
US 2008O155140A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/015514.0 A1

MATHRUBUTHAM et al. (43) Pub. Date: Jun. 26, 2008

(54) SYSTEMAND PROGRAM FOR BUFFERING Related U.S. Application Data
WORK REOUESTS

Q (63) Continuation of application No. 10/768,581, filed on
(75) Inventors: Ramani MATHRUBUTHAM, Jan. 30, 2004, now Pat. No. 7,366,801.

Milpitas, CA (US); Adwait B.
SATHYE, Sunnyvale, CA (US); Publication Classification
Chendong ZOU, Cupertino, CA (51) Int. Cl.
(US) G06F 3/00 (2006.01)

Correspondence Address: (52) U.S. Cl. .. 710/52
KONRAD RAYNES & VICTOR, LLP
ATTN BMS4 (57) ABSTRACT
315 SOUTH BEVERLY DRIVE, SUITE 210
BEVERLY HILLS CA 90212 Disclosed is a technique for buffering work requests. It is

9 determined that a work request is about to be placed into an
(73) Assignee: INTERNATIONAL BUSINESS in-memory structure. When the in-memory structure is not

MACHINES CORPORATION capable of storing the work request, a work request ordering
Armonk, NY (US) s identifier for the work request is stored into an overflow

s structure. When the in-memory structure is capable of storing
(21) Appl. No.: 12/047,238 the work request, a recovery stub is generated for the work

request ordering identifier, and the recovery stub is stored into
(22) Filed: Mar. 12, 2008 the in-memory structure.

Client Computer 100a Client Computer 10On
System Memory 104a System Memory 104n

Client Application(s) 110a Client Application(s) 11On
(Publisher(s (Publisher(s)))

Client Admin 112a Client Admin 112a

Data Store 18O
Transport Structure(s) Network 190

182

Server Computer 120
System Memory 122

Work Request Server
Reader(s) 130 Application(s) 150

Data Store
Engine 160 Business In-Memory

Process(es) 132 Structure(s) 140
(Subscribers)

Recovery Stub(s)
ReCOvery System 142

134
Flow Control

Structure PrOCeSSOr(s) Component(s)
136 138

Work Request Overflow
Data Store Structure(s) 184

170

Patent Application Publication Jun. 26, 2008 Sheet 1 of 13 US 2008/O15514.0 A1

Client Computer 100a Client Computer 10On
System Memory 104a System Memory 104n

Client Application(s) 110a Client Application(s) 11 On
(Publisher(s (Publisher(s)))

Client Admin 112a Client Admin 112a

Data Store 180
Transport Structure(s) NetWOrk 190

182

Server Computer 120
System Memory 122

Work Request Server
Reader(s) 130 Application(s) 150

Data Store
Engine 160 BusineSS In-Memory

PrOCess(es) 132 Structure(s) 140
(SubSCriberS)

ReCOvery Stub(s)
Recover stem 142

Flow Control
Structure PrOCeSSOr(s) Component(s)

136 138

wo Request yow
Data Store tructure(s) 184

170
LOg

FIG. 1A

Patent Application Publication Jun. 26, 2008 Sheet 2 of 13 US 2008/O155140 A1

PUBLISHER
Client Application

110a

Transport =.
Work Request
Reader 130

In-Memory
Structure 140

Structure PrOCeSSOr
136

SUBSCRIBER -
BusineSS PrOCeSS

132

Flow Control
COmpOnent

138

Work Request Overflow
Structure 184

FIG. 1B

Patent Application Publication Jun. 26, 2008 Sheet 3 of 13 US 2008/O15514.0 A1

PUBLISHER
Client Application

110a

Work Request
Reader 130

SUBSCRIBER -
BusineSS PrOCeSS

133C

SUBSCRIBER
BusineSS PrOCeSS

133b

SUBSCRIBER -
BusineSS PrOCeSS

133a

FIG. 1C

Patent Application Publication Jun. 26, 2008 Sheet 4 of 13 US 2008/O15514.0 A1

Business process registers 200
with One Ormore client applications to

receive Certain WOrk requests.

Maximum number of
events that may be

received by the business
proCeSS is COnfigured.

Blocking type is specified
for in-memory structure

of business process

Perform other processing.

FIG. 2A

Patent Application Publication Jun. 26, 2008 Sheet 5 of 13 US 2008/O15514.0 A1

Client application 250
generates WOrk

request.

Client application stores
WOrk request in transport

structure for each 260
appropriate business

proCeSS.

Work request reader
retrieves WOrk request
from transport structure 270

for each appropriate
busineSS proCeSS.

Work request reader
Stores WOrk request in

in-memory queue for each 280
appropriate busineSS

proCeSS.

FIG.2B

Patent Application Publication Jun. 26, 2008 Sheet 6 of 13 US 2008/O15514.0 A1

300 Intercept WOrk request being
stored into in-memory structure.

Compare maximum
limit against number of

WOrk requests in
in-memory structure.

Maximum
limitreached for Store WOrk request

business process Or WOrk Ordering identifier in
requests stored in WOrk WOrk request Overflow

request Overflow Structure.
Structure?

Store Work requestin
in-memory structure.

FIG. 3A

Patent Application Publication Jun. 26, 2008 Sheet 7 of 13 US 2008/O15514.0 A1

Intercept WOrk 350
request being stored into
in-memory structure.

Compare maximum
limit against number of

Work requests in Store WOrk request
in-memory structure. Ordering identifier in

WOrk request Overflow
Structure

Maximum
limit reached for

busineSS proCeSS Or WOrk
requests stored in WOrk

request Overflow
Structure?

Blocking type
SettOnOn
blocking

Notify WOrk request
reader to notify One

Or more client
lications to stop Store WOrk requestin applicatIC delayer

Client
application

previously notified to
stop delivering WOrk

requests?

Notify WOrk request
reader to notify client
application to start
delivering WOrk

requests.

FIG. 3B

Patent Application Publication Jun. 26, 2008 Sheet 8 of 13 US 2008/O15514.0 A1

400

Intercept Work request being
removed from in-memory structure.

Are One
Ormore WOrk

request Order identifiers
stored in a WOrk request

Overflow structure?

Create reCOVery stub
for a Work request
Ordering identifier.

Store recovery stub in
in-memory structure.

Remove WOrk request
Ordering identifier from
WOrk request Overflow

Structure.

Patent Application Publication

Work
Request

Work
Request

Work
Request

Key, Ordering Key, Ordering Key, Ordering
Identifier,
Structure
Identifier,

Data

ReCOvery
Stub
Key,

Ordering
Identifier,
Structure
identifier

Identifier,
Structure Structure
Identifier, Identifier,

Data Data

FIG. 4B

Identifier,

Work
Request

Key, Ordering
Identifier,

Work
Request

Key, Ordering
Identifier,

Structure Structure
Identifier, Identifier,

Data Data

FIG. 4D

Jun. 26, 2008 Sheet 9 of 13 US 2008/O15514.0 A1

Work
Request

Key, Ordering
Identifier, 450
Structure
Identifier,

Data

Ordering
identifier 460

Work
Request

Key, Ordering
Identifier, 450
Structure
Identifier,

Data

Patent Application Publication Jun. 26, 2008 Sheet 10 of 13 US 2008/O15514.0 A1

Compare maximum limit of
each busineSS proCeSS against

number of WOrk requests in respective
in-memory structures.

500

Maximum Notify WOrk request
limit reached for reader to notify One Or

predetermined number more client
Of business applications to Stop
processes? delivering WOrk

requests.

Notify WOrk request
Any client. reader to notify One Or

application previously mOre Client
notified to stop applications to start
delivering WOrk delivering WOrk requests? requests.

FIG. 5

Patent Application Publication Jun. 26, 2008 Sheet 11 of 13 US 2008/O15514.0 A1

Receive notification 600
from WOrkflow
COmponent.

610 620

Notify client admin of
Yes the client application to

Stop delivering WOrk
requests.

Notify client
application to stop
delivering WOrk

requests?

NO
640

630
Notify Work request
reader to notify client

Yes admin of client
Notify client

application to start
delivering WOrk

requests?
application to start
delivering WOrk

requests.

NO

Perform Other 650
processing.

FIG. 6

Patent Application Publication Jun. 26, 2008 Sheet 12 of 13 US 2008/O15514.0 A1

Retrieve next item from
in-memory Structure.

ReCOvery stub?

ConvertreCOVery stub
into Complete WOrk

request.

Forward WOrk request to
each appropriate
busineSS proCeSS.

FIG.7

Patent Application Publication Jun. 26, 2008 Sheet 13 of 13 US 2008/O15514.0 A1

800

Computer Architecture

802

Operating

Computer

810 808

NetWOrk

Input Device Output Device

FIG. 8

US 2008/O155 140 A1

SYSTEMAND PROGRAM FOR BUFFERING
WORK REQUESTS

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is a continuation application of and
claims the benefit of “METHOD, SYSTEM, AND PRO
GRAM FOR BUFFERING WORK REQUESTS”, having
application Ser. No. 10/768,581, filed Jan. 30, 2004, the entire
contents of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention is related to buffering work
requests.
0004 2. Description of the Related Art
0005. The term “workflow” may be used to describe tasks
and data for business processes. The data, for example, may
relate to organizations or people involved in a business pro
cess and required input and output information for the busi
ness process. A workflow automation product allows creation
of a workflow model to manage business processes. A work
flow engine is a component in a workflow automation pro
gram that understands the tasks of each business process in
the workflow and determines whether the business process is
ready to move to the next task.
0006 A publish-subscribe pattern is a common pattern in
distributed applications and describes a pattern in which a
publisher (e.g., an application program) generates work
requests to be processed by one or more Subscribers (e.g.,
business processes), for example, as part of a work flow. The
subscribers that receive the work requests are those that are
interested in the work requests and that have registered with
the publisher to receive the work requests of interest.
0007. A work request may be described as a business
object request because the work request is processed by a
business process. For example, a work request may provide
data (e.g., employee name and social security number) and a
description of what is to be done (e.g., creating, deleting, or
updating an entry in a data store).
0008. The publisher may dispatch work requests to an
intermediary application program that stores the work
requests in queues for each Subscriber, and each Subscriber
retrieves the work requests from an associated queue. Since
the intermediary application program holds work requests in
each queue until the work requests are retrieved by subscrib
ers, sometimes, a very slow Subscriber may not retrieve work
requests at a fast rate, leaving many work requests in the
queue. This may lead to the queue running out of entries for
storing new work requests for that Subscriber.
0009. That is, one problem with the publisher-subscriber
pattern is that the delivery of work requests from the publisher
may cause a queue to overflow when a Subscriber is slow to
retrieve work requests from the queue.
0010 Thus, there is a need in the art for an improved
technique for processing work requests for a system using a
publish-subscribe pattern.

SUMMARY OF THE INVENTION

0011 Provided are a method, system, and program for
buffering work requests. It is determined that a work request
is about to be placed into an in-memory structure. When the
in-memory structure is not capable of storing the work

Jun. 26, 2008

request, a work request ordering identifier for the work
request is stored into an overflow structure. When the in
memory structure is capable of storing the work request, a
recovery stub is generated for the work request ordering iden
tifier, and the recovery stub is stored into the in-memory
Structure.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 Referring now to the drawings in which like refer
ence numbers represent corresponding parts throughout:
0013 FIG. 1A illustrates, in a block diagram, a computing
environment in accordance with certain implementations of
the invention.
0014 FIG. 1B illustrates, in a block diagram, further
details of a computing environment in accordance with cer
tain implementations of the invention.
0015 FIG. 1C illustrates, in a block diagram, yet further
details of a computing environment in accordance with cer
tain implementations of the invention.
0016 FIG. 2A illustrates logic implemented in a business
process in accordance with certain implementations of the
invention.
0017 FIG. 2B illustrates logic implemented for moving
work requests in accordance with certain implementations of
the invention.
0018 FIG. 3A illustrates logic implemented when a work
request is to be stored in an in-memory structure in accor
dance with certain implementations of the invention.
(0019 FIG. 3B illustrates logic implemented when a work
request is to be stored in an in-memory structure in accor
dance with certain alternative implementations of the inven
tion.
0020 FIG. 4A illustrates logic implemented when a work
request is removed from an in-memory structure in accor
dance with certain implementations of the invention.
0021 FIGS. 4B, 4C, and 4D illustrate structures in accor
dance with certain implementations of the invention.
0022 FIG. 5 illustrates logic implemented in a flow con
trol component in accordance with certain implementations
of the invention.
0023 FIG. 6 illustrates logic implemented in a work
request reader in accordance with certain implementations of
the invention.
0024 FIG. 7 illustrates logic implemented in a work
request reader for processing recovery stubs and work
requests in accordance with certain implementations of the
invention.
0025 FIG. 8 illustrates an architecture of a computer sys
tem that may be used in accordance with certain implemen
tations of the invention.

DETAILED DESCRIPTION

0026. In the following description, reference is made to
the accompanying drawings which form a part hereof and
which illustrate several implementations of the present inven
tion. It is understood that other implementations may be
utilized and structural and operational changes may be made
without departing from the scope of the present invention.
0027. Implementations of the invention buffer work
requests for one or more subscribers that are slow to retrieve
work requests from their in-memory structures (e.g., queues)
that hold work requests. When an in-memory structure
becomes full and work requests continue to be sent to the

US 2008/O155 140 A1

subscriber, the subscriber is said to be in an overflow state
(i.e., the in-memory structure for the subscriber may over
flow). Thus, in cases in which it is not possible to send a
communication to the publisher to stop sending work
requests or cases in which some Subscribers wish to receive
work requests when other subscribers are in an overflow state,
each subscriber may be configured such that, even if the
subscriber reaches an overflow state, work requests are still
delivered to the subscribers that are not in overflow states
without interruption. Then, the work requests for the sub
scribers in the overflow state are buffered and sent to the
subscribers when the subscribers are able to process more
work requests.
0028 FIG. 1A illustrates, in a block diagram, a computing
environment in accordance with certain implementations of
the invention. One or more client computers 100a... 100n are
connected via a network 190 to a server computer 120. For
ease of reference, the designations of “a” and “n” after refer
ence numbers (e.g., 100a... 110m) are used to indicate one or
more elements (e.g., client computers). The client computers
100a ... 100m may comprise any computing device known in
the art, Such as a server, mainframe, workstation, personal
computer, hand held computer, laptop telephony device, net
work appliance, etc. The network 190 may comprise any type
of network, such as, for example, a Storage Area Network
(SAN), a Source Area Network (LAN), Wide Area Network
(WAN), the Internet, an Intranet, etc.
0029. Each client computer 100a... 100m includes system
memory 104a ... 104n, respectively, which may be imple
mented in volatile and/or non-volatile devices. One or more
client applications 110a . . . 110m and client admin applica
tions 112a ... 112n may execute in the system memory 104a
... 104n, respectively. The client applications 110a ... 110m
may generate and Submit work requests in the form of mes
sages to the server computer 120 for execution. The client
admin applications 112a . . . 112m perform administrative
functions.
0030 The server computer 120 includes system memory
122, which may be implemented in volatile and/or non-vola
tile devices. A data store engine 160 is connected to the server
computer 120 and to data store 170.
0031 One or more work request readers 130, one or more
business processes 132, a recovery system 134, one or more
structure processors 136, and one or more flow control com
ponents 138 execute in the system memory 122. Additionally,
one or more server applications 150 execute in system
memory 122. One or more in-memory structures 140 (e.g.,
in-memory queues) may be stored in System memory 122. In
certain implementations of the invention, there is one in
memory structure 140 for each business process 132, and one
structure processor 136 for each in-memory structure 140.
One or more work request overflow structures (“overflow
structures') 184 may also be stored in system memory 122 for
each business process 132.
0032. One or more transport structures 182 (e.g., queues)
may be stored in a data store 180 connected to network 190.
In certain implementations of the invention, there is one trans
port structure 182 associated with each business process 132.
The transport structure 182 may be, for example, a Message
Queue (“MQ') available from International Business
Machines Corporation, a Common Object Request Broker
Architecture (CORBA) structure, or a JAVAR) Message Ser
vice (JMS) structure. In certain implementations of the inven
tion, the transport structure 182 may be persistent.

Jun. 26, 2008

0033. In certain implementations of the invention, such as
in workflow systems, the client applications 110a . . . 110n
may be described as “publishers’, while the business pro
cesses 132 may be described as “subscribers”.
0034. The work requests may be stored in both in-memory
structures 140 and in transport structures 182 corresponding
to the business processes 132 that are to process the work
requests. The work request reader 130 retrieves a work
request from a transport structure 182 associated with a busi
ness process 132 that is to execute the work request, and
forwards the work request to the appropriate business process
132.
0035. During recovery, recovery stubs 142 are generated
in system memory 122 by retrieving some data from log 172.
In certain implementations of the invention, the term “recov
ery stubs' 142 may be used to represent a portion of a work
request. In certain implementations of the invention, a recov
ery stub includes a work request key that links together work
requests (e.g., a social security number for data about an
individual), a work request ordering identifier that indicates
the order in which the work request corresponding to the
recovery stub was received by the work request reader 130,
and a structure identifier that provides access to the complete
work request stored in one or more transport structures 182.
In certain implementations, the work request ordering iden
tifier is a sequence number assigned to the work request. The
log 172 provides information about work requests (e.g., a
work request key, a work request ordering identifier, and a
structure identifier) and the state of the work requests (e.g.,
whether a work request was in progress when a system (e.g.,
server computer 120) failure occurred).
0036 Although a single data store 170 is illustrated for
ease of understanding, data in data store 170 may be stored in
multiple data stores at server computer 120 and/or other com
puters connected to server computer 120.
0037. The data store 170 may comprise an array of storage
devices, such as Direct Access Storage Devices (DASDs),
Just a Bunch of Disks (JBOD), Redundant Array of Indepen
dent Disks (RAID), virtualization device, etc.
0038 FIG. 1B illustrates, in a block diagram, further
details of a computing environment in accordance with cer
tain implementations of the invention. In certain implemen
tations, one client application 130 (“publisher'), one trans
port structure 182, one work request reader 130, one
in-memory structure 140, one structure processor 136, and
one business process 132 (“subscriber) are associated with
each other. In certain alternative implementations, a business
process 132 may receive work requests from multiple client
applications 110.
0039. In the illustration of FIG. 1B, the client application
110a produces work requests that are destined for the busi
ness process 132. The client application 110a may also com
municate with the work request reader 130, for example, for
administrative functions. In particular, the client application
110a sends work requests to the server computer 120 by
storing the work requests in transport structures 182, where
one transport structure 182 corresponds to one business pro
cess 132. The work request reader 130 retrieves work requests
from the transport structure 182 and stores them in the in
memory structure 140 for the business process 132. If the
in-memory structure is full, the work request reader 130
stores the work request in a work request overflow structure
184. The structure processor 136 retrieves work requests from
the in-memory structure 140 and forwards the work requests

US 2008/O155 140 A1

to the business process 132 for processing. Also, as work
requests are retrieved from the in-memory structure 140, the
flow control component 138 stores the work requests from the
work request overflow structure 184 into the in-memory
structure 140. After completing a work request, a business
process 132 removes the work request from the appropriate
transport structure 182 and performs other processing to
clean up the transport structure 182. Additionally, a flow
control component 138 monitors work requests being trans
ferred by the work request reader 130 into the in-memory
structure 140 and work requests removed from the
in-memory structure 140. The flow control component 138
may assist in controlling the flow of work requests.
0040 FIG. 1C illustrates, in a block diagram, yet further
details of a computing environment in accordance with cer
tain implementations of the invention. In particular, in FIG.
1C, a single client application 110a may send work requests
that are processed by a single work request reader 130 for
multiple business processes 133a, 133b. 133c.
0041 FIG. 2A illustrates logic implemented in a business
process 132 in accordance with certain implementations of
the invention. Control begins at block 200 with the business
process 132 registering with one or more client applications
110a ... 110n for certain types of work requests. In certain
implementations, each work request includes a type field.
Then, when a work request is generated by a client applica
tion 110a ... 110m, the type of the work request is determined,
the business processes 132 that registered for that type of
work request are determined, and the work request is sent, by
the client application 110a... 110m, to the transport structures
182 for the determined business processes 132. In alternative
implementations, work requests and business processes 132
may be associated using other techniques (e.g., all business
processes 132 receive all work requests and process the
desired ones).
0042. In block 210, the business process 132 is configured
for a maximum number of work requests that may be stored
by the business process at any given time, and this maximum
number is also referred to as a "maximum limit.” In certain
implementations, a user. Such as a system administrator, sets
the maximum limit. In certain implementations, the maxi
mum limit is equivalent to the number of work requests that
may be stored in an in-memory structure 140 for the business
process 132. In block 220, a blocking type is specified for the
in-memory structure 140 for the business process 132. In
block 230, other processing may occur.
0043. In certain implementations, a blocking type may be
associated with an in-memory structure 140 for a business
process 132. The blocking type is set to a first value (e.g.,
“blocking') to indicate that a client application 110a... 110n
should be blocked from sending additional work requests
when a maximum limit is reached for a business process. The
blocking type is set to a second value (e.g., “non-blocking) to
indicate that work requests are to be stored in a work request
overflow structure 184 for a business process when a maxi
mum limit is reached for that business process.
0044 FIG. 2B illustrates logic implemented for moving
work requests in accordance with certain implementations of
the invention. Control begins in block 250 with a client appli
cation (e.g., 110a) generating a work request. In block 260,
the client application 110a ... 110n stores the work request in
a transport structure 182 for the associated business process
132. If more than one business process 132 is to process the
same work request, then the client application 110a ... 110n

Jun. 26, 2008

stores the work request in the transport structure 182 for each
appropriate business process 132. In block 270, the work
request reader 130 retrieves the work request from the trans
port structure 182 for the associated business process. In
block 280, the work request reader 130 stores the work
request in an in-memory structure 140 for the associated
business process 132.
0045 FIG. 3A illustrates logic implemented when a work
request is to be stored in an in-memory structure 140 in
accordance with certain implementations of the invention.
Control begins in block 300 with the flow control component
138 “intercepting a work request transferred by the work
request reader 130 to the in-memory structure 140. The term
“intercepting describes monitoring by the flow control com
ponent 138 and detecting that the work request is being trans
ferred into or out of an in-memory structure 140. The pro
cessing of block 300 may occur periodically. In certain
implementations, the work request reader 130 registers with
the flow control component 138 so that the flow control com
ponent 138 can monitor work requests being transferred by
the work request reader 130.
0046. In block 310, the flow control component 138 com
pares the maximum limit against the number of work requests
in the in-memory structure 140. In block 320, if the maximum
limit has been reached or work requests are stored in work
request overflow structure 184, processing continues to block
330, otherwise, processing continues to block 340. Thus, a
work request is stored in the overflow structure 184 when the
in-memory structure 140 is not capable of storing the work
request. The in-memory structure 140 is not capable of stor
ing work requests when the maximum limit has been reached
or work requests remain in the overflow structure 184. That is,
in certain implementations, work requests are not stored in
the in-memory structure 140 until all work requests in the
work request overflow structure 184 have been moved into the
in-memory structure 140.
0047. In block330, the flow control component 138 stores
a work request ordering identifier into a work request over
flow structure 184 for the business process for which the work
request was intercepted. In block340, the work request reader
130 stores the work request in the in-memory structure 140.
0048 For example, in certain implementations, if the
maximum limit is 10 work requests, when the 11" work
request is intercepted by the flow control component 138, the
flow control component 138 stores the 11" work request in a
work request overflow structure 184.
0049. Thus, in certain implementations, as work requests
beyond the maximum limit are sent by one or more client
applications 110a ... 110n to a business process 132, work
requests for the business process 132 are stored in a work
request overflow structure 184. Thus, if one business process
132 reaches its maximum limit, then the other business pro
cesses 132 are not impacted.
0050 FIG. 3B illustrates logic implemented when a work
request is to be stored in an in-memory structure 140 in
accordance with certain alternative implementations of the
invention. Control begins in block 350 with the flow control
component 138 “intercepting a work request transferred by
the work request reader 130 to the in-memory structure 140.
In block 355, the flow control component 138 compares the
maximum limit against the number of work requests in the
in-memory structure 140. In block 360, if the maximum limit
has been reached or work requests are stored in work request

US 2008/O155 140 A1

overflow structure 184, processing continues to block 365,
otherwise, processing continues to block 385.
0051. In block 365, the flow control component deter
mines whether a blocking type (e.g., flag) is set to non
blocking. If so processing continues to block 370, otherwise,
processing continues to block 375. In block 370, the flow
control component 138 stores a work request ordering iden
tifier into a work request overflow structure 184 for the busi
ness process for which the work request was intercepted. In
block 375, the flow control component 138 notifies the work
flow mover 130 to notify the client application 110a ... 110n
that sent the intercepted work request to stop sending work
requests. From block 375, processing loops back to block
350. In certain implementations, a notification indicator (e.g.,
flag) may be set for the business processes. In this case, in
block 375, the notification is sent only if the notification
indicator is set to indicate that a notification is to be sent.

0052. In block 385, the work request reader 130 stores the
work request in the in-memory structure 140. In block 390, if
the flow control component 138 determines that the client
application 110a . . . 110n was previously notified to stop
delivering work requests, processing continues to block 395,
otherwise, processing loops back to block 350. In block 395,
the flow control component 138 notifies the work flow mover
130 to notify one or more client applications 110a . . . 110n
that were previously notified to stop sending work requests to
start sending work requests. Then, processing loops back to
block 350.

0053 Thus, in certain implementations, as work requests
beyond the maximum limit set for a business process 132 are
received for that business process 132, if a blocking type for
the in-memory structure 140 associated with the business
process is set to “non-blocking.” work requests are stored in
work request overflow structures 184.
0054 FIG. 4A illustrates logic implemented when a work
requestis removed from an in-memory structure 140 in accor
dance with certain implementations of the invention. Control
begins at block 400 with the flow control component 138
intercepting a work request being removed from in-memory
structure 140. In block 410, if the flow control component 138
determines that there are one or more work request ordering
identifiers in a work request overflow structure 184, process
ing continues to block 420, otherwise, processing loops back
to block 400. In block 420, the flow control component 138
creates a recovery stub for a work request ordering identifier
in the work request overflow structure 132. In block 430, the
flow control component 138 stores the recovery stub 142 in
the in-memory structure 140. In block 440, the flow control
component 132 removes the work request ordering identifier
from the work request overflow structure 184.
0055 FIGS. 4B, 4C, and 4D illustrate structures 450, 460,
and 470 in accordance with certain implementations of the
invention. FIG. 4B illustrates an in-memory structure 450 for
a business process 132. The in-memory structure 450 con
tains four work requests. Each work request includes a work
request key that links together work requests (e.g., a social
security number for data about an individual), a work request
ordering identifier that indicates the order in which the work
request was received by the work request reader 130, a struc
ture identifier that provides access to the work request stored
in one or more transport structures 182, and data. In this
example, in-memory structure 450 is full. When a fifth work

Jun. 26, 2008

requestis received, a work request ordering identifier is stored
for the work request in a work request overflow structure 460,
illustrated in FIG. 4C.
0056 FIG. 4D illustrates in-memory structure 450 for the
business process 132 that includes a recovery stub. After a
work request has been removed from the in-memory structure
450, a recovery stub 142, generated from the work request
ordering identifier in work request overflow structure 460, is
stored in the in-memory structure 450. The recovery stub
includes a work request key, a work request ordering identi
fier, and a structure identifier. In certain implementations, the
recovery stubs 142 do not include data, while work requests
do include data.
0057 FIG. 5 illustrates logic implemented in a flow con
trol component 138 in accordance with certain implementa
tions of the invention. Control begins in block 500 with the
flow control component 138 comparing the maximum limit
of each business process 132 against the number of work
requests in the respective in-memory structures 140. The
processing of block 500 may occur periodically. In block 510,
if the maximum limit has been reached for a predetermined
number of business processes 132, processing continues to
block 520, otherwise, processing continues to block 530. In
certain implementations, the predetermined number is
equivalent to all of the business processes 132.
0058. In block 520, the flow control component 138 noti
fies the work flow mover 130 to notify one or more client
applications 110a . . . 110n to stop sending work requests.
From block 520, processing loops back to block 500. In
certain implementations, the work flow mover 130 is associ
ated with one or more client applications 110a ... 110n, and
the notification is sent to these client applications 110a . . .
110n. In certain implementations, a notification indicator
may be set for the business processes. In this case, in block
520, the notification is sent only if the notification indicator is
set to indicate that a notification is to be sent.
0059. In block 530, if the flow control component 138
determines that any client application 110a . . . 110n was
previously notified to stop delivering work requests, process
ing continues to block 550, otherwise, processing loops back
to block 500. In block 550, the flow control component 138
notifies the work flow mover 130 to notify one or more client
applications 110a . . . 110n that were previously notified to
stop sending work requests to start sending work requests.
Then, processing loops back to block 500.
0060 Thus, in certain implementations, if a maximum
limit is reached for each of a predetermined number of busi
ness processes 132, one or more client applications 110a . . .
110n are notified to stop sending work requests.
0061 FIG. 6 illustrates logic implemented in a work
request reader 130 in accordance with certain implementa
tions of the invention. Control begins at block 600 with the
work request reader 130 receiving a notification from the flow
control component 138. In block 610, if the notification is to
notify a client application 110a . . . 110n to stop delivering
work requests, processing continues to block 620, otherwise,
processing continues to block 630. In block 620, the work
request reader 130 notifies the client admin 112a ... 112m of
the client application 110a ... 110n to stop delivering work
requests.
0062. In block 630, if the notification is to notify a client
application 110a ... 110n to start delivering work requests,
processing continues to block 640, otherwise, processing
continues to block 650. In block 640, the work request reader

US 2008/O155 140 A1

130 notifies the client admin 112a . . . 112m of the client
application 110a... 110n to start delivering work requests. In
block 650, other processing may occur. For example, if a
notification that the work request reader 130 is not able to
process is received, error processing may occur.
0063 Thus, in cases in which a client application 110a . .
.110m has been designed such that the client application 110a
. . . 110n cannot be controlled (e.g., throttled) or cannot
receive communications from, for example, business pro
cesses 132, it is still desirable to control the in-memory struc
tures 140 so that they do not overflow and work requests are
not discarded in the case of an overflow state. Therefore,
implementations of the invention prevent the in-memory
structures 140 from overflowing and avoid discarding work
requests by allowing for work requests received for an in
memory structure that is full to be stored in a separate work
request overflow structure 184. The work requests in the work
request overflow structure 184 may be redelivered in proper
order back to the in-memory structure 140 to be retrieved by
the associated business process.
0064 FIG. 7 illustrates logic implemented in a work
request reader for processing recovery stubs and work
requests in accordance with certain implementations of the
invention. Control begins at block 700 with the structure
processor 136 retrieving a next item from an in-memory
structure 140, starting with a first item. In block 710, the
structure processor 136 determines whether the item is a
recovery stub. If so, processing continues to block 720, oth
erwise, processing continues to block 730. In block 720, the
structure processor 136 converts the recovery stub into a
complete work request by retrieving the complete work
request for which the recover stub was created from a trans
port structure 182. In certain implementations, the work
request ordering identifier may be used to locate the complete
work request in the transport structure 182. In block 730, the
structure processor 136 forwards the complete work request
to a business process 132. In certain alternative implementa
tions, the structure processor 136 is called by the business
process 132 to retrieve a work request.
0065 IBM, DB2, OS/390, UDB, and Informix are regis
tered trademarks or common law marks of International Busi
ness Machines Corporation in the United States and/or other
countries. JAVAR) is a registered trademark or common law
mark of Sun Microsystems.

Additional Implementation Details
0066. The described techniques for buffering work
requests may be implemented as a method, apparatus or
article of manufacture using standard programming and/or
engineering techniques to produce Software, firmware, hard
ware, or any combination thereof. The term “article of manu
facture' as used herein refers to code or logic implemented in
hardware logic (e.g., an integrated circuit chip. Program
mable Gate Array (PGA), Application Specific Integrated
Circuit (ASIC), hardware component, etc.) or a computer
readable medium, Such as magnetic storage medium (e.g.,
hard disk drives, floppy disks, tape, etc.), optical storage
(CD-ROMs, optical disks, etc.), volatile and non-volatile
memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs,
DRAMs, SRAMs, firmware, programmable logic, etc.).
Code in the computer readable medium is accessed and
executed by a processor. The code in which preferred embodi
ments are implemented may further be accessible through a
transmission media or from a file server over a network. In

Jun. 26, 2008

Such cases, the article of manufacture in which the code is
implemented may comprise a transmission media, Such as a
network transmission line, wireless transmission media, Sig
nals propagating through space, radio waves, infrared signals,
etc. Thus, the “article of manufacture' may comprise the
medium in which the code is embodied. Additionally, the
“article of manufacture' may comprise a combination of
hardware and Software components in which the code is
embodied, processed, and executed. Of course, those skilled
in the art will recognize that many modifications may be made
to this configuration without departing from the scope of the
present invention, and that the article of manufacture may
comprise any information bearing medium known in the art.
0067. The logic of FIGS. 2A, 2B, 3A, 3B, 4A, and 5-7
describes specific operations occurring in a particular order.
In alternative implementations, certain of the logic operations
may be performed in a different order, modified or removed.
Moreover, operations may be added to the above described
logic and still conform to the described implementations.
Further, operations described herein may occur sequentially
or certain operations may be processed in parallel, or opera
tions described as performed by a single process may be
performed by distributed processes.
0068. The illustrated logic of FIGS. 2A, 2B, 3A, 3B, 4A,
and 5-7 may be implemented in Software, hardware, program
mable and non-programmable gate array logic or in some
combination of hardware, Software, or gate array logic.
0069 FIG. 8 illustrates an architecture 800 of a computer
system that may be used in accordance with certain imple
mentations of the invention. Client computer 100 and/or
server computer 120 may implement computer architecture
800. The computer architecture 800 may implement a pro
cessor 802 (e.g., a microprocessor), a memory 804 (e.g., a
Volatile memory device), and storage 810 (e.g., a non-volatile
storage area, such as magnetic disk drives, optical disk drives,
a tape drive, etc.). An operating system 805 may execute in
memory 804. The storage 810 may comprise an internal stor
age device oran attached or network accessible storage. Com
puter programs 806 in storage 810 may be loaded into the
memory 804 and executed by the processor 802 in a manner
known in the art. The architecture further includes a network
card 808 to enable communication with a network. An input
device 812 is used to provide user input to the processor 802.
and may include a keyboard, mouse, pen-stylus, microphone,
touch sensitive display Screen, or any other activation or input
mechanism known in the art. An output device 814 is capable
of rendering information from the processor 802, or other
component, such as a display monitor, printer, storage, etc.
The computer architecture 800 of the computer systems may
include fewer components than illustrated, additional com
ponents not illustrated herein, or some combination of the
components illustrated and additional components.
0070 The computer architecture 800 may comprise any
computing device known in the art, such as a mainframe,
server, personal computer, workstation, laptop, handheld
computer, telephony device, network appliance, virtualiza
tion device, storage controller, etc. Any processor 802 and
operating system 805 known in the art may be used.
0071. The foregoing description of implementations of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifica
tions and variations are possible in light of the above teaching.
It is intended that the scope of the invention be limited not by

US 2008/O155 140 A1

this detailed description, but rather by the claims appended
hereto. The above specification, examples and data provide a
complete description of the manufacture and use of the com
position of the invention. Since many implementations of the
invention can be made without departing from the spirit and
Scope of the invention, the invention resides in the claims
hereinafter appended.
What is claimed is:
1. An article of manufacture comprising a computer-read

able storage medium including a program for buffered work
requests, wherein the program when executed by a computer
causes operations to be performed, the operations compris
ing:

determining that a work request is about to be placed into
an in-memory structure for a business process, wherein
the work request includes a work request ordering iden
tifier that indicates an order in which the work request
was received, a structure identifier that provides access
to the work request stored in one or more transport
structures, and data;

determining whether the in-memory structure is capable of
storing the work request and whether one or more work
request ordering identifiers are stored in an overflow
structure for the business process;

in response to determining that either the in-memory struc
ture is not capable of storing the work request or one or
more work request ordering identifiers are stored in the
overflow structure for the business process, storing the
work request ordering identifier for the work request
into the overflow structure for the business process,
wherein work requests for at least one other business
process that is not in an overflow state and does not have
any work request ordering identifiers stored in another
overflow structure for that business process are capable
of being stored in an in-memory structure for that busi
ness process without interruption; and

in response to determining that the in-memory structure is
Subsequently capable of storing the work request having
the work request ordering identifier that was stored in the
overflow structure, storing the work request into the
in-memory structure for the business process based on
the work request ordering identifier stored in the over
flow structure by:
determining that a different work request has been
removed from the in-memory structure;

generating a recovery stub for the work request ordering
identifier for the work request, wherein the recovery
stub includes the work request ordering identifier and
the structure identifier that provides access to the
work request including data stored in the one or more
transport structures; and

storing the recovery stub into the in-memory structure.
2. The article of manufacture of claim 1, wherein the in

memory structure is not capable of storing the work request
when a maximum limit of work requests has been reached.

3. The article of manufacture of claim 2, wherein there are
multiple in-memory structures and wherein the operations
further comprise:

determining that the maximum limit has been reached for a
predetermined number of the multiple in-memory struc
tures; and

sending one or more notifications to one or more client
applications that additional work requests are not to be
Sent.

Jun. 26, 2008

4. The article of manufacture of claim 1, wherein the in
memory structure is not capable of storing the work request
when one or more work request ordering identifiers reside in
the overflow structure.

5. The article of manufacture of claim 1, wherein a block
ing type is associated with the in-memory structure and
wherein the operations further comprise:
when the in-memory structure is not capable of storing the
work request,
if the blocking type is set to non-blocking, storing the
work request ordering identifier into the overflow
structure; and

if the blocking type is set to blocking, sending a notifi
cation that additional work requests are not to be sent.

6. The article of manufacture of claim 1, wherein the work
request is sent from a publisher to a Subscriber.

7. The article of manufacture of claim 6, wherein the sub
scriber retrieves the work request from the in-memory struc
ture.

8. A computer system having logic for buffering work
requests, wherein the logic is executed by the computer sys
tem, the logic comprising:

determining that a work request is about to be placed into
an in-memory structure for a business process, wherein
the work request includes a work request ordering iden
tifier that indicates an order in which the work request
was received, a structure identifier that provides access
to the work request stored in one or more transport
structures, and data;

determining whether the in-memory structure is capable of
storing the work request and whether one or more work
request ordering identifiers are stored in an overflow
structure for the business process;

in response to determining that either the in-memory struc
ture is not capable of storing the work request or one or
more work request ordering identifiers are stored in the
overflow structure for the business process, storing the
work request ordering identifier for the work request
into the overflow structure for the business process,
wherein work requests for at least one other business
process that is not in an overflow state and does not have
any work request ordering identifiers stored in another
overflow structure for that business process are capable
of being stored in an in-memory structure for that busi
ness process without interruption; and

in response to determining that the in-memory structure is
Subsequently capable of storing the work request having
the work request ordering identifier that was stored in the
overflow structure, storing the work request into the
in-memory structure for the business process based on
the work request ordering identifier stored in the over
flow structure by:
determining that a different work request has been
removed from the in-memory structure;

generating a recovery stub for the work request ordering
identifier for the work request, wherein the recovery
stub includes the work request ordering identifier and
the structure identifier that provides access to the
work request including data stored in the one or more
transport structures; and

storing the recovery stub into the in-memory structure.
9. The computer system of claim8, wherein the in-memory

structure is not capable of storing the work request when a
maximum limit of work requests has been reached.

US 2008/O155 140 A1

10. The computer system of claim 9, wherein there are
multiple in-memory structures and further comprising:

determining that the maximum limit has been reached for a
predetermined number of the multiple in-memory struc
tures; and

sending one or more notifications to one or more client
applications that additional work requests are not to be
Sent.

11. The computer system of claim 8, wherein the
in-memory structure is not capable of storing the work
request when one or more work request ordering identifiers
reside in the overflow structure.

12. The computer system of claim 8, wherein a blocking
type is associated with the in-memory structure and further
comprising:

Jun. 26, 2008

when the in-memory structure is not capable of storing the
work request,
if the blocking type is set to non-blocking, storing the
work request ordering identifier into the overflow
structure; and

if the blocking type is set to blocking, sending a notifi
cation that additional work requests are not to be sent.

13. The computer system of claim 8, wherein the work
request is sent from a publisher to a Subscriber.

14. The computer system of claim 13, wherein the sub
scriber retrieves the work request from the in-memory
Structure.

