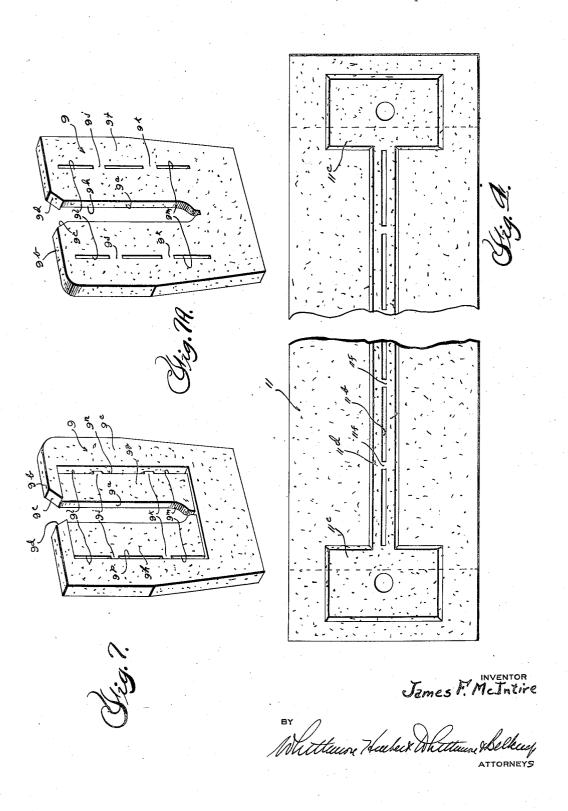
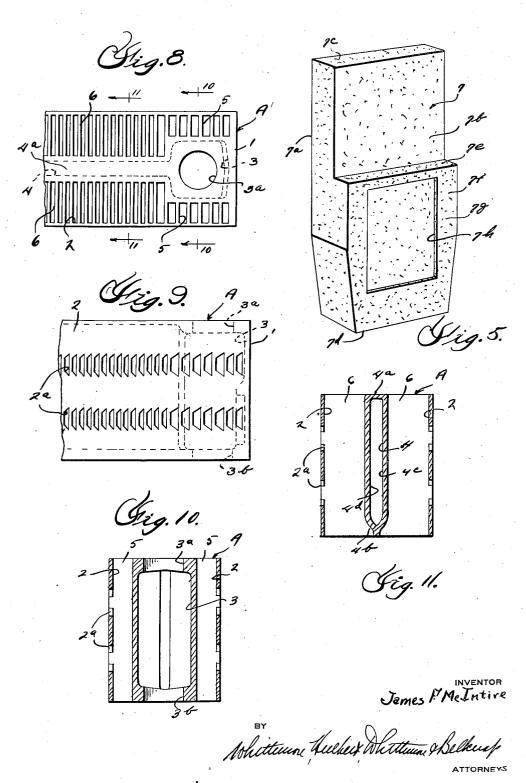

Original Filed Aug. 15, 1932  $\,$  4 Sheets-Sheet  $\,$  1




Matthewor Kulber Whithwar & Selker

Original Filed Aug. 15, 1932 4 Sheets-Sheet 2




Whittener Helle & Antenior & Clause

Original Filed Aug. 15, 1932 4 Sheets-Sheet 3



Original Filed Aug. 15, 1932 4 Sheets-Sheet 4



## UNITED STATES PATENT OFFICE

2.002.904

## APPARATUS FOR MAKING RADIATORS

James F. McIntire, Detroit, Mich., assignor to United States Radiator Corporation, Detroit, Mich., a corporation of New York

Original application August 15, 1932, Serial No. 628,950. Divided and this application March 19, 1934, Serial No. 716,421

11 Claims. (Cl. 22-131)

This invention relates generally to the manufacture of radiators and constitutes a division of my application filed August 15, 1932, bearing Serial No. 623,950.

In the accompanying drawings:

Figure 1 is a perspective view of apparatus embodying my invention;

Figure 2 is a fragmentary vertical longitudinal sectional view through the construction illus-10 trated in Figure 1;

Figure 3 is a vertical transverse sectional view taken substantially on the line 3—3 of Figure 2; Figure 4 is a fragmentary bottom plan view of

the cover core illustrated in Figures 2 and 3; Figure 5 is a perspective view of one of the end cores:

Figures 6 and 6a are perspective views of

opposite sides of one of the header cores; Figures 7 and 7° are perspective views of op-

20 posite sides of one of the fin cores; Figure 8 is a fragmentary top plan view of

a radiator formed in the apparatus illustrated in Figures 1 to 7a, inclusive;

Figure 9 is a side elevation of the radiator 25 illustrated in Figure 8;

Figure 10 is a sectional view taken on the line 10—10 of Figure 3;

Figure 11 is a sectional view taken on the line 11—11 of Figure 8.

Referring now to the drawings, A is a radiator of the single fluidway type and B designates generally the apparatus in which such a radiator may be formed. As shown, the radiator A has end walls 1, side walls 2, headers 3, a fluidway 4, and fins 5 and 6 respectively. Preferably the parts are integrally united and form a radiator that has a uniform cross sectional area throughout its length. The end walls I are flat and are relatively thick. The side walls 2 are 40 thinner than the end walls and are terminally secured thereto at the outer upright edges thereof. Preferably such side walls 2 are provided at spaced points thereof with openings 2a. The headers 3 are substantially rectangular in shape 45 and are vertically disposed upon the inner sides of the end walls I in spaced relation to the side walls 2. Preferably openings 3a and 3b respectively are provided in the headers 3 for the reception of suitable piping (not shown). 50 The fluidway 4 extends between the headers 3 and is disposed substantially midway between and in substantially parallel relation to the side walls 2. The top wall 43 of the fluidway is flat, while the bottom wall 46 thereof is substantially Y-shape in cross section. The side

walls 4c and 4d respectively of the fluidway are parallel to each other and to the side walls 2. The fins 6 are located between the headers 3 and project laterally from the sides 4c and 4d of the fluidway to the side walls 2, while the fins 5 5 are located upon and project laterally from opposite sides of the headers 3 to the side walls 2. Preferably the fins 5 and 6 are relatively thin and are closely spaced in parallel relation to the end walls 1. In this connection it will be 10 noted that the fins are upon opposite sides of the openings 2a and that the latter are arranged in vertically spaced rows extending longitudinally of the radiator. It will also be noted that the upper edges of the end wall 1, side walls 15 2, fins 5 and 6, top wall 4° of the fluidway and the upper ends of the headers 3 are substantially flush and that the lower edges, walls and ends of said parts are also substantially flush. Thus a very compact and uniform construction is pro- 20 vided.

Preferably end, header, fin, fluidway, and cover dry sand cores 1, 8, 9, 16 and 11, respectively, are employed in the process of manufacturing the radiator just described. As shown, there are 25 two end cores 1 and each preferably comprises a relatively thick upright body or slab having flat outer and stepped inner walls 1a and 1b respectively and flat upper and lower ends 1c and 1d respectively. The steps 1c are flat and constitute the upper edges of plate-like portions 1c of the slabs 1. As shown, each of these portions 1c has a flat face 1c in which substantially square recesses 1h corresponding in shape to the end walls 11 of the radiator are provided for receiving molten metal.

The header cores 3 are arranged in two series, one upon the inner side of each end core 1. As shown, each of the header cores 8 comprises a plate that substantially corresponds in area to 40 the plate-like portions If of the end cores. Preferably each core 8 has a vertical substantially rectangular-shaped opening 8° which extends through the upper edge 8b of the core and is provided at its upper ends with flaring edge por- 45 tions 8° and 8d respectively. The faces 8° and 8f respectively of each core 8 are flat, however, each face 8e is preferably provided upon opposite sides of the opening 32 with recesses 38 and 8h respectively corresponding in area to the fins 6. 50 Webs 81 and 8k corresponding in area to the openings 2ª are provided at spaced points of the upright edges 81 and 8m respectively of the recesses 8g and 8h, and slots 8n and 8p respectively corresponding in area to the cross section of the 55

side walls 2 are provided along said edges 81 and 8m above and below the webs 8j and 8k.

The fin cores 9 are arranged in series between the two series aforesaid of header cores 8, and 5 each preferably comprises a plate that corresponds in area to a header core 8. As shown, each fin core 9 has a vertical elongated opening 92 which extends through the upper edges 90 of each core and is provided at its upper ends with flaring edge portions 9° and 9d respectively. The faces 9° and 9° respectively of each core plate 9 are flat, however, each face 9e being preferably provided upon opposite sides of the opening 9ª with recesses 9g and 9h respectively cor-15 responding in area to the fins 5. Webs 91 and 9k corresponding to the webs 81 and 8k, and slots 91 and 9m respectively corresponding to the slots 8n and 8p are provided along the upright edges 9n and 9p respectively of the recesses 9g and 9h. The fluidway core 10 extends between the end

cores 7 and preferably has a pair of header portions 10a and 10b respectively and an intermediate web portion 10c. As shown, the header portions 10° and 10° are substantially rectangular in configuration and have substantially cylinder prints 10d and 10e respectively projecting vertically from the upper and lower ends thereof. These header portions 10° and 10° are also provided upon their outer sides with vertically 30 spaced, substantially square and substantially cylinder portions  $10^{\rm f}$  and  $10^{\rm g}$  respectively. The web 10° is relatively thin and merges into the inner sides of the header portions 10a and 10b at the centers thereof. The lower edge 10h of 35 the web 10° is rounded or substantially U-shape in cross section and is in line with the lower ends of the header portions 10° and 10°, while the upper edge [0] of the web is substantially flat and is located above the upper ends of 40 the header portions. Suitable horizontal and vertical passages 10k and 161 respectively are provided in the core 10 to permit the escape of core gases. Adjacent the header portions 10a and 10b the web 10c is provided at the upper and lower edges thereof with recesses 10m and 10n respectively which are adapted to receive the spring arms of suitable chaplets 10p and 10ª.

The cover core II is provided longitudinally 50 thereof with a sprue 112 and a gate 115 through which the molten metal may flow from the top to the fin, header, fluidway and end cores 9, 8, 10 and 7, respectively. In this instance, the cover core II rests upon the steps 7e of the end 55 cores and upon the upper edges of the fin and header cores 9 and 8. Projecting downwardly from the body of the core !! at opposite ends thereof are substantially square-shaped portions 11° that fit within the openings 82 in the 60 header cores 8, while projecting downwardly from the body of the cover core ii intermediate said portions IIc is a rib IId that fits within the openings 92 in the fin cores 9. As shown, the sprue IIa is in the body of the core II, while the gate IIb is in the rib IId. Preferably webs III extend across the gate at spaced points thereof for engagement by the chaplets 10p. In use, the cores 7, 8 and 9 are assembled and

clamped in a suitable rack such as X (see Fig-70 ure 1). The fluidway core 10 is then placed in the openings 8° and 9° respectively in the header and fin cores, and finally the cover core II is placed upon the steps 7° of the end cores and upon the upper edges of the header and 75 fin cores. In this connection, it will be noted

that the lower end and opposite sides of certain of the openings 9a are engaged by the chaplet 10q, while the opposite sides of certain of the openings \$a and the lower face of the rib ! id are engaged by the chaplet 10p. Thus, the fluidway core 10 is effectively held in position for

the pouring of molten metal.

After the parts have been assembled as described, molten metal may be poured into the sprue ! la and will flow through the gate ! lb 10 into the openings 8a and 9a, recesses 7h, 8g, 8h, 9s and 9h, and slots 8h, 8h, 9l and 9m to form the radiator. Thus, it will be apparent that the end walls I will be formed in the recesses 7h in the end cores 7, the side walls 2 will be formed in 15. the slots 8n, 8p, 91 and 9m in the header and fin cores 3 and 9, the headers 3 and fluidway 4 will be formed in the openings 8° and 9° respectively in the header and fin cores, and the fins 5 and 6 will be formed in the recesses 9g, 9h, 20 8s and 8h respectively, in the fin and header cores. The cover core II cooperates with the end, header and fin cores 7, 8 and 9 respectively, to form the upper ends of the headers 3 and the top wall 4a of the fluidway.

What I claim as my invention is:

1. A mold for forming a radiator having end and side walls, headers upon the end walls, a fluidway extending between said headers, fins projecting laterally from opposite sides of the 30 fluidway to said side walls, and fins projecting laterally from the headers to said side walls, comprising a longitudinally extending dry sand core having a relatively thin elongated body for forming the fluidway and having enlargements 35 at opposite ends thereof for forming the headers, and a casing for said core comprising slabs at opposite ends of said core in spaced relation to the enlargements, vertically disposed fin cores arranged one against the other in a row be- 40 tween said enlargements and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said elongated body, vertically disposed header cores arranged one against the other in rows 45 between the slabs and the adjacent fin cores aforesaid and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, and a cover core extending over the vertical por- 50 tions of said fin and header cores between said slabs and having depending portions that extend between the vertical portions of the header and fin cores, said cover core having a sprue for molten metal, and one of said depending por- 55 tions having an opening therein communicating with the sprue and with the space between the vertical portions of said fin cores and forming a gate for the reception of molten metal, the slabs being provided in their inner faces with recesses 60 into which metal may flow to form the end walls aforesaid, the fin cores being provided in horizontal alignment with the recesses just mentioned with recesses into which metal may flow to form the first mentioned fins, the header 65 cores being provided in horizontal alignment with the recesses aforesaid with recesses into which metal may flow to form the last mentioned fins, the bases of the recesses in the fin and header cores being provided at their 70 outer upright edges with aligned slots into which metal may flow to form the side walls aforesaid.

2. A mold for forming a radiator having end and side walls, headers upon the end walls, a fluidway extending between said headers, and 75 2,002,904

fins projecting laterally from opposite sides of the fluidway to said side walls, comprising a longitudinally extending dry sand core having a relatively thin elongated body for forming the fluidway and having enlargements at opposite ends thereof for forming the headers, and a casing for said core comprising slabs at opposite ends of said core in spaced relation to the enlargements, vertically disposed fin cores arranged one against the other in a row between said enlargements and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said elongated body, vertically disposed header cores arranged one against the other in rows between the slabs and the adjacent fin cores and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, said slabs being provided above the fin and header cores with steps, and a cover core extending over the vertical portions of said fin and header cores and resting on said steps, said cover core being provided between the steps with depending portions that extend between the vertical portions of the header and fin cores, said cover core and one of said depending portions having openings therein communicating with the space between the vertical portions of said fin and header cores and forming a gate for the reception of molten metal, the slabs being provided in their inner faces with recesses into which metal may flow to form the end walls aforesaid, the fin cores being provided in horizontal alignment with said recesses with recesses into which metal may flow to form the fins of the radiator, the bases of the recesses in the fin cores and the header cores being provided substantially in alignment with the outer upright edges of the recesses with aligned slots into which metal may flow to form the side walls of the radiator.

3. A mold for forming a radiator having end and side walls, headers upon the end walls, a fluidway extending between the headers, and fins projecting laterally from the outer sides of the headers to said side walls, comprising a longitudinally extending dry sand core for forming the fluidway and having enlargements at opposite ends thereof for forming the headers, and a casing for said core comprising slabs at opposite ends of said core in spaced relation to said enlargements, vertically disposed fin cores arranged one against the other in a row between said enlargements and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said longitudinally extending core, vertically disposed header cores arranged one against the other in rows between the slabs and the adjacent fin 60 cores and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, said slabs being provided above the fin and header cores with steps, and a cover core extending over the vertical portions of said fin and header cores and resting on said steps, said cover core being provided between said steps with depending portions that extend between the vertical portions of the header and fin cores, said cover core and one of said depending portions having openings therein communicating with the space between the vertical portions of said fin and header cores and forming a gate for the reception of molten metal, the slabs be-75 ing provided in their inner faces with recesses

into which metal may flow to form the end walls aforesaid, the header cores being provided in horizontal alignment with the recesses aforesaid with recesses into which metal may flow to form the fins of the radiator, the fin cores and the bases of the recesses in the header cores being provided substantially in alignment with the outer upright edges of the recesses in the slabs with aligned slots into which metal may flow to form the side walls of the radiator.

4. A mold for forming a radiator having end and side walls, headers upon the end walls, a fluidway extending between said headers, fins projecting laterally from opposite sides of the fluidway to said side walls, and fins projecting 15 laterally from the headers to said side walls, comprising a longitudinally extending dry sand core for forming the fluidway and having enlargements at opposite ends thereof for forming the headers, and a casing for said core comprising 20 slabs at opposite ends of said core in spaced relation to the enlargements, vertically disposed fin cores arranged one against the other in a row between said enlargements and having substantially horizontal and vertical portions re- 25 spectively spaced beneath and upon opposite sides of said longitudinally extending core, vertically disposed header cores arranged one against the other in rows between the slabs and the adjacent fin cores aforesaid and having sub- 30 stantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, said slabs being provided above the fin and header cores with steps, and a cover core extending over the vertical por- 35 tions of said fin and header cores and resting on said steps, said cover core being provided between said steps with depending portions that extend between the vertical portions of the header and fin cores, said cover core and one 40 of said depending portions having openings therein communicating with the space between the vertical portions of said fin cores and forming a gate for the reception of molten metal, the slabs being provided in their inner faces below 45 said steps with recesses into which metal may flow to form the end walls of the radiator, the fin cores being provided in horizontal alignment with the recesses just mentioned with recesses into which metal may flow to form the first men- 50 tioned fins, the header cores being provided in horizontal alignment with the recesses aforesaid with recesses into which metal may flow to form the last mentioned fins, the bases of the recesses in the fin and header cores being 55 provided at their outer upright edges with aligned slots into which metal may flow to form the side walls of the radiator.

5. A mold for forming a radiator having side walls, headers between said side walls at oppo- 60 site ends thereof, and a fluidway extending between said headers, comprising a longitudinally extending dry sand core for forming the fluidway and having enlargements at opposite ends thereof for forming the headers, and a casing 65 for said core comprising slabs at opposite ends of said core in spaced relation to the enlargements, vertically disposed plate-like cores arranged one against the other in a row between said enlargements and having substantially hori- 70 zontal and vertical portions respectively spaced beneath and upon opposite sides of said longitudinally extending core, vertically disposed header cores arranged one against the other in rows between the slabs and the adjacent plate- 75

like cores aforesaid and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, said slabs being provided above 5 the fin and header cores with steps, and a cover core extending over the vertical portions of said plate-like and header cores and resting on said steps, said cover core being provided between said steps with depending portions that extend 10 between the vertical portions of the header and plate-like cores, said cover core and one of said depending portions having openings therein communicating with the space between the vertical portions of said plate-like cores and form-15 ing a gate for the reception of molten metal, the plate-like cores and header cores being provided with substantially horizontally aligned slots into which metal may flow to form the side walls of the radiator.

6. A mold for forming a radiator having side walls, headers between said side walls at opposite ends thereof, a fluidway extending between said headers, and fins projecting laterally from opposite sides of said fluidway to said side walls, comprising a longitudinally extending dry sand core for forming the fluidway and having enlargements at opposite ends thereof for forming the headers, and a casing for said core comprising slabs at opposite ends of said core in 30 spaced relation to the enlargements, vertically disposed fin cores arranged one against the other in a row between said enlargements and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite 35 sides of said longitudinally extending core, vertically disposed header cores arranged one against the other in rows between the slabs and the adjacent fin cores aforesaid and having substantially horizontal and vertical portions re-40 spectively spaced beneath and upon opposite sides of said enlargements, said slabs being provided above the fin and header cores with steps, and a cover core extending over the vertical portions of said fin and header cores and resting on said steps, said cover core being provided between said steps with depending portions that extend between the vertical portions of the header and fin cores, said cover core and one of said depending portions having openings therein 50 communicating with the space between the vertical portions of said fin cores and forming a gate for the reception of molten metal, the fin cores being provided upon opposite sides of the longitudinally extending core with substantially 55 horizontally aligned recesses into which metal may flow to form the fins of the radiator, the fin cores and header cores being provided with substantially horizontally aligned slots into which metal may flow to form the side walls of

7. A mold for forming a radiator having side walls, headers between said side walls at opposite ends thereof, a fluidway extending between said headers, fins projecting laterally from opposite sides of the fluidway to said side walls, and fins projecting laterally from the headers to said side walls, comprising a longitudinally extending dry sand core for forming the fluidway and having enlargements at opposite ends thereof for forming the headers, and a casing for said core comprising slabs at opposite ends of said core in spaced relation to the enlargements, vertically disposed fin cores arranged one against the other in a row between said en-

largements and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said longitudinally extending core, vertically disposed header cores arranged one against the other in 5 rows between the slabs and the adjacent fin cores aforesaid and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, said slabs being provided above the fin 10 and header cores with steps, and a cover core extending over the vertical portions of said fin and header cores and resting on said steps, said cover core being provided between the steps with depending portions that extend between 15 the vertical portions of the header and fin cores, said cover core and one of said depending portions having openings therein communicating with the space between the vertical portions of said fin cores and forming a gate for the re- 20 ception of molten metal, the fin cores being provided upon opposite sides of the longitudinally extending core with substantially horizontally aligned recesses into which metal may flow to form the first mentioned fins, the header cores 25 being provided in horizontal alignment with the recesses just mentioned with recesses into which metal may flow to form the last mentioned fins, the bases of the recesses in the fin and header cores being provided with aligned slots into 30 which metal may flow to form the side walls of the radiator.

8. A mold for forming a radiator having end and side walls, headers upon the end walls, and a fluidway extending between said headers, 35 comprising a longitudinally extending dry sand core for forming the fluidway and having enlargements at opposite ends thereof for forming the headers, and a casing for said core comprising slabs at opposite ends of said core in 40 spaced relation to the enlargements, vertically disposed plate-like cores arranged one against the other in a row between said enlargements and having substantially horizontal and vertical portions respectively spaced beneath and 45 upon opposite sides of said longitudinally extending core, vertically disposed header cores arranged one against the other in rows between the slabs and the adjacent plate-like cores aforesaid and having substantially horizontal 50 and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, said slabs being provided with steps, and a cover core extending over the vertical portions of said plate-like and header cores and 55 resting on said steps, said cover core being provided between said steps with depending portions that extend between the vertical portions of the header and plate-like cores, said cover core and one of said depending portions having  $_{60}$ openings therein communicating with the space between the vertical portions of said plate-like cores and forming a gate for the reception of molten metal, the slabs being provided in their inner faces below said steps with recesses into  $_{65}$ which metal may flow to form the end walls of the radiator, the plate-like cores and header cores being provided with substantially horizontally aligned slots into which metal may flow to form the side walls of the radiator.

9. A mold for forming a radiator having end and side walls, headers upon the end walls, and a fluidway extending between said headers, comprising a longitudinally extending dry sand core for forming the fluidway and having en- 75

2,002,904

largements at opposite ends thereof for forming the headers, and a casing for said core comprising slabs at opposite ends of said core in spaced relation to said enlargements, verti-5 cally disposed plate-like cores arranged one against the other in a row between said enlargements and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said longitudinally extending core, vertically disposed header cores arranged one against the other in rows between the slabs and the adjacent plate-like cores aforesaid and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, and a cover core extending over the vertical portions of said plate-like and header cores and having depending portions that extend between the vertical portions of the header and plate-like cores, said cover core and one of said depending portions having openings therein communicating with the space between the vertical portions of said plate-like cores and forming a gate for the reception of molten metal, the slabs being provided in their inner faces with recesses into which metal may flow to form the end walls of the radiator, the plate-like cores and header cores being provided with substantially horizontally aligned slots into which metal may flow to form the side walls of the radiator.

10. A mold for forming a radiator having end and side walls, headers upon the end walls, a fluidway extending between said headers, fins projecting laterally from opposite sides of the fluidway to said side walls, and fins projecting laterally from the headers to said side walls, comprising a longitudinally extending dry sand core for forming the fluidway and having enlargements at opposite ends thereof for forming the headers, and a casing for said core comprising slabs at opposite ends of said core in spaced relation to the enlargements, vertically disposed fin cores arranged one against the other in a row between said enlargements and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said longitudinally extending core, vertically disposed header cores arranged one against the other in rows between the slabs and the adjacent fin cores aforesaid and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, and a cover core extending over the vertical portions of said fin and header cores, said cover core having depending portions that extend between the vertical portions of the header and fin cores, said

cover core having a longitudinally extending upwardly opening sprue for molten metal and one of the depending portions of said cover core having a gate for conducting molten metal from the sprue to the space between the vertical portions of said fin cores, the slabs being provided in their inner faces below said steps with recesses into which metal may flow to form the end walls of the radiator, the fin cores being provided in horizontal alignment with the re- 10 cesses just mentioned with recesses into which metal may flow to form the first mentioned fins, the header cores being provided in horizontal alignment with the recesses aforesaid with recesses into which metal may flow to 15 form the last mentioned fins, the bases of the recesses in the fin and header cores being provided with aligned slots into which metal may flow to form the side walls of the radiator.

11. A mold for forming a radiator having end 20 and side walls, headers upon the end walls, and a fluidway extending between said headers, comprising a longitudinally extending dry sand core for forming the fluidway and having enlargements at opposite ends thereof for forming the 25 headers, and a casing for said core comprising slabs at opposite ends of said core in spaced relation to said enlargements, vertically disposed plate-like cores arranged one against the other in a row between said enlargements and having 30 substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said longitudinally extending core, vertically disposed header cores arranged one against the other in rows between the slabs and 35 the adjacent plate-like cores aforesaid and having substantially horizontal and vertical portions respectively spaced beneath and upon opposite sides of said enlargements, said slabs being provided with steps, and a cover core ex- 40 tending over the vertical portions of said platelike and header cores and resting on said steps, said cover core being provided between said steps with depending portions that extend between the vertical portions of the header and  $_{45}$ plate-like cores and being provided longitudinally thereof with an upwardly opening sprue and a downwardly opening gate through which molten metal may flow into said casing about the longitudinally extending dry sand core afore- 50said, the slabs being provided in their inner faces below said steps with recesses into which metal may flow to form the end walls of the radiator, the plate-like cores and header cores being provided with substantially horizontally 55 aligned slots into which metal may flow to form the side walls of the radiator.

JAMES F. McINTIRE.