may be
represented by a pool of constraints that may be used as constraint input variables
1218 and constraint output variables 1221. When custom attributes are present within
the document content 904, the custom attributes may be added as additional variables
within the constraint system. The constraint output variables 1221 represent various
document output attributes including, but not limited to, the rectangular boundary of
each element 1112 and the score of the template 1106 which allows a template 1106
to express its fitness in terms of the content to be inserted within the template 1106
(described in more detail below with reference to FIG. 10).

[00165] The preconditions 1109 of a template 1106 at least partially
characterize the suitability of the template 1106 for the particular content of a
document. Each template 1106 uses preconditions 1109 to express when the template
1106 is valid when applied to the document content. For example, a template 1106
may be valid if the template 1106 may be successfully applied to the document

content. One skilled in the art will recognize that different preconditions may be used

49

WO 2007/041703 PCT/US2006/039100

to determine which templates 1106 are valid and which template 1106 are invalid.
The adaptive grid-based document layout system 902 uses the preconditions 1109
during pagination (described in more detail below with reference to FIG. 19). The
preconditions 1109 may comprise one or more content preconditions variables 1203
and/or one or more value preconditions variables 1206. A content preconditions
variable 1203 indicates the amount of content from a given content stream 1303 that
must be f)resent to adequately fill the template 1106 or an element 1112 within the
template 1106. The value preconditions variable 1206 indicates the range of values
that a given constraint variable 1218, 1221 must fall between. For example and not
limitation, the content preconditions variable 1203 and the value preconditions
variable 1206 may indicate that a particular template 1106 is valid if the document
content contains exactly two figures available for display and if the page dimensions
of the document content fall somewhere between standard letter and A4 page
dimensions.

[00166] FIG. 13 displays a block diagram representation of a document content
904 including content streams 1303 in accordance with an exemplary embodiment of
the claimed subject matter. Document content 904 is represented within the subject
invention as a set of individual content streams 1303, each of which contains content
that is laid out sequentially. Content streams 1303 represent different, logically
independent parts of the document including, but not limited to, body text, sidebars,
figures, pull quotes, and photo credits. Content streams 1303 comprise content items
1306 which are described more fully below with reference to FIG. 14. As illustrated
by the ellipsis, the document content 904 is not limited to the number of content
streams 1303A, 1303B, 1303Z shown in FIG. 13. Similarly, the ellipses illustrate that
a content stream 1303 A is not limited to the number of content items 1306A,
1306A;, 1306Ay shown in FIG. 13.

[00167] FIG. 14 displays a block diagram representation of a content stream
1303 including content items 1306 in accordance with an exemplary embodiment of
the claimed subject matter. As described above with reference to FIG. 13, content
streams\ 1303 comprise content items 1306. Content items 1306 include, but are not
limited to, text, images, audio, video, and other appropriate content types. Each

content item 1306 is associated with standard markup (e.g., XML) to indicate

50

WO 2007/041703 PCT/US2006/039100

structure. In addition to the standard markup, each content item 1306 may be
annotated with custom attributes 1409 that alter the way the content item 1306 is
treated by the low level engine 502 and templates 1106. For example and not
limitation, a content item 1306 representing an image may have an attribute 1409 that
signifies the image’s importance within the document layout. Accordingly, the low
level engine 502 utilizing the content item 1306 within a template 1106 may check the
attribute 1409 value to determine how large to make the image in the final layout.
The ellipsis between attribute “A;,” 1409A;4 and attribute “A;z” 1409A,7 illustrates
that a plurality of attributes 1409 may exist within the content item “A;” 1306A, and,
therefore, the content item “A;” 1306A, is not limited to the two attributes 1409A 4,
1409A.z as shown in FIG. 14. Similarly, the ellipsis between attribute “Axs”
1409An4 and attribute “Anz” 1409Ayz illustrates that a plurality of attributes 1409
may exist within the content item “Ax 1306Ay and, therefore, the content stream
“AN" 1306Ay is not limited to the two attributes 1409Axa, 1409ANz as shown in FIG.
14.

[00168] In the exemplary embodiment of the claimed subject matter, text
content items 1306A; may include style identifiers 1412A,4, 1412A,7 to specify the
styling of the text within the document content 904. Style identifiers 1412 are
typically represented by a stylesheet language such as, but not limited to, cascading
style sheets (CSS) or extensible style language (XSL). One skilled in the art will
recognize that a stylesheet language enables a user to define how different text
elements will appear within a document (e.g., font, font style, and font size).
Accordingly, the style identifiers 1412 may be associated with formatting rules in a
separate stylesheet file, which is stored in the style sheets storage unit 906. The
ellipsis between style identifier “A;a” 1412A;4 and style identifier “A17” 1412A7
illustrates that a plurality of style identifiers 1412 may exist within the content item
“A1” 1306A; and, therefore, the content item “A;” 1306A, is not limited to the two
style identifier s 1412A,4, 1412A,7 as shown in FIG. 14. Similarly, the ellipsis
between style identifier “Ana” 1412Axa and style identifier “Anz” 1412Anz
illustrates that a plurality of style identifier s 1412 may exist within the content item
“AN” 1306Ay and, therefore, the content item “Ay” 1306Ay is not limited to the two
style identifier s 1412Aya, 1412Anz shown in FIG. 14.

51

WO 2007/041703 PCT/US2006/039100

[00169] Content items 1306 may also be encoded to include multiple versions
1306A,4, 1306A48, 1306A,7 of any piece of content. Each of the different content
item versions 1306A54, 1306A25, 1306A,z are packaged inside a <multi> tag 1406.
During document layout, the adaptive grid-based document layout system 902
chooses one of the versions to use when formatting the page with a template 1106.
To assist the adaptive grid-based document layout system 902, each of the different
content item versions 1306A24, 1306A25, 1306A,z may comprise attributes 1409 that
suggest the most appropriate use of each particular content item version 1306A5,4,
1306A,5, 1306A,z. For example and not limitation, a first version of content item
“Ay” 1306A,4 may indicate that the first version of the content item 1306A,, is best
used in a “summary” section, while a second version of content item “A,” 1306A,5
may indicate that the second version of the content item 1306A,5 is best used in a
sidebar. A template 1106 may choose the appropriate content item version 1306A,4,
1306A,8, 1306A,z based on how the template 1106 intends to format the document
content. Ifno attributes 1409 exist to define the different versions of a content item
1306, then the adaptive grid-based document layout system 902 is free to choose the
version that works best for the format of the current page or document. The ellipsis
between the second version of content item “A,” 1306A,5 and the nth version of
content item “A,” 1306A,z illustrates that a plurality of content item 1306 versions
may exist within the <multi> tag 1406 and, therefore, the <multi> tag 1406 is not
limited to the three content item versions 1306A,4, 1306A,5, 1306A,7 as shown in
FIG. 14.

[00170] Content streams 1303 A4, 1303A3p, 1303 A3z may also be nested
hierarchically within a parent content item 1306A3 using an <atom> tag which groups
a collection of content streams 1303A3,, 1303A3g, 1303 A5z together as a content
atom within a parent content item 1306A3. The collection of content streams
1303A34, 1303A3p, 1303A3z is then treated as a single content item 1306A3.
Document elements such as a sidebar are inherently represented by multiple
document elements (e.g., text, figures, caption, and footer). The <atom> tag permits
multiple content streams 1303 to be treated as one single item of content for document
layout purposes. For example and not limitation, an <atom> tag may group a “title”

content stream 1303, “figure” content stream 1303, “figure caption” content stream

52

WO 2007/041703 PCT/US2006/039100

1303, “descriptive text” content stream 1303, and “footer” content stream 1303 within
a parent “sidebar” content item 1306. The ellipsis between content stream 1303A38
and content stream 1303 A3 illustrates that a plurality of content streams 1303 may
exist within a parent content item 1306A3 and, therefore, the parent content item
1306A; is not limited to the three content streams 1303Asa, 1303 A5, 1303A57 as
shown in FIG. 14. |

[00171] FIGS.15A-15B display a flowchart representation of a method 1500 of
applying document content 904 to templates 1106 in accordance with an exemplary
embodiment of the claimed subject matter. The low level engine 502 combines the
document content 904 received from the paginator 602 with the templates 1106 from
the template storage unit 908 and the style sheets from the style sheets storage unit
906. The result is a collection of potential page layouts that define the document’s
layout style. ‘

[00172] After starting at step 1501, the low level engine 502 proceeds to step
1503 where the low level engine 502 determines whether additional templates 1106
need to be evaluated using the document content 904. Initially, none of the templates
1106 within the template storage unit 908 will have been evaluated. As step 1503 is
repeated, however, the low level engine 502 will consider other templates 1106
available within the template storage unit 908 until all of the templates 1106 have
been considered. Alternatively, the low level engine 502 evaluates all of the
templates 1106 within a data structure (e.g., an array or vector) provided by the
paginator 602 prior to step 1503 (not shown), instead of all of the templates 1106
within the template storage unit 908. If at step 1503, the low level engine 502
determines that no additional templates 1106 need to be evaluated, then the low level
engine 502 proceeds to step 1527, described below. If, however, at step 1503, the low
level engine 502 determines that an additional template 1106 needs to be evaluated,
then the low level engine 502 proceeds to step 1506 where the preconditions 1109 of
the template 1106 currently being considered (e.g., also referred to herein as “current
template 1106”) are evaluated against the document content 904. Next, at step 1509,
the low level engine 502 determines whether the current template 1106 is valid for the

document content 904 being considered.

53

WO 2007/041703 PCT/US2006/039100

[00173] If at step 1509, the low level engine 502 determines that the current
template 1106 is not valid for the document content 904 being considered, then the
low level engine 502 proceeds to step 1503, described above. If, however, at step
1509, the low level engine 502 determines that the current template 1106 is valid for
the document content 904 being considered, then the low level engine 502 proceeds to
step 1512 where the low level engine 502 determines the size and position of each
element 1112 of the template 1106 by setting the current template’s input variables
1218 and propagating these values forward through the current template’s constraint
graph using simple greedy local propagation.

[00174] Then, at step 1515, the low level engine 502 computes the two-
dimensional regions of the layout page to be generated by the template 1106 and into
which the document content 904 will be flowed. Additionally, the low level engine
502 trims down the regions according to any overlap between elements 1112 or based
on element z-order placement variables 1212. Next, at step 1518, the low level
engine 502 flows document content 904 into each of the determined regions. The low
level engine 502 then proceeds to step 1521 where the low level engine 502 calculates
a template score for the template 1106 based on how well the documeﬁt content 904
fits the template 1106 (described in more detail below with reference to FIG. 10).
Next, at step 1524, the low level engine 502 adds the template 1106 to a set or
sequence of valid templates 1106. The low level engine 502 then proceeds to step
1503, described above.

[00175] As described above, if the low level engine 502 at step 1503
determines that no additional templates 1106 need to be evaluated, then the low level
engine 502 proceeds to step 1527 where the low level engine 502 determines if the set
of valid templates 1106 is empty. If, at step 1527, the low level engine 502
determines that the set of valid templates 1106 is empty, then the low level engine 502
proceeds to step 1536 where the low level engine 502 produces an error that no valid
set of templates 1106 exists for the document content 904. The low level engine 502
then terminates operation in accordance with method 1500 at step 1533. If, however,
at step 1527 the low level engine 502 determines that a set of valid templates 1106
exists, then the low level engine 502 proceeds to step 1530 where the low level engine

502 sends the set of valid templates 1106 and corresponding scores to the paginator

54

WO 2007/041703 PCT/US2006/039100

602. The low level engine 502 then terminates operation in accordance with method
1500 at step 1533.

[00176] FIGS.16A-16C display a.flowchart representation of a method 1600 of
flowing content into elements 1112 within the document layout in accordance with an
exemplary embodiment of the claimed subject matter. The low level engine 502
controls the flow of content into element regions accqrding to content type.

Generally, content type includes, but is not limited to, images, text, inline figures, and
media.

[00177] After starting at step 1601, the low level engine 502 proceeds to step
1603 where the low level engine 502 determines whether the content type is an image.
If, at step 1603, the low level engine 502 determines that the content type is an image,
then the low level engine 502 proceeds to step 1606 where the low level engine 502
scales the image to fit the bounding region of the appropriate element 1112, Next, at
step 1609, the low level engine 502 displays the image that has been cropped by the |
content region of the element 1112. The low level engine 502 then terminates
operation in accordance with method 1600 at step 1618.

[00178] If, however, at step 1603 the low level engine 502 determines that the
content type is not an image, the low level engine 502 proceeds to step 1612 where
the low level engine 502 determines whether the content type is text. If, at step 1612,
the low level engine 502 determines that the content type is text, then the low level
engine 502 proceeds to step 1615 where the low level engine 502 permits the text to
flow into the bounding region of the element 1112 using a line-breaking algorithm
such as, but not limited to, Knuth and Plass’s optimal line-breaking algorithm. The
low level engine 502 then terminates operation in accordance with method 1600 at
step 1618.

[00179] If, however, at step 1612 the low level engine 502 determines that the
content type is not text, then the low level engine 502 proceeds to step 1621 where the
low level enginé 502 determines whether the content type is an inline figure (e.g.,
figures that occur within the flow of text). If, at step 1621, the low level engine 502
determines that the content type is an inline figure, the low level engine 502 proceeds
to step 1624 where the low level engine 502 determines whether there is room in the

bounding region of the element 1112 to display the figure. If, at step 1624, the low

55

WO 2007/041703 PCT/US2006/039100

level engine 502 determines that there is room in the bounding region of the element
1112 to display the figure, then the low level engine 502 proceeds to step 1630 where
the low level engine 502 places the figure at the specified reference position and
resizes the figure to fill the whole column of the element 1112. The low level engine
502 then terminates operation in accordance with method 1600 at step 1633.
Otherwise, if the low level engine 502, at step 1624, determines that the bounding
region of the element 1112 is not of sufficient size to display the figure, then the low
level engine 502 proceeds to step 1627 where the low level engine 502 displays the
figure in the next element 1112 of the flow and resizes the figure to fill the whole
column of the next element 1112. The low level engine 502 then terminates operation
in accordance with method 1600 at step 1633.

[00180] If, however, at step 1621 the low level engine 502 determines that the
content type is not an inline figure, then the low level engine 502 proceeds to step
1636 where the low level engine 502 determines whether the content type is media. If,
at step 1636, the low level engine 502 determines that the content type is media, then
the low level engine 502 proceeds to step 1642 where the low level engine 502
embeds the media type at the specified reference position. The low level engine 502
then terminates operation in accordance with method 1600 at step 1645. Otherwise, if
the low level engine 502, at step 1636, determines that the content type is not media,
then the low level engine 502 proceeds to step 1639 where the low level engine 502
generates an error indicating an invalid content type. The low level engine 502 then
terminates operation in accordance with method 1600 at step 1645.

[00181] FIGS.17A-17C display flowchart representations of a method 1700 of
self-sizing elements 1112 within the document layout in accordance with an
exemplary embodiment of ihe claimed subject matter. The low level engine 502
supports elements 1112 that automatically adjust their height to fit the document
content 904. The automatic resizing of elements 1112 depends on the content type.
[00182] After starting at step 1701, the low level engine 502 proceeds to step
1703 where the low level engine 502 determines whether the element 1112 is an
image element. If, at step 1703, the low level engine 502 determines that the element
1112 is an image element, then the low level engine 502 proceeds to step 1706 where

the low level engine 502 sets the constraint variables 1218, 1221 associated with the

56

WO 2007/041703 PCT/US2006/039100

element 1112 in order to provide the element 1112 with the pixel dimensions of the
image. Next, at step 1709, the low level engine 502 computes the image’s aspect ratio
from the pixel dimensions to determine the appropriate height and width of the
element 1112. The low level engine 502 then terminates operation in accordance with
method 1700 at step 1712.

[00183] If, however, at step 1703 the low level engine 502 determines that the
element 1112 is not an image element, then the low level engine 502 proceeds to step
1715 where the low level engine 502 determines whether the element 1112 is a text
clement. If, at step 1715, the low level engine 502 determines that the element 1112
is a text element, then the low level engine 502 proceeds to step 1718 where the low
level engine 502 determines whether the element 1112 comprises a predetermined
mark or attribute, such as, but not limited to a “resize-to-content” tag. If, at step 1718,
the low level engine 502 determines that the element 1112 is not marked with a
“resize-to-content” tag, then the low level engine 502 terminates operation in
accordance with method 1700 at step 1712, because no resizing of the element 1112 is
necessary.

[00184] If the low level engine 502, at step 1718, determines that the element
1112 is marked with a “resize-to-content” tag, then the low level éngine 502 proceeds
to step 1721 where the low level engine 502 sets the height variable of the element
1112 to the maximum allowable value. Next, at step 1724, the low level engine 502
determines whether the element 1112 is filled entirely with text. If, at step 1724, the
low level engine 502 determines that the element 1112 is filled entirely with text, then
the low level engine 502 terminates operation in accordance with method 1700 at step
1730, because no resizing of the element 1112 is necessary. If, however, at step 1724
the low level engine 502 determines that the element 1112 is not filled entirely with
text, then the low level engine 502 proceeds to step 1727 where the low level engine
502 resets the height of the element 1112 to the actual height of the text. The low
level engine 502 then terminates operation in accordance with method 1700 at step
1730.

[00185] If, however, the low level engine 502 determines that element 1112 is
not a text element at step 1715, then the low level engine 502 proceeds to step 1727

where the low level engine 502 determines whether the element 1112 is a compound

57

WO 2007/041703 PCT/US2006/039100

element requiring templates 1106 for layout. A content atom represents two or more
pieces of content that, taken together, are considered to be an atomic unit. For
example and not limitation, a picture and corresponding caption are conceptually
grouped together as a single “captioned figure.” Accordingly, a compound element is
-an element in a template that may accept a content atom. In order to layout the
separate pieces of sub-content inside the content atom, the compound element
specifies a separate sub-template that may be used to arrange the separate subparts of
the content atom on the layout page. If, at step 1727, the low level engine 502
determines that the element 1112 is not a compound element requiring templates 1106
for layout, then the low level engine 502 terminates operation in accordance with
method 1700 at step 1730, because no resizing is required.
[00186] If, however, at step 1727, the low level engine 502 determines that the
element 1112 is a compound element requiring templates 1106 for layout, then the
low level engine 502 proceeds to step 1733 where the low level engine 502 uses the
required templates 1106 to layout the element 1112. A compound element may
include multiple content items 1306 or multiple content streams 1303, such as, but not
limited to, a content atom 1306A3. Then, the low level engine 502 proceeds to step
1736 where the low level engine 502 uses the special output variable 1221 to set the
final height of the element 1112 within the template 1106. The low level engine 502
then terminates operation in accordance with method 1700 at step 1739.
[00187] FIG. 18 displays a flowchart representation of a method 1800 of
scoring a template 1106 based on how well the document content 904 fits the template
1106 in accordance with an exemplary embodiment of the claimed subject matter.
For each template 1106 used to layout document content 904, the low level engine
502 calculates a score based on how well the content fits the template 1106. Once the
low level engine 502 calculates the scores for all of the potential templates 1106, the
low level engine 502 reports the scores back to the paginator 602 which may use the
scores, along with template scores for previous and subsequent pages of content, to
calculate an optimal sequence of templates 1106 to use for paginating all of the
document content 904.
[00188] After starting at step 1801, the low level engine 502 proceeds to step

1803 where the low level engine 502 evaluates a constraint output variable 1221

58

WO 2007/041703 PCT/US2006/039100

comprising a template score of the template 1106. The low level engine 502 then
proceeds to step 1806 where the low level engine 502 determines the number of
widows and orphans within the page layout after applying the template 1106. Then,
at step 1809, the low level engine 502 calculates a score for how well the content fits
the template 1106, whereby the quality score is based on the template.score variable
and the number of widows and orphans in the page layout. The low level engine 502
proceeds to step 1812 where the low level engine 502 provides the paginator 602 with
the calculated score of the template 1106, which the paginator 602 uses in its
calculation of the final sequence of templates 1106. The paginator 602 then
terminates operation in accordance with method 1800 at step 1815.

[00189] The péginator 602 produces a sequence of templates 1106 and a
mapping of document content 904 to each template 1106 in the sequence which the
low level engine 502 may use to display an entire document. In an embodiment of the
claimed subject matter, the adaptive grid-based document system 902 utilizes multiple
pagination algorithms for different applications. Accordingly, the adaptive grid-based
document system 902 may comprise a first paginator 602 that quickly produces a
valid pagination for interactive adaptation and a second paginator 602 that produces
an optimal pagination, but requires more time to operate. The first paginator 602
might use a “greedy” algorithm that always uses the first template 1106 for each page
that will accept the content at the current location in the document or might choose
the single best templaté 1106 at each place in the sequence without evaluating the
global consequences (e.g., global scoring) of the choice. The second paginator 602
might use techniques including, but not limited to, creating approximate optimal
paginations superior to a “greedy” pagination, but not gu:dranteed to be optimal, by
running a series of smaller optimization processes over smaller portions (e.g.,
“windows”) of the document content 904.

[00190] FIGS. 19A-19D display a flowchart representation of a method 1900
of optimally paginating document content 904 into an adaptive grid-based document
layout in accordance with an exemplary embodiment of the claimed subject matter.

In order to find an optimal pagination, the paginator 602 must measure the
effectiveness of each sequence of valid templates 1106, whereby the measure is

maximized by a systematic or heuristic search or by constraint optimization. An

59

WO 2007/041703 PCT/US2006/039100

optimizing paginator 602 produces a sequence of templates 1106 and a mapping of
content onto each template 1106, which maximizes some measure of quality. For
example and not limitation, one such measure includes the “total page turns” metric,
which counts the total number of page turns that would be required to both read
through the text and turn to any additional content referenced by the text. In the
exemplary embodiment of the claimed subject matter, a metric used to score the
effectiveness of each sequence of valid templates 1106 includes the use of the total
number of page turns value with other measures that reflect the quality of the
appearance of the page (e.g., empty spaces, aesthetic look, workability, or
readability).

[00191] As the basic dynamic programming algorithm used to evaluate
subproblems (e.g., new templates 1106 in a series) relies on hindsight to score
sequences of subproblems, an aspect of the claimed subject matter restructures the
algorithm so that the evaluation is performed only for valid pages by calculating all
possible endpoints of a current subproblem (e.g., forward-looking). An aspect of the
claimed subject matter ensures that when a new subproblem is considered, all
subproblems that could possibly precede it in a solution will have already been
solved, and the entry pointing back to the optimal predecessor will be in a data table.
Consequently, if no entry in a data table exists for a subproblem when it is reached,
then the subproblem may be passed over with no computation.

[00192] Additionally, an embodiment of the claimed subject matter may easily
be modified to handle additional content streams 1303 by adding extra dimensions to
the data table and additional nested loops to the algorithm. Optional content streams
1303 may also be processed with no additional programming by having templates
1106 available that display content from optional content streams 1303. The
paginator 602 includes content items 1306 from the optional content streams 1303
whenever they improve the optimal pagination. Such optional content streams 1303
and templates 1106, which use optional content streams 1303, may vastly improve
pagination quality.

[00193] Performance of various aspects of the claimed subject matter is further
improved by pruning partial solutions (e.g., subproblems already verified to be

acceptable) from the data table whose quality score is worse than some threshold

60

WO 2007/041703 PCT/US2006/039100

(e.g., sometimes referred to herein as a “pruning threshold”). Because relatively few
acceptable solutions exist, this pruning helps to narrow the list of subproblem
sequences down to the most optimal. For example and not limitation, a conservative
pruning strategy includes the use of the quality score resulting from a “first-fit”
solution (e.g., “greedy” solution) as the pruning threshold. Use of such a conservative
pruning strategy typically provides a significant speedup of the pagination process
and guarantees that a solution will always be found. Alternatively, an optimistic
pruning strategy chooses an approximate, near-perfect threshold and iteratively alters
the threshold if no solution is found. When a significant number of templates 1106
exist in the template storage unit 908, the likelihood that a near-perfect solution exists
is high and, therefore, the thimistic pruning strategy becomes more effective.
[00194] Entries within the data table represent locations in the document (e.g.,
endpoints of the page currently being processed). Further, an entry in the data table
represents the best pagination discovered so far that ends at the given location in the
document’s various content streams 1303, which may be determined by an index
value of the entry in the table. The table entry includes, but is not limited to, the
location in the table (and, therefore, the location in the document) of the preceding
page in the optimal partial-solution ending at that location, and the template 1106
used to render the last page (e.g., the page between the previous table entry and the
table entry currently being processed).

[00195] The outermost loop of the process used by embodiments of the claimed
subject matter traverses thrgugh the table, e\;aluating larger and larger (partial)
solutions or subproblems as it proceeds. Each iteration of the loop calls the low level
engine 502 to find the next set of pages (e.g., a page is a template 1106 and a selection.
of content; there may exist multiple results for a single template 1106 with different
amounts of text, different image versions, efc.) which may follow the current endpoint
under consideration. The resulting set of pages yields a set of endpoints for the next
page, which are then propagated forward by the paginator 602 into the data table (e.g.,
replacing the existing entries, if the new entry has a better global score).

[00196] For example and not limitation, the method 1900 described in FIGS.
19A-19D may be represented by the pseudo-code provided in TABLE 1.

61

WO 2007/041703 PCT/US2006/039100

BEGIN PAGINATE;

i

Initialize Endpoint Table (place one entry at location (0,0)"

for begihning of document):;
FOR each table location DO:
IF location contains valid entry THEN:

CALL LOW LEVEL ENGINE to generate list of
endpoints for pages starting at current table

location;
FOR each endpoint returned (new) DO:

Calculate global score for sequence ending

with new endpoint;

IF score is better than Pruning Threshold

THEN:

IF new endpoint has no entry in

table THEN:

Add entry for new endpoint
containing score, template,

and back pointer to location;

ELSE (new endpoint does have

previous entry in table) THEN:

Compare score with existing

entry’s score in table;

IF score is better than

existing entry’s score THEN:

Replace entry in table
with new score,
template, and back

pointer to location;

ENDIF;

62

WO 2007/041703 PCT/US2006/039100

ENDIF;
ENDIF;
ENDFOR;
ENDIF;
ENDFOR;

Trace back pointers from last table entry to obtain template

sequence and content mapping;

END PAGINATE;

Table 1.

[00197] After starting at step 1901, the paginator 602 proceeds to step 1903
where the paginator 602 sets the pruning threshold for optimal pagination. One
skilled in the art will recognize that a threshold value may be determined in a variety
of ways, including the techniques described above.

[00198] Next, at step 1906, the paginator 602 initializes the empty data table
with a single endpoint representing the beginning of the first page of the document
(e.g., placing one entry at location (0, 0) to represent the beginning of the document).
The paginator 602 then proceeds to step 1909 where the paginator 602 determines
whether any locations within the table need to be evaluated. If, at step 1909, the
paginator 602 determines that no locations within the table need to be evaluated, then
the paginator 602 proceeds to step 1921 where the paginator 602 traces the back
pointers from the last table entry to obtain the optimal template 1106 sequence and
content mapping. The paginator 602 then terminates operation in accordance with
method 1900 at step 1901.

[00199] If, however, the paginator 602, at step 1909, determines that locations
within the table need to be evaluated, then the paginator 602 proceeds to step 1912
where the paginator 602 determines whether the current table location has a valid

entry. The current entry is chosen by the paginator from the set of unevaluated table

63

WO 2007/041703 PCT/US2006/039100

entries for which all entries preceding it in the table have been evaluated. If; at step
1912, the paginator 602 determines that the current table entry does not have a valid
entry, then the paginator 602 marks the entry as evaluated and proceeds to step 1909,
described above. Otherwise, if the paginator 602, at step 1912, determines that the
current table entry has a valid entry (e.g., an acceptable entry representing templates
that may be successfully applied to the document content), then the paginator 602
proceeds to step 1915 where the paginator 602 calls the low level engine 502 to
generate a list of endpoints for pages starting at the current table location.

[00200] Generally, through a call to a program module, the low level engine
502 applies each of the templates 1106 within the template storage unit 908 to the
unprocessed portion of the document content 904 to determine which templates 1106
are valid templates 1106. If none of the templates 1106 may be used, then no
templates 1106 may follow the current table location and, therefore the current table
entry should not be considered any further. When the low level engine 502
determines that a template 1106 may be applied a the current location (e.g., it will
accommodate the content beginning at the current table location), then the low level
engine 502 applies the template to the content to determine the endpoint and score of
the resulting page and includes the endpoint in the list of endpoints returned to the
paginator 602, which may determine the appropriate global score associated with the
new sequence of templates 1106.

[00201] The paginator 602 then proceeds to step 1918 where the paginator 602
determines whether any endpoints returned in step 1915 need to be evaluated (e:g.,
whether there is a calculated global score for the endpoint). If, at step 1918, the
paginator 602 determines that no endpoints need to be evaluated, then the paginator
602 proceeds to step 1909, described above. If, however, the paginator 602, at step
1918, determines that endpoints need to be evaluated, then the paginator 602 proceeds
to step 1927 where the paginator 602 calculates the global score for the sequence
ending with the new endpoint. The paginator 602 then proceeds to step 1930 where
the paginator 602 determines whether the calculated global score is better than the
predetermined pruning threshold. If, at step 1930 the paginator 602 determines that
the calculated global score is not better than the predetermined pruning threshold,

then the paginator 602 proceeds to step 1918, described above.

64

WO 2007/041703 PCT/US2006/039100

[00202] If, however, the paginator 602, at step 1930, determines that the
calculated global score is better than (e.g., greater than) the predetermined pruning
threshold, then the paginator 602 proceeds to step 1933 where the paginator 602
determines whether the new endpoint has an entry in the data table. If; at step 1933,
the paginator 602 determines that the new endpoint does not have an entry in the data
table, then the paginator 602 proceeds to step 1936 where the paginator 602 adds the
entry into the table for the new endpoint, containing the calculated global score,
current template 1106, and a back pointer to the current location. Then, the paginator
602 proceeds to step 1918, described above.

[00203] Otherwise, if the paginator 602, at step 1933, determines that the new
endpoint does have an entry in the data table, then the paginator 602 proceeds to step
1939 where the paginator 602 determines whether the calculated global score is better
than the score stored in the data table. If, at step 1939, the paginator 602 determines
that the calculated global score is not better than the score stored in the data table,
then the paginator 602 proceeds to step 1918, described above.

[00204] If, however, the paginator 602, at step 1939, determines that the
calculated global score is better than the score stored in the data table, then the
paginator 602 proceeds to step 1942 where the paginator 602 replaces the entry stored
in the data table with the new endpoint, calculated global score, current template
1106, and a back pointer to the current location. Next, the paginator 602 proceeds to
step 1918, described above.

[00205] Referring now to FIG. 20, there is illustrated a schematic block
diagram of an exemplary computer compilation system operable to execute the
disclosed architecture. The system 2000 includes one or more client(s) 2002, The
client(s) 2002 can be hardware and/or software (e.g., threads, processes, computing
devices). The client(s) 2002 can house cookie(s) and/or associated contextual
information by employing the features of the claimed subject matter, for example.
[00206] The system 2000 also includes one or more server(s) 2004. The
server(s) 2004 can also be hardware and/or software (e.g., threads, processes,
éomputing devices). The servers 2004 can house threads to perform transformations
by employing features of the claimed subject matter, for example. One possible

communication between a client 2002 and a server 2004 can be in the form of a data

65

WO 2007/041703 PCT/US2006/039100

packet adapted to be transmitted between two or more computer processes. The data
packet may include a cookie and/or associated contextual information, for example.
The system 2000 includes a communication framework 2006 (e.g., a global
communication network such as the Internet) that can be employed to facilitate
communications between the client(s) 2002 and the server(s) 2004.

[00207] Communications can be facilitated via a wired (including optical fiber)
and/or wireless technology. The client(s) 2002 are operatively connected to one or
more client data store(s) 2008 that can be employed to store information local to the
client(s) 2002 (e.g., cookie(s) and/or associated contextual infofmation). Similarly,
the server(s) 2004 are operatively connected to one or more server data store(s) 2010
that can be employed to store information local to the servers 2004.

[00208] What has been described above includes examples of the claimed
subject matter. It is, of course, not possible to describe every conceivable
combination of components or methodologies for purposes of describing the claimed
subject matter, but one of ordinary skill in the art may recognize that many further
combinations and permutations of the claimed subject matter are possible.
Accordingly, the claimed subject matter is intended to embrace all such alterations,
modifications and variations that fall within the spirit and scope of the appended
claims. Furthermore, to the extent that the term “includes” is used in either the
detailed description or the claims, such term is intended to be inclusive in a manner
similar to the term “comprising” as “comprising” is interpreted when employed as a

transitional word in a claim.

66

WO 2007/041703 PCT/US2006/039100

CLAIMS
What is claimed is:

1. A system that facilitates adapting a document layout that can be displayed at
multiple sizes and dimensions with a wide variety of content, comprising:

an interface (102) that receives a template (104), the template is a high level
description of constraints for a document layout; and

a layout engine (106) that interprets the template and determines where to

place content (108) in order to automatically produce a high quality layout (110).

2. The system of claim 1, further comprising a user interface that facilitates
design and/or modification of the template by way of high level constraint parameters

and provides for storage of the template.
3. The system of claim 2, the user interface is a graphical user interface (GUI).

4. The system of claim 1, the layout engine produces the high quality layout
based upon at least one of semantic flow, brand identity, image and text correlation,

and advertising themes.

5. The system of claim 1, the layout engine produces the high quality layout
based upon the template, type(s) of content to be employed in the high quality layout,
and display dimensions of the high quality layout.

6. The system of claim 5, further comprising an output device that displays the
high quality layout, the display dimensions of the high quality layout are based upon

the output device.

7. The system of claim 5, the display dimensions of the high quality layout are

unknown when the template is created.

67

WO 2007/041703 PCT/US2006/039100
8. The system of claim 5, the type(s) of content to be employed in the high

quality layout is unknown when the template is created.

9. The system of claim 1, further comprising a low level engine that applies the
content to an adaptive grid-based layout based upon low level constraints, the layout
engine determines where to position the content for the high quality layout and

generates the low level constraints necessary for the low level engine to produce the

high quality layout.

10. The system of claim 1, the layout engine determines where to place content

based upon suitable locations for the content.

11. The system of claim 1, the document layout is a multi-level document layout
with a top level and a bottom level, the layout engine determines where to place

content in the bottom level based upon the position of content placed in the top level.

12. The system of claim 1, the content employed in the high quality layout is

aggregated from multiple sources.
13. The system of claim 1, the layout engine employs an Extensible Stylesheet

Language Transformation (XSLT) to translate the content from a source format the

content is received.

68

WO 2007/041703 PCT/US2006/039100

14. A computer implemented methodology for arranging content to create a high
quality layout, comprising:

choosing a template for a document layout (802), the template is defined in a
high level language;

determining a display size for a document (804);

receiving content for the document (806);

employing the template and the display size for determining available
locations for the content (808);

selecting from the available locations a high quality location (810) for the
content; and

creating a high quality layout for the document (812) by arranging the content
into the high quality location.

15. The method of claim 14, further comprising defining a template for a

document in a high level language.

16. The method of claim 15, the display size of the document and the type of the

content are unknown when the template is defined.

17. The method of claim 14, the determining available locations for the content is
based at least in part upon locations of other content previously placed within the

document.

18. The method of claim 14, the selecting a high quality location is based upon an
algorithm, the algorithm is at least one of a best fit algorithm, a first fit algorithm and

a first good fit algorithm.
19. The method of claim 14, the selecting a high quality location is based upon at

least one of semantic flow, brand identity, image and text correlation, and advertising

themes.

69 .

WO 2007/041703 PCT/US2006/039100

20. A computer implemented system that arranges content to create a high quality
layout that can be displayed at multiple sizes and dimensions with a wide variety of
content, comprising:

means for describing the constraints of a template (104) for a document layout
in a high level language;

means for determining a document display size (106);

means for receiving content for the document (108);

means for determining available locations (106) for the content based upon the
template and the display size for;

means for selecting from the available locations a high quality location (106)
for the content; and

means for producing (106) a high quality layout (110) for the document by
placing the content into the high quality location.

70

WO 2007/041703 PCT/US2006/039100

1/28
K~100
104
TEMPLATE
110
102 — 106 L
HIGH
J | P QUALITY
INTERFACE < » LAYOUT ENGINE |« LAYOUT

v 108 i

CONTENT

FIG. 1

WO 2007/041703 PCT/US2006/039100

2/28

204

104 202

A
TEMPLATE TEMPLATE

STORE

USER INTERFACE

A
Y

FI1G. 2

WO 2007/041703 PCT/US2006/039100

3/28
300
302>~ o
E ¥ 110
L SEMANTICELOW | 106 -
304~ . HIGH
{ BRAND IDENTITY | i«—> LAYOUT ENGINE ——» QUALITY
306 >~ .. o LAYOUT
| /T CORRELATION | ! ;
308 ~ . i
§ AD THEMES ! |
\ 4 ,— 108
CONTENT

FI1G. 3

WO 2007/041703 PCT/US2006/039100

4/28
/400
» OUTPUT DEVICE |«
Y
¥ HIGH
106 LITY 110
N LAYOUT ENGINE |« > %X?{OUT

108
"N CONTENT

FI1G. 4

WO 2007/041703

5/28

LOW LEVEL

104 — | TEMPLATE
106
N LAYOUT ENGINE
A
A
108
8~ CONTENT

> ENGINE

PCT/US2006/039100

HIGH
QUALITY

FIG. 5

Y

LAYOUT

WO 2007/041703 PCT/US2006/039100

6/28
104
TEMPLATE
600
102
INTERFACE
A
110
108 v _—602 106 L
HIGH
e . P LAYOUT | | QUALITY
CONTENT «——> PAGINATOR 1<~ “none < [ayout

FIG. 6

PCT/US2006/039100

WO 2007/041703

LNOAVI

ALITVNO
HOIH

011 —

LD

ANIONA LNOAVT

INAINOD d9M

o

901 —

04 409N0S
//// 80L

LINHINOD

90L —

VIAQIN
ONINVHYLS

801 —

v0L —

HJOLS INHINOD

oL —"

WO 2007/041703 PCT/US2006/039100

8/28

800
START ¥

802
CHOOSE A TEMPLATE =

l

DETERMINE DISPLAY SIZEFOR A | —804
DOCUMENT

Y

RECEIVE CONTENT FOR A ,—3806
DOCUMENT

l

DETERMINE AVAILABLE /—808
LOCATIONS FOR CONTENT

l

SELECT HIGH QUALITY LOCATIONS |,—810
FOR THE CONTENT

l

CREATE A HIGH QUALITY /—812
DOCUMENT

STOP

FIG. 8

PCT/US2006/039100

WO 2007/041703

9/28

INHANND0A
adsvd

~dEHD HAILdVAV

906 N

JIN(1 HDVIOLS
SLAHHS TALS

LINO HOVIOLS
HLVIdNAL

HOVAIHLNI
gdasn

26— 1

A

"TO0L
DONIJOHLNV
HLVIdNAL

A

016 —

ANIONH

THAHTMOT

A

JOLVNIOVd

6 "OId

INHLNOD

A

INHNNOO0d

06 —

PCT/US2006/039100

10/28

WO 2007/041703

T Sqvaooua 01 314
NOILLYVOI'TddV
ALONTA v0T 9501 HoL 7901
.......... 7901 @VOLIATH viva SHTNAONW SINVID0Yd NALSAS
,,,,,,,,, 1501 //’ﬂ_ AVEOOd | WVIDO¥d ¥AHIO | NOILVOIIddY | ONILVIEIO
= — / , | I vwv vow (o v s }
0801 = 9501 .
dSNON ~
N4 = o 1901 NmS/,//,
/ [\ wadow a ...
YALOINOD
NVM (000 0] ~ -
TLONTY /7 [ooc0Je—) \ 0101
S A VN [P JVSIIOIUN DESVURUOR S -u---uum.rnlunn-ua|-»u-./u,uiuu.i.iuuuu:u:n\nnn“ uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu ,
m TLOT T
1L01 ol (== m viva
e = | LT vuooud "
NVT | = m :
: = i [9€0T saINaon :
SYaAvEdS | ; INVIDOY YTHLO m
' A A A i !
€ ; !
wH “ AOVIIALNI AOVAIALNI V[oo SINVEDOUd :
m wwﬁm% wm%mwm% KIOWAN "TOA-NON | | AYOWHN “TOA-NON | | m $0lno1Lvoriddv p :
L601 ; ATAVAONTL TEVAOWEE-NON | | ;
" . m DNILVIHdO "
NOZOY 0901 _ ‘ 0501 A# %01 A# “ “
m " zeor (V) |
9601 m SNE NHLSAS Jh——— E
YOLINOW | 1L~ 0601 0o m mlme sord | |
‘Iv- ; g \ \ E:\ \ : "
1601 Ly “ TeoT (WO |
Ly qﬁmwwmwww% .ﬁ:ou ﬁ FOVIIALNI OFAIA w ﬁ LINN ONISSZOO¥d | 0¢00 ... e
RS = Nl XMOWENWALSAS |
' e m 4

ooSI\A

PCT/US2006/039100

WO 2007/041703

11/28

Z, SATHSNOILY THd
aasvd-INIVILSNOO

NZ,, ALV IdNAL HAILdVAY

L

NZ,, SINANATE LNOAVT 7]

NZ,, SNOILIANODHTId [

-1

.

|t

agsvda-INIVILSNOD

7, ALVIINAL JAILIVAY

«'Z»» SAIHSNOLLVTHY =

7 SININATA LOOAVT [

«'Z»» SNOLLIANODHEAd [

=

|

«Z»» ATALS LNOAVTHIAILIVAY

— N7Z111

— NZ6011

— NZ9011

— 176111

— 172111

— 176011

- 179011

NyGTTT —l| Vs SAIHSNOILVIHA
AASvI-INIVILSNOD
Z b
Vel ~ Ny, SINANATH LNOAVT
Z I
V6011 ~ . NV,, SNOLLIANODTId
Ny9QQIT — Ny, ALV IAANAL FALLIVAY
o
{
. L J
WSTTT —L | V., SATHSNOLLVTHd
ASVI-LNIVILSNOD
I .
Vel = 1y, SINAWATE LNOAV'T
1 _
V60IL —~ V,, SNOLLIANODHId
9011 — IV, ALV IdNAL FALLIVAVY
VEOIT V., TIALS LNOAVTHALLAVAY

PCT/US2006/039100

WO 2007/041703

12/28

(AR L |

9011 —~

T T T T T T T T T
YTTl — |

| N ‘ SHTIVIIVA TVNIALNI INIVILSNOD _

|

| |
1221 +— _

L SHTAVIIVA LNd1NO INIVILSNOD "

_ . o1t
8121 +— _

| N . SHTGVIIVA LNdNI INIVILSNOD _

|

| |

! SATHSNOILV 1€ QdSVE-INIVILSNOD | |

| |
S1T1 4+ “

| ™ HTIIVIIVA (S)ALVIdNAL LNOAVT |
Izl +— “

A HTIVIIVA INGFWADVId YIAI0-Z ININA T ~J_

_ TITI
6021 +—. “

| ™ HTIVIIVA WVHILS 909N0S AdIAI10ads SINANETE LOOAVT| |

| i

{ |

| |
9021 +— “

| ™ HTIVIIVA SNOLLIANODTYd AN TVA !

| |

l
€0TT +— - ot

D ATIVIIVA SNOILIANODHId LNHINOD “

_ SNOLLIANODTId | |

| |

| |

WO 2007/041703 PCT/US2006/039100

13/28

e
! |
|

| GA
3034 /~ 1306A1306A; ~ CONTENT STREAM “A /- 1306Ay |1
1| CONTENT | | CONTENT oo CONTENT | | i
(|| ITEM A, ITEM A, ITEMAy | |!
| |
: x
|
13038 E /~ 1306B]306B; ~ CONTENT STREAM “B /~1306By |1
1{| CONTENT | | CONTENT oo CONTENT | |}
| || ITEMB, ITEM B, ITEMBy | |!
| |
' |
! !
: : |
| ® !
! ° :
' |
! |
! |
12032 1\ /~ 1306Z1306Z, ~ CONTENT STREAM “Z” L~ 1306Zy E
| || CONTENT | | CONTENT ooe CONTENT | |!
L] ITEM Z, ITEM Z, ITEMZy | |1
| |
' |
! |
' i

FI1G. 13

WO 2007/041703

PCT/US2006/039100

14/28
el
1306A, —\
/_ 1409A,,1409A, 7 _\ CONTENT ITEM “A,” /— 1412A141412A2 “\
ATTI;IBUTE 00 ATTliIBUTE STYX_,E 1D oo ST\;{JE 1D
1A 1Z 1A 1Z
ya 1306A,, CONTENT ITEM A, <MULTI>
CONTENT ITEM A,, VERSION 1
CONTENT ITEM A,, VERSION 2
= 130645 °
@
Ve 1306A,7 ®
CONTENT ITEM A,, VERSION N
ya 1303A5, CONTENT ITEM A; <ATOM>
CONTENT STREAM Aja
CONTENT STREAM Asp
- 1303A45 °
o
ya 1303A3z o
CONTENT STREAM A;z
1306A; —
o
o
1306AxN —\’
a 1409ANa1409ANz —\ CONTENT ITEM “Ay” /~ 1412ANp1412AN7 ~N
ATTiIBUTE 000 ATTRIBUTE STYLE ID 000 STYLEID
NA Anz Ana Anz
e
Ko 1303A

FIG. 14

WO 2007/041703 PCT/US2006/039100

1501 v 1500

ANY ADDITIONAL
TEMPLATES TO
EVALUATE?

pvanuaTe /L 0
 CURRENT
@ TEMPLATE’S
PRECONDITIONS
AGAINST
DOCUMENT

DT TP

CUINTLEIN L

Y

1509

YES IS TEMPLATE VALID FOR

DOCUMENT CONTENT?

\ 1512

DETERMINE SIZE AND
POSITION OF EACH
ELEMENT BY SETTING
TEMPLATE’S INPUT
VARIJABLES AND O

B

PROPAGATING THESE >
VALUES FORWARD
THROUGH THE TEMPLATE’S
CONSTRAINT GRAPH USING
SIMPLE GREEDY LOCAL
PROPAGATION

FIG. 15A

WO 2007/041703 PCT/US2006/039100

16/28

ya 1515

COMPUTE 2-DIMENSIONAL
REGIONS OF THE PAGE INTO
WHICH CONTENT IS TO BE

FLOWED, TRIMMING THE NO IS THE SET OF VALID
REGIONS DOWN TEMPLATES NULL?
ACCORDING TO THE ‘
VARIOUS ELEMENT’S
OVERLAP AND Z-ORDERING

! 1518 . 1530
FLOW CONTENT INTO EACH SEND SET OF VALID
OF THE DETERMINED TEMPLATES INCLUDING
REGIONS SCORES TO PAGINATOR
1521
¥ - V1533
CALCULATE A TEMPLATE ‘
SCORE BASED ON HOW END
WELL THE CONTENT FITS :
THE TEMPLATE
! 1524
1536
ADDV};ELI\IA];) I%‘%EAEPEQ,E’EEST OF PRODUCE ERROR THAT NO
VALID TEMPLATES EXIST * |«
FOR DOCUMENT CONTENT

FI1G. 15B

WO 2007/041703 PCT/US2006/039100

17/28

1601

START

IS CONTENT AN IMAGE?

v /S~ 1606

SCALE THE IMAGE
TO FIT THE
APPROPRIATE
ELEMENT’S
BOUNDING REGION

/1609

A

DISPLAY THE
IMAGE, CROPPED
BY THE ELEMENT’S \ 2

CONTENT REGION FLOW THE TEX
INTO THE

.

ELEMENT'S REGION | _ 165
USING KNUTH AND
PLASS’S OPTIMAL
LINE-BREAKING
ALGORITHM

~ 1618
> END

FIG. 16A

WO 2007/041703 PCT/US2006/039100

18/28

IS CONTENT AN INLINE
FIGURE?

1624

NO IS THERE ROOM IN YES

ELEMENT TO DISPLAY
FIGURE?

v e . e
DISPLAY FIGURE IN .
THE NEXT ELEMENT
THE REFERENCE
OF THE FLOW AND
POSITION AND
STRETCH THE
STRETCH THE
FIGURE TO FILL THE
WHOLE COLUMN FIGURE TO FILL THE
WHOLE COLUMN

1633

FIG. 16B

WO 2007/041703

v 1639

19/28

IS CONTENT A MEDIA
TYPE?

PCT/US2006/039100

v /S~ 1642

GENERATE ERROR
FOR INVALID
CONTENT TYPE

EMBED MEDIA TYPE
AT THE REFERENCE
POSITION

~ 1645
> END

FIG. 16C

WO 2007/041703 PCT/US2006/039100

20/28

1701

START

IS ELEMENT AN IMAGE
ELEMENT?

v e 1706

SETS CONSTRAINT
VARIABLES ON THE
ELEMENT TO
INFORM IT OF THE
PIXEL DIMENSIONS
OF THE IMAGE

I s U
COMPUTE IMAGE’S
ASPECT RATIO FROM
PIXEL DIMENSION
TO DETERMINE
ELEMENT
APPROPRIATE
HEIGHT AND WIDTH

1718

IS ELEMENT
MARKED WITH
“RESIZE-TO-
CONTENT” TAG?

FIG. 17A

WO 2007/041703 PCT/US2006/039100

21/28

1721

SET THE ELEMENT’S

1727

HEIGHT VARIABLE
TO MAXIMUM IS ELEMENT NO
ALLOWABLE VALUE COMPOUND ELEMENT

QUIRING TEMPLATES
FOR LAYOUT?

YES IS ELEMENT FILLED

ENTIRELY OF TEXT?

1727

\ 4

RESET ELEMENT’S
HEIGHT TO ACTUAL
HEIGHT OF THE TEXT

1730 l
Yy [/
(END) O«

B

FIG.17B

WO 2007/041703

PCT/US2006/039100

22/28

/S 1733

LAYOUT THE ELEMENT
USING REQUIRED
TEMPLATES

v /—' 1736

USE SPECIAL OUTPUT
VARIABLE
(TEMPLATE.OUTHEIGHT)
TO SET FINAL HEIGHT OF
ELEMENT WITHIN
TEMPLATE

1739

END

F1G. 17C

WO 2007/041703 PCT/US2006/039100

23/28
1800
1801
(START)
I 1803 1806
EVALUATE DETERMINE NUMBER OF
TEMPLATE.SCORE .| WIDOWS AND ORPHANS IN
VARIABLE OF THE | PAGELAYOUT USING
TEMPLATE TEMPLATE
1812 il 1809
CALCULATE A SCORE FOR
HOW WELL THE CONTENT
REPORT SCORE TO . FITS THE TEMPLATE BASED
PAGINATOR) ON TEMPLATE.SCORE
VARIABLE AND NUMBER OF
WIDOWS AND ORPHANS

FIG. 18

WO 2007/041703 PCT/US2006/039100

24/28

1901
(START)

v 1903

SET PRUNING
THRESHOLD FOR
PAGINATION

v e 1906

INITIALIZE ENDPOINT
TABLE

ANY TABLE LOCATIONS
LEFT TO EVALUATE?

FIG. 19A

WO 2007/041703 PCT/US2006/039100

25/28

DOES TABLE LOCATION YES
HAVE A VALID ENTRY?
\ a 1915
CALL LAYOUT ENGINE
TO GENERATE A LIST OF
ENDPOINTS FOR PAGES
STARTING AT CURRENT
é TABLE LOCATION
NO ANY ENDPOINTS LEFT YES ‘@
TO EVALUATE? "
1921
TRACE BACK POINTERS 1901
FROM LAST TABLE
®————+ ENTRY TO OBTAIN
TEMPLATE SEQUENCE
AND CONTENT MAPPING

FIG. 19B

WO 2007/041703 PCT/US2006/039100

26/28

. 1927

CALCULATE GLOBAL
SCORE FOR SEQUENCE
ENDING WITH ENDPOINT

l

IS CALCULATED
GLOBAL SCORE BETTER
THAN THRESHOLD?

NO

FIG. 19C

WO 2007/041703

YES

PCT/US2006/039100

27/28

1933

DOES NEW ENDPOINT

HAVE ENTRY IN TABLE?

J 1936

ADD ENTRY TO TABLE
FOR NEW ENDPOINT
CONTAINING SCORE,

TEMPLATE, AND BACK

YES

POINTER TO CURRENT
LOCATION

A

IS CALCULATED
GLOBAL SCORE BETTER
THAN STORED SCORE IN
TABLE?

e 1942

REPLACE ENTRY IN
TABLE WITH NEW
SCORE, TEMPLATE, AND
BACK POINTER TO
CURRENT LOCATION

FI1G. 19D

WO 2007/041703 PCT/US2006/039100

28/28

i~ 2000

2002 2004 ~

CLIENT(S) SERVER(S)
y Y COMMUNICATION A
FRAMEWORK

2008 2010

A\ 4 2006 A 4
CLIENT DATA STORE(S) SERVER DATA STORE(S)

FIG. 20

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2006/039100

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 17/21(2006.01)i, GOGF 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC8 GO6F 17/00, GO6F 17/21, GO6K 15/

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
KR, JP : IPC as above

Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO Internal) "keyword : document layout, template, user interface and similar terms"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005/0055635 A1 (Bargeron et al.) 10 March 2005 1-20
see figures 1-6; claims 1, 41, 70.
US 2005/0094206 A1 (Tonisson) 05 May 2005 1-20
A see abstract; figures 6D, 6E.
WO 02/15043 A1 (E MEDIA 1L.TD.) 21 February 2002 1-20
A see figures 3-5; abstract.
WO 02/103554 A1 (SHARP KABUSHIKI KAISHA) 27 December 2002 1-20
A see claims 1-5; figure 1.
US 6,826,727 B1 (Mohr et al.) 30 November 2004 1-20
A see abstract; figure 2; claims 1-5.
|:| Further documents are listed in the continuation of Box C. & See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
16 FEBRUARY 2007 (16.02.2007) 16 FEBRUARY 2007 (16.02.2007)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, SON, Young Tae
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5748

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2006/039100
Patent document Publication Patent family Publication
cited in search report date member(s) date

US2005055635A 1 10.03.2005 None

US2005094206A1 05.05.2005 None

W002/ 15043A1 21.02.2002 AUZ200178720A5 25.02.2002
CN1531691A 22.09.2004
EP01324211A1 02.07.2003
EP1324211A1 02.07.2003
JPW002/015043 21.02.2002
KR1020030045033 09.06.2003
US20040047510A1 11.03.2004
US2004047510AA 11.03.2004
WO00215043A1 21.02.2002

W002/ 103554A1 27.12.2002 EPO1396793A1 10.03.2004
EP1396793A1 10.03.2004
EP1396793A4 22.02.2006
JPW02002/ 103554 27.12.2002
KR1020040011537 05.02.2004
US20050165835A1 28.07.2005
US2005165835AA 28.07.2005
W002103554A1 27.12.2002

usoeg26727 30.11.2004 AUZ200117955A1 04.06.2001
AUZ200117955A5 04.06.2001
uS682672781 30.11.2004
uS6826727BA 30.11.2004
WO0139019A2 31.05.2001
W02001039019A2 31.05.2001
WO0200139019A2 31.05.2001
W0200139019C1 04.03.2004.

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - wo-search-report
	Page 102 - wo-search-report

