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(57) ABSTRACT 
A method of automatically determining which type of treat 
ment is most appropriate for (or the physiological state of) 
a patient. The method comprises transforming one or more 
time domain measurements from the patient into frequency 
domain data representative of the frequency content of the 
time domain measurements; processing the frequency 
domain data to form a plurality of spectral bands, the content 
of a spectral band representing the frequency content of the 
measurements within a frequency band; forming a weighted 
sum of the content of the spectral bands, with different 
weighting coefficients applied to at least some of the spectral 
bands; determining the type of treatment (or physiological 
state) based on the weighted Sum. 
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AUTOMATIC CARDAC THERAPY 
ADVISOR WITH HIDDEN MARKOV MODEL 

PROCESSING 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation application of 
and claims priority to U.S. application Ser. No. 13/454.061, 
filed on Apr. 23, 2012, now U.S. Pat. No. 9,339,436, which 
application is a continuation application of and claims 
priority to U.S. application Ser. No. 1 1/136,327, filed on 
May 24, 2005, now U.S. Pat. No. 8,165,671, which appli 
cation claims priority to U.S. Provisional Application Ser. 
No. 60/674,175, filed on Apr. 22, 2005. All applications 
hereby incorporated by reference. 

TECHNICAL FIELD 

0002 This invention relates to techniques for automati 
cally advising as to the appropriate cardiac therapy for a 
patient, e.g., the particular therapy to be used for cardiac 
resuscitation. 

BACKGROUND 

0003. The heart relies on an organized sequence of elec 
trical impulses in order to beat effectively. Any deviation 
from this normal sequence is known as "arrhythmia.’ A class 
of devices includes signal processing software that analyzes 
electrocardiography (ECG) signals acquired from the victim 
to determine when a cardiac arrhythmia Such as ventricular 
fibrillation (VF) or shockable ventricular tachycardia (VT) 
exists. These devices include automated external defibrilla 
tors (AEDs), ECG rhythm classifiers, or ventricular arrhyth 
mia detectors. An AED is a device that literally “talks” the 
provider through a process of evaluating a patient for, 
attaching the patient to, and activating, the AED therapy. 
This device is capable of recognizing the two distinct 
cardiac waveforms: VT and VF. 

0004 VT is a tachydysrhythmia originating from a ven 
tricular ectopic focus, characterized by a rate typically 
greater than 120 beats per minute and wide QRS complexes. 
VT may be monomorphic (typically regular rhythm origi 
nating from a single focus with identical QRS complexes) or 
polymorphic (unstable, may be irregular rhythm, with vary 
ing QRS complexes). An example rhythm for an unstable 
VT is illustrated in FIG. 1A. Depending on the rate and the 
length of time that the VT has been sustained, a heart in the 
VT state may or may not produce a pulse (i.e., pulsatile 
movement of blood through the circulatory system). The 
cardiac activity still has some sense of organization (note 
that the “loops' are all basically the same size and shape). 
If there is no pulse associated with this VT rhythm, then the 
VT is considered to be unstable and a life threatening 
condition. An unstable VT can be treated with an electrical 
shock or defibrillation. 

0005 Supraventricular tachycardia (SVT) is a rapid 
heartbeat that begins above the hearts lower chambers (the 
ventricles). SVT is an abnormally fast heart rhythm that 
begins in one of the upper chambers of the heart (atria), a 
component of the heart's electrical conduction system called 
the atrioventricular (AV) node, or both. Although SVT is 
rarely life-threatening, the symptoms which include a feel 
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ing of a racing heart, fluttering or pounding in the chest or 
extra heartbeats (palpitations), or dizziness can be uncom 
fortable. 

0006 VF is usually an immediate life threat. VF is a 
pulseless arrhythmia with irregular and chaotic electrical 
activity and Ventricular contraction in which the heart imme 
diately loses its ability to function as a pump. VF is the 
primary cause of Sudden cardiac death (SCD). An example 
rhythm for VF is illustrated in FIG. 1B. This waveform does 
not have a pulse associated with it. There is no organization 
to this rhythm (note the irregular size and shape of the 
loops.) The pumping part of the heart is quivering like a bag 
of worms, and it is highly unlikely that this activity will 
move any blood. The corrective action for this rhythm is to 
defibrillate the heart using an electrical charge. 
0007. A normal heart beat wave starts at the sinoatrial 
node (SA node) and progresses toward the far lower corner 
of the left ventricle. 

0008. A massive electrical shock to the heart can correct 
the VF and unstable VT rhythms. This massive electrical 
shock can force all the cardiac cells in the heart to depolarize 
at the same time. Subsequently, all of the cardiac cells go 
into a short resting period. The hope is that the sinoatrial 
node (SA node) will recover from this shock before any of 
the other cells, and that the resulting rhythm will be a pulse 
producing rhythm if not normal sinus rhythm. 
0009 For AEDs, algorithms to recognize the two wave 
forms VT and VF are designed to perform ECG analyses at 
specific times during a rescue event of a patient using 
defibrillation and cardio-pulmonary resuscitation (CPR). 
The first ECG analysis is usually initiated within a few 
seconds following attachment of the defibrillation electrodes 
to the patient. Subsequent ECG analyses may or may not be 
initiated based upon the results of the first analysis. Typi 
cally, if the first analysis detects a shockable rhythm, the 
rescuer is advised to deliver a defibrillation shock. Follow 
ing the shock delivery, a second analysis is automatically 
initiated to determine whether the defibrillation treatment 
was successful or not (i.e., the shockable ECG rhythm has 
been converted to a normal or other non-shockable rhythm). 
If this second analysis detects the continuing presence of a 
shockable arrhythmia, the AED advises the user to deliver a 
second defibrillation treatment. A third ECG analysis may 
then be initiated to determine whether the second shock was 
or was not effective. If a shockable rhythm persists, the 
rescuer is then advised to deliver a third defibrillation 
treatment. 

0010. Following the third defibrillator shock or when any 
of the analyses described above detects a non-shockable 
rhythm, treatment protocols recommended by the American 
Heart Association and European Resuscitation Council 
require the rescuer to check the patient’s pulse or to evaluate 
the patient for signs of circulation. If no pulse or signs of 
circulation are present, the rescuer is trained to perform CPR 
on the victim for a period of one or more minutes. The CPR 
includes rescue breathing and chest compressions. Follow 
ing this period of CPR, the AED reinitiates a series of up to 
three additional ECG analyses interspersed with appropriate 
defibrillation treatments as described above. The sequence 
of three ECG analyses/defibrillation shocks followed by 1-3 
minutes of CPR, continues in a repetitive fashion for as long 
as the AED's power is turned on and the patient is connected 
to the AED device. Typically, the AED provides audio 
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prompts to inform the rescuer when analyses are about to 
begin, what the analysis results were, and when to start and 
stop the delivery of CPR. 
0011. One limitation associated with many AEDs is that 
current automated ECG rhythm analysis methods cannot 
function with extra noise due to CPR chest compressions. 
Thus, conventional practice is to interrupt chest compres 
sions while performing ECG rhythm analysis. Long inter 
ruptions of chest compressions have been shown to result in 
higher failure rate of resuscitation. Many studies have 
reported that the discontinuation of precordial compression 
can significantly reduce the recovery rate of spontaneous 
circulation and 24-hour survival rate. These studies include 
“Adverse effects of interrupting precordial compression 
during cardiopulmonary resuscitation’ by Sato et al. (Criti 
cal Care Medicine, Volume 25(5), May 1997, pp 733-736), 
“Adverse Outcomes of Interrupted Precordial Compression 
During Automated Defibrillation” by Yu et al. (Circulation, 
2002), and Predicting Outcome of Defibrillation by Spec 
tral Characterization and Nonparametric Classification of 
Ventricular Fibrillation in Patients With Out-of-Hospital 
Cardiac Arrest' by Eftestlet al. (Circulation, 2002). Thus, it 
is useful to recognize abnormal heart rhythms during chest 
compressions. 
0012. There is recent clinical evidence showing that 
performing chest compressions prior to defibrillation under 
Some circumstances can be beneficial. Specifically, it is 
clinically beneficial to treat a patient with chest compres 
sions prior to defibrillation if the response times of the 
medical emergency system result in a delay of more than 
four minutes such that the patient is in cardiac arrest for 
more than four minutes. If the response times of the medical 
emergency system result in a capability to treat the patient 
in sooner than a four minute delay, it can be better for the 
patient to be treated with defibrillation first. Methods have 
been developed to determine from the ECG waveform both 
whether the patient has been in cardiac arrest for longer than 
the 4 minutes as well as time independent measures of when 
the most optimal time is to shock. "Non-invasive monitoring 
and treatment of Subjects in cardiac arrest using ECG 
parameters predictive of outcome by Brown and DZwon 
czyk (U.S. Pat. No. 5,683,424) describes methods to deter 
mine from the ECG waveform whether the patient has been 
in cardiac arrest for longer than the 4 minutes. “Method and 
system for predicting the immediate Success of a defibril 
latory shock during cardiac arrest (U.S. Pat. No. 6,171,257 
by Weil et al.) and “Ventricular Fibrillation Scaling Expo 
nent Can Guide Timing of Defibrillation and Other Thera 
pies” by Menegazzi et al. (2004 American Heart Associa 
tion, Inc.) describe time independent measures of when the 
most optimal time is to shock. These algorithms use spectral 
analysis of the ECG to predict defibrillation shock success in 
Some manner. Current methods utilizing spectral analysis of 
the ECG for chest compression artifact rejection, defibril 
lation Success prediction, and therapeutic decision-making 
typically specify a set of parameters in the ECG frequency 
spectrum to be detected. For example, U.S. Pat. No. 5,683, 
424 compares a centroid or a median frequency or a peak 
power frequency from a calculated frequency spectrum of 
the ECG to thresholds to determine if a defibrillating shock 
is necessary. These parameters do not uniquely specify the 
frequency or time domain characteristics. For example, the 
median frequency of the ECG spectrum for almost all 
patients in ventricular fibrillation decreases initially then 
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increases again after several minutes, making it difficult to 
use median frequency to predict how long a patient has been 
in cardiac arrest. Thus, the patient can have the same median 
frequency at widely differing durations of cardiac arrest. 
Using amplitudes of the frequency spectrum of the ECG can 
be limited because the amplitudes are dependent on both the 
cardiac electrical output as well as position of the ECG lead 
electrodes on the patient. 
0013 Some conventional automated ECG rhythm analy 
sis methods detect VF and other arrhythmic heart rhythms 
by using spectral analysis of the ECG signals with the 
assumption that the difference in the power spectrum 
between ECGs of normal heart rhythms and abnormal 
rhythms is such that during the abnormal rhythm the ECG is 
concentrated or mainly sinusoidal in a narrow band of 
frequencies between 4 and 7 Hz, while in normal rhythm the 
ECG is a broadband signal with major harmonics up to at 
least 25 Hz. For example, “Comparison of four techniques 
for recognition of ventricular fibrillation from the surface' 
by Clayton et al. (ECG Medical & Biological Engineering & 
Computing 1993; 31:111-117) and “Algorithmic sequential 
decision-making in the frequency domain for life threaten 
ing ventricular arrhythmias and imitative artifacts: a diag 
nostic system” by Barro et al. (Journal of Biomedical 
Engineering, 1989, Volume 11) analyze the frequency 
domain of the ECG to check if the ECG is mainly sinusoidal 
in the narrow band of frequencies. One problem with these 
conventional methods is that CPR changes the assumption 
behind the methods so that VF and other dangerous rhythms 
cannot be typically detected during chest compressions. 
0014 Adaptive filters have been used in many studies to 
remove the artifact due to CPR chest compression from the 
ECG signal. These studies include “CPR Artifact Removal 
from Human ECG Using Optimal Multichannel Filtering 
by Aase et al. (IEEE Transactions on Biomedical Engineer 
ing, Vol. 47, No. 11, November 2000), “Removal of Car 
diopulmonary Resuscitation Artifacts From Human ECG 
Using an Efficient Matching Pursuit-Like Algorithm' by 
Husy et al. (IEEE Transactions on Biomedical Engineering, 
Vol. 49, No. 11, November 2002), “and US Patent 6,390.996 
by Halperin et at (2002). The adaptive filters use compres 
sion depth and thoracic impedance as reference signals to 
estimate the artifacts in the ECG signal. The adaptive filter's 
parameters are updated by calculating the inverse of a 
cross-correlation matrix or the auto- and cross-spectra of the 
signal. The artifacts could be reduced when these adaptive 
filters were applied. However, there is usually a significant 
part of the artifact left in the estimated ECG signal. More 
over, the adaptive-filter algorithm sometimes has a high 
computational complexity. 
0015 These adaptive filtering methods use the compres 
sion depth as the reference signal to remove the chest 
compression artifact from the ECG signals. This is based on 
the assumption that the chest compression artifact is corre 
lated with the reference signal (compression depth) and 
independent of the desired ECG signal. This can be true for 
an infinitely long ECG signal but the estimated coefficients 
can be biased if a limited length of the ECG signal is applied. 
It is also possible that the reference signals (Such as the 
compression depth) can provide only part of the information 
about the CPR artifact presented in the ECG signal, i.e. the 
noise-reduction ability of the adaptive filter is limited by its 
knowledge of the noise. Fitzgibbon et al. in “Determination 
of the noise source in the electrocardiogram during cardio 
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pulmonary resuscitation” (Critical Care Medicine 2002 Vol. 
30, No. 4) reported that the thoracic impedance variation due 
to ventilation or chest compression has little correlation with 
the artifact in ECG recording during chest compressions. 
Fitzgibbon et al. (2002) further suggested that the source of 
the noise in the signal during chest compressions is the 
electrode motion and related to the electrode's electrical 
properties, which makes the relation between the noise and 
the compression depth more complicated. Thus, the artifact 
cannot be sufficiently attenuated for satisfactory results with 
the conventional advisory algorithm for fibrillation detec 
tion. 
0016 One method for evaluating medical tests is to 
determine a tests ability to correctly detect disease, also 
known as sensitivity, and the tests ability to avoid labeling 
normal things as disease, also known as specificity. Ideally, 
a medical test has 100% sensitivity and 100% specificity. 
When a medical test is imperfect, sensitivity and specificity 
are plotted on a graph called a receiver-operator character 
istics (ROC) curve. Variables in the medical test can be 
chosen Such that the resulting point of the medical test on the 
ROC curve is closest to a point with 100% sensitivity and 
100% specificity. 

SUMMARY 

0017. In general, the invention features automatically 
determining which of a plurality of possible cardiac inter 
ventions should be performed in treatment of a patient. Prior 
information representative of prior cardiac interventions 
performed on the patient, and information representative of 
the patient's reactions to the prior cardiac interventions, are 
stored, and the information is processed using a hidden 
Markov model to determine which of a plurality of possible 
further cardiac interventions should be performed. 
0018. In preferred implementations, one or more of the 
following features may be incorporated. The patient's reac 
tion to the further cardiac intervention is sensed; further 
information representative of the further cardiac interven 
tion, and of the patient's reaction to the further cardiac 
intervention, is stored; and the prior and further information 
is processed using a hidden Markov model to determine 
which of still further cardiac interventions should be per 
formed in further treatment of the patient. The patient is a 
cardiac arrest victim. 
0019. In other aspects, the invention features a method of 
automatically determining which type of treatment is most 
appropriate for (or the physiological state of) a patient. The 
method comprises transforming one or more time domain 
measurements from the patient into frequency domain data 
representative of the frequency content of the time domain 
measurements; processing the frequency domain data to 
form a plurality of spectral bands, the content of a spectral 
band representing the frequency content of the measure 
ments within a frequency band; forming a weighted Sum of 
the content of the spectral bands, with different weighting 
coefficients applied to at least some of the spectral bands; 
determining the type of treatment (or physiological State) 
based on the weighted Sum. 
0020. In preferred implementations, one or more of the 
following features may be incorporated. The weighting 
coefficients may be ones chosen using a regression analysis 
comparing actual time domain measurements and actual 
outcome of therapy for a population of patients. The weight 
ing coefficients may have been chosen to improve a corre 
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lation between the weighted sum and the outcome of 
therapy. The weighting coefficients are different for at least 
two different therapy stages. The therapy may be cardiac 
resuscitation, and the measurement comprises ECG signals. 
The measurement may comprise ECG signals, and the 
therapy stages may comprise at least arrival at patient's side, 
pre-shock, and post-shock. The therapy stage may be based 
at least in part on rescuer entered data indicative of the stage 
of therapy. The therapy stage may be based at least in part 
on rescuer entered data indicative of at least what drugs have 
been delivered to the patient. The rescuer entered data may 
be further indicative of whether the patient has been intu 
bated, and whether an automatic external chest compressor 
has been used. The determining may comprise comparing 
the weighted sum to a threshold. The threshold may be 
different for at least two therapy stages. When the therapy is 
cardiac resuscitation, and the measurement comprises ECG 
signals, if the weighted Sum exceeds the threshold the type 
of treatment determined to be appropriate may be delivery of 
a defibrillation shock. The threshold used when the therapy 
stage is arrival at the patient's side may be lower than the 
threshold used for later therapy stages. 
0021. In other aspects, the invention features a method of 
automatically determining which type of treatment is most 
appropriate for a cardiac arrest victim, the method compris 
ing transforming one or more time domain electrocardio 
gram (ECG) signals into a frequency domain representation 
comprising a plurality of discrete frequency bands, combin 
ing the discrete frequency bands into a plurality of analysis 
bands, wherein there are fewer analysis bands than discrete 
frequency bands, determining the content of the analysis 
bands, and determining the type of treatment based on the 
content of the analysis bands. 
0022. In preferred implementations, one or more of the 
following features may be incorporated. Transforming may 
comprise the Fourier transform. Transforming may comprise 
a Wavelet transform. Transforming may comprise a Radon 
transform. Determining the content of the analysis bands 
may comprise determining a plurality of values. The content 
and the plurality of values may be calculated at more than 
two points in time, and wherein the sequence of plurality of 
values in time may define a trajectory. The trajectory may be 
analyzed using estimation and prediction methods. The 
analysis method may involve use of a recursive filter. The 
recursive filter may be a Kalman filter. The analysis method 
may involve use of a Particle Filter. The analysis of the 
trajectory may be used to predict defibrillation success. The 
analysis of the trajectory may be used to determine whether 
it is appropriate to defibrillate or deliver an alternative 
therapy Such as chest compressions, drugs such as epineph 
rine, constitutive nutrients such as glucose, or other electri 
cal therapy Such as pacing. A mathematical transformation 
may be performed on the trajectory. The transformation may 
be a projection of the trajectory onto a plane within the 
parameter space. Image mensuration algorithms may be 
employed to evaluate the features of the two dimensional 
projection of the trajectory. The content may comprise at 
least two parameters descriptive of the content of an analysis 
band from the analysis bands. Determining the content of an 
analysis band may comprise quantifying the energy within 
an analysis band. Quantifying the energy within an analysis 
band may comprise determining at least one number char 
acterizing the energy of the highest peak within the band. 
Quantifying the energy with an analysis band may comprise 
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determining an overall or average energy for the band. The 
invention further comprises analyzing the variation over 
time of the content of the analysis bands. The bands may be 
about 0.5 Hz in width. The bands may be of unequal widths 
such that additional resolution is provided for frequency 
bands that are of greater importance in the analysis. Fre 
quencies less than 3 Hz may be subdivided into bands whose 
widths are larger than those in the 6-12 Hz frequency range. 
Each band may be composed of an aggregation of multiple 
spectral measurements. Characteristics of the distribution of 
spectral measurements within the band may include at least 
one of the following descriptors: 
0023 mean spectral energy, spectral energy variance, 
median spectral energy, maximum spectral energy, or mini 
mum spectral energy. 
0024. In another aspect, the invention features a method 
of automatically determining which type of treatment is 
most appropriate for a cardiac arrest victim, the method 
comprising transforming one or more time domain ECG 
signals into a frequency domain generally containing a 
plurality of peaks, processing the frequency domain repre 
sentation to characterize at least a plurality of the peaks, 
wherein characterizing a peak comprises determining a 
plurality of parameters characterizing the peak, and deter 
mining the type of treatment based on the parameters 
characterizing at least some of the peaks. 
0025. In preferred implementations, one or more of the 
following features may be incorporated. The invention may 
further comprise analyzing the variation over time of at least 
Some of the plurality of parameters characterizing at least 
some of the plurality of peaks. The content and the plurality 
of values may be calculated at more than two points in time, 
and wherein the sequence of plurality of values in time may 
define a trajectory. The trajectory may be analyzed using 
estimation and prediction methods. The analysis method 
may involve use of a recursive filter. The recursive filter may 
be a Kalman filter. The analysis method may involve use of 
a Particle filter. The analysis of the trajectory may be used 
to predict defibrillation success. The analysis of the trajec 
tory may be used to determine whether it is appropriate to 
defibrillate or deliver an alternative therapy such as chest 
compressions, drugs such as epinephrine, constitutive nutri 
ents such as glucose, or other electrical therapy Such as 
pacing. A mathematical transformation may be performed 
on the trajectory. The transformation may be a projection of 
the trajectory onto a plane within the parameter space. Image 
mensuration algorithms may be employed to evaluate the 
features of the two dimensional projection of the trajectory. 
Analyzing the variation over time may comprise determin 
ing variation in the frequency of a peak. Determining a 
plurality of parameters characterizing the peak may com 
prise estimating a shape of the peak. 
0026 Estimating a shape of the peak may comprise using 
a non-linear curve fitting routine. The plurality of the peaks 
may comprise a largest amplitude frequency peak and peaks 
having a fraction of an amplitude of the largest amplitude 
frequency peak. The parameters may comprise a frequency 
of a peak, an amplitude of the peak, and a width of the peak. 
The parameters may comprise a depth of the peak. The 
parameters may comprise a variance of the peak. The 
parameters may comprise a first moment of the peak. The 
invention further comprises determining a reference fre 
quency from the frequency domain and determining a vari 
ance of the energy of the frequency domain using the 
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reference frequency. The invention may also further com 
prise determining that the victim is in a sinus arrhythmic 
state if the variance of the energy of the frequency repre 
sentation is below a threshold. The reference frequency is 
one of a mean frequency, a median frequency, a center 
frequency, and a peak frequency. Determining the type of 
treatment may comprise determining that the type of treat 
ment is to defibrillate the victim’s heart if the following 
conditions are met: the victim is determined to be in the 
sinus arrhythmic state, a frequency of a largest amplitude 
frequency peak is less than a first threshold, and the number 
of peaks is less than a second threshold. 
0027 Determining the type of treatment may comprise 
determining that the type of treatment is chest compressions 
to the victim if the following conditions are met: the victim 
is determined to be in the sinus arrhythmic state and a 
frequency of a largest amplitude frequency peak is greater 
than a first threshold and if the number of peaks is less than 
a second threshold. Determining the type of treatment may 
comprise determining that the type of treatment is monitor 
ing the victim or drug therapy if the following conditions are 
met: the victim is determined to be in the sinus arrhythmic 
state, and the number of peaks is greater than a threshold. 
Determining parameters may comprise measuring a change 
of one or more parameters of the peaks in a range of the 
frequency spectrum over multiple digital time samples. Each 
peak may be considered to retain an identity over the 
multiple digital time samples if its amplitude and frequency 
do not change more than a threshold from one time sample 
to a Subsequent time sample. Determining the type of 
treatment may comprise comparing an oscillation cycle rate 
of the change to a cycle rate band and if the cycle rate is in 
the band, determining that the type of treatment is to 
defibrillate the victims heart. Determining the type of 
treatment may further comprise determining that a defibril 
lating shock to the victims heart is suitable therapy when 
the oscillation is at or near a maximum. For two or more 
peaks the change may be a relative decrease, and wherein 
determining the type of treatment may comprise comparing 
the relative decrease to a threshold, and if the relative 
decrease is above the threshold, the type of treatment may be 
chest compressions and then defibrillation. The one or more 
parameters may comprise amplitudes of the peaks, the 
threshold may be about fifteen percent, and the multiple 
digital time samples may cover at least a ten second interval. 
For two or more peaks, the change may be a relative 
increase, the parameters may comprise frequency of the 
peaks, amplitude of the peaks, or width of the peaks, and 
wherein determining the type of treatment may comprise 
comparing the relative increase to a threshold, and if the 
relative increase is above the threshold, the type of treatment 
may be defibrillation. For two or more peaks, the change 
may be a decrease, and the parameters may comprise 
variance of the frequency of the peaks, and wherein deter 
mining the type of treatment may comprise comparing the 
decrease to a threshold, and if the decrease is below a 
threshold, the type of treatment may be defibrillation. The 
range of the frequency spectrum may be six to twelve Hertz. 
The invention may further comprise communicating the type 
of treatment to one of a drug infusion device, a portable 
chest compression device, and a ventilator. The invention 
may also further comprise displaying an indication of the 
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type of treatment. Displaying an indication of the type of 
treatment may comprise displaying a value of an estimation 
of an accuracy of the type. 
0028. In another aspect, the invention features a method 
of automatically determining which type of treatment is 
most appropriate for a cardiac arrest victim, the method 
comprising transforming one or more time domain ECG 
signals into a frequency domain representation, processing 
the frequency domain representation to characterize the 
content of the frequency domain representation in a band 
from about 6 to about 12 Hz, and determining the type of 
treatment based on the content in the band. 
0029. In preferred implementations, one or more of the 
following features may be incorporated. The invention may 
further comprise relying on a ventricular fibrillation (VF) or 
a ventricular tachycardia (VT) advisory algorithm to deter 
mine whether the victim is in VF or VT, and wherein 
determining the type of treatment may comprise determining 
when to deliver a shock. The content in the band may 
comprise a quantitative measure representative of approxi 
mately the total energy in the band. 
0030. In another aspect, the invention features a method 
of automatically determining which type of treatment is 
appropriate for a cardiac arrest victim, the method compris 
ing measuring at least one physiological signal, determining 
at least two parameters related to the at least one physi 
ological signal, the at least two parameters forming a param 
eter set, repeating the measurement and calculation at more 
than two points in time to create a sequence of parameter 
sets, wherein the sequence of parameter sets defines a 
trajectory, and analyzing the trajectory using estimation and 
prediction methods that comprise the use of a recursive filter. 
0031. In preferred implementations, one or more of the 
following features may be incorporated. The recursive filter 
may be a Kalman filter. The analysis method may involve 
use of a Particle filter. The analysis of the trajectory may be 
used to predict defibrillation success. The analysis of the 
trajectory may be used to determine whether it is appropriate 
to defibrillate or deliver an alternative therapy such as chest 
compressions, drugs such as epinephrine, constitutive nutri 
ents such as glucose, or other electrical therapy Such as 
pacing. A mathematical transformation may be performed 
on the trajectory. The transformation may be a projection of 
the trajectory onto a plane within the parameter space. Image 
mensuration algorithms may be employed to evaluate the 
features of the two dimensional projection of the trajectory. 
The predicted next state of the parameter set may be used to 
determine the appropriate treatment. The method may be 
carried out by a device configured to determine an appro 
priate therapy for a rescuer to perform on the victim. The 
probability of defibrillation success associated with a plu 
rality of alternative treatments may be shown on the display 
of the device. The probability of success with a plurality of 
treatments may be shown on the display as range of num 
bers. The device may be an AED that notifies the rescuer in 
the form of an audible or visual alarm indicating that the 
paramedic should stop doing compressions for a more 
accurate analysis of the ECG waveform. The device may be 
an AED that notifies the rescuer in the form of an audible or 
visual alarm indicating that the paramedic should alter the 
therapy being delivered. 
0032. In another aspect, the invention features an AED 
capable of automatically determining which type of treat 
ment is appropriate for a cardiac arrest victim, the AED 
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comprising electrical therapy pads configured to deliver 
electrical therapy to patients, ECG electrodes smaller in 
diameter than the electrical therapy pads are integrated into 
the electrical therapy pads, the smaller ECG electrodes are 
configured to provide at least one additional electrical vector 
that is approximately orthogonal to the monitoring vector 
produced by the ECG signal from the therapy electrodes. 
0033. In preferred implementations, one or more of the 
following features may be incorporated. A vector sum of the 
at least one additional electrical vector and the monitoring 
vector may provide a trajectory over time that can be used 
by the AED in determining which type of treatment is 
appropriate. 
0034. These and other implementations may have one or 
more of the following advantages. The method uses fre 
quency-domain analysis methods for ECG processing/advi 
sory during chest compressions. This method allows ECG 
analysis without interruption of chest compression and thus 
significantly reduces the interruption time during chest com 
pressions, leading to an increase in the Success rate of 
resuscitation. 
0035) Some implementations allow for the more com 
plete specification of the ECG waveform spectrum for 
different cardiac states in a mathematically tractable form 
that provides improved receiver-operator characteristics 
(ROC) of the detection algorithm, while reducing the per 
formance burden on the processor. 
0036. Other features and advantages of the invention will 
be apparent from the description and drawings, and from the 
claims. 

DESCRIPTION OF DRAWINGS 

0037 FIG. 1A is a magnitude versus time plot of a 
ventricular tachycardia (VT) rhythm. 
0038 FIG. 1B is a magnitude versus time plot of a 
ventricular fibrillation (VF) rhythm. 
0039 FIG. 2 is a diagram of one implementation includ 
ing an automatic electronic defibrillator (AED) and a mul 
tiple lead electrocardiograph (ECG) device. 
0040 FIG. 2A is a diagram of the AED of FIG. 2. 
0041 FIG. 3A is an example of a frequency spectrum plot 
with the energy concentrated within a small frequency 
range. 
0042 FIG. 3B is an example of a frequency spectrum plot 
with the energy distributed over a relatively larger frequency 
range. 
0043 FIG. 4 is an example of an ECG spectrum as a 
function of time. The magnitude (or energy) of the spectrum 
is encoded by the grayscale. A darker color corresponds to 
a higher magnitude. 
0044 FIG. 5 is an EFV score of the signal in FIG. 4 as 
a function of time. 
004.5 FIG. 6 is a flow chart of a process for detecting VF 
in a patient during chest compressions. 
0046 FIG. 7A and 7B are examples of an ECG spectrum 
at two points in time, in this case separated by 4 seconds. 
0047 FIG. 8 shows a logistic curve that relates a mea 
Sured predictive variable (X axis) into a approximate prob 
ability of therapeutic Success (y axis). 

DETAILED DESCRIPTION 

0048. There are a great many different implementations 
of the invention possible, too many to possibly describe 



US 2016/0331330 A1 

herein. Some possible implementations that are presently 
preferred are described below. It cannot be emphasized too 
strongly, however, that these are descriptions of implemen 
tations of the invention, and not descriptions of the inven 
tion, which is not limited to the detailed implementations 
described in this section but is described in broader terms in 
the claims. 
0049 Referring to FIG. 2, a rescuer uses an AED 10 to 
automatically monitor a victim during cardiac resuscitation. 
The AED 10 includes a speaker 16, a display screen 18, an 
analog to digital converter 20, a processor 22, and a defi 
brillator pulse generator 24. The analog-to-digital converter 
20 is connected to a set of ECG leads attached to the victim. 
The ECG leads monitor the electrical rhythms of the vic 
tims heart. The converter 20 sends the signals from the ECG 
leads to the processor 22. The processor 22 monitors the 
victim's heart for dangerous rhythms using the ECG signals 
while the victim is resuscitated using chest compressions 
techniques. If the AED 10 detects a dangerous heart rhythm, 
the AED 10 generates an alarm signal. The alarm signal is 
noticeable to the rescuer. The AED 10 can generate a 
defibrillating shock to the victim when the rescuer issues a 
command to the AED 10. The defibrillating shock is 
intended to remedy the dangerous rhythm of the victims 
heart. 
0050. The AED 10 uses a rhythm advisory method for a) 
quantifying the frequency-domain features of the ECG sig 
nals; b) differentiating normal and abnormal ECG rhythms, 
such as VF; c) detecting the onset of abnormal ECG 
rhythms; and d) making decisions about the physiological 
states of the heart. This frequency-domain measure is reli 
able with or without the presence of the chest compression 
artifact in the ECG signals. The AED 10, after identifying 
the current physiological state of the heart, can make a 
decision about appropriate therapeutic action for the rescuer 
to make and communicates the action to the rescuer using 
the speaker 16 and the display screen 18. 
0051. This rhythm advisory method can also be incorpo 
rated in an ECG rhythm classifier or a ventricular arrhythmia 
detector. 
0052. The AED 10 may incorporate functionality for 
performing additional therapeutic actions such as chest 
compressions, ventilations, or delivery of intravenous solu 
tion containing metabolic or constitutive nutrients. Based on 
the results of the analysis of the rhythm advisory method, the 
AED 10 may automatically deliver the appropriate therapy 
to the patient. The AED 10 may also be configured in 
“advisory” mode wherein the AED 10 will prompt the 
caregiver after the AED 10 has made a determination of the 
best therapy, and acknowledgement by the caregiver/device 
operator, in the form of a button press or voice-detected 
acknowledgement, is required before therapy is delivered to 
the patient. 
0053. The AED 10 then analyzes the ECG signals to 
predict defibrillation success as well as to decide whether it 
is appropriate to defibrillate or to deliver an alternative 
therapy Such as chest compressions, drugs such as epineph 
rine, constitutive nutrients such as glucose, or other electri 
cal therapy Such as pacing. 
0054. In some examples, one or more therapeutic deliv 
ery devices 30 automatically deliver the appropriate therapy 
to the patient. The therapeutic delivery devices 30 are 
physically separate from the defibrillator AED 10 and con 
trol of the therapeutic delivery devices 30 may be accom 
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plished by a communications link 32. The communications 
link 32 may take the form of a cable connecting the devices 
10, 30, but preferably the link 32 is via a wireless protocol 
such as Bluetooth or a wireless network protocol such as 
Institute of Electrical and Electronics Engineers (IEEE) 
802.11. Bluetooth is a telecommunications industry speci 
fication that describes how mobile computing devices can be 
interconnected using a short-range wireless connection. The 
therapeutic delivery device 30 can be a portable chest 
compression device that is commercially available as the 
AutopulseTM, provided by Revivant of Sunnyvale, Califor 
nia. In other examples, the therapeutic delivery device 30 is 
a drug infusion device that is commercially available as the 
Power InfuserTM., provided by Infusion Dynamics of Plym 
outh Meeting, Pennsylvania, or the Colleague CXTM, pro 
vided by Baxter Healthcare Corp., of Round Lake, Ill. The 
therapeutic delivery device 30 can be a ventilator that is 
commercially available as the iVentTM, provided by Ver 
samed of Pearl River, N.Y. The therapeutic delivery device 
30 can also include multiple therapies such as defibrillation, 
chest compression, ventilation and drug infusion. 
0055. In other examples, control and coordination for the 
overall resuscitation event and the delivery of the various 
therapies may be accomplished by a device 34 or processing 
element external to the AED 10, for instance the device 34 
may download and process the ECG data from the AED 10; 
analyze the ECG signals, perform the determinations based 
on the analysis, and control the other therapeutic devices 30, 
including the AED 10. 
0056. In other examples, the AED 10 may perform all the 
processing of the ECG, including analyzing the ECG sig 
nals, and transmit to the control device 34 only the final 
determination of the appropriate therapy, whereupon the 
control device 34 would perform the control actions on the 
other linked devices 30. The control device 34 is commer 
cially available as the AutopulseTM, provided by Revivant of 
Sunnyvale Calif. 
0057 The chest compression artifact can be separated 
from the ECG signal components in the frequency domain. 
This makes it possible for the AED 10 to process the ECG 
signal without halting the processing during CPR chest 
compressions. The compression rate during CPR chest com 
pressions recommended by American Heart Association 
(2000) is 100 per minute or 1.7 Hz and the frequency range 
used for quantifying the frequency-domain features of the 
ECG signals can be set to be higher than that (preferably but 
not limited to be 3 Hz and up) using a high pass frequency 
filter. 
0058. The rhythm advisory method quantifies the energy 
distribution of the ECG signal in the frequency domain with 
a quantification method. The quantification result can be 
used to differentiate normal and dangerous ECG rhythms 
with or without the presence of the chest compression 
artifact. In one method, the AED 10 breaks up the frequency 
domain of the ECG signal into analysis frequency bands. 
The AED 10 then analyzes the different frequency bands for 
energy or variation over time to determine an appropriate 
treatment for the victim. In the preferred embodiment, the 
bands are 0.5 Hz in width, though they may also be divided 
into unequal widths such that additional resolution is pro 
vided for frequency bands that are of greater importance in 
the analysis. For instance, frequencies less than 3 Hz may be 
subdivided into only three equally spaced bands while the 
range from 3-5 Hz may have 0.5 Hz bands, and the range of 
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6-12 Hz, may have 0.25 Hz bands. Each band may be 
composed of an aggregation of multiple spectral measure 
ments. For each band, characteristics of the distribution of 
spectral measurements within the band may include Such 
descriptors, e.g., as mean spectral energy, spectral energy 
variance, median spectral energy, maximum spectral energy, 
minimum spectral energy. 
0059. In one example of the analysis frequency bands, 
the AED 10 generates the frequency bands based on peaks 
in the frequency spectrum. Thus, one frequency band cor 
responds to the frequency spread of a given peak in the 
frequency spectrum. There are common algorithms for iden 
tifying peaks in the frequency spectrum that include calcu 
lating slopes and energy at different points of the frequency 
spectrum. For each of these peaks, the AED 10 uses a 
non-linear parameter estimation algorithm or curve fitting 
algorithm to estimate the shape of the peak. From this 
spectral shape, the AED 10 calculates parameters about the 
peak. 
0060. The quantification method differentiates various 
spectral patterns and shapes. The 
0061 AED 10 makes a decision about the physiological 
state of the heart and Suitable therapy based on the quanti 
fication results. The quantification method of the rhythm 
advisory method is a combination of measures from Sub 
methods. Some of these sub-methods differentiate various 
spectral shapes, including but not limited to: (1) the number 
of peaks in the target frequency range, (2) the relative 
strength?peak value of various spectral peaks, (3) the relative 
bandwidth of various spectral peaks and (4) the variance of 
the energy distributed in a selected frequency range. One or 
more sub-methods can also measure change in the spectral 
information over time. 

0062. These measures can be combined in a multi-di 
mension space to enhance both the sensitivity and specificity 
of the decision. One or more information processing tech 
niques can be used to quantify the combination following 
the computation of these measures in order to make a 
decision based on the combination. The information pro 
cessing techniques can include but are not limited to simple 
combining rules or math, neural networks, expert Systems 
incorporating fuZZy or standard logic, or other artificial 
intelligence techniques. The additional measures can also 
include measurement of Velocity or acceleration of chest 
compression during chest compressions according to the 
techniques taught by U.S. application Ser. No. 10/704,366, 
Method and Apparatus for Enhancement of Chest Compres 
sions. During Chest Compressions, filed on Nov. 6, 2003. 
0063. The information processing techniques include 
simple combining rules or math, neural networks, expert 
systems incorporating fuZZy or standard logic, or other 
artificial intelligence techniques. These techniques make a 
decision based on the combination of measures about the 
physiological state of the heart and suitable therapy. The 
different measures are individual indications that have vary 
ing degrees of uncertainty about the physiological state of 
the heart and Suitable therapy. In some examples, the infor 
mation processing technique is trained automatically using 
Software techniques known to those skilled in this art and a 
database of ECG rhythms that include outcome data. These 
examples include neural networks. In other examples, the 
information processing technique is generated manually 
based on observations of ECG patterns and outcomes. These 
examples include simple combining rules or math, and 
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expert Systems utilizing fuZZy or standard logic. In the 
example of expert Systems utilizing standard logic, a pro 
grammer manually generates logical rules without uncer 
tainty, the rules specifying preconditions such as "if measure 
A recommends defibrillation' and "if measure B recom 
mends defibrillation', and if these preconditions are met, the 
AED 10 automatically defibrillates the patient. In the 
example of expert Systems utilizing fuZZy logic, the rules are 
more “fuzzy' and the states to be combined incorporate 
Some degree of uncertainty based on human language. For 
instance, the fuZZy logic rules can incorporate such input as 
“measure A detects a strong need for defibrillation' versus 
“measure A detects a weak need for defibrillation'. The 
fuZZy logic framework combines the different measures and 
outputs results such as “strong need for defibrillation” or 
“weak need for defibrillation. 

0064. The method of making the decision about the 
physiological state is to choose from a group of possible 
states, each of which corresponds to a predetermined value 
range of the proposed measure. The possible states can 
include but are not limited to normal sinus rhythm, VF, 
shockable (unstable) VT, stable VT, supraventricular 
rhythm, and pulseless electrical activity. 
0065 One possible sub-method for the quantification 
method is the variance of the energy distributed in a selected 
frequency range, or variance Sub-method. Two examples of 
energy-distribution patterns are shown in FIGS. 3A and 3B. 
The frequency spectrum plots of FIGS. 3A and 3B are 
calculated using a fast Fourier transform (FFT) of a signal 
over time. Referring to FIG. 3A, the energy Y (f) of a 
frequency spectrum 50 is concentrated within a narrow 
frequency band and represents a pattern found in an arrhyth 
mic state such as VF. Referring to FIG. 3B, the energy Y(f) 
of a frequency spectrum 52 is distributed over a wide 
frequency range and represents a pattern found in a non 
dangerous heart rhythm or normal sinus rhythm. The vari 
ance Sub-method quantifies the features of the two frequency 
spectra 50, 52 and thus the variance sub-method can differ 
entiate between an arrhythmic State and normal sinus 
rhythm. 
0.066 One example of the variance sub-method calcu 
lates the variance of the energy from a reference frequency 
(F) of the spectrum. Possible candidates of the reference 
frequency include but are not limited to the mean frequency, 
the median frequency, the center frequency, or the peak 
frequency of the spectrum. 
0067. In this example, the variance sub-method computes 
the weighted distance of each frequency component from 
the reference frequency of the spectrum and thus quantifies 
the energy-distribution pattern. An example of this measure, 
the energy-frequency variance (EFV) can be calculated with 
the following mathematical equation: 

0068. However, the variance sub-method is not limited to 
this mathematical equation. Measures that quantify the 
weighted or un-weighted distance of the frequency compo 
nents from a reference frequency of the frequency spectrum 
can be used for this measure. 
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0069. Referring to FIG. 3A, energy of the spectrum 50 is 
concentrated within a narrow frequency range and thus the 
spectrum has a relatively small EFV value. Referring to FIG. 
3B, energy of the spectrum 52 is distributed over a relatively 
wider frequency range and the spectrum has a relatively 
larger EFV value. Thus, the EFV value can be used to 
distinguish between a normal sinus rhythm and an arrhyth 
mic sinus rhythm (e.g., VF). 
0070 Referring to FIG. 4, a spectrum 100 of a piece of 
an ECG signal is a function of time. Part 102 of the signal 
shows a VF rhythm during chest compressions. Part 104 of 
the signal shows a VF rhythm without chest compressions. 
The VF is terminated by an electrical shock 106, which is 
followed by a period of normal sinus rhythm (NSR). During 
this NSR period, part 108 has no chest compressions while 
part 110 has chest compressions. Chest compression arti 
facts that are characterized by strong low-frequency (below 
3 Hz) components can be observed in the first 15 seconds 
(part 102) and the last 10 seconds (part 110) of this time 
frequency plot 100. During the time periods 102 and 104 
that are associated with VF (i.e. before the electrical shock 
106), the energy distribution Y(f) above 4 Hz, is clearly 
concentrated in a small frequency range, with or without the 
presence of the chest compression artifact. During the time 
periods 108 and 110 of NSR (i.e. after the electrical shock 
106), the energy distribution Y(f) above 4 Hz, has a pattern 
that the energy is distributed over a wide frequency range, 
with or without the presence of the chest compression 
artifact. 

(0071 Referring to FIG. 5, an EFV score 152 is calculated 
from the signal 100 (shown in FIG. 4). A threshold 154 can 
be used to distinguish an arrhythmic rhythm from a normal 
sinus rhythm. Thus, during the first 50 seconds (parts 102 
and 104 having VF rhythm) of the signal 100, the EFV score 
152 is below the threshold 154. 
0072 Referring to FIG. 6, a variance sub-method 200 is 
implemented in the software and/or hardware of the AED 
10. The ECG data acquired by the front-end analog to digital 
converter 10 of the AED 10 is processed in a segment-by 
segment manner. The number of segments to be processed 
before a decision is made is predetermined (e.g., 9 seg 
ments). 
0073. The length of a segment is preferably 2 seconds 
and each segment preferably has a 1-second overlap with 
both the segment before and after itself, for the desired 
frequency and time-domain resolution. 
0074 The segment-counter is set (202) to be zero when 
the processing starts and the first segment of the signal is 
acquired (204). A high-pass filter with a desired cutoff 
frequency (preferably but not limited to be 0.5 Hz) is then 
applied (206) to remove the baseline drift. The frequency 
domain representation of the filtered signal is acquired via a 
fast fourier transform (FFT) (208). The spectral shape is 
quantified (210) using a preferred method. In an example, 
the EFV score is calculated based on this frequency-domain 
representation and the frequency range for the EFV calcu 
lation is selected such that the low-frequency part where the 
chest compression artifact dominates is excluded. 
0075. The segment counter is increased (212) by one 
after the quantification of the spectral shape. If (214) all of 
the predetermined number of segments have been processed, 
the quantification results are processed (216) to get a final 
score (including but not limited to the mean value of the 
EFV scores), otherwise the next segment of ECG signal is 
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processed. In some implementations, the final score is an 
average of the scores from the segments. 
0076 An estimate of the physiological state of the heart 
can be made based on the final EFV score. If (218) the final 
score is below a predetermined threshold, an arrhythmic 
rhythm is estimated (220). Using the variance sub-method, 
the AED 10 compares a threshold to the final EFV score to 
determine if the victim is in an arrhythmic state. Otherwise 
the processed signal is estimated to be normal. In one 
example, a preset threshold of 6 is used. In other examples, 
other preset thresholds can be used. 
0077. An arrhythmic sinus rhythm can be detected using 
the variance sub-method. These arrhythmic sinus rhythms 
can be different types of rhythms with different appropriate 
therapies. It may be difficult to distinguish between arrhyth 
mic rhythms that are shockable rhythms and unshockable 
rhythms using only the variance Sub-method. For example, 
VTs that are shockable (rates exceeding 120-150 beats per 
minute (BPM) may not be distinguishable from non-shock 
able VTs (<120 BPM) solely with the measure from the 
variance Sub-method. Thus, the quantification method pref 
erably enhances the variance sub-method with at least one 
other spectral measurement in determining the appropriate 
therapy for detected sinus rhythms. The quantification 
method may also make decisions based on changes in the 
spectral parameters over time. Multiple measures may be 
thought of as forming a matrix, but actual implementations 
need not employ matrices. 
0078. In some implementations, the AED 10 may com 
bine the frequency of the largest amplitude spectral peak 
(LASP) in the frequency spectrum with the measure from 
the variance Sub-method to create a 1x2 matrix. In some 
implementations, AED 10 may additionally calculate the 
number of spectral peaks in the frequency representation of 
the ECG signal with amplitudes of at least 25% of the LASP 
using conventional methods known to those skilled in the art 
of signal processing and spectral analysis and include this 
measurement in the vector. A frequency of the LASP 
(FLASP) of less than 2 Hz and the number of peaks (NOP) 
less than 3 indicates that it is a shockable VT or VF, while 
a FLASP of greater than 2 Hz and an NOP of less than 3 
indicates a non-shockable VT. Non-shockable supraven 
tricular rhythms can have a NOP greater than 3. 
0079. In other implementations, the AED 10 can combine 
information from the variance sub-method and the FLASP 
and NOP measure, using information processing techniques 
described previously, to estimate the physiological state of 
the heart and suitable therapy. A combination of the EFV 
under a threshold and FLASP-2HZ and NOP-3 can indicate 
a shockable VT or VF for which appropriate therapy can be 
defibrillation. A combination of the EFV under a threshold 
and FLASP-2 Hz, and NOP-3 can indicate a non-shockable 
VT for which appropriate therapy can be normal CPR. A 
combination of the EFV under a threshold and NOP-3 can 
indicate a Supraventricular rhythm for which appropriate 
therapy can be simply monitoring the patient or drug 
therapy. 
0080 A descriptor matrix may take the form of anxm 
dimensional matrix, where in the number of peaks and 
m=the number of parameters used to describe the spectral 
shape. In one implementation with m=6, the six parameters 
are the following: 1) the frequency of the particular peak 
(FP); 2) the amplitude of that peak (AP); 3) the width of the 
peak (PW); 4) the depth of the peak (DP); 5) the variance of 
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that peak (VP); and 6) the first moment of that peak (FM). 
Peak number (PN) is a digit providing an identifier for each 
individual peak. For instance, initially the AED 10 detects 5 
peaks, each PN numbered sequentially with frequencies at 1, 
2, 3, 4, and 5 Hz. Four seconds later in time, however, the 
AED 10 detects a peak at a new frequency of 4.5 Hz and the 
peak is assigned a PN of 6. 
0081. The description matrix, which may be termed a 
spectral shape matrix (SSM), may include two header val 
ues, NOP and a boolean value, Gaussian peak (GP), which 
indicates that for spectral shapes that have a single peak 
(NOP=1) and GP=true, that the spectral shape may be 
described by a parameter subset of only FP AP and VP. The 
SSM may preferably take the form: 

FP AP PW. VP, FM 

FP, AP PW. VP, FM 

FP, AP, PW, VP, FM 

FP, AP PW. VP, FM 

I0082 Since fibrillation is a chaotic rhythm, the FP fre 
quencies may vary at a rate faster than the time window of 
the short-time Fourier transform. For instance, if the time 
window for computing the Fourier transform to generate a 
frequency spectrum is set for 4 seconds, the FPS for adjacent 
time windows (and corresponding frequency spectrums) 
will appear to jump from one frequency to the next. If, 
however, the AED 10 applies a standard short time Fourier 
transform to the signal while at the same time increasing the 
rate at which a Fourier transform is performed on the 
incoming data, the time window will be reduced and thus 
there will be a loss in the spectral resolution of the Fourier 
transform. Thus, in one example, the AED 10 simultane 
ously performs multiple Fourier transforms on the ECG data 
with each subsequent transform initiated 400 milliseconds 
after initiation of the previous transform and a time window 
of 4 seconds, resulting in the AED performing 10 simulta 
neous transforms of data in a time window of 4 seconds. 
Thus, the data for each transform has some overlap with data 
for adjacent transforms. In such a manner, the AED 10 
maintains both spectral and time resolution. 
I0083. The AED 10 may calculate additional header val 
ues that describe generic aspects of the ECG spectrum. 
These additional header values may include, for instance, 
the amplitude spectrum area (AMSA) as described in U.S. 
Pat. No. 5,957.856 or the variance measure, as described 
previously. These values, along with NOP and GP can be 
thought of as forming a vector on which matrix operations 
and transformations may be performed independently of, or 
combined with, the matrix formed by the parameters for the 
individual peaks. 
0084. The AED 10 can then perform matrix operations 
and transformations known to those skilled in the art on the 
SSM. The AED 10 can also calculate the SSM at regular 
intervals in time, to generate anxmxp dimensional matrix, 
where p is the number of samples in the time interval of 
interest. Each SSM may be thought of as a point in In, 
m-space that then forms a trajectory in then, m, p-space. 
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The AED 10 then analyzes this trajectory to predict defi 
brillation success as well as to decide whether it is appro 
priate to defibrillate or deliver an alternative therapy such as 
chest compressions, drugs such as epinephrine, constitutive 
nutrients such as glucose, or other electrical therapy Such as 
pacing. 
I0085. The AED 10 may identify one or more peaks in the 
frequency spectrum. For each of these identified peaks, the 
AED 10 identifies a frequency band corresponding to the 
peak. The AED 10 may determine the peak model param 
eters, e.g. FP, AP, and PW, iteratively by a nonlinear param 
eter estimation or curve fitting routine for each peaks 
frequency band. For example, the AED 10 may use the 
Marquardt-Levenberg algorithm to minimize the error in the 
nonlinear parameter estimation or Chi-square, X, where X 
is expressed as follows. 

*(p) = r XMAP a P-N-P2 VM (i) 

For this expression, there are N recorded energy values, M(i) 
are the recorded energy values, and S(i; p) is the synthesized 
model curve energy values, sampled at points i in depen 
dence on p varying parameter values. The term enclosed in 
brackets corresponds to the normalized residuals R(i), which 
provide a weighted measure of the difference between the fit 
curve and the data at each measured frequency value M(i). 
I0086. The AED 10 uses either the height-normalized 
Lorentzian function, L(E), or the Gaussian function, G(E) to 
model an energy function for each of the spectral peaks 
where E is a frequency. In the case of L(E): 

In the case of G(E): 

G(E) = exp(-in 2. It fe). 

Both functions L(E), G(E) are completely characterized by 
the peak parameters fl. corresponding to /2 the peak width 
at half-maximum peak amplitude and Eo, the peak position 
or FP. The AED 10 can model skew of the peak by 
combining the Gaussian G(E) and Lorentzian L(E), with B 
replaced by the term f+C.(E-E). The AED 10 can also add 
in a factor h to allow for varying peak heights. The result is 
function f(E). The AED 10 calculates f(E) as follows. 

h. 1 E-Eo fl' 1 In 2-- F - 2 + M) exp(-1 - M). In late, 

I0087. Some of the advantages of this product-type peak 
shape model f(E) are the availability of analytical presen 
tations of the partial derivatives of f(E) with respect to the 
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parameters, which are needed in the Marquardt-Levenberg 
algorithm to establish the Jacobi matrix, the analytical value 
of B, and a faster convergence of the iterative estimation 
process. The depth of each peak is estimated either by 
incorporating a baseline curve into the 
0088 Marquardt-Levenberg algorithm, or by simply 
determining the two minimum points of the spectrum for a 
region around the estimated peak. Thus, using techniques 
known to one skilled in this art, the AED 10 can compute the 
spectral shape parameters of the peak: FP, AP PW, DP. VP, 
and FM from the function f(E). 
I0089. If the AED 10 finds a peak in the immediately 
subsequent time interval for which the AP and FP value does 
not vary by more than preferably 10%, then that second peak 
is considered to have the same peak number, PN, indicating 
that it is the same peak with a shift in frequency and 
amplitude. In such a fashion, the AED 10 can develop 
trajectories for the parameters for each particular peak as 
well as for the overall descriptor matrix. The AED 10 can 
add a new peak at any time during the event, in which case 
the AED 10 gives the new peak a new PN value. If the AED 
10 determines that a peak is extinguished, the PN number is 
maintained in memory of the AED 10. In the processing of 
candidates for new peaks, the sub-method reviews all extin 
guished peaks to first determine if the new peak is actually 
an extinguished peak, in which case the candidate is not 
given a new PN, and instead is given the PN number of the 
extinguished peak. 
0090 Prior to a successful shock of a heart in a dangerous 
rhythm, one or more parameters AP, DP. VP, FP, PW of 
peaks in the 6-12 HZ range of the frequency spectrum can 
oscillate with a cycle rate in the range of 0.1-1 Hz. Thus, 
detection of this oscillation through multiple time windows 
and frequency spectrums can be incorporated into the infor 
mation processing technique as an additional Sub-method 
that can recommend defibrillating the heart. Furthermore, 
the Sub-method can recommend timing the defibrillating 
shock when the peaks are at a maximum energy in the 0.1-1 
HZ cycle. For example, the Sub-method can recommend 
timing the delivery of the defibrillation shock to occur 
during the 100 millisecond Fourier transform cycle when the 
APs in the 6-12 HZ region are at a maximum. When the 
particular AP-maximum cycle has be found, the AED 10 
waits to deliver the defibrillation shock until the AED 10 
detects the peak of the waveform after it has been band 
pass-filtered with a center frequency of 7 Hz. This sub 
method synchronizes the shock with the elements of the 
ECG waveform that are most related to the normal sinus 
QRS. 
0091. The parameters FP. AP, and PW of peaks in the 
6-12 HZ region may also undergo oscillations indicating a 
change in the state of the heart as shown in FIGS. 7A and 7B, 
which depict the spectrum as measured at two points in time, 
separated by an interval of 4 seconds. For a heart that has 
been in fibrillation for a period of time, the ECG undergoes 
a gradual degradation in the values of the parameters FP, AP, 
and PW of peaks in the 6-12 HZ region of the frequency 
spectrum. As described previously, Suitable therapy for a 
heart that has been in fibrillation for a period time is to do 
chest compressions and then defibrillate. This degradation is 
measured over at least a 8-10 second interval. This is an 
additional Sub-method for the information processing tech 
nique. For example, if the AED 10 detects the APs of at least 
two peaks in the 6-12 HZ region of the frequency spectrum 
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decreasing by at least 15% over a 10 second interval, the 
Sub-method recommends chest compressions and then defi 
brillation. 

0092. If the circulation and metabolic substrate of the 
heart improve to the point that the heart is more likely to be 
able to recover from a defibrillation shock, changes in the 
parameters FP. AP, and PW of peaks in the 6-12 HZ region 
of the frequency spectrum will provide precursors to 
changes in the ECG that might be seen in the time domain 
of the ECG signal. Such as an increase in the amplitude of 
the ventricular fibrillation ECG (often termed “coarsening 
by medical practitioners). If the AED 10 detects an increase 
in the parameters FP. AP, DP VP or PW of peaks in the 6-12 
HZ region of the frequency spectrum, for instance as shown 
in FIG. 7B, a sub-method will recommend ceasing chest 
compressions or other current therapy and then defibrilla 
tion. 
0093. The peak frequencies, FP, for the peaks in the 6-12 
HZ region of the frequency spectrum can vary over time less 
when the condition of the heart is improving and thus the 
heart can handle the shock of defibrillation. This may be due 
to the presence in the myocardial activations of more normal 
activity at low levels manifesting in harmonics of the sinus 
rhythm fundamental frequency. This variation in the peak 
frequencies may be measured as the ratio of the average 
change in frequency in the region of 6-12 Hz with that of the 
FPs in the frequency range of 3-6 Hz, or measured as an 
absolute change for FPs in the range of 6-12 Hz. This 
sub-method, upon detecting the variation in the peak fre 
quencies, recommends defibrillation to the information pro 
cessing technique. 
0094. It is also possible for a sub-method to project the 
nxmxp trajectory of the SSM matrix onto a plane within 
the nxm-space and then analyze the form taken by the 
projection of the trajectory in the plane to determine the 
appropriate time to shock or the optimal treatment. The 
projection may include up to (n+m) variables of different 
weightings, though it preferably is a projection that is 
primarily along the VP axis of the nxm-space. In the plane 
projection, image mensuration algorithms are employed to 
evaluate the features of the two dimensional projection of 
the trajectory. The following are some of the preferred 
mensuration classes for which measurements are made by 
means known to those skilled in the art: area, centroid, 
circularity, clustering, compactness, maximum axis, mini 
mum axis, and perimeter. For instance, the minimum axis 
may be determined as follows. The minimum axis of an 
object is formally defined as the axis of maximum inertia 
(dispersion) passing through the centroid. One method to 
calculate the minimum axis is to compute the eigenvalues 
and eigenvectors of the scatter matrix comprised of the 
coordinate points of the object. The eigenvector correspond 
ing to the Smallest eigenvalue is the minimum axis. Another 
method is to fit an ellipse to the object perimeter. 
0.095 The projection may be calculated for a specific 
duration of time, for instance 10 seconds, resulting in a 
series of 2-dimensional objects that are representations of 
the trajectory in time—so-called projection 'Snap-shots. It 
then becomes possible to analyze trends in the time series of 
values in the mensuration classes for changes indicative of 
improving physiological conditions. For instance, an 
increased amplitude in VP oscillation during VF is indica 
tive of an improving physiological state. In this case, the 
AED 10 would then provide feedback to the caregiver to 
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continue performing the rescue operation as they have with 
an audible prompt such as, "Keep up the good work. The 
patient’s condition is improving.” Other such mensuration 
classes that are of value to track over time are the maximum 
axis angle, the perimeter and compactness. 
0096 Methods such as the Kalman filter may be used for 
the estimation and prediction of the trajectory. The Kalman 
filter estimates a process by using a form of feedback 
control: the filter estimates the process State at Some time 
and then obtains feedback in the form of (noisy) measure 
ments. As such, the equations for the Kalman filter fall into 
two groups: time update equations and measurement update 
equations. The time update equations are responsible for 
projecting forward (in time) the current state and error 
covariance estimates to obtain the a priori estimates for the 
next time step. The measurement update equations are 
responsible for the feedback—i.e. for incorporating a new 
measurement into the a priori estimate to obtain an improved 
a posteriori estimate. The time update equations can also be 
thought of as predictor equations, while the measurement 
update equations can be thought of as corrector equations. 
Indeed the final estimation algorithm resembles that of a 
predictor-corrector algorithm for Solving numerical prob 
lems. 

0097 
3. As +Bit 1 

Discrete Kalman filter time update equations: 

0098 
tions: 

Discrete Kalman filter measurement update equa 

0099. The first task during the measurement update is to 
compute the Kalman gain, K, The next step is to actually 
measure the process to obtain, and then to generate an a 
posteriori State estimate by incorporating the measurement, 
Z. The final step is to obtain an a posteriori error covariance 
estimate, P. After each time and measurement update pair, 
the process is repeated with the previous a posteriori esti 
mates used to project or predict the new a priori estimates. 
This recursive nature is one of the very appealing features of 
the Kalman filter it makes practical implementations much 
more feasible than (for example) an implementation of a 
Wiener filter which is designed to operate on all of the data 
directly for each estimate. The Kalman filter instead recur 
sively conditions the current estimate on all of the past 
measurements. The equation, 

is termed the predictor equation. 
0100. One of the primary limitations of the Kalman filter 

is that it only models a linear system with Gaussian distri 
bution, not often encountered in the physiological setting. 
The best known algorithm to solve the problem of non 
Gaussian, nonlinear filtering is the extended Kalman filter 
(EKF). This filter is based upon the principle of linearizing 
the measurements and evolution models using Taylor series 
expansions. The series approximations in the EKF algorithm 
can, however, lead to poor representations of the nonlinear 
functions and probability distributions of interest. As a 
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result, this filter can diverge. Based on the hypothesis that it 
is easier to approximate a Gaussian distribution than it is to 
approximate arbitrary nonlinear functions other researchers 
have developed a filter termed the unscented Kalman filter 
(UKF). It has been shown that the UKF leads to more 
accurate results than the EKF and that in particular it 
generates much better estimates of the covariance of the 
states (the EKF often seems to underestimate this quantity). 
The UKF has, however, the limitation that it does not apply 
to general non-Gaussian distributions as is often the case 
with the ECG spectral distributions. Sequential Monte Carlo 
methods, also known as particle filters overcome this limi 
tation and allow for a complete representation of the pos 
terior distribution of the states, so that any statistical esti 
mates, such as the mean, modes, kurtosis and variance, can 
be easily computed. Particle Filters can therefore, deal with 
any nonlinearities or distributions. Particle filters rely on 
importance sampling and, as a result, require the design of 
proposal distributions that can approximate the posterior 
distribution reasonably well. In general, it is hard to design 
Such proposals. The most common strategy is to sample 
from the probabilistic model of the states evolution (transi 
tion prior). This strategy can, however, fail if the new 
measurements appear in the tail of the prior or if the 
likelihood is too peaked in comparison to the prior. 
0101. In the preferred implementation, a estimator/pre 
dictor trajectory tracking technique known as the unscented 
Particle Filter (UPF) as developed by Merwe, Doucet, 
Freitasz and Wan. Pseudocode for the UPF is as follows: 

Unscented Particle Filter: 
Initialization: t = 0. 
For i = 1,... N, draw states (particles) xo from the prior p(xo) and set, 

x = Exo 
P(i) : EL(x) x)(x) xi) 
xi = Exi ) = (xi)) o of 

For t = 1, 2, . . . . 
a) Importance sampling step: 

For i = 1,... N: Update particles with the UKF: 
Calculate sigma points: 

X (a = x, (a x, (a wn-)P, i n 
Predict future particle (time update) 

2ng 
(i) (c) v(i) s.(i) w(i)x ...(i) P: X w DXE XXI-1 X-1 

i=0 

2na 
(i) (i)x (i)n (i) (n1) v(i) YE h(X, X") y: X W. YC-1 

i=0 

Incorporate new observation (measurement update) 
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-continued 

2nd 
(c) vyi) ...(i) (i) (i) T Pyy, X w; (YE- y: Y- y: 

i=0 

2nd 
(i (i) T P =XE WIXI - X: IY-1-y: 

i=0 

-l (i) (i) . ...(i) K = PyPy. X x:1 -- K(y, y: 1) 
f) (i) T P = PA - K.PK 

M(i W (i) AG) Sample s-q(x|x: , , y) = N(x), P.") 
(i) A (i) (i A(i) f.? AG) Set &S, (x-1, &S.) and P. (PS), P. ) 

For i = 1, ... N, evaluate the importance weights up to a normal 
izing constant: 

p(y |&”)p(8' x) 
w; e - in q(3" | X_1, y1) 

For i = 1, ... N, normalize the importance weights. 
b) Selection Step 

Multiplyi Suppress particles, 
- - (xo?, Po) with highflow importance weights, 

, (i) W, 
respectively, to obtain N random particles. 
Output: The output of the algorithm is a set of samples that can be 
used to approximate the posterior distribution as follows: 

(sly)'s poly)= S. Ö() (dxo.) p(X0:t y1) a p(X0:t y1) N i=1 (8) X0t 

Resulting in the estimate of, 

for some function of interest, g for instance the marginal 
conditional mean or the marginal conditional covariance or 
other moment. 

0102. In one implementation the prediction matrix may 
be used to anticipate the optimal therapeutic intervention. 
Rather than wait for the characteristics of the parameters or 
trajectory to achieve a certain condition, the algorithm will 
base its output on the predicted future state of the patient 
using the tracking and prediction algorithms mentioned 
above. 

0103 Transform methods other than the Fourier method 
may be employed, for instance the Laplace, Hilbert, Radon, 
and Hankel transforms, as well as time frequency transforms 
such as the Gabor short time Fourier transform and the 
Wavelet transform. 

0104. Other data besides ECG data may be included as 
part of the description matrix and incorporated into the 
analysis algorithm, for instance pulse oximetry, capnogra 
phy, respiration, impedance cardiography and blood pres 
Sure measurements. At least Some of the data may remain in 
the time domain without any Fourier or other transform 
method being performed on it. Pulse Oximetry, impedance 
cardiography, and blood pressure measurements may be 
used to augment the ECG to determine if a pulse is present. 
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Capnography may be used to determine the overall effec 
tiveness of cardiopulmonary resuscitation. 
0105 Large (-5" in diameter), self-adhesive electrode 
pads are typically used to deliver defibrillation therapy to 
patients. The pads also provide ECG monitoring through the 
same conductive surfaces. In one implementation, additional 
small (-0.5" diameter) ECG electrodes are integrated into 
the large pads that provide simultaneous monitoring of at 
least one additional electrical vector that is approximately 
orthogonal to the monitoring vector produced by the large 
defib/monitoring electrodes. A second matrix is then formed, 
identical in structure to the original SSM, but based on the 
orthogonal leads. The AED 10 can then perform techniques 
Such as cross correlation on the two matrices to Verify state 
changes. 
0106. In one embodiment, the two small ECG electrodes 
and large pads are configured Such that there at least two 
mutually orthogonal ECG leads are generated. The vector 
Sum of these leads generates a trajectory over time. The 
same methods for trajectory analysis described above may 
be used to analyze this trajectory as well. 
0107 As described previously, the AED 10 combines 
these sub-methods to determine appropriate therapy for the 
rescuer to perform on the victim. If uncertainty is included 
in the combination, the probability of defibrillation success 
is shown on the display of the device as a number between 
Zero and one hundred, allowing the trained medical person 
Such as a paramedic to make his own decision as to whether 
to shock the patient. In an implementation where the vari 
ance sub-method is used, the AED 10 may be configured 
Such that the VF detection algorithm employing spectral 
variance may provide notification in the form of an audible 
or visual alarm indication that the paramedic should stop 
doing compressions for a more accurate analysis of the ECG 
waveform. In a more automated implementation, if the AED 
10 determines that defibrillation has a low probability of 
success, the AED 10 may prompt the rescuer to perform 
CPR. During the course of CPR, the AED 10 may analyze 
the ECG continuously and prompt the rescuer to cease doing 
CPR when the AED 10 determines that the myocardium will 
be receptive to defibrillation. Following the defibrillation, 
the AED 10 may prompt the rescuer to deliver uninterrupted 
chest compressions, and the AED 10 may again monitor the 
underlying ECG waveform during compressions for the 
appropriate time to deliver the defibrillation therapy. As a 
result of the spectral analysis, the AED 10 may also deter 
mine that neither defibrillation nor CPR is appropriate, but 
rather drug and metabolic therapy Such as epinephrine and 
glucose is appropriate, in which case the AED 10 will 
prompt the rescuer to deliver the appropriate therapy. 
0108. In another embodiment for determining the appro 
priate treatment for a victim, the frequency domain of the 
ECG signal is divided into spectral bands. For example, the 
frequency range of 3-20 Hz, may be divided into 0.1 Hz 
bands. The energy for each band is calculated, and indi 
vidual weights are assigned to the energy values for each of 
the bands. In one embodiment, a Summation of at least some 
of the weighted energy values for each band is calculated. 
0109 Regression analysis may be used to determine 
weights that produce improved correlation between the 
weighted sum and the probability of successful defibrillation 
(or between the weighted Sum and the presence of a physi 
ological condition). The model for simple linear regression 
1S 
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where Y is the dependent variable, X is the independent 
variable, and a and b are the regression parameters (the 
intercept and the slope of the line of best fit). The model for 
multiple linear regression is: 

0110. The coefficients, b, for each energy, X, are calcu 
lated using statistical methods such as the general linear 
model to provide a best estimate of the probability of 
defibrillation success, Y. The variable, Y, may also represent 
the probability of success of any therapeutic intervention 
other than defibrillation, for instance chest compressions, 
ventilations or a metabolic treatment such as epinephrine or 
aspartate. The variable, Y, may also represent the probability 
that the patient is in a particular physiological state. The 
general linear model (GLM) can estimate and test any 
univariate or multivariate general linear model, including 
those for multiple regression, analysis of variance or cova 
riance, and other procedures such as discriminant analysis 
and principal components. With the general linear model, 
randomized block designs, incomplete block designs, frac 
tional factorial designs, Latin square designs, split plot 
designs, crossover designs, nesting, can be explored. The 
model is: 

where Y is a vector or matrix of dependent variables, X is a 
vector or matrix of independent variables, B is a vector or 
matrix of regression coefficients, and e is a vector or matrix 
of random errors. 

0111. In multivariate models, Y is a matrix of continuous 
measures. The X matrix can be either continuous or cat 
egorical dummy variables, according to the type of model. 
For discriminant analysis, X is a matrix of dummy variables, 
as in analysis of variance. For principal components analy 
sis, X is a constant (e.g., a single column of 1s). For 
canonical correlation, X is usually a matrix of continuous 
right-hand variables (and Y is the matrix of left-hand vari 
ables). 
0112 For some multivariate models, it may be easier to 
use ANOVA, which can handle models with multiple depen 
dent variables and Zero, one, or more categorical indepen 
dent variables (that is, only the constant is present in the 
former). ANOVA automatically generates interaction terms 
for the design factor. 
0113. After the parameters of a model have been esti 
mated, they can be tested by any general linear hypothesis 
of the following form: 

where A is a matrix of linear weights on coefficients across 
the independent variables (the rows of B), C is a matrix of 
linear weights on the coefficients across dependent variables 
(the columns of B), B is the matrix of regression coefficients 
or effects, and D is a null hypothesis matrix (usually a null 
matrix). 
0114. The coefficients, bl, are calculated using ECG or 
other measured physiological data collected from a statisti 
cally varied population of samples to provide a robust 
database for accurate model generation. Preferably, the 
resuscitation event is decomposed into multiple therapy 
states, e.g., arrival at patient's side, pre-shock, post-shock, 
post-vasopressor, etc., with separate sets of coefficients 
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generated for each therapy state. The state of therapy, e.g., 
resuscitation, is determined and stored by the defibrillator. 
For instance when the unit is first turned on and prior to the 
first shock, the resuscitation is considered in the “arrival at 
patient's side” (APS) state; if CPR is detected by the 
defibrillator, it shifts to the “CPR first, no shock state’: after 
defibrillation, the state machine shifts to the “first shock” 
state. Subsequent shocks cause the state machine to transi 
tion to states for each defibrillation, e.g. "second shock', etc. 
Coefficients, bl, are calculated for each state and stored on 
the defibrillator, and used to calculate the most accurate 
predictor, Y, of therapeutic outcome (or current physiologic 
state). Therapeutic outcome, Y, may be scaled so as to 
provide a value from either Zero to one or Zero to one 
hundred, representing on a scale that is understandable to the 
operator that it is a probability; the value of Y may also be 
unscaled. 
0115 Regression may also be performed using the logis 

tic function: 

1 

Y = 1001 - so 

0116. The logistic model is useful in estimating the 
probability of therapeutic success where the outcome is 
binomial and dependent on at least one predictive factor, 
plotted on the abscissa of FIG. 8, such that certain values of 
the predictive factor, e.g. 16 in FIG. 8, will sometimes be 
associated with successful defibrillation and other times with 
unsuccessful defibrillations. The logistic curve is a non 
linear transformation that converts the measured predictive 
factor into a value approximating a probability of Success. It 
provides a reasonable, mathematically tractable approach to 
minimizing the false negatives and false positives, as shown 
in FIG. 8. A threshold is chosen that typically will optimize 
both the false negatives (FN) and false positives (FP) to 
provide the best sensitivity and specificity for the prediction: 

Sensitivity=True Positives(TP)/(TP+FN) 

Specificity=TN/(TN+FP) 

Positive Predictive Value(PPV)=TP (TP+FP) 

Negative Predictive Value(NPV)=TN/(TN+FN) 

0117. However, depending on the therapy stage, it may be 
desirable to optimize for reduction in false positives at the 
expense of additional false negatives. For instance, when 
medical personnel first arrive at the side of a patient, it has 
been shown in several studies that it is beneficial to many 
patients that some period of time, typically on the order of 
2-3 minutes, is spent performing cardiopulmonary resusci 
tation Such as chest compressions and artificial breathing 
prior to defibrillation. This has been coined “CPR-first, and 
runs counter to how resuscitation of cardiac arrest has been 
taught for over a decade. One difficulty with the method is 
that for cardiac arrest victims for whom the onset is more 
recent, typically on the order of 4 minutes or less, the clinical 
data Suggests that defibrillation first is a more efficacious 
therapy for that class of patient. In this case, a “true 
negative' is an instance when the predictive factor (or 
measured parameter) is below the threshold and the outcome 
was an unsuccessful defibrillation. Because defibrillation is 
necessary to convert ventricular fibrillation, but shocking 
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unnecessarily while not delivering effective CPR is delete 
rious and decreases the chances of Survival, it is important 
to minimize as much as possible the number of patients in 
the false negative group since these are patients who would 
have done better had they been shocked first rather than 
having CPR-first performed on them. Choosing a threshold 
in the range of 13-15 will result in a Negative Predictive 
Value (NPV) of nearly 100%. Thus the rescuer would only 
do CPR-first on those patients for whom there was a very 
high likelihood that CPR will do better than defibrillation. 
0118. On the other hand, at a later therapy stage (later on 
in the resuscitation), after an unsuccessful defibrillation 
shock, doing continuous, uninterrupted CPR becomes criti 
cal to the survival of the patient. Thus, it is undesirable to 
have the rescuer stopping to perform potentially unsuccess 
ful defibrillations. In this resuscitation state, minimizing 
false positives becomes of primary importance. Raising the 
threshold to approximately 20 will result in a Positive 
predictive Value (PPV) of nearly 100%. 
0119) Other therapy stages for which specific thresholds 
can be set can be based on the ECG rhythm state of the 
patient, such as asystole, ventricular fibrillation, Ventricular 
tachycardia, or pulseless electrical activity. 
0120. Therapy stage may also be determined by provid 
ing the device with a means of detecting whether or not the 
rescuer is performing chest compressions or ventilations, 
e.g., by monitoring an accelerometer-based sensor mounted 
on the patient's Sternum or by measuring the transthoracic 
impedance of the patient, such as is done by the AED Pro 
defibrillator manufactured by ZOLL Medical (Chelmsford 
Mass.). 
0121 Therapy stage may also be determined from data 
that the rescuer enters into the device. The device may also 
have a means for the rescuer to enter treatment data into the 
device in real time; such data might include whether or not 
any of the following treatments had been given to the patient 
(though not limited to): epinephrine or other vasopressor, 
levosimendan, aspartate, glucose, intubation, external chest 
compressor device, glucose. Treatment data input may be by 
keying means such as on the ZOLL Medical (Chelmsford, 
Mass.) M-Series or E-Series defibrillators. Treatment modes 
Such as pacing and defibrillation can be distinguished if 
there is a rotary machine operation dial or knob to set the 
unit to mutually exclusive operational modes such as pacing, 
monitoring, or defibrillation. Other modes might include 
fluid infusion or ventilation. 

0122) A state transition matrix can be developed using a 
Markov model and the threshold adjusted as well as different 
weighting coefficients applied based on the Markov model 
estimation. In particular, the sequence of medical interven 
tions and patient reactions to treatments is modeled as a 
hidden Markov model (HMM), defined as a variant of a 
finite state machine having a set of States, Q, an output 
alphabet, O, transition probabilities, A, output probabilities, 
B, and initial state probabilities, H. The current state is not 
observable. Instead, each state produces an output with a 
certain probability (B). Usually the states, Q, and outputs, O, 
are understood, so an HMM is said to be a triple, w=(A, B, 
H). Each value of output alphabet, O. can be given a unique 
threshold and coefficient set. 

(0123 A={a-P(q, at t+1 q, at t)}, where P(ab) is the 
conditional probability of a given b, tel is time, and 
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0.124 Informally, A is the probability that the next 
state is q, given that the current state is q. 

0.125 B={b-P(old), where oeO. 
0.126 Informally, B is the probability that the output 
is Ok given that the current state is q. 

0127. II={p, P(q, at t=1). 
The Forward-Backward and Baum-Welch algorithms are 
performed on a database to build the HMM. A global HMM 
is developed for all medical modes along with specific 
HMMs for each mode such as pacing, defibrillation, etc. 
I0128. The Forward-Backward algorithm may be summa 
rized as follows: 

0.129 Define the C. values as follows, 
C. ti)=Pr(O 1=O 1, ..., O t-O t, X t=q_i.) 

0.130 Note that 

a T(i) = Pr(O 1 = o 1, ... , O T = o T, X T = q i ) 

= Pr(O, X T = q i A) 

I0131 The alpha values enable us to solve Problem 1 
since, marginalizing, we obtain 

Pr(O) = sum i = 1^N Pro 1, ... , o T, X T = q i ) 

= sum i = 1/N a T(i) 

(0132 Define the B values as follows, 

0.133 
0134) 
0135) 

0.136 

1. Compute the forward (C) values: 
a. C. 1 (i) pi ib i(o. 1) 
b. C. t+1(j)-sum i=1N C, tCi) a jib j(o t+1) 

2. Computing the backward (B) values: 
0.137 a. B T(i)=1 
0.138 b. B ti)=sum j=1 Na i b (o t+1)B t--1() 

The Baum-Welch algorithm may be summarized as follows: 
0.139. The probability of a trajectory being in state q i at 
time t and making the transition to q j at t+1 given the 
observation sequence and model. 

0140. These probabilities may be computed using the 
forward backward variables. 

a ti) a ji (o t + 1) f3 t + 1 (i) 
Xi tti, j) = Pr(OIA) 

0.141. The probability of being in q i at t given the 
observation sequence and model. gamma ti)=Pr(X td 
ilo, w) 
0142 

Y ti)=Sum ixi tii) 

Which we obtain by marginalization. 
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0143. Note that 
sum t=1 TY t(i)=expected number of transitions 

from qi 

and 

sum t=1T xi ti,i)=expected number of transitions 
from q i to q 

0144) 
(0145 

The algorithm is as follows: 
1. Choose the initial parameters, W., arbitrarily. 

0146 2. Reestimate the parameters. 
I0147 a bar{L}_i=Y t(i) 
0148 b. 

sum t= 1^T - 1 xi ti, j) 

0149 c. 

I0150 where 1_{o t-k}=1 if o t—k and 0 otherwise. 
0151. 3. Let bar{A}={bar{a} ij}, bar{B}={bar{b}_i(k) 
}, and bar{t}={{bar{u} i. 
0152 4. Set bar{W} to be {bar{A}, bar{B}, bar{t}}. 
0153) 5. If =bar{k} then quit, else set to be bar{u} and 
return to Step 2. 
0154 Based on the state transition probabilities calcu 
lated by the Baum-Welch algorithm, the Viterbialgorithm 
may be used to provide a best estimate of the future 
sequence of medical interventions that the user will input. 
0155 The Viterbialgorithm may be summarized as fol 
lows: 
0156 1. Initialization: 
O157 For 1-i-N, 
0158 a. 8 1(i)=Ttb i(o. 1) 
0159 b. p. 1 (i)=0 

(0160 2. Recursion: 
(0161 For2<=t<=T, 1 <= j<=N, 
0162 a. Ö t() max i ö t-1 (i)a ib (o t) 
0163 b. (p to) argmax i ö t-1 (i)a i 

0164 3. Termination: 
(0165 a. p =max i ö T(i) 
0166 b. i* T=argmax i ö T(i) 

0167 4. Reconstruction: 
(0168 For t=t-1.t-2, . . . , 1, 
(0169 i t—p t+1 (i t-i-1) 

0170 The resulting trajectory, i. 1, . . . . i* t+1, predicts 
the next likely intervention, based on the previous sequence. 
0171 Many other implementations of the invention other 
than those described above are within the invention, which 
is defined by the following claims. 
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What is claimed is: 
1. A method of automatically determining which of a 

plurality of possible cardiac interventions should be per 
formed in treatment of a patient, the method comprising: 

storing prior information representative of prior cardiac 
interventions performed on the patient; 

storing prior information representative of the patients 
reactions to the prior cardiac interventions; and 

processing the information using a hidden Markov model 
to determine which of a plurality of possible further 
cardiac interventions should be performed. 

2. The method of claim 1 further comprising: 
sensing the patient’s reaction to the further cardiac inter 

vention, 
storing further information representative of the further 

cardiac intervention; 
storing further information representative of the patients 

reaction to the further cardiac intervention, 
processing the prior and further information using a 

hidden Markov model to determine which of still 
further cardiac interventions should be performed in 
further treatment of the patient. 

3. The method of claim 1 wherein the patient is a cardiac 
arrest victim. 

4. The method of claim 2 wherein the patient is a cardiac 
arrest victim. 

5. Apparatus for automatically determining which of a 
plurality of possible cardiac interventions should be per 
formed in treatment of a patient, the apparatus comprising: 

a processor and associated memory for storing prior 
information representative of prior cardiac interven 
tions performed on the patient; 

memory for storing prior information representative of the 
patient's reactions to the prior cardiac interventions; 
and 

wherein the processor is configured to process the infor 
mation using a hidden Markov model to determine 
which of a plurality of possible further cardiac inter 
ventions should be performed. 

6. The apparatus of claim 3 further comprising: 
components for sensing the patient's reaction to the 

further cardiac intervention, 
memory for storing further information representative of 

the further cardiac intervention; 
memory for storing further information representative of 

the patient's reaction to the further cardiac intervention, 
and 

wherein the processor is further configured to process the 
prior and further information using a hidden Markov 
model to determine which of still further cardiac inter 
ventions should be performed in further treatment of 
the patient. 

7. The apparatus of claim 5 wherein the patient is a 
cardiac arrest victim. 

8. The apparatus of claim 6 wherein the patient is a 
cardiac arrest victim. 

k k k k k 


