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(57) ABSTRACT

A method of automatically determining which type of treat-
ment is most appropriate for (or the physiological state of)
a patient. The method comprises transforming one or more
time domain measurements from the patient into frequency
domain data representative of the frequency content of the
time domain measurements; processing the frequency
domain data to form a plurality of spectral bands, the content
of a spectral band representing the frequency content of the
measurements within a frequency band; forming a weighted
sum of the content of the spectral bands, with different
weighting coefficients applied to at least some of the spectral
bands; determining the type of treatment (or physiological
state) based on the weighted sum.
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AUTOMATIC CARDIAC THERAPY
ADVISOR WITH HIDDEN MARKOV MODEL
PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation application of
and claims priority to U.S. application Ser. No. 13/454,061,
filed on Apr. 23, 2012, now U.S. Pat. No. 9,339,436, which
application is a continuation application of and claims
priority to U.S. application Ser. No. 11/136,327, filed on
May 24, 2005, now U.S. Pat. No. 8,165,671, which appli-
cation claims priority to U.S. Provisional Application Ser.
No. 60/674,175, filed on Apr. 22, 2005. All applications
hereby incorporated by reference.

TECHNICAL FIELD

[0002] This invention relates to techniques for automati-
cally advising as to the appropriate cardiac therapy for a
patient, e.g., the particular therapy to be used for cardiac
resuscitation.

BACKGROUND

[0003] The heart relies on an organized sequence of elec-
trical impulses in order to beat effectively. Any deviation
from this normal sequence is known as “arrhythmia.” A class
of devices includes signal processing software that analyzes
electrocardiography (ECG) signals acquired from the victim
to determine when a cardiac arrhythmia such as ventricular
fibrillation (VF) or shockable ventricular tachycardia (VT)
exists. These devices include automated external defibrilla-
tors (AEDs), ECG rhythm classifiers, or ventricular arrhyth-
mia detectors. An AED is a device that literally “talks” the
provider through a process of evaluating a patient for,
attaching the patient to, and activating, the AED therapy.
This device is capable of recognizing the two distinct
cardiac waveforms: VT and VF.

[0004] VT is a tachydysrhythmia originating from a ven-
tricular ectopic focus, characterized by a rate typically
greater than 120 beats per minute and wide QRS complexes.
VT may be monomorphic (typically regular rhythm origi-
nating from a single focus with identical QRS complexes) or
polymorphic (unstable, may be irregular rhythm, with vary-
ing QRS complexes). An example rhythm for an unstable
VT is illustrated in FIG. 1A. Depending on the rate and the
length of time that the VT has been sustained, a heart in the
VT state may or may not produce a pulse (i.e., pulsatile
movement of blood through the circulatory system). The
cardiac activity still has some sense of organization (note
that the “loops™ are all basically the same size and shape).
If there is no pulse associated with this VT rhythm, then the
VT is considered to be unstable and a life threatening
condition. An unstable VT can be treated with an electrical
shock or defibrillation.

[0005] Supraventricular tachycardia (SVT) is a rapid
heartbeat that begins above the hearts lower chambers (the
ventricles). SVT is an abnormally fast heart rhythm that
begins in one of the upper chambers of the heart (atria), a
component of the heart’s electrical conduction system called
the atrioventricular (AV) node, or both. Although SVT is
rarely life-threatening, the symptoms which include a feel-
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ing of a racing heart, fluttering or pounding in the chest or
extra heartbeats (palpitations), or dizziness can be uncom-
fortable.

[0006] VF is usually an immediate life threat. VF is a
pulseless arrhythmia with irregular and chaotic electrical
activity and ventricular contraction in which the heart imme-
diately loses its ability to function as a pump. VF is the
primary cause of sudden cardiac death (SCD). An example
rhythm for VF is illustrated in FIG. 1B. This waveform does
not have a pulse associated with it. There is no organization
to this rhythm (note the irregular size and shape of the
loops.) The pumping part of the heart is quivering like a bag
of worms, and it is highly unlikely that this activity will
move any blood. The corrective action for this rhythm is to
defibrillate the heart using an electrical charge.

[0007] A normal heart beat wave starts at the sinoatrial
node (SA node) and progresses toward the far lower corner
of the left ventricle.

[0008] A massive electrical shock to the heart can correct
the VF and unstable VT rhythms. This massive electrical
shock can force all the cardiac cells in the heart to depolarize
at the same time. Subsequently, all of the cardiac cells go
into a short resting period. The hope is that the sinoatrial
node (SA node) will recover from this shock before any of
the other cells, and that the resulting rhythm will be a pulse
producing rhythm if not normal sinus rhythm.

[0009] For AEDs, algorithms to recognize the two wave-
forms VT and VF are designed to perform ECG analyses at
specific times during a rescue event of a patient using
defibrillation and cardio-pulmonary resuscitation (CPR).
The first ECG analysis is usually initiated within a few
seconds following attachment of the defibrillation electrodes
to the patient. Subsequent ECG analyses may or may not be
initiated based upon the results of the first analysis. Typi-
cally, if the first analysis detects a shockable rhythm, the
rescuer is advised to deliver a defibrillation shock. Follow-
ing the shock delivery, a second analysis is automatically
initiated to determine whether the defibrillation treatment
was successful or not (i.e., the shockable ECG rhythm has
been converted to a normal or other non-shockable rhythm).
If this second analysis detects the continuing presence of a
shockable arrhythmia, the AED advises the user to deliver a
second defibrillation treatment. A third ECG analysis may
then be initiated to determine whether the second shock was
or was not effective. If a shockable rhythm persists, the
rescuer is then advised to deliver a third defibrillation
treatment.

[0010] Following the third defibrillator shock or when any
of the analyses described above detects a non-shockable
rhythm, treatment protocols recommended by the American
Heart Association and European Resuscitation Council
require the rescuer to check the patient’s pulse or to evaluate
the patient for signs of circulation. If no pulse or signs of
circulation are present, the rescuer is trained to perform CPR
on the victim for a period of one or more minutes. The CPR
includes rescue breathing and chest compressions. Follow-
ing this period of CPR, the AED reinitiates a series of up to
three additional ECG analyses interspersed with appropriate
defibrillation treatments as described above. The sequence
of'three ECG analyses/defibrillation shocks followed by 1-3
minutes of CPR, continues in a repetitive fashion for as long
as the AED’s power is turned on and the patient is connected
to the AED device. Typically, the AED provides audio
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prompts to inform the rescuer when analyses are about to
begin, what the analysis results were, and when to start and
stop the delivery of CPR.

[0011] One limitation associated with many AEDs is that
current automated ECG rhythm analysis methods cannot
function with extra noise due to CPR chest compressions.
Thus, conventional practice is to interrupt chest compres-
sions while performing ECG rhythm analysis. Long inter-
ruptions of chest compressions have been shown to result in
higher failure rate of resuscitation. Many studies have
reported that the discontinuation of precordial compression
can significantly reduce the recovery rate of spontaneous
circulation and 24-hour survival rate. These studies include
“Adverse effects of interrupting precordial compression
during cardiopulmonary resuscitation” by Sato et al. (Criti-
cal Care Medicine, Volume 25(5), May 1997, pp 733-736),
“Adverse Outcomes of Interrupted Precordial Compression
During Automated Defibrillation” by Yu et al. (Circulation,
2002), and” Predicting Outcome of Defibrillation by Spec-
tral Characterization and Nonparametric Classification of
Ventricular Fibrillation in Patients With Out-of-Hospital
Cardiac Arrest” by Eftestl et al. (Circulation, 2002). Thus, it
is useful to recognize abnormal heart rhythms during chest
compressions.

[0012] There is recent clinical evidence showing that
performing chest compressions prior to defibrillation under
some circumstances can be beneficial. Specifically, it is
clinically beneficial to treat a patient with chest compres-
sions prior to defibrillation if the response times of the
medical emergency system result in a delay of more than
four minutes such that the patient is in cardiac arrest for
more than four minutes. If the response times of the medical
emergency system result in a capability to treat the patient
in sooner than a four minute delay, it can be better for the
patient to be treated with defibrillation first. Methods have
been developed to determine from the ECG waveform both
whether the patient has been in cardiac arrest for longer than
the 4 minutes as well as time independent measures of when
the most optimal time is to shock. “Non-invasive monitoring
and treatment of subjects in cardiac arrest using ECG
parameters predictive of outcome” by Brown and Dzwon-
czyk (U.S. Pat. No. 5,683,424) describes methods to deter-
mine from the ECG waveform whether the patient has been
in cardiac arrest for longer than the 4 minutes. “Method and
system for predicting the immediate success of a defibril-
latory shock during cardiac arrest” (U.S. Pat. No. 6,171,257
by Weil et al.) and “Ventricular Fibrillation Scaling Expo-
nent Can Guide Timing of Defibrillation and Other Thera-
pies” by Menegazzi et al. (2004 American Heart Associa-
tion, Inc.) describe time independent measures of when the
most optimal time is to shock. These algorithms use spectral
analysis of the ECG to predict defibrillation shock success in
some manner. Current methods utilizing spectral analysis of
the ECG for chest compression artifact rejection, defibril-
lation success prediction, and therapeutic decision-making
typically specify a set of parameters in the ECG frequency
spectrum to be detected. For example, U.S. Pat. No. 5,683,
424 compares a centroid or a median frequency or a peak
power frequency from a calculated frequency spectrum of
the ECG to thresholds to determine if a defibrillating shock
is necessary. These parameters do not uniquely specify the
frequency or time domain characteristics. For example, the
median frequency of the ECG spectrum for almost all
patients in ventricular fibrillation decreases initially then
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increases again after several minutes, making it difficult to
use median frequency to predict how long a patient has been
in cardiac arrest. Thus, the patient can have the same median
frequency at widely differing durations of cardiac arrest.
Using amplitudes of the frequency spectrum of the ECG can
be limited because the amplitudes are dependent on both the
cardiac electrical output as well as position of the ECG lead
electrodes on the patient.

[0013] Some conventional automated ECG rhythm analy-
sis methods detect VF and other arrhythmic heart rhythms
by using spectral analysis of the ECG signals with the
assumption that the difference in the power spectrum
between ECGs of normal heart rhythms and abnormal
rhythms is such that during the abnormal rhythm the ECG is
concentrated or mainly sinusoidal in a narrow band of
frequencies between 4 and 7 Hz, while in normal rhythm the
ECG is a broadband signal with major harmonics up to at
least 25 Hz. For example, “Comparison of four techniques
for recognition of ventricular fibrillation from the surface”
by Clayton et al. (ECG Medical & Biological Engineering &
Computing 1993; 31:111-117) and “Algorithmic sequential
decision-making in the frequency domain for life threaten-
ing ventricular arrhythmias and imitative artifacts: a diag-
nostic system” by Barro et al. (Journal of Biomedical
Engineering, 1989, Volume 11) analyze the frequency
domain of the ECG to check if the ECG is mainly sinusoidal
in the narrow band of frequencies. One problem with these
conventional methods is that CPR changes the assumption
behind the methods so that VF and other dangerous rhythms
cannot be typically detected during chest compressions.

[0014] Adaptive filters have been used in many studies to
remove the artifact due to CPR chest compression from the
ECG signal. These studies include “CPR Artifact Removal
from Human ECG Using Optimal Multichannel Filtering ”
by Aase et al. (IEEE Transactions on Biomedical Engineer-
ing, Vol. 47, No. 11, November 2000), “Removal of Car-
diopulmonary Resuscitation Artifacts From Human ECG
Using an Efficient Matching Pursuit-Like Algorithm™ by
Husy et al. (IEEE Transactions on Biomedical Engineering,
Vol. 49, No. 11, November 2002), “and US Patent 6,390,996
by Halperin et at (2002). The adaptive filters use compres-
sion depth and thoracic impedance as reference signals to
estimate the artifacts in the ECG signal. The adaptive filter’s
parameters are updated by calculating the inverse of a
cross-correlation matrix or the auto- and cross-spectra of the
signal. The artifacts could be reduced when these adaptive
filters were applied. However, there is usually a significant
part of the artifact left in the estimated ECG signal. More-
over, the adaptive-filter algorithm sometimes has a high
computational complexity.

[0015] These adaptive filtering methods use the compres-
sion depth as the reference signal to remove the chest
compression artifact from the ECG signals. This is based on
the assumption that the chest compression artifact is corre-
lated with the reference signal (compression depth) and
independent of the desired ECG signal. This can be true for
an infinitely long ECG signal but the estimated coefficients
can be biased if a limited length of the ECG signal is applied.
It is also possible that the reference signals (such as the
compression depth) can provide only part of the information
about the CPR artifact presented in the ECG signal, i.e. the
noise-reduction ability of the adaptive filter is limited by its
knowledge of the noise. Fitzgibbon et al. in “Determination
of the noise source in the electrocardiogram during cardio-
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pulmonary resuscitation” (Critical Care Medicine 2002 Vol.
30, No. 4) reported that the thoracic impedance variation due
to ventilation or chest compression has little correlation with
the artifact in ECG recording during chest compressions.
Fitzgibbon et al. (2002) further suggested that the source of
the noise in the signal during chest compressions is the
electrode motion and related to the electrode’s electrical
properties, which makes the relation between the noise and
the compression depth more complicated. Thus, the artifact
cannot be sufficiently attenuated for satisfactory results with
the conventional advisory algorithm for fibrillation detec-
tion.

[0016] One method for evaluating medical tests is to
determine a test’s ability to correctly detect disease, also
known as sensitivity, and the test’s ability to avoid labeling
normal things as disease, also known as specificity. Ideally,
a medical test has 100% sensitivity and 100% specificity.
When a medical test is imperfect, sensitivity and specificity
are plotted on a graph called a receiver-operator character-
istics (ROC) curve. Variables in the medical test can be
chosen such that the resulting point of the medical test on the
ROC curve is closest to a point with 100% sensitivity and
100% specificity.

SUMMARY

[0017] In general, the invention features automatically
determining which of a plurality of possible cardiac inter-
ventions should be performed in treatment of a patient. Prior
information representative of prior cardiac interventions
performed on the patient, and information representative of
the patient’s reactions to the prior cardiac interventions, are
stored, and the information is processed using a hidden
Markov model to determine which of a plurality of possible
further cardiac interventions should be performed.

[0018] In preferred implementations, one or more of the
following features may be incorporated. The patient’s reac-
tion to the further cardiac intervention is sensed; further
information representative of the further cardiac interven-
tion, and of the patient’s reaction to the further cardiac
intervention, is stored; and the prior and further information
is processed using a hidden Markov model to determine
which of still further cardiac interventions should be per-
formed in further treatment of the patient. The patient is a
cardiac arrest victim.

[0019] In other aspects, the invention features a method of
automatically determining which type of treatment is most
appropriate for (or the physiological state of) a patient. The
method comprises transforming one or more time domain
measurements from the patient into frequency domain data
representative of the frequency content of the time domain
measurements; processing the frequency domain data to
form a plurality of spectral bands, the content of a spectral
band representing the frequency content of the measure-
ments within a frequency band; forming a weighted sum of
the content of the spectral bands, with different weighting
coeflicients applied to at least some of the spectral bands;
determining the type of treatment (or physiological state)
based on the weighted sum.

[0020] In preferred implementations, one or more of the
following features may be incorporated. The weighting
coeflicients may be ones chosen using a regression analysis
comparing actual time domain measurements and actual
outcome of therapy for a population of patients. The weight-
ing coefficients may have been chosen to improve a corre-
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lation between the weighted sum and the outcome of
therapy. The weighting coefficients are different for at least
two different therapy stages. The therapy may be cardiac
resuscitation, and the measurement comprises ECG signals.
The measurement may comprise ECG signals, and the
therapy stages may comprise at least arrival at patient’s side,
pre-shock, and post-shock. The therapy stage may be based
at least in part on rescuer entered data indicative of the stage
of therapy. The therapy stage may be based at least in part
on rescuer entered data indicative of at least what drugs have
been delivered to the patient. The rescuer entered data may
be further indicative of whether the patient has been intu-
bated, and whether an automatic external chest compressor
has been used. The determining may comprise comparing
the weighted sum to a threshold. The threshold may be
different for at least two therapy stages. When the therapy is
cardiac resuscitation, and the measurement comprises ECG
signals, if the weighted sum exceeds the threshold the type
of treatment determined to be appropriate may be delivery of
a defibrillation shock. The threshold used when the therapy
stage is arrival at the patient’s side may be lower than the
threshold used for later therapy stages.

[0021] In other aspects, the invention features a method of
automatically determining which type of treatment is most
appropriate for a cardiac arrest victim, the method compris-
ing transforming one or more time domain electrocardio-
gram (ECQ) signals into a frequency domain representation
comprising a plurality of discrete frequency bands, combin-
ing the discrete frequency bands into a plurality of analysis
bands, wherein there are fewer analysis bands than discrete
frequency bands, determining the content of the analysis
bands, and determining the type of treatment based on the
content of the analysis bands.

[0022] In preferred implementations, one or more of the
following features may be incorporated. Transforming may
comprise the Fourier transform. Transforming may comprise
a Wavelet transform. Transforming may comprise a Radon
transform. Determining the content of the analysis bands
may comprise determining a plurality of values. The content
and the plurality of values may be calculated at more than
two points in time, and wherein the sequence of plurality of
values in time may define a trajectory. The trajectory may be
analyzed using estimation and prediction methods. The
analysis method may involve use of a recursive filter. The
recursive filter may be a Kalman filter. The analysis method
may involve use of a Particle Filter. The analysis of the
trajectory may be used to predict defibrillation success. The
analysis of the trajectory may be used to determine whether
it is appropriate to defibrillate or deliver an alternative
therapy such as chest compressions, drugs such as epineph-
rine, constitutive nutrients such as glucose, or other electri-
cal therapy such as pacing. A mathematical transformation
may be performed on the trajectory. The transformation may
be a projection of the trajectory onto a plane within the
parameter space. Image mensuration algorithms may be
employed to evaluate the features of the two dimensional
projection of the trajectory. The content may comprise at
least two parameters descriptive of the content of an analysis
band from the analysis bands. Determining the content of an
analysis band may comprise quantifying the energy within
an analysis band. Quantifying the energy within an analysis
band may comprise determining at least one number char-
acterizing the energy of the highest peak within the band.
Quantifying the energy with an analysis band may comprise
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determining an overall or average energy for the band. The
invention further comprises analyzing the variation over
time of the content of the analysis bands. The bands may be
about 0.5 Hz in width. The bands may be of unequal widths
such that additional resolution is provided for frequency
bands that are of greater importance in the analysis. Fre-
quencies less than 3 Hz may be subdivided into bands whose
widths are larger than those in the 6-12 Hz frequency range.
Each band may be composed of an aggregation of multiple
spectral measurements. Characteristics of the distribution of
spectral measurements within the band may include at least
one of the following descriptors:

[0023] mean spectral energy, spectral energy variance,
median spectral energy, maximum spectral energy, or mini-
mum spectral energy.

[0024] In another aspect, the invention features a method
of automatically determining which type of treatment is
most appropriate for a cardiac arrest victim, the method
comprising transforming one or more time domain ECG
signals into a frequency domain generally containing a
plurality of peaks, processing the frequency domain repre-
sentation to characterize at least a plurality of the peaks,
wherein characterizing a peak comprises determining a
plurality of parameters characterizing the peak, and deter-
mining the type of treatment based on the parameters
characterizing at least some of the peaks.

[0025] In preferred implementations, one or more of the
following features may be incorporated. The invention may
further comprise analyzing the variation over time of at least
some of the plurality of parameters characterizing at least
some of the plurality of peaks. The content and the plurality
of values may be calculated at more than two points in time,
and wherein the sequence of plurality of values in time may
define a trajectory. The trajectory may be analyzed using
estimation and prediction methods. The analysis method
may involve use of a recursive filter. The recursive filter may
be a Kalman filter. The analysis method may involve use of
a Particle filter. The analysis of the trajectory may be used
to predict defibrillation success. The analysis of the trajec-
tory may be used to determine whether it is appropriate to
defibrillate or deliver an alternative therapy such as chest
compressions, drugs such as epinephrine, constitutive nutri-
ents such as glucose, or other electrical therapy such as
pacing. A mathematical transformation may be performed
on the trajectory. The transformation may be a projection of
the trajectory onto a plane within the parameter space. Image
mensuration algorithms may be employed to evaluate the
features of the two dimensional projection of the trajectory.
Analyzing the variation over time may comprise determin-
ing variation in the frequency of a peak. Determining a
plurality of parameters characterizing the peak may com-
prise estimating a shape of the peak.

[0026] Estimating a shape of the peak may comprise using
a non-linear curve fitting routine. The plurality of the peaks
may comprise a largest amplitude frequency peak and peaks
having a fraction of an amplitude of the largest amplitude
frequency peak. The parameters may comprise a frequency
of'a peak, an amplitude of the peak, and a width of the peak.
The parameters may comprise a depth of the peak. The
parameters may comprise a variance of the peak. The
parameters may comprise a first moment of the peak. The
invention further comprises determining a reference fre-
quency from the frequency domain and determining a vari-
ance of the energy of the frequency domain using the
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reference frequency. The invention may also further com-
prise determining that the victim is in a sinus arrhythmic
state if the variance of the energy of the frequency repre-
sentation is below a threshold. The reference frequency is
one of a mean frequency, a median frequency, a center
frequency, and a peak frequency. Determining the type of
treatment may comprise determining that the type of treat-
ment is to defibrillate the victim’s heart if the following
conditions are met: the victim is determined to be in the
sinus arrhythmic state, a frequency of a largest amplitude
frequency peak is less than a first threshold, and the number
of peaks is less than a second threshold.

[0027] Determining the type of treatment may comprise
determining that the type of treatment is chest compressions
to the victim if the following conditions are met: the victim
is determined to be in the sinus arrhythmic state and a
frequency of a largest amplitude frequency peak is greater
than a first threshold and if the number of peaks is less than
a second threshold. Determining the type of treatment may
comprise determining that the type of treatment is monitor-
ing the victim or drug therapy if the following conditions are
met: the victim is determined to be in the sinus arrhythmic
state, and the number of peaks is greater than a threshold.
Determining parameters may comprise measuring a change
of one or more parameters of the peaks in a range of the
frequency spectrum over multiple digital time samples. Each
peak may be considered to retain an identity over the
multiple digital time samples if its amplitude and frequency
do not change more than a threshold from one time sample
to a subsequent time sample. Determining the type of
treatment may comprise comparing an oscillation cycle rate
of the change to a cycle rate band and if the cycle rate is in
the band, determining that the type of treatment is to
defibrillate the victim’s heart. Determining the type of
treatment may further comprise determining that a defibril-
lating shock to the victim’s heart is suitable therapy when
the oscillation is at or near a maximum. For two or more
peaks the change may be a relative decrease, and wherein
determining the type of treatment may comprise comparing
the relative decrease to a threshold, and if the relative
decrease is above the threshold, the type of treatment may be
chest compressions and then defibrillation. The one or more
parameters may comprise amplitudes of the peaks, the
threshold may be about fifteen percent, and the multiple
digital time samples may cover at least a ten second interval.
For two or more peaks, the change may be a relative
increase, the parameters may comprise frequency of the
peaks, amplitude of the peaks, or width of the peaks, and
wherein determining the type of treatment may comprise
comparing the relative increase to a threshold, and if the
relative increase is above the threshold, the type of treatment
may be defibrillation. For two or more peaks, the change
may be a decrease, and the parameters may comprise
variance of the frequency of the peaks, and wherein deter-
mining the type of treatment may comprise comparing the
decrease to a threshold, and if the decrease is below a
threshold, the type of treatment may be defibrillation. The
range of the frequency spectrum may be six to twelve Hertz.
The invention may further comprise communicating the type
of treatment to one of a drug infusion device, a portable
chest compression device, and a ventilator. The invention
may also further comprise displaying an indication of the
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type of treatment. Displaying an indication of the type of
treatment may comprise displaying a value of an estimation
of an accuracy of the type.

[0028] In another aspect, the invention features a method
of automatically determining which type of treatment is
most appropriate for a cardiac arrest victim, the method
comprising transforming one or more time domain ECG
signals into a frequency domain representation, processing
the frequency domain representation to characterize the
content of the frequency domain representation in a band
from about 6 to about 12 Hz, and determining the type of
treatment based on the content in the band.

[0029] In preferred implementations, one or more of the
following features may be incorporated. The invention may
further comprise relying on a ventricular fibrillation (VF) or
a ventricular tachycardia (VT) advisory algorithm to deter-
mine whether the victim is in VF or VT, and wherein
determining the type of treatment may comprise determining
when to deliver a shock. The content in the band may
comprise a quantitative measure representative of approxi-
mately the total energy in the band.

[0030] In another aspect, the invention features a method
of automatically determining which type of treatment is
appropriate for a cardiac arrest victim, the method compris-
ing measuring at least one physiological signal, determining
at least two parameters related to the at least one physi-
ological signal, the at least two parameters forming a param-
eter set, repeating the measurement and calculation at more
than two points in time to create a sequence of parameter
sets, wherein the sequence of parameter sets defines a
trajectory, and analyzing the trajectory using estimation and
prediction methods that comprise the use of a recursive filter.
[0031] In preferred implementations, one or more of the
following features may be incorporated. The recursive filter
may be a Kalman filter. The analysis method may involve
use of a Particle filter. The analysis of the trajectory may be
used to predict defibrillation success. The analysis of the
trajectory may be used to determine whether it is appropriate
to defibrillate or deliver an alternative therapy such as chest
compressions, drugs such as epinephrine, constitutive nutri-
ents such as glucose, or other electrical therapy such as
pacing. A mathematical transformation may be performed
on the trajectory. The transformation may be a projection of
the trajectory onto a plane within the parameter space. Image
mensuration algorithms may be employed to evaluate the
features of the two dimensional projection of the trajectory.
The predicted next state of the parameter set may be used to
determine the appropriate treatment. The method may be
carried out by a device configured to determine an appro-
priate therapy for a rescuer to perform on the victim. The
probability of defibrillation success associated with a plu-
rality of alternative treatments may be shown on the display
of the device. The probability of success with a plurality of
treatments may be shown on the display as range of num-
bers. The device may be an AED that notifies the rescuer in
the form of an audible or visual alarm indicating that the
paramedic should stop doing compressions for a more
accurate analysis of the ECG waveform. The device may be
an AED that notifies the rescuer in the form of an audible or
visual alarm indicating that the paramedic should alter the
therapy being delivered.

[0032] In another aspect, the invention features an AED
capable of automatically determining which type of treat-
ment is appropriate for a cardiac arrest victim, the AED
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comprising electrical therapy pads configured to deliver
electrical therapy to patients, ECG electrodes smaller in
diameter than the electrical therapy pads are integrated into
the electrical therapy pads, the smaller ECG electrodes are
configured to provide at least one additional electrical vector
that is approximately orthogonal to the monitoring vector
produced by the ECG signal from the therapy electrodes.
[0033] In preferred implementations, one or more of the
following features may be incorporated. A vector sum of the
at least one additional electrical vector and the monitoring
vector may provide a trajectory over time that can be used
by the AED in determining which type of treatment is
appropriate.

[0034] These and other implementations may have one or
more of the following advantages. The method uses fre-
quency-domain analysis methods for ECG processing/advi-
sory during chest compressions. This method allows ECG
analysis without interruption of chest compression and thus
significantly reduces the interruption time during chest com-
pressions, leading to an increase in the success rate of
resuscitation.

[0035] Some implementations allow for the more com-
plete specification of the ECG waveform spectrum for
different cardiac states in a mathematically tractable form
that provides improved receiver-operator characteristics
(ROC) of the detection algorithm, while reducing the per-
formance burden on the processor.

[0036] Other features and advantages of the invention will
be apparent from the description and drawings, and from the
claims.

DESCRIPTION OF DRAWINGS

[0037] FIG. 1A is a magnitude versus time plot of a
ventricular tachycardia (VT) rhythm.

[0038] FIG. 1B is a magnitude versus time plot of a
ventricular fibrillation (VF) rhythm.

[0039] FIG. 2 is a diagram of one implementation includ-
ing an automatic electronic defibrillator (AED) and a mul-
tiple lead electrocardiograph (ECG) device.

[0040] FIG. 2A is a diagram of the AED of FIG. 2.
[0041] FIG. 3Ais an example of a frequency spectrum plot
with the energy concentrated within a small frequency
range.

[0042] FIG. 3B is an example of a frequency spectrum plot
with the energy distributed over a relatively larger frequency
range.

[0043] FIG. 4 is an example of an ECG spectrum as a

function of time. The magnitude (or energy) of the spectrum
is encoded by the grayscale. A darker color corresponds to
a higher magnitude.

[0044] FIG. 5 is an EFV score of the signal in FIG. 4 as
a function of time.

[0045] FIG. 6 is a flow chart of a process for detecting VF
in a patient during chest compressions.

[0046] FIG. 7A and 7B are examples of an ECG spectrum
at two points in time, in this case separated by 4 seconds.
[0047] FIG. 8 shows a logistic curve that relates a mea-
sured predictive variable (x axis) into a approximate prob-
ability of therapeutic success (y axis).

DETAILED DESCRIPTION

[0048] There are a great many different implementations
of the invention possible, too many to possibly describe
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herein. Some possible implementations that are presently
preferred are described below. It cannot be emphasized too
strongly, however, that these are descriptions of implemen-
tations of the invention, and not descriptions of the inven-
tion, which is not limited to the detailed implementations
described in this section but is described in broader terms in
the claims.

[0049] Referring to FIG. 2, a rescuer uses an AED 10 to
automatically monitor a victim during cardiac resuscitation.
The AED 10 includes a speaker 16, a display screen 18, an
analog to digital converter 20, a processor 22, and a defi-
brillator pulse generator 24. The analog-to-digital converter
20 is connected to a set of ECG leads attached to the victim.
The ECG leads monitor the electrical rhythms of the vic-
tim’s heart. The converter 20 sends the signals from the ECG
leads to the processor 22. The processor 22 monitors the
victim’s heart for dangerous rhythms using the ECG signals
while the victim is resuscitated using chest compressions
techniques. If the AED 10 detects a dangerous heart rhythm,
the AED 10 generates an alarm signal. The alarm signal is
noticeable to the rescuer. The AED 10 can generate a
defibrillating shock to the victim when the rescuer issues a
command to the AED 10. The defibrillating shock is
intended to remedy the dangerous rhythm of the victim’s
heart.

[0050] The AED 10 uses a rhythm advisory method for a)
quantifying the frequency-domain features of the ECG sig-
nals; b) differentiating normal and abnormal ECG rhythms,
such as VF; c) detecting the onset of abnormal ECG
rhythms; and d) making decisions about the physiological
states of the heart. This frequency-domain measure is reli-
able with or without the presence of the chest compression
artifact in the ECG signals. The AED 10, after identifying
the current physiological state of the heart, can make a
decision about appropriate therapeutic action for the rescuer
to make and communicates the action to the rescuer using
the speaker 16 and the display screen 18.

[0051] This rhythm advisory method can also be incorpo-
rated in an ECG rhythm classifier or a ventricular arrhythmia
detector.

[0052] The AED 10 may incorporate functionality for
performing additional therapeutic actions such as chest
compressions, ventilations, or delivery of intravenous solu-
tion containing metabolic or constitutive nutrients. Based on
the results of the analysis of the rhythm advisory method, the
AED 10 may automatically deliver the appropriate therapy
to the patient. The AED 10 may also be configured in
“advisory” mode wherein the AED 10 will prompt the
caregiver after the AED 10 has made a determination of the
best therapy, and acknowledgement by the caregiver/device
operator, in the form of a button press or voice-detected
acknowledgement, is required before therapy is delivered to
the patient.

[0053] The AED 10 then analyzes the ECG signals to
predict defibrillation success as well as to decide whether it
is appropriate to defibrillate or to deliver an alternative
therapy such as chest compressions, drugs such as epineph-
rine, constitutive nutrients such as glucose, or other electri-
cal therapy such as pacing.

[0054] In some examples, one or more therapeutic deliv-
ery devices 30 automatically deliver the appropriate therapy
to the patient. The therapeutic delivery devices 30 are
physically separate from the defibrillator AED 10 and con-
trol of the therapeutic delivery devices 30 may be accom-
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plished by a communications link 32. The communications
link 32 may take the form of a cable connecting the devices
10, 30, but preferably the link 32 is via a wireless protocol
such as Bluetooth or a wireless network protocol such as
Institute of FElectrical and Electronics Engineers (IEEE)
802.11. Bluetooth is a telecommunications industry speci-
fication that describes how mobile computing devices can be
interconnected using a short-range wireless connection. The
therapeutic delivery device 30 can be a portable chest
compression device that is commercially available as the
Autopulse™, provided by Revivant of Sunnyvale, Califor-
nia. In other examples, the therapeutic delivery device 30 is
a drug infusion device that is commercially available as the
Power Infuser™, provided by Infusion Dynamics of Plym-
outh Meeting, Pennsylvania, or the Colleague CX™, pro-
vided by Baxter Healthcare Corp., of Round Lake, I1l. The
therapeutic delivery device 30 can be a ventilator that is
commercially available as the iVent™, provided by Ver-
samed of Pearl River, N.Y. The therapeutic delivery device
30 can also include multiple therapies such as defibrillation,
chest compression, ventilation and drug infusion.

[0055] In other examples, control and coordination for the
overall resuscitation event and the delivery of the various
therapies may be accomplished by a device 34 or processing
element external to the AED 10, for instance the device 34
may download and process the ECG data from the AED 10;
analyze the ECG signals, perform the determinations based
on the analysis, and control the other therapeutic devices 30,
including the AED 10.

[0056] In other examples, the AED 10 may perform all the
processing of the ECG, including analyzing the ECG sig-
nals, and transmit to the control device 34 only the final
determination of the appropriate therapy, whereupon the
control device 34 would perform the control actions on the
other linked devices 30. The control device 34 is commer-
cially available as the Autopulse™, provided by Revivant of
Sunnyvale ,Calif.

[0057] The chest compression artifact can be separated
from the ECG signal components in the frequency domain.
This makes it possible for the AED 10 to process the ECG
signal without halting the processing during CPR chest
compressions. The compression rate during CPR chest com-
pressions recommended by American Heart Association
(2000) is 100 per minute or 1.7 Hz and the frequency range
used for quantifying the frequency-domain features of the
ECG signals can be set to be higher than that (preferably but
not limited to be 3 Hz and up) using a high pass frequency
filter.

[0058] The rhythm advisory method quantifies the energy
distribution of the ECG signal in the frequency domain with
a quantification method. The quantification result can be
used to differentiate normal and dangerous ECG rhythms
with or without the presence of the chest compression
artifact. In one method, the AED 10 breaks up the frequency
domain of the ECG signal into analysis frequency bands.
The AED 10 then analyzes the different frequency bands for
energy or variation over time to determine an appropriate
treatment for the victim. In the preferred embodiment, the
bands are 0.5 Hz in width, though they may also be divided
into unequal widths such that additional resolution is pro-
vided for frequency bands that are of greater importance in
the analysis. For instance, frequencies less than 3 Hz may be
subdivided into only three equally spaced bands while the
range from 3-5 Hz may have 0.5 Hz bands, and the range of
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6-12 Hz may have 0.25 Hz bands. Each band may be
composed of an aggregation of multiple spectral measure-
ments. For each band, characteristics of the distribution of
spectral measurements within the band mayinclude such
descriptors, e.g., as mean spectral energy, spectral energy
variance, median spectral energy, maximum spectral energy,
minimum spectral energy.

[0059] In one example of the analysis frequency bands,
the AED 10 generates the frequency bands based on peaks
in the frequency spectrum. Thus, one frequency band cor-
responds to the frequency spread of a given peak in the
frequency spectrum. There are common algorithms for iden-
tifying peaks in the frequency spectrum that include calcu-
lating slopes and energy at different points of the frequency
spectrum. For each of these peaks, the AED 10 uses a
non-linear parameter estimation algorithm or curve fitting
algorithm to estimate the shape of the peak. From this
spectral shape, the AED 10 calculates parameters about the
peak.

[0060] The quantification method differentiates various
spectral patterns and shapes. The

[0061] AED 10 makes a decision about the physiological
state of the heart and suitable therapy based on the quanti-
fication results. The quantification method of the rhythm
advisory method is a combination of measures from sub-
methods. Some of these sub-methods differentiate various
spectral shapes, including but not limited to: (1) the number
of peaks in the target frequency range, (2) the relative
strength/peak value of various spectral peaks, (3) the relative
bandwidth of various spectral peaks and (4) the variance of
the energy distributed in a selected frequency range. One or
more sub-methods can also measure change in the spectral
information over time.

[0062] These measures can be combined in a multi-di-
mension space to enhance both the sensitivity and specificity
of the decision. One or more information processing tech-
niques can be used to quantify the combination following
the computation of these measures in order to make a
decision based on the combination. The information pro-
cessing techniques can include but are not limited to simple
combining rules or math, neural networks, expert systems
incorporating fuzzy or standard logic, or other artificial
intelligence techniques. The additional measures can also
include measurement of velocity or acceleration of chest
compression during chest compressions according to the
techniques taught by U.S. application Ser. No. 10/704,366,
Method and Apparatus for Enhancement of Chest Compres-
sions During Chest Compressions, filed on Nov. 6, 2003.
[0063] The information processing techniques include
simple combining rules or math, neural networks, expert
systems incorporating fuzzy or standard logic, or other
artificial intelligence techniques. These techniques make a
decision based on the combination of measures about the
physiological state of the heart and suitable therapy. The
different measures are individual indications that have vary-
ing degrees of uncertainty about the physiological state of
the heart and suitable therapy. In some examples, the infor-
mation processing technique is trained automatically using
software techniques known to those skilled in this art and a
database of ECG rhythms that include outcome data. These
examples include neural networks. In other examples, the
information processing technique is generated manually
based on observations of ECG patterns and outcomes. These
examples include simple combining rules or math, and
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expert systems utilizing fuzzy or standard logic. In the
example of expert systems utilizing standard logic, a pro-
grammer manually generates logical rules without uncer-
tainty, the rules specifying preconditions such as “if measure
A recommends defibrillation” and “if measure B recom-
mends defibrillation™, and if these preconditions are met, the
AED 10 automatically defibrillates the patient. In the
example of expert systems utilizing fuzzy logic, the rules are
more “fuzzy” and the states to be combined incorporate
some degree of uncertainty based on human language. For
instance, the fuzzy logic rules can incorporate such input as
“measure A detects a strong need for defibrillation” versus
“measure A detects a weak need for defibrillation”. The
fuzzy logic framework combines the different measures and
outputs results such as “strong need for defibrillation” or
“weak need for defibrillation”.

[0064] The method of making the decision about the
physiological state is to choose from a group of possible
states, each of which corresponds to a predetermined value
range of the proposed measure. The possible states can
include but are not limited to normal sinus rhythm, VF,
shockable (unstable) VT, stable VT, supraventricular
rhythm, and pulseless electrical activity.

[0065] One possible sub-method for the quantification
method is the variance of the energy distributed in a selected
frequency range, or variance sub-method. Two examples of
energy-distribution patterns are shown in FIGS. 3A and 3B.
The frequency spectrum plots of FIGS. 3A and 3B are
calculated using a fast Fourier transform (FFT) of a signal
over time. Referring to FIG. 3A, the energy Y,(f) of a
frequency spectrum 50 is concentrated within a narrow
frequency band and represents a pattern found in an arrhyth-
mic state such as VF. Referring to FIG. 3B, the energy Y,(f)
of a frequency spectrum 52 is distributed over a wide
frequency range and represents a pattern found in a non-
dangerous heart rhythm or normal sinus rhythm. The vari-
ance sub-method quantifies the features of the two frequency
spectra 50, 52 and thus the variance sub-method can differ-
entiate between an arrhythmic state and normal sinus
rhythm.

[0066] One example of the variance sub-method calcu-
lates the variance of the energy from a reference frequency
(F,.p of the spectrum. Possible candidates of the reference
frequency include but are not limited to the mean frequency,
the median frequency, the center frequency, or the peak
frequency of the spectrum.

[0067] Inthis example, the variance sub-method computes
the weighted distance of each frequency component from
the reference frequency of the spectrum and thus quantifies
the energy-distribution pattern. An example of this measure,
the energy-frequency variance (EFV) can be calculated with
the following mathematical equation:

f (f = Fup P XY(F)Af

EFV =
Jripars

[0068] However, the variance sub-method is not limited to
this mathematical equation. Measures that quantify the
weighted or un-weighted distance of the frequency compo-
nents from a reference frequency of the frequency spectrum
can be used for this measure.
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[0069] Referring to FIG. 3A, energy of the spectrum 50 is
concentrated within a narrow frequency range and thus the
spectrum has a relatively small EFV value. Referring to FIG.
3B, energy of the spectrum 52 is distributed over a relatively
wider frequency range and the spectrum has a relatively
larger EFV value. Thus, the EFV value can be used to
distinguish between a normal sinus rhythm and an arrhyth-
mic sinus rhythm (e.g., VF).

[0070] Referring to FIG. 4, a spectrum 100 of a piece of
an ECG signal is a function of time. Part 102 of the signal
shows a VF rhythm during chest compressions. Part 104 of
the signal shows a VF rhythm without chest compressions.
The VF is terminated by an electrical shock 106, which is
followed by a period of normal sinus rhythm (NSR). During
this NSR period, part 108 has no chest compressions while
part 110 has chest compressions. Chest compression arti-
facts that are characterized by strong low-frequency (below
3 Hz) components can be observed in the first 15 seconds
(part 102) and the last 10 seconds (part 110) of this time-
frequency plot 100. During the time periods 102 and 104
that are associated with VF (i.e. before the electrical shock
106), the energy distribution Y(f) above 4 Hz is clearly
concentrated in a small frequency range, with or without the
presence of the chest compression artifact. During the time
periods 108 and 110 of NSR (i.e. after the electrical shock
106), the energy distribution Y(f) above 4 Hz has a pattern
that the energy is distributed over a wide frequency range,
with or without the presence of the chest compression
artifact.

[0071] Referring to FIG. 5, an EFV score 152 is calculated
from the signal 100 (shown in FIG. 4). A threshold 154 can
be used to distinguish an arrhythmic rhythm from a normal
sinus thythm. Thus, during the first 50 seconds (parts 102
and 104 having VF rhythm) of the signal 100, the EFV score
152 is below the threshold 154.

[0072] Referring to FIG. 6, a variance sub-method 200 is
implemented in the software and/or hardware of the AED
10. The ECG data acquired by the front-end analog to digital
converter 10 of the AED 10 is processed in a segment-by-
segment manner. The number of segments to be processed
before a decision is made is predetermined (e.g., 9 seg-
ments).

[0073] The length of a segment is preferably 2 seconds
and each segment preferably has a 1-second overlap with
both the segment before and after itself, for the desired
frequency and time-domain resolution.

[0074] The segment-counter is set (202) to be zero when
the processing starts and the first segment of the signal is
acquired (204). A high-pass filter with a desired cutoff
frequency (preferably but not limited to be 0.5 Hz) is then
applied (206) to remove the baseline drift. The frequency-
domain representation of the filtered signal is acquired via a
fast fourier transform (FFT) (208). The spectral shape is
quantified (210) using a preferred method. In an example,
the EFV score is calculated based on this frequency-domain
representation and the frequency range for the EFV calcu-
lation is selected such that the low-frequency part where the
chest compression artifact dominates is excluded.

[0075] The segment counter is increased (212) by one
after the quantification of the spectral shape. If (214) all of
the predetermined number of segments have been processed,
the quantification results are processed (216) to get a final
score (including but not limited to the mean value of the
EFV scores), otherwise the next segment of ECG signal is
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processed. In some implementations, the final score is an
average of the scores from the segments.

[0076] An estimate of the physiological state of the heart
can be made based on the final EFV score. If (218) the final
score is below a predetermined threshold, an arrhythmic
rhythm is estimated (220). Using the variance sub-method,
the AED 10 compares a threshold to the final EFV score to
determine if the victim is in an arrhythmic state. Otherwise
the processed signal is estimated to be normal. In one
example, a preset threshold of 6 is used. In other examples,
other preset thresholds can be used.

[0077] An arrhythmic sinus rhythm can be detected using
the variance sub-method. These arrhythmic sinus rhythms
can be different types of rhythms with different appropriate
therapies. It may be difficult to distinguish between arrhyth-
mic rhythms that are shockable rhythms and unshockable
rhythms using only the variance sub-method. For example,
VTs that are shockable (rates exceeding 120-150 beats per
minute [BPM]) may not be distinguishable from non-shock-
able VIs (<120 BPM) solely with the measure from the
variance sub-method. Thus, the quantification method pref-
erably enhances the variance sub-method with at least one
other spectral measurement in determining the appropriate
therapy for detected sinus rhythms. The quantification
method may also make decisions based on changes in the
spectral parameters over time. Multiple measures may be
thought of as forming a matrix, but actual implementations
need not employ matrices.

[0078] In some implementations, the AED 10 may com-
bine the frequency of the largest amplitude spectral peak
(LASP) in the frequency spectrum with the measure from
the variance sub-method to create a 1x2 matrix. In some
implementations, AED 10 may additionally calculate the
number of spectral peaks in the frequency representation of
the ECG signal with amplitudes of at least 25% of the LASP
using conventional methods known to those skilled in the art
of signal processing and spectral analysis and include this
measurement in the vector. A frequency of the LASP
(FLASP) of less than 2 Hz and the number of peaks (NOP)
less than 3 indicates that it is a shockable VT or VF, while
a FLASP of greater than 2 Hz and an NOP of less than 3
indicates a non-shockable VT. Non-shockable supraven-
tricular rhythms can have a NOP greater than 3.

[0079] Inother implementations, the AED 10 can combine
information from the variance sub-method and the FLASP
and NOP measure, using information processing techniques
described previously, to estimate the physiological state of
the heart and suitable therapy. A combination of the EFV
under a threshold and FLASP<2 Hz and NOP<3 can indicate
a shockable VT or VF for which appropriate therapy can be
defibrillation. A combination of the EFV under a threshold
and FLASP>2 Hz and NOP<3 can indicate a non-shockable
VT for which appropriate therapy can be normal CPR. A
combination of the EFV under a threshold and NOP>3 can
indicate a supraventricular rhythm for which appropriate
therapy can be simply monitoring the patient or drug
therapy.

[0080] A descriptor matrix may take the form of a [nxm]
dimensional matrix, where n=the number of peaks and
m=the number of parameters used to describe the spectral
shape. In one implementation with m=6, the six parameters
are the following: 1) the frequency of the particular peak
(FP); 2) the amplitude of that peak (AP); 3) the width of the
peak (PW); 4) the depth of the peak (DP); 5) the variance of
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that peak (VP); and 6) the first moment of that peak (FM).
Peak number (PN) is a digit providing an identifier for each
individual peak. For instance, initially the AED 10 detects 5
peaks, each PN numbered sequentially with frequencies at 1,
2, 3, 4, and 5 Hz. Four seconds later in time, however, the
AED 10 detects a peak at a new frequency of 4.5 Hz and the
peak is assigned a PN of 6.

[0081] The description matrix, which may be termed a
spectral shape matrix (SSM), may include two header val-
ues, NOP and a boolean value, Gaussian peak (GP), which
indicates that for spectral shapes that have a single peak
(NOP=1) and GP=true, that the spectral shape may be
described by a parameter subset of only FP, AP, and VP. The
SSM may preferably take the form:

FP, AP, PW, VP, FM;
FP, AP, PW, VP, FM,

FPy APy PWs; VPy FMs

FP, AP, PW, VP, FM,

[0082] Since fibrillation is a chaotic rhythm, the FP fre-
quencies may vary at a rate faster than the time window of
the short-time Fourier transform. For instance, if the time
window for computing the Fourier transform to generate a
frequency spectrum is set for 4 seconds, the FPs for adjacent
time windows (and corresponding frequency spectrums)
will appear to jump from one frequency to the next. If,
however, the AED 10 applies a standard short time Fourier
transform to the signal while at the same time increasing the
rate at which a Fourier transform is performed on the
incoming data, the time window will be reduced and thus
there will be a loss in the spectral resolution of the Fourier
transform. Thus, in one example, the AED 10 simultane-
ously performs multiple Fourier transforms on the ECG data
with each subsequent transform initiated 400 milliseconds
after initiation of the previous transform and a time window
of 4 seconds, resulting in the AED performing 10 simulta-
neous transforms of data in a time window of 4 seconds.
Thus, the data for each transform has some overlap with data
for adjacent transforms. In such a manner, the AED 10
maintains both spectral and time resolution.

[0083] The AED 10 may calculate additional header val-
ues that describe generic aspects of the ECG spectrum.
These additional header values may include, for instance,
the amplitude spectrum area (AMSA) as described in U.S.
Pat. No. 5,957,856 or the variance measure, as described
previously. These values, along with NOP and GP, can be
thought of as forming a vector on which matrix operations
and transformations may be performed independently of, or
combined with, the matrix formed by the parameters for the
individual peaks.

[0084] The AED 10 can then perform matrix operations
and transformations known to those skilled in the art on the
SSM. The AED 10 can also calculate the SSM at regular
intervals in time, to generate a [nxmxp| dimensional matrix,
where p is the number of samples in the time interval of
interest. Each SSM may be thought of as a point in [n,
m]-space that then forms a trajectory in the [n, m, p]-space.
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The AED 10 then analyzes this trajectory to predict defi-
brillation success as well as to decide whether it is appro-
priate to defibrillate or deliver an alternative therapy such as
chest compressions, drugs such as epinephrine, constitutive
nutrients such as glucose, or other electrical therapy such as
pacing.

[0085] The AED 10 may identify one or more peaks in the
frequency spectrum. For each of these identified peaks, the
AED 10 identifies a frequency band corresponding to the
peak. The AED 10 may determine the peak model param-
eters, e.g. FP, AP, and PW, iteratively by a nonlinear param-
eter estimation or curve fitting routine for each peak’s
frequency band. For example, the AED 10 may use the
Marquardt-Levenberg algorithm to minimize the error in the
nonlinear parameter estimation or Chi-square, X?, where X?
is expressed as follows.

2y = L Z[M(i)—su;p)r
SR VA N

For this expression, there are N recorded energy values, M(i)
are the recorded energy values, and S(i; p) is the synthesized
model curve energy values, sampled at points i in depen-
dence on p varying parameter values. The term enclosed in
brackets corresponds to the normalized residuals R(i), which
provide a weighted measure of the difference between the fit
curve and the data at each measured frequency value M(i).
[0086] The AED 10 uses either the height-normalized
Lorentzian function, L(E), or the Gaussian function, G(E) to
model an energy function for each of the spectral peaks
where E is a frequency. In the case of L(E):

LE) :{1 N [E_ﬁEO]Z}’l.

In the case of G(E):

G(E) = exp{—ln 2- [%]2}

Both functions L(E), G(E) are completely characterized by
the peak parameters fl, corresponding to ¥ the peak width
at half-maximum peak amplitude and E, the peak position
or FP. The AED 10 can model skew of the peak by
combining the Gaussian G(E) and Lorentzian L(E), with §
replaced by the term f+a(E-E,). The AED 10 can also add
in a factor h to allow for varying peak heights. The result is
function f(E). The AED 10 calculates f(F) as follows.

fE)=

Bl _E-E_ 7Y 1 mo.[—E-Fo i
' +M'[ﬁ+a(E—E0)] rexpy (=1 = M)-In '[ﬁ+a(E—E0)]

[0087] Some of the advantages of this product-type peak
shape model f(E) are the availability of analytical presen-
tations of the partial derivatives of f(E) with respect to the
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parameters, which are needed in the Marquardt-Levenberg
algorithm to establish the Jacobi matrix, the analytical value
of B, and a faster convergence of the iterative estimation
process. The depth of each peak is estimated either by
incorporating a baseline curve into the

[0088] Marquardt-Levenberg algorithm, or by simply
determining the two minimum points of the spectrum for a
region around the estimated peak. Thus, using techniques
known to one skilled in this art, the AED 10 can compute the
spectral shape parameters of the peak: FP, AP, PW, DP, VP,
and FM from the function f(E).

[0089] If the AED 10 finds a peak in the immediately
subsequent time interval for which the AP and FP value does
not vary by more than preferably 10%, then that second peak
is considered to have the same peak number, PN, indicating
that it is the same peak with a shift in frequency and
amplitude. In such a fashion, the AED 10 can develop
trajectories for the parameters for each particular peak as
well as for the overall descriptor matrix. The AED 10 can
add a new peak at any time during the event, in which case
the AED 10 gives the new peak a new PN value. If the AED
10 determines that a peak is extinguished, the PN number is
maintained in memory of the AED 10. In the processing of
candidates for new peaks, the sub-method reviews all extin-
guished peaks to first determine if the new peak is actually
an extinguished peak, in which case the candidate is not
given a new PN, and instead is given the PN number of the
extinguished peak.

[0090] Prior to a successful shock of a heart in a dangerous
rhythm, one or more parameters AP, DP, VP, FP, PW of
peaks in the 6-12 Hz range of the frequency spectrum can
oscillate with a cycle rate in the range of 0.1-1 Hz. Thus,
detection of this oscillation through multiple time windows
and frequency spectrums can be incorporated into the infor-
mation processing technique as an additional sub-method
that can recommend defibrillating the heart. Furthermore,
the sub-method can recommend timing the defibrillating
shock when the peaks are at a maximum energy in the 0.1-1
Hz cycle. For example, the sub-method can recommend
timing the delivery of the defibrillation shock to occur
during the 100 millisecond Fourier transform cycle when the
APs in the 6-12 Hz region are at a maximum. When the
particular AP-maximum cycle has be found, the AED 10
waits to deliver the defibrillation shock until the AED 10
detects the peak of the waveform after it has been band
pass-filtered with a center frequency of 7 Hz. This sub-
method synchronizes the shock with the elements of the
ECG waveform that are most related to the normal sinus
QRS.

[0091] The parameters FP, AP, and PW of peaks in the
6-12 Hz region may also undergo oscillations indicating a
change in the state of the heart as shown in FIGS. 7A and 7B,
which depict the spectrum as measured at two points in time,
separated by an interval of 4 seconds. For a heart that has
been in fibrillation for a period of time, the ECG undergoes
a gradual degradation in the values of the parameters FP, AP,
and PW of peaks in the 6-12 Hz region of the frequency
spectrum. As described previously, suitable therapy for a
heart that has been in fibrillation for a period time is to do
chest compressions and then defibrillate. This degradation is
measured over at least a 8-10 second interval. This is an
additional sub-method for the information processing tech-
nique. For example, if the AED 10 detects the APs of at least
two peaks in the 6-12 Hz region of the frequency spectrum
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decreasing by at least 15% over a 10 second interval, the
sub-method recommends chest compressions and then defi-
brillation.

[0092] If the circulation and metabolic substrate of the
heart improve to the point that the heart is more likely to be
able to recover from a defibrillation shock, changes in the
parameters FP, AP, and PW of peaks in the 6-12 Hz region
of the frequency spectrum will provide precursors to
changes in the ECG that might be seen in the time domain
of the ECG signal, such as an increase in the amplitude of
the ventricular fibrillation ECG (often termed “coarsening”
by medical practitioners). If the AED 10 detects an increase
in the parameters FP, AP, DP, VP or PW of peaks in the 6-12
Hz region of the frequency spectrum, for instance as shown
in FIG. 7B, a sub-method will recommend ceasing chest
compressions or other current therapy and then defibrilla-
tion.

[0093] The peak frequencies, FP, for the peaks in the 6-12
Hz region of the frequency spectrum can vary over time less
when the condition of the heart is improving and thus the
heart can handle the shock of defibrillation. This may be due
to the presence in the myocardial activations of more normal
activity at low levels manifesting in harmonics of the sinus
rhythm fundamental frequency. This variation in the peak
frequencies may be measured as the ratio of the average
change in frequency in the region of 6-12 Hz with that of the
FPs in the frequency range of 3-6 Hz or measured as an
absolute change for FPs in the range of 6-12 Hz. This
sub-method, upon detecting the variation in the peak fre-
quencies, recommends defibrillation to the information pro-
cessing technique.

[0094] It is also possible for a sub-method to project the
[nxmxp] trajectory of the SSM matrix onto a plane within
the [nxm]-space and then analyze the form taken by the
projection of the trajectory in the plane to determine the
appropriate time to shock or the optimal treatment. The
projection may include up to (n+m) variables of different
weightings, though it preferably is a projection that is
primarily along the VP axis of the [nxm]-space. In the plane
projection, image mensuration algorithms are employed to
evaluate the features of the two dimensional projection of
the trajectory. The following are some of the preferred
mensuration classes for which measurements are made by
means known to those skilled in the art: area, centroid,
circularity, clustering, compactness, maximum axis, mini-
mum axis, and perimeter. For instance, the minimum axis
may be determined as follows. The minimum axis of an
object is formally defined as the axis of maximum inertia
(dispersion) passing through the centroid. One method to
calculate the minimum axis is to compute the eigenvalues
and eigenvectors of the scatter matrix comprised of the
coordinate points of the object. The eigenvector correspond-
ing to the smallest eigenvalue is the minimum axis. Another
method is to fit an ellipse to the object perimeter.

[0095] The projection may be calculated for a specific
duration of time, for instance 10 seconds, resulting in a
series of 2-dimensional objects that are representations of
the trajectory in time—so-called projection “snap-shots™. It
then becomes possible to analyze trends in the time series of
values in the mensuration classes for changes indicative of
improving physiological conditions. For instance, an
increased amplitude in VP oscillation during VF is indica-
tive of an improving physiological state. In this case, the
AED 10 would then provide feedback to the caregiver to
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continue performing the rescue operation as they have with
an audible prompt such as, “Keep up the good work. The
patient’s condition is improving.” Other such mensuration
classes that are of value to track over time are the maximum
axis angle, the perimeter and compactness.

[0096] Methods such as the Kalman filter may be used for
the estimation and prediction of the trajectory. The Kalman
filter estimates a process by using a form of feedback
control: the filter estimates the process state at some time
and then obtains feedback in the form of (noisy) measure-
ments. As such, the equations for the Kalman filter fall into
two groups: time update equations and measurement update
equations. The time update equations are responsible for
projecting forward (in time) the current state and error
covariance estimates to obtain the a priori estimates for the
next time step. The measurement update equations are
responsible for the feedback—i.e. for incorporating a new
measurement into the a priori estimate to obtain an improved
a posteriori estimate. The time update equations can also be
thought of as predictor equations, while the measurement
update equations can be thought of as corrector equations.
Indeed the final estimation algorithm resembles that of a
predictor-corrector algorithm for solving numerical prob-
lems.
[0097]

Xy =A%y +Buy_,

Discrete Kalman filter time update equations:

Py =dAP,_A™+Q

[0098]
tions:

Discrete Kalman filter measurement update equa-

K,=P,HYHP, H'+R)™!
%578 +K(z-HET)

Pr=-K Py

[0099] The first task during the measurement update is to
compute the Kalman gain, K,, The next step is to actually
measure the process to obtain, and then to generate an a
posteriori state estimate by incorporating the measurement,
7,. The final step is to obtain an a posteriori error covariance
estimate, P,. After each time and measurement update pair,
the process is repeated with the previous a posteriori esti-
mates used to project or predict the new a priori estimates.
This recursive nature is one of the very appealing features of
the Kalman filter—it makes practical implementations much
more feasible than (for example) an implementation of a
Wiener filter which is designed to operate on all of the data
directly for each estimate. The Kalman filter instead recur-
sively conditions the current estimate on all of the past
measurements. The equation,
H=XK(5-HE,T)

is termed the predictor equation.

[0100] One of the primary limitations of the Kalman filter
is that it only models a linear system with Gaussian distri-
bution, not often encountered in the physiological setting.
The best known algorithm to solve the problem of non-
Gaussian, nonlinear filtering is the extended Kalman filter
(EKF). This filter is based upon the principle of linearizing
the measurements and evolution models using Taylor series
expansions. The series approximations in the EKF algorithm
can, however, lead to poor representations of the nonlinear
functions and probability distributions of interest. As a
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result, this filter can diverge. Based on the hypothesis that it
is easier to approximate a Gaussian distribution than it is to
approximate arbitrary nonlinear functions other researchers
have developed a filter termed the unscented Kalman filter
(UKF). It has been shown that the UKF leads to more
accurate results than the EKF and that in particular it
generates much better estimates of the covariance of the
states (the EKF often seems to underestimate this quantity).
The UKF has, however, the limitation that it does not apply
to general non-Gaussian distributions as is often the case
with the ECG spectral distributions. Sequential Monte Carlo
methods, also known as particle filters overcome this limi-
tation and allow for a complete representation of the pos-
terior distribution of the states, so that any statistical esti-
mates, such as the mean, modes, kurtosis and variance, can
be easily computed. Particle Filters can therefore, deal with
any nonlinearities or distributions. Particle filters rely on
importance sampling and, as a result, require the design of
proposal distributions that can approximate the posterior
distribution reasonably well. In general, it is hard to design
such proposals. The most common strategy is to sample
from the probabilistic model of the states evolution (transi-
tion prior). This strategy can, however, fail if the new
measurements appear in the tail of the prior or if the
likelihood is too peaked in comparison to the prior.

[0101] In the preferred implementation, a estimator/pre-
dictor trajectory tracking technique known as the unscented
Particle Filter (UPF) as developed by Merwe, Doucet,
Freitasz and Wan. Pseudocode for the UPF is as follows:

Unscented Particle Filter:

Initialization: t = 0.

Fori=1,...N, draw states (particles) x,® from the prior p(x,) and set,
% = E[x,™]
Po(i) = E[(Xo(i) - go(i))(xo(i) - go(i))T]
R = B = (%) 0 0J7

PP 0 o0
i Na  —(a Na  —(Da\T
PP = B[ - x))a -x0 ' 1=| 0 Q 0
0 0 R

Fort=1,2,...,
a) Importance sampling step:
Fori=1,...N: Update particles with the UKF:
Calculate sigma points:
Xt—l(i)a = gt—l(i)a gt—l(i)a * \/(na"'}")Pt—l : n]
Predict future particle (time update)

2ng
(ix (i) (ny () (n)~r ()
Xr?rfl = (X2, X2 Xr?rfl = Z W; X;,r’\‘rfl
=0

2ng
o) Ty -0 e AT
Pr?rfl = Z ch [Xjf,rl\vrfl - Xr?rfl][Xj‘,r\rfl - Xr?rfl]
=

2"’(7
() _ (ix (i, () _ (n )i
Yr;rfl = h(Xr?rfla Xr:rll) Yr;rfl = Z Wj ij,r\rfl
=

Incorporate new observation (measurement update)
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-continued

2”(7
(c) ) <0 (i) EoNSY
Py,y, = Z WC Y(J‘r\r 1~ yI?I*l][Y_;,I‘I*I - Yr?rfl]
J=0
2”(7

©3¢® ) @ T
Xryr Z WC Xjr\r l_xr\r 1][er\r 1 Yr?rfl]

— @) _ ) <0
K: = eryrpy,y, X5 = Xr?r 1+ Kely, - Yr?rfl)
p® _ p T
P Pr?r 1= KrPy,y,K,

5 j o0
0~ 151 vy = NG B

NOJ NOJ
Set ﬁg)r e (Xg)r 1> XS‘)) and PO‘r(Pg)r 1> P‘ )

Sample ~q(x$

Fori=1,...N, evaluate the importance weights up to a normal-
izing constant:

W0 o PO Xgo)p(w 520)
0 o PO 1% G 1%-1)
q(X(‘) | Xo: 1 Vi)

Fori=1,...N, normalize the importance weights.
b)  Selection Step
Multiply/Suppress particles,
(ﬁo:t(l‘)a 1A)O:t(i))
with high/low importance weights,
{,Vt(i)
respectively, to obtain N random particles.
¢)  Output: The output of the algorithm is a set of samples that can be
used to approximate the posterior distribution as follows:

(o 31) ~ B | 31,0 = = ZN] 80 (%)
PXo:r | Y1) = PRKoit | ¥p0) = N Z ("8)1) Xo:r
Resulting in the estimate of,

E(g, (x0,)) = f & (0 )P(x0: | Y1)z, = —Z & (x6)

for some function of interest, g, for instance the marginal
conditional mean or the marginal conditional covariance or
other moment.

[0102] In one implementation the prediction matrix may
be used to anticipate the optimal therapeutic intervention.
Rather than wait for the characteristics of the parameters or
trajectory to achieve a certain condition, the algorithm will
base its output on the predicted future state of the patient
using the tracking and prediction algorithms mentioned
above.

[0103] Transform methods other than the Fourier method
may be employed, for instance the Laplace, Hilbert, Radon,
and Hankel transforms, as well as time frequency transforms
such as the Gabor short time Fourier transform and the
Wavelet transform.

[0104] Other data besides ECG data may be included as
part of the description matrix and incorporated into the
analysis algorithm, for instance pulse oximetry, capnogra-
phy, respiration, impedance cardiography and blood pres-
sure measurements. At least some of the data may remain in
the time domain without any Fourier or other transform
method being performed on it. Pulse oximetry, impedance
cardiography, and blood pressure measurements may be
used to augment the ECG to determine if a pulse is present.
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Capnography may be used to determine the overall effec-
tiveness of cardiopulmonary resuscitation.

[0105] Large (~5" in diameter), self-adhesive electrode
pads are typically used to deliver defibrillation therapy to
patients. The pads also provide ECG monitoring through the
same conductive surfaces. In one implementation, additional
small (~0.5" diameter) ECG electrodes are integrated into
the large pads that provide simultanecous monitoring of at
least one additional electrical vector that is approximately
orthogonal to the monitoring vector produced by the large
defib/monitoring electrodes. A second matrix is then formed,
identical in structure to the original SSM, but based on the
orthogonal leads. The AED 10 can then perform techniques
such as cross correlation on the two matrices to verify state
changes.

[0106] In one embodiment, the two small ECG electrodes
and large pads are configured such that there at least two
mutually orthogonal ECG leads are generated. The vector
sum of these leads generates a trajectory over time. The
same methods for trajectory analysis described above may
be used to analyze this trajectory as well.

[0107] As described previously, the AED 10 combines
these sub-methods to determine appropriate therapy for the
rescuer to perform on the victim. If uncertainty is included
in the combination, the probability of defibrillation success
is shown on the display of the device as a number between
zero and one hundred, allowing the trained medical person
such as a paramedic to make his own decision as to whether
to shock the patient. In an implementation where the vari-
ance sub-method is used, the AED 10 may be configured
such that the VF detection algorithm employing spectral
variance may provide notification in the form of an audible
or visual alarm indication that the paramedic should stop
doing compressions for a more accurate analysis of the ECG
waveform. In a more automated implementation, if the AED
10 determines that defibrillation has a low probability of
success, the AED 10 may prompt the rescuer to perform
CPR. During the course of CPR, the AED 10 may analyze
the ECG continuously and prompt the rescuer to cease doing
CPR when the AED 10 determines that the myocardium will
be receptive to defibrillation. Following the defibrillation,
the AED 10 may prompt the rescuer to deliver uninterrupted
chest compressions, and the AED 10 may again monitor the
underlying ECG waveform during compressions for the
appropriate time to deliver the defibrillation therapy. As a
result of the spectral analysis, the AED 10 may also deter-
mine that neither defibrillation nor CPR is appropriate, but
rather drug and metabolic therapy such as epinephrine and
glucose is appropriate, in which case the AED 10 will
prompt the rescuer to deliver the appropriate therapy.
[0108] In another embodiment for determining the appro-
priate treatment for a victim, the frequency domain of the
ECG signal is divided into spectral bands. For example, the
frequency range of 3-20 Hz may be divided into 0.1 Hz
bands. The energy for each band is calculated, and indi-
vidual weights are assigned to the energy values for each of
the bands. In one embodiment, a summation of at least some
of the weighted energy values for each band is calculated.
[0109] Regression analysis may be used to determine
weights that produce improved correlation between the
weighted sum and the probability of successtul defibrillation
(or between the weighted sum and the presence of a physi-
ological condition). The model for simple linear regression
is:
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Y=a+b*X

where Y is the dependent variable, X is the independent
variable, and a and b are the regression parameters (the
intercept and the slope of the line of best fit). The model for
multiple linear regression is:

Y=a+b *X+b,* X+ . . +5*X;

[0110] The coefficients, b,, for each energy, X,, are calcu-
lated using statistical methods such as the general linear
model to provide a best estimate of the probability of
defibrillation success, Y. The variable, Y, may also represent
the probability of success of any therapeutic intervention
other than defibrillation, for instance chest compressions,
ventilations or a metabolic treatment such as epinephrine or
aspartate. The variable, Y, may also represent the probability
that the patient is in a particular physiological state. The
general linear model (GLM) can estimate and test any
univariate or multivariate general linear model, including
those for multiple regression, analysis of variance or cova-
riance, and other procedures such as discriminant analysis
and principal components. With the general linear model,
randomized block designs, incomplete block designs, frac-
tional factorial designs, Latin square designs, split plot
designs, crossover designs, nesting, can be explored. The
model is:

Y=XB+e

where Y is a vector or matrix of dependent variables, X is a
vector or matrix of independent variables, B is a vector or
matrix of regression coefficients, and e is a vector or matrix
of random errors.

[0111] In multivariate models, Y is a matrix of continuous
measures. The X matrix can be either continuous or cat-
egorical dummy variables, according to the type of model.
For discriminant analysis, X is a matrix of dummy variables,
as in analysis of variance. For principal components analy-
sis, X is a constant (e.g., a single column of 1s). For
canonical correlation, X is usually a matrix of continuous
right-hand variables (and Y is the matrix of left-hand vari-
ables).

[0112] For some multivariate models, it may be easier to
use ANOVA, which can handle models with multiple depen-
dent variables and zero, one, or more categorical indepen-
dent variables (that is, only the constant is present in the
former). ANOVA automatically generates interaction terms
for the design factor.

[0113] After the parameters of a model have been esti-
mated, they can be tested by any general linear hypothesis
of the following form:

ABC=D

where A is a matrix of linear weights on coefficients across
the independent variables (the rows of B), C is a matrix of
linear weights on the coefficients across dependent variables
(the columns of B), B is the matrix of regression coefficients
or effects, and D is a null hypothesis matrix (usually a null
matrix).

[0114] The coeflicients, bl, are calculated using ECG or
other measured physiological data collected from a statisti-
cally varied population of samples to provide a robust
database for accurate model generation. Preferably, the
resuscitation event is decomposed into multiple therapy
states, e.g., arrival at patient’s side, pre-shock, post-shock,
post-vasopressor, etc., with separate sets of coefficients
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generated for each therapy state. The state of therapy, e.g.,
resuscitation, is determined and stored by the defibrillator.
For instance when the unit is first turned on and prior to the
first shock, the resuscitation is considered in the “arrival at
patient’s side” (APS) state; if CPR is detected by the
defibrillator, it shifts to the “CPR first, no shock state”; after
defibrillation, the state machine shifts to the “first shock”
state. Subsequent shocks cause the state machine to transi-
tion to states for each defibrillation, e.g. “second shock™, etc.
Coeflicients, bl, are calculated for each state and stored on
the defibrillator, and used to calculate the most accurate
predictor, Y, of therapeutic outcome (or current physiologic
state). Therapeutic outcome, Y, may be scaled so as to
provide a value from either zero to one or zero to one-
hundred, representing on a scale that is understandable to the
operator that it is a probability; the value of Y may also be
unscaled.

[0115] Regression may also be performed using the logis-
tic function:

1

Y:lOOl—m

[0116] The logistic model is useful in estimating the
probability of therapeutic success where the outcome is
binomial and dependent on at least one predictive factor,
plotted on the abscissa of FIG. 8, such that certain values of
the predictive factor, e.g. 16 in FIG. 8, will sometimes be
associated with successful defibrillation and other times with
unsuccessful defibrillations. The logistic curve is a non-
linear transformation that converts the measured predictive
factor into a value approximating a probability of success. It
provides a reasonable, mathematically tractable approach to
minimizing the false negatives and false positives, as shown
in FIG. 8. A threshold is chosen that typically will optimize
both the false negatives (FN) and false positives (FP) to
provide the best sensitivity and specificity for the prediction:

Sensitivity=True Positives(7P)/(TP+FN)
Specificity=TN/(IN+FP)
Positive Predictive Value(PPV)=TP/(TP+FP)

Negative Predictive Value(NPV)=TN/(IN+FN)

[0117] However, depending on the therapy stage, it may be
desirable to optimize for reduction in false positives at the
expense of additional false negatives. For instance, when
medical personnel first arrive at the side of a patient, it has
been shown in several studies that it is beneficial to many
patients that some period of time, typically on the order of
2-3 minutes, is spent performing cardiopulmonary resusci-
tation such as chest compressions and artificial breathing
prior to defibrillation. This has been coined “CPR-first”, and
runs counter to how resuscitation of cardiac arrest has been
taught for over a decade. One difficulty with the method is
that for cardiac arrest victims for whom the onset is more
recent, typically on the order of 4 minutes or less, the clinical
data suggests that defibrillation first is a more efficacious
therapy for that class of patient. In this case, a “true
negative” is an instance when the predictive factor (or
measured parameter) is below the threshold and the outcome
was an unsuccessful defibrillation. Because defibrillation is
necessary to convert ventricular fibrillation, but shocking
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unnecessarily while not delivering effective CPR is delete-
rious and decreases the chances of survival, it is important
to minimize as much as possible the number of patients in
the false negative group since these are patients who would
have done better had they been shocked first rather than
having CPR-first performed on them. Choosing a threshold
in the range of 13-15 will result in a Negative Predictive
Value (NPV) of nearly 100%. Thus the rescuer would only
do CPR-first on those patients for whom there was a very
high likelihood that CPR will do better than defibrillation.

[0118] On the other hand, at a later therapy stage (later on
in the resuscitation), after an unsuccessful defibrillation
shock, doing continuous, uninterrupted CPR becomes criti-
cal to the survival of the patient. Thus, it is undesirable to
have the rescuer stopping to perform potentially unsuccess-
ful defibrillations. In this resuscitation state, minimizing
false positives becomes of primary importance. Raising the
threshold to approximately 20 will result in a Positive
predictive Value (PPV) of nearly 100%.

[0119] Other therapy stages for which specific thresholds
can be set can be based on the ECG rhythm state of the
patient, such as asystole, ventricular fibrillation, ventricular
tachycardia, or pulseless electrical activity.

[0120] Therapy stage may also be determined by provid-
ing the device with a means of detecting whether or not the
rescuer is performing chest compressions or ventilations,
e.g., by monitoring an accelerometer-based sensor mounted
on the patient’s sternum or by measuring the transthoracic
impedance of the patient, such as is done by the AED Pro
defibrillator manufactured by ZOLL Medical (Chelmsford
Mass.).

[0121] Therapy stage may also be determined from data
that the rescuer enters into the device. The device may also
have a means for the rescuer to enter treatment data into the
device in real time; such data might include whether or not
any of the following treatments had been given to the patient
(though not limited to): epinephrine or other vasopressor,
levosimendan, aspartate, glucose, intubation, external chest
compressor device, glucose. Treatment data input may be by
keying means such as on the ZOLL Medical (Chelmsford,
Mass.) M-Series or E-Series defibrillators. Treatment modes
such as pacing and defibrillation can be distinguished if
there is a rotary machine operation dial or knob to set the
unit to mutually exclusive operational modes such as pacing,
monitoring, or defibrillation. Other modes might include
fluid infusion or ventilation.

[0122] A state transition matrix can be developed using a
Markov model and the threshold adjusted as well as different
weighting coefficients applied based on the Markov model
estimation. In particular, the sequence of medical interven-
tions and patient reactions to treatments is modeled as a
hidden Markov model (HMM), defined as a variant of a
finite state machine having a set of states, Q, an output
alphabet, O, transition probabilities, A, output probabilities,
B, and initial state probabilities, H. The current state is not
observable. Instead, each state produces an output with a
certain probability (B). Usually the states, Q, and outputs, O,
are understood, so an HMM is said to be a triple, A=(A, B,
H). Each value of output alphabet, O, can be given a unique
threshold and coefficient set.

[0123] A={a,=P(q, at t+1 g, at t)}, where P(alb) is the
conditional probability of a given b, t=1 is time, and
Q.
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[0124] Informally, A is the probability that the next
state is q, given that the current state is q;.
[0125] B={b,=P(0,lq,)}, where 0,£0.
[0126] Informally, B is the probability that the output
is Ok given that the current state is g,.
[0127] T1={p~P(q, at t=1)}.

The Forward-Backward and Baum-Welch algorithms are
performed on a database to build the HMM. A global HMM
is developed for all medical modes along with specific
HMMs for each mode such as pacing, defibrillation, etc.

[0128] The Forward-Backward algorithm may be summa-
rized as follows:

[0129] Define the o values as follows,
a_t(i)=Pr(O_1=0_1, ..., O_t=o0_t, X_t=q_il\)
[0130] Note that
a TH=Pr(O_l=0_1, - ,0T=0T,X T=qilAd)
=Prioc, X T=qilAd)
[0131] The alpha values enable us to solve Problem 1

since, marginalizing, we obtain

Pric|A)=sum_i=1"N Pr(o_1, --- ,0 T, X T=qild)

=sum_i= 1N o _T()

[0132] Define the §§ values as follows,
B_t()=PHO_t+1=0_t+1, .. ., O_T=0_T\X_t=q_i,\)

[0133] 1. Compute the forward (o) values:

[0134] a. a_1()=pi_ib_i(o_1)

[0135] b. o_t+1(j)=[sum_i=1"N a_t@) a_ij] b_j(o_t+1)
[0136] 2. Computing the backward () values:

[0137] a B_T@{)=1

[0138] b. f_t()=sum_j=1"N a_ij b_jlo_t+1)P_t+1()

The Baum-Welch algorithm may be summarized as follows:

[0139] The probability of a trajectory being in state q_i at
time t and making the transition to q_j at t+1 given the
observation sequence and model.

xi_t(i,/))=PrX_t=q_i, X_t+1=q_jlo, k)

[0140] These probabilities may be computed using the
forward backward variables.

@ t() aijlo_t+1) ft+1()
PrO[A)

xiti, )=

[0141] The probability of being in q_i at t given the
observation sequence and model. gamma_t(i)=Pr(X_t=q_
ilo, &)

[0142]

y_t(i)=sum_j xi_t(i,j)

Which we obtain by marginalization.
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[0143] Note that

sum_t=1"T y_t(i)=expected number of transitions
from q_i

and

sum_t=1"T xi_t(i,j)=expected number of transitions
from q_ito qj
[0144] The algorithm is as follows:
[0145] 1. Choose the initial parameters, A, arbitrarily.
[0146] 2. Reestimate the parameters.
[0147] a. bar{n}_i=y_t(i)

[0148] b.
b . osumt=1"T -1 xi (i ))
arla} 4j = sum_t= 1T -1 y_t(i)
[0149] c.
bartp)_j(h) = A= T =Lyt Ltot=k)

sum_t=1"T—1 y_t(})

[0150] where 1_{o_t=k}=1 if o_t=k and 0 otherwise.
[0151] 3. Let bar{A}={bar{a}_ij}, bar{B}={bar{b}_i(k)
}. and bar{w}={{bar{x}_i}.

[0152] 4. Set bar{A} to be {bar{A}, bar{B}, bar{x}}.
[0153] 5.1fA=bar{k} then quit, else set A to be bar{A} and
return to Step 2.
[0154] Based on the state transition probabilities calcu-
lated by the Baum-Welch algorithm, the Viterbi algorithm
may be used to provide a best estimate of the future
sequence of medical interventions that the user will input.
[0155] The Viterbi algorithm may be summarized as fol-
lows:
[0156] 1. Initialization:

[0157] For 1<=i<=N,

[0158] a. d_1(i)=nb_i(o_1)

[0159] b. ¢_1(1)=0
[0160] 2. Recursion:

[0161] For2<=t<=T, 1<=j<=N,

[0162] a. d_t(j)=max_i [d_t-1(i)a_ij]b_j(o_t)

[0163] b. ¢_t(j)=argmax_i [d_t-1(i)a_ij]
[0164] 3. Termination:

[0165] a. p*=max_i [6_T(®)]

[0166] b. i*_T=argmax_i [8_T(1)]
[0167] 4. Reconstruction:

[0168] For t=t-1,t-2,...,1,

[0169] i*_t=¢p_t+1(i*_t+1)
[0170] The resulting trajectory, i*_1, ..., i*_t+1, predicts
the next likely intervention, based on the previous sequence.
[0171] Many other implementations of the invention other
than those described above are within the invention, which
is defined by the following claims.
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What is claimed is:

1. A method of automatically determining which of a
plurality of possible cardiac interventions should be per-
formed in treatment of a patient, the method comprising:

storing prior information representative of prior cardiac

interventions performed on the patient;
storing prior information representative of the patient’s
reactions to the prior cardiac interventions; and

processing the information using a hidden Markov model
to determine which of a plurality of possible further
cardiac interventions should be performed.

2. The method of claim 1 further comprising;

sensing the patient’s reaction to the further cardiac inter-

vention,

storing further information representative of the further

cardiac intervention;

storing further information representative of the patient’s

reaction to the further cardiac intervention,

processing the prior and further information using a

hidden Markov model to determine which of still
further cardiac interventions should be performed in
further treatment of the patient.

3. The method of claim 1 wherein the patient is a cardiac
arrest victim.

4. The method of claim 2 wherein the patient is a cardiac
arrest victim.

5. Apparatus for automatically determining which of a
plurality of possible cardiac interventions should be per-
formed in treatment of a patient, the apparatus comprising:

a processor and associated memory for storing prior

information representative of prior cardiac interven-
tions performed on the patient;

memory for storing prior information representative of the

patient’s reactions to the prior cardiac interventions;
and

wherein the processor is configured to process the infor-

mation using a hidden Markov model to determine
which of a plurality of possible further cardiac inter-
ventions should be performed.

6. The apparatus of claim 3 further comprising;

components for sensing the patient’s reaction to the

further cardiac intervention,

memory for storing further information representative of

the further cardiac intervention;

memory for storing further information representative of

the patient’s reaction to the further cardiac intervention,
and

wherein the processor is further configured to process the

prior and further information using a hidden Markov
model to determine which of still further cardiac inter-
ventions should be performed in further treatment of
the patient.

7. The apparatus of claim 5 wherein the patient is a
cardiac arrest victim.

8. The apparatus of claim 6 wherein the patient is a
cardiac arrest victim.
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