发明名称
用于外部固定器的弹性闭锁的双夹紧块

摘要
一种用于可松开地夹紧一个外科手术的固定装置或重定位装置内部的固定件(12；13)的装置。它包括：A) 一个圆柱形或棱柱形的杆(1)，它包括一个纵向轴线(2)、一个第一端部(14)、一个第二端部(15)以及一个在末端邻接第一端部(14)的第一杆段(19)和一个在末端邻接第二端部(15)的第二杆段(20)；B) 一个在第一杆段(19)上可同轴于纵向轴线(2)移动的第一夹紧块对(4)；C) 一个在第二杆段(20)上可同轴于纵向轴线(2)移动的第二夹紧块对(5)；其中，D) 两个夹紧块对(4；5)分别包括一个内部的夹紧块(6；7)和一个朝向端部(14；15)的、外部的夹紧块(8；9)，并且每个夹紧块对(4；5)的相应两个夹紧块(6；7；8；9)具有相互对准的夹紧面(29；30；31；32)；E) 一个夹紧件(10；11)，用于将外科手术的固定装置或重定位装置的各固定件(12；13)可松开来分别夹紧在相互对准的夹紧面(29；30；31；32)之间，以及，F) 分别在一个内部的与一个外部的夹紧块(6；7；8；9)之间设置一个弹性件(4)，它连接所述内部的与外部的夹紧块(6；7；8；9)；G) 所述弹性件(40)的弹性可以将插在每个夹紧块对(4；5)之间的杆状的所述固定件(12；13)夹紧在该夹紧块对的夹紧面之间。
1. 一种用于可松开地夹紧一个外科手术的固定装置或重定位装置内部的固定件（12;13）的装置，该装置具有:

 A) 一个圆柱形或棱柱形的杆 (1)，它包括一个纵向轴线 (2)、一个第一端部 (14)、一个第二端部 (15) 以及一个在末端邻接第一端部 (14) 的第一杆段 (19) 和一个在末端邻接第二端部 (15) 的第二杆段 (20);

 B) 一个在第一杆段 (19) 上可同轴于纵向轴线 (2) 滑移的第一夹紧对 (4);

 C) 一个在第二杆段 (20) 上可同轴于纵向轴线 (2) 滑移的第二夹紧对 (5); 其中

 D) 两个夹紧对 (4;5) 分别包括一个内部的夹紧块 (6;7) 和一个朝向端部 (14;15) 的、外部的夹紧块 (8;9)，并且每个夹紧对 (4;5) 的相应两个夹紧块 (6;7;8;9) 具有相互对准的夹紧面 (29;30;31;32); 以及

 E) 所述装置包括至少一个夹紧件 (10;11)，用于将外科手术的固定装置或重定位装置的各固定件 (12;13) 可松开地分别夹紧在两个相互对准的夹紧面 (29;30;31;32) 之间，其中

 F) 分别在一个内部的与一个外部的夹紧块 (6;7;8;9) 之间设置一个弹性件 (40)，该弹性件连接内部的与外部的夹紧块 (6;7;8;9)。

 其特征在于，

 G) 所述弹性件 (40) 的弹性这样设计，使得在松开夹紧件 (10;11) 时通过弹性件 (40) 的弹性可以将插在每个夹紧块对 (4;5) 之间的杆状的所述固定件 (12;13) 夹紧在该夹紧块对的夹紧面之间。

2. 如权利要求 1 所述的装置，其特征在于，所述夹紧块 (6;7;8;9) 具有贯穿的、与纵向轴线 (2) 同轴的孔 (16;17)，用于可轴向滑移地容纳所述杆 (1)，其中，杆 (1) 在孔 (16;17) 中与每个夹紧块对 (4;5) 的至少一个夹紧块 (6;7;8;9) 具有径向间隙。

3. 如权利要求 2 所述的装置，其特征在于，所述杆 (1) 在夹紧块
（6;7;8;9）的轴向区域内具有一个直径 d，并且每个夹紧块对（4;5）的至少一个夹紧块（6;7;8;9）的孔（16;17）具有一个直径 D，并且在其中形成径向间隙，即 D＞d。

4. 如权利要求 2 所述的装置，其特征在于，所述杆（1）在夹紧块（6;7;8;9）的轴向区域内具有至少一个缩颈（50），使得杆（1）在缩颈（50）处具有一个复位 b，每个夹紧块对（4;5）的至少一个夹紧块（6;7;8;9）的孔（16;17）具有一个直径 D，在其中形成径向间隙，即 b＜D。

5. 如权利要求 1 所述的装置，其特征在于，所述夹紧块（6;7;8;9）的夹紧面（29;30;31;32）配有凹口（25），这些凹口分别构成在一个内部的夹紧块（6;7）与一个外部的夹紧块（8;9）之间的，与纵向轴线（2）成横向且偏心地贯穿相应夹紧块对（4;5）的通道（33;34），用于容纳所述杆状的固定件（12;13）。

6. 如权利要求 5 所述的装置，其特征在于，所述两个通道（33;34）分别具有一个通道轴线（35;36），该通道轴线垂直于杆（1）的纵向轴线（2）延伸并与该纵向轴线具有一个距离 A。

7. 如权利要求 5 或 6 所述的装置，其特征在于，所述弹性件（40）相对于纵向轴线（2）安置在夹紧块（6;7;8;9）的与通道（33;34）对置的侧面上。

8. 如权利要求 1 至 4 中任一项所述的装置，其特征在于，所述弹性件（40）是一个杆状的，平行于纵向轴线（2）设置的元件。

9. 如权利要求 1 至 4 中任一项所述的装置，其特征在于，所述弹性件（40）由一种材料构成，该材料具有非线性的应力-延伸曲线。

10. 如权利要求 1 至 4 中任一项所述的装置，其特征在于，所述弹性件（40）由一种记忆金属合金构成。

11. 如权利要求 1 至 4 中任一项所述的装置，其特征在于，所述弹性件（40）由镍钛合金制成。

12. 如权利要求 10 所述的装置，其特征在于，所述记忆金属合金具有一个高于 50°C的转变温度。

13. 如权利要求 12 所述的装置，其特征在于，所述转变温度高于
100°。

14. 如权利要求 1 至 4 中任一项所述的装置，其特征在于，所述弹性件（40）由一种塑料制成。

15. 如权利要求 1 至 4 中任一项所述的装置，其特征在于，至少一个夹紧件（10）包括一个螺栓连接。

16. 如权利要求 15 所述的装置，其特征在于，所述螺栓连接包括一个在杆（1）上的螺纹（24）以及一个可以拧紧到该螺纹（24）上的螺母（18）。

17. 如权利要求 1 至 4 中任一项所述的装置，其特征在于，在两个夹紧块对（4;5）之间设置一个环形垫片（37）。

18. 如权利要求 17 所述的装置，其特征在于，所述垫片（37）可以在杆（1）上同轴地滑移。

19. 如权利要求 17 所述的装置，其特征在于，所述垫片（37）与杆（37）是一体的并且设置在第一杆段（19）与第二杆段（20）之间。

20. 如权利要求 5 所述的装置，其特征在于，所述通道（33;34）是棱柱形的。

21. 如权利要求 5 所述的装置，其特征在于，每个通道（33;34）具有的一个内部净宽 LW 并且在其与通道轴线（35;36）正交的、在相邻的夹紧块（6;7;8;9）之间的开口上具有一个宽度 B’，并且比例 B’/LW 在 70% 至 90% 之间。

22. 如权利要求 1 至 4 中任一项所述的装置，其特征在于，弹性件（40）由一种假弹性的材料制成。

23. 如权利要求 3 所述的装置，其特征在于，比例 (D-d)/d 在 0.01 与 0.10 之间。
用于外部固定器的弹性闭锁的双夹紧块

技术领域

本发明涉及一种装置，用于可松开地夹紧一个外壳手术的固定装置或重定位装置内部的固定件。

背景技术

由 DE 295 12 917 JAQUET 已知一种用于外部固定器（fixateur externe）的各元件的双夹紧块连接器。这种已知的铰链连接器由按位置布置的两对夹紧块组成，它由一个上部的外部夹紧块与一个上部的内部
夹紧块以及由一个下部的内部夹紧块与一个下部的外部夹紧块组成。四个夹紧块设置在一个中心的夹紧轴上。在夹紧块对之间、即在两个内部的夹紧块之间加入一个螺簧，它促使两个内部的夹紧块相互压开并顶压
外部的夹紧块。借助于一个锁定器使夹紧块克服弹性件的作用持续地固定在一起。在每对夹紧块之间的夹紧面上安置凹口，它们横向于夹紧轴
分别构成一个用于外部固定器的固定杆或插塞连接器的通孔。这些通孔
向外敞开并能够使固定杆或插塞连接器通过施加压力插入到夹紧块的开
孔中，在那个通孔中抵抗弹性件的作用。在将固定杆或插塞连接器夹紧
到通孔中以后，在铰链连接确定地锁定之前，使它们通过弹性件的作用
保持固定。

在这个已知的装置中的缺陷是，在夹紧块对之间设置螺簧并由此难
以接近。此外这个已知的装置没有恒定的弹性力，因为这个弹性力取决
于螺母的位置。最后，螺簧处于高度的疲劳下。

发明内容

在此本发明能够提供补救。本发明的目的是，提供一种用于可松开
地夹紧固定元件如杆、牵开器、环或骨螺钉的装置，它

a) 对于每个夹紧块对分别具有一个弹性元件，使得能够实现独立地
操作两个夹紧块对；
b) 与现有技术相比具有较少的结构部件，因此能够实现简单的操作和清理；以及

c) 具有一个恒定的弹性力（也无需操作螺母/螺栓）。

本发明的目的通过一种用于可松开地夹紧一个外科手术的固定装置或重定位装置中的固定件的装置得以实现，该装置具有以下的特征。

按本发明的用于可松开地夹紧一个外科手术的固定装置或重定位装置内部的固定件的装置，该装置具有：

A) 一个圆柱形或棱柱形的杆，它包括一个纵向轴线、一个第一端部、一个第二端部以及一个在末端邻接第一端部的第一杆段和一个在末端邻接第二端部的第二杆段；

B) 一个在第一杆段上可同轴于纵向轴线滑移的第一夹紧块对；

C) 一个在第二杆段上可同轴于纵向轴线滑移的第二夹紧块对；其中

D) 两个夹紧块对分别包括一个内部的夹紧块和一个朝向端部的、外部的夹紧块，并且每个夹紧块对的相应两个夹紧块具有相互对准的夹紧面；以及

E) 所述装置包括至少一个夹紧件，用于将外科手术的固定装置或重定位装置的各固定件可松开地分别夹紧在两个相互对准的夹紧面之间，其中

F) 分别在一个内部的与一个外部的夹紧块之间设置一个弹性件，它连接内部的与外部的夹紧块。

其特征在于，

G) 所述弹性件的弹性这样设计，使得在松开夹紧件时通过弹性件的弹性可以将插在所述夹紧块对之间的杆状的所述固定件夹紧在该夹紧块对的夹紧面之间。

在一优选的实施例中，所述夹紧块具有贯穿的、与纵向轴线同轴的孔。这些孔用于这样容纳杆，使得夹紧块可轴向滑移地设置在杆上。所述杆在每个夹紧块对的至少一个夹紧块的孔中具有径向间隙，因此使每个夹紧块对的至少一个夹紧块可以与杆的纵向轴线同轴的位置倾转。

这个间隙最好由此建立，所述杆在夹紧块的轴向区域内具有一个直
径 d 而每个夹紧块对的至少一个夹紧块的孔具有一个直径 D，并且 D>d。比例 (D-d) / d 可以在 0.01 与 0.10 之间。

在另一实施例中，所述杆在夹紧块的轴向区域内具有至少一个缩颈，使得该杆在缩颈处具有一个最小的粗度 b。此外，每个夹紧块对的至少一个夹紧块的孔具有一个直径 D，其中 b<D。所述至少一个缩颈例如也可以构成为环形槽。

在另一实施例中，在位于两个属于一个夹紧块对的夹紧块的相对对置的侧面之间的夹紧面上安装凹口。通过这些凹口构成用于容纳杆状固定件的通道。这些凹口与杆的纵向轴线成横向且偏心地延伸。所述通道最好分别具有一个通道轴线，它与杆的纵向轴线垂直并与该纵向轴线具有一个距离 A。

在另一实施例中，所述弹性件相对于纵向轴线设置在夹紧块的与通道对置的侧面。该弹性件最好与杆的纵向轴线间隔距离，其中在弹性件的中心轴线与杆的纵向轴线之间有一个距离。

在另一实施例中，所述弹性件构成为杆状元件，它具有平行于杆纵向轴线的中心轴线。

作为弹性件最好使用这种具有非线性的应力-延伸曲线的材料。该弹性件可以以有利的方式由一种记忆金属合金、最好由镍钛合金制成，但其夹紧作用无需基于记忆效应。由此，该记忆金属合金可以具有一个高于 50°、最好高于 80°的转变温度。该转变温度典型地高于 100°，最好高于 120°。同样适用的是所谓的假弹性材料。

所述弹性件尤其可以由一种镍钛合金制成，其中镍的含量为：45% < x < 55%，钛的含量为：45% < y < 55%，且 x + y = 100%。这种材料是特别生物相容且高弹性的。

所述弹性件除了可以金属材料以外也可以一种塑料、最好是聚醚醚酮（PEEK）或碳素纤维强化的 PEEK 制成。

在另一实施例中，至少一个夹紧件由一个螺纹连接件构成，其中优选一个螺母可以经由螺纹旋紧在杆上。代替螺母也可以将一个螺钉旋进一个具有内螺纹的孔中。所述第二夹紧件可以是一个与杆固定连接的端
头或一个第二螺纹件。

在又一实施例中，在两个夹紧块对的内部夹紧块之间设置一个环形垫片。该垫片按实施例可以与纵向轴线同轴地在杆上滑移，或者是与杆成一体的。通过与杆固定连接的在第一与第二杆段之间的垫片使夹紧块对这样分开，使得它们在其作用上是独立的。

所述通道最好是圆柱形或棱柱形的，由此能够对杆状的固定件产生一个更大的夹紧作用。当所述通道在正交于通道轴线的横截面中看以一个 a>180°的角度包围杆状的固定元件时，这种夹紧作用就越大。

为了将杆状固定元件在本装置的非固定状态下横向于装置的纵向轴线卡紧到通道中，在夹紧块侧面上的与通道轴线正交的开口的一个通道的最短的宽度 B’与同一通道的内部宽宽 LW 之间的比例 B’/LW 最好在 70% 与 90% 之间。

附图说明

下面借助于多个实施例的局部示意的附图详细描述本发明和本发明的改进方案。附图中：

图 1 以纵向截面图示出按照本发明的装置的一个实施例；
图 2 以纵向截面图示出按照本发明的装置的另一实施例；
图 3a 以侧视图示出本发明装置的在图 2 中所示的实施例；以及
图 3b 以正视图示出本发明装置的在图 2 和 3a 中所示的实施例。

具体实施方式

在图 1 中示出的实施例包括一个具有两个杆段 19;20 的、具有一个纵向轴线 2 的杆 1 以及在每个杆段 19;20 上可轴向滑移地分别包括一个夹紧块对 4;5。两个夹紧块对 4;5 中的每个夹紧块对包括一个内部的夹紧块 6;7 和一个外部的夹紧块 8;9。所述夹紧块 6;7;8;9 配有与纵向轴线同轴的孔 16;17 并且分别成对地可在各杆段 19;20 上轴向滑移。所述内部的夹紧块 6;7 紧靠在一个固定设置在杆段 19;20 之间的圆环形垫片 37 的与纵向轴线 2 正交的端面 22;23 上。所述外部的夹紧块 8;9 通过夹紧件 10;11 可以顶压内部的夹紧块 6;7。所述夹紧件 10;11 是螺母 18，它们可以经由在末端设置的螺纹 24 旋紧在两个杆段 19;20 上。不仅第一夹紧块对 4 的
两个夹紧块 6;8 而且第二夹紧块对 5 的两个夹紧块 7;9 相互对置地分别具有一个垂直于纵向轴线 2 的夹紧面 29;30;31;32。在分别属于夹紧块对 4;5 之一的两个夹紧面 29;30;31;32 之间能够垂直于纵向轴线 2 地分别推入一个杆状固定件 12;13，并且在按紧夹紧件 10;11 时分别锁定在一个内部的与一个外部的夹紧块 6;7;8;9 之间。

此外，分别在两个相互对置的夹紧面 29;30;31;32 上安置凹口 25。这些凹口 25 正交于纵向轴线 2 延伸并且与这个纵向轴线间隔距离。所述凹口 25 的横截面在这里是圆弧形的，但是也可以是三角形的。所述凹口 25 分别构成一个在每个夹紧块对 4;5 的两个夹紧块 6;7;8;9 之间延伸的、朝夹紧块 6;7;8;9 的侧面 28 敞开的通道 33;34，它们具有一个与纵向轴线 2 正交的且与这个纵向轴线间隔距离的通道轴线 35;36。

如图 2 所示，两个通道 33;34 具有一个正交于通道轴线 35;36 的单侧倒平的圆面形式的横截面，其中每个通道 33;34 的内部净宽 LW 大于对应通道 33;34 的正交于相应通道轴线 35;36 的、在夹紧块 6;7;8;9 的侧面上的开口的宽度 B'。

通过这种结构使得一旦横向于纵向轴线 2 推入到通道 33;34 中的杆状固定件 12;13 就可靠地防止从横向于纵向轴线 2 的通道 33;34 中滑出。

此外，每个夹紧块对 4;5 包括弹性件 40，由此使属于一个夹紧块对 4;5 的两个夹紧块 6;7;8;9 轴向保持于一个确定的间距。这样设计在属于一个夹紧块对 4;5 的两个夹紧块 6;7;8;9 之间的间距尺寸，使得在每个夹紧块对 4;5 的相邻的夹紧面 29;30;31;32 之间可以held横向于纵向轴线 2 推入一个杆状的固定件 12;13。通过这种方法在松开夹紧件 10;11 时推入的杆状固定件 12;13 由于弹性件 40 的弹性而这样夹紧在各夹紧面 29;30;31;32 之间，使得它们还可以用手平行于其中心轴线 26;27 滑移。

作为弹性件 40，在每个夹紧块对 4;5 的各两个夹紧块 6;7;8;9 之间与杆 1 间隔距离地插入两个镍钛合金杆 41。这些镍钛合金杆 41 具有中心轴线 42 并且进孔 43 中。为了将杆状固定件 12;13 导入到通道 33;34 里面，每个夹紧块对 4;5 的各两个对应的夹紧块 6;7;8;9 在其配有凹口 25 的侧面扩展，使得每个夹紧块对 4;5 的两个夹紧块 6;7;8;9 在其配有弹性件 40
的侧面相互顶压并且使镍钛合金杆 41 弹性变形。为了使每个夹紧块对 4;5 的两个夹紧块 6;7;8;9 可以进行扩展运动，那些外部的夹紧块 8;9 配有与纵向轴线 2 同轴的孔 17, 其直径 D 大于杆 1 在这个轴向区域内的直径 d。

在图 2、3a 和 3b 中示出一个实施例，它与在图 1 所示的实施例的不同之处在于，

a) 只有第一夹紧件 10 设计为包括可通过螺纹 24 旋紧在杆 1 的第一端部 14 上的螺母 18 的螺纹连接，而第二夹紧件 11 包括一个固定在杆 1 第二端部 15 上的端头 60。第二夹紧块对 5 的外部夹紧块 9 然后轴向紧靠在端头 60 上；

b) 在两个夹紧块对 4;5 的内部的夹紧块 6;7 之间不设置垫片 37 (见图 1); 以及
c) 通过在各外部的夹紧块 8;9 的轴向区域内在杆 1 上的一个环形槽形式的缩颈 50 给出一种在导入杆状固定件 12;13 时使每个夹紧块对 4;5 的外部夹紧块 8;9 扩展的可能性。所述缩颈 50 的直径 d 小于在相应外部夹紧块 8;9 中的孔 17 的直径 D。

通过旋紧第一夹紧件 10 能够使两个夹紧块对 4;5 朝端头 60 挤压，并且将置入到每个夹紧块对 4;5 的夹紧块 6;7;8;9 之间的杆状固定元件 12;13 夹紧在通道 33;34 里面。

此外，杆状的固定元件 12 横向于纵向轴线 2 这样远地推到通道 33 中，使两个邻接通道 33 的夹紧块 6;8 以约 2°至 3°的扩展角 β 最大地扩展。
图 2