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(57) ABSTRACT 

In one embodiment, a method for identifying and replacing 
code translations that generate spurious fault events includes 
detecting, while executing a first native translation of target 
instruction set architecture (ISA) instructions, occurrence of 
a fault event, executing the target ISA instructions or a func 
tionally equivalent version thereof, determining whether 
occurrence of the fault event is replicated while executing the 
target ISA instructions or the functionally equivalent version 
thereof, and in response to determining that the fault event is 
not replicated, determining whether to allow future execution 
of the first native translation or to prevent such future execu 
tion in favor of forming and executing one or more alternate 
native translations. 
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FAULT DETECTION IN INSTRUCTION 
TRANSLATIONS 

BACKGROUND 

0001. Some computing systems implement translation 
Software to translate portions of target instruction set archi 
tecture (ISA) instructions into native instructions that may be 
executed more quickly and efficiently through various opti 
mization techniques such as combining, reorganizing, and 
eliminating instructions. More particularly, in transactional 
computing systems that have the capability to speculate and 
rollback operations, translations may be optimized in ways 
that potentially violate the semantics of the target ISA. Due to 
Such optimizations, once a translation has been generated, it 
can be difficult to distinguish whether events (e.g., architec 
tural fault Such as a page violation) encountered while execut 
ing a translation are architecturally valid or are spuriously 
created by over-optimization of the translation. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0002 FIG. 1 schematically shows an example computing 
system in accordance with an embodiment of the present 
disclosure. 
0003 FIG. 2 shows an example of a trap mechanism for 
pausing execution in order to determine whether a fault event 
is spuriously created by a translation. 
0004 FIG. 3 shows an example of a counter mechanism 
for pausing execution in order determine whether a fault event 
is spuriously created by a translation. 
0005 FIG. 4 shows an example of a method for identifying 
and replacing code translations that generate spurious fault 
events in accordance with an embodiment of the present 
disclosure. 

DETAILED DESCRIPTION 

0006. The present disclosure provides a mechanism for 
optimizing native translations of corresponding non-native 
code portions, such as targetinstruction set architecture (ISA) 
code portions. The intelligent generation of translations, and 
the optimization thereof, may be handled by translation soft 
ware, which may be included as part of a software layer that 
provides an interface between an ISA and a processor core. 
More particularly, the present disclosure provides a fault nar 
rowing mechanism that identifies and replaces code transla 
tions that generate spurious fault events (e.g., architectural 
faults). As discussed above, in some cases, a translation may 
be aggressively or overly optimized such that the translation 
generates spurious fault events. Note that "spurious' means 
that if the corresponding target ISA code or a functional 
equivalent thereof were executed, then the fault event would 
not occur. In other cases, a fault event may be generated by the 
target ISA code. The mechanism determines whether a fault 
event encountered in a translation is generated spuriously by 
the translation, for example due to over-optimization of the 
translation, and if it is determined that the fault event was 
spuriously caused by the translation, it generates a different 
translation. 
0007. In one example, the translation software redirects 
execution to an instruction pointer (IP) of a native translation 
in lieu of corresponding target ISA code by the processor 
core. The native translation may be executed without using a 
hardware decoder located on the processor core. Note that 
when this disclosure refers to execution “without using the 
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hardware decoder” that language may still encompass minor 
or trivial uses of decode logic in hardware while a translation 
is being executed. Circumventing the hardware decoder (i.e., 
by executing a translation) in many cases will improve speed 
of execution, reduce power consumption, and provide various 
other benefits. During execution of the native translation, a 
fault may be encountered. At this point, it is unknown whether 
the fault is an actual architectural event or if it is an artifact of 
the way that the code has been optimized in the translation. As 
Such, execution is rolled back to a committed State (e.g., 
through a checkpoint mechanism), and a different version of 
code corresponding to the translation that does not produce 
the artifact event is executed. In one example, the alternate 
version of the code corresponding to the translation is target 
ISA code that is decoded by a hardware decoder into native 
instructions. If the fault is encountered during execution of 
the alternate code, then it is concluded that the translation 
itself was not the cause of the fault. If the fault is not encoun 
tered during execution of the alternate code, then it is con 
cluded that the translation generated the artifact, and it is 
determined whether to allow future execution of the native 
translation or to prevent such future execution in favor of 
forming and executing one or more alternate native transla 
tions. In some embodiments, the translation is reformed in a 
different way, and the reformed translation is executed sub 
sequently. In one example, the translation is reformed with 
fewer optimizations so as not to cause the fault during execu 
tion. 

0008. By using this mechanism, a translation can be 
aggressively over-optimized, then quickly narrowed if neces 
sary using the hardware decoder to get to a translation that is 
Suitably optimized to be executed without generating fault 
events. Implementations without this mechanism would find 
the overhead of narrowing or re-optimizing to be high enough 
that translations would tend to be overly conservative or 
under-optimized to avoid the narrowing process. For 
example, a software interpreter may be adequate to isolate an 
architectural event or lack thereof, but would be obtrusively 
slow for narrowing and re-optimizing as the Software inter 
preter can require hundreds of native instructions to emulate 
a single target ISA instruction. 
0009 FIG. 1 shows aspects of an example micro-process 
ing and memory system 100 (e.g., a central processing unit or 
graphics processing unit of a personal computer, game sys 
tem, Smartphone, etc.) including processor core 102. 
Although the illustrated embodiment includes only one pro 
cessor core, it will be appreciated that the micro-processing 
system may include additional processor cores in what may 
be referred to as a multi-core processing system. Micropro 
cessor core? die 102 variously includes and/or may commu 
nicate with various memory and storage locations 104. In 
Some cases, it will be desirable to allocate a portion (some 
times referred to as a “carveout') of memory as secure and 
private such that it is invisible to the user and/or instruction set 
architecture (ISA) code 106. Various data and software may 
run from, and/or be stored in said allocation, such as Software 
layer 108 and related software structures. As will be discussed 
in greater detail below, the software layer may be configured 
to generate, optimize, and store translations of ISA code 106. 
and further to manage and interact with related hardware on 
core 102 to determine whether translations are suitably opti 
mized (e.g., the translations do not generate faults or other 
artifacts). 



US 2014/O 1893 1.0 A1 

0010 Memory and storage locations 104 may include L1 
processor cache 110, L2 processor cache 112, L3 processor 
cache 114, main memory 116 (e.g., one or more DRAM 
chips), secondary storage 118 (e.g., magnetic and/or optical 
storage units) and/or tertiary storage 120 (e.g., a tape farm). 
Processor core 102 may further include processor registers 
121. Some or all of these locations may be memory-mapped, 
though in some implementations the processor registers may 
be mapped differently than the other locations, or may be 
implemented Such that they are not memory-mapped. It will 
be understood that the memory/storage components are listed 
above in increasing order of access time and capacity, though 
there are possible exceptions. In some embodiments, a 
memory controller may be used to handle the protocol and 
provide the signal interface required of main memory 116. 
and, typically, to schedule memory accesses. The memory 
controller may be implemented on the processor die or on a 
separate die. It is to be understood that the locations set forth 
above are non-limiting and that other memory/storage loca 
tions may be used instead of, or in addition to, those described 
above without departing from the scope of this disclosure. 
0011 Microprocessor 102 includes a processing pipeline 
which typically includes one or more of fetch logic 122, 
decode logic 124 (referred to herein as a hardware decoder or 
hardware decode logic (HWD)), execution logic 126, mem 
logic 128, and writeback logic 130. Note that one or more of 
the stages in the processing pipeline may be individually 
pipelined to include a plurality of stages to perform various 
associated operations. It should be understood that these five 
stages are somewhat specific to, and included in, a typical 
RISC implementation. More generally, a microprocessor 
may include fetch, decode, and execution logic, with mem 
and writeback functionality being carried out by the execu 
tion logic. The present disclosure is equally applicable to 
these and other microprocessor implementations, including 
hybrid implementations that may use VLIW instructions and/ 
or other logic instructions. 
0012 Fetch logic 122 retrieves instructions from one or 
more of memory locations 104 (e.g., unified or dedicated L1 
caches backed by L2-L3 caches and main memory). In some 
examples, instructions may be fetched and executed one at a 
time, possibly requiring multiple clock cycles. 
0013 Microprocessor 102 is configured to execute 
instructions, via execution logic 126. Such instructions are 
generally described and defined by an ISA that is native to the 
processor, which may be generated and/or executed in differ 
ent modes of operation of the microprocessor. A first mode 
(referred to herein as the “hardware decoder mode’) of execu 
tion includes utilizing the HWD 124 to receive and decode 
(e.g., by parsing opcodes, operands, and addressing modes, 
etc.) target ISA or non-native instructions of ISA code 106 
into native instructions for execution via the execution logic. 
It will be appreciated that the native instructions dispatched 
by the HWD may be functionally equivalent to the non-native 
instructions, in that execution of either type of instructions 
achieves the same final result or outcome. 

0014. A second mode (referred to herein as the “transla 
tion mode’) of execution includes retrieving and executing 
native instructions without use of the HWD. A native trans 
lation may cover and provide Substantially equivalent func 
tionality for any number of portions of corresponding target 
ISA or non-native ISA code 106. The corresponding native 
translation is typically optimized to some extent by the trans 
lation software relative to the corresponding non-native code 
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that would be dispatched by the HWD. However, it will be 
understood that a variety of optimizations and levels of opti 
mization may be employed. 
0015. A third mode (referred to herein as “software inter 
pretation mode’) of execution includes utilizing a Software 
interpreter 134 located in the software layer 108 to execute 
target ISA code one instruction at a time by translating the 
target ISA instruction into corresponding native instructions. 
0016 Typically, translation mode provides the fastest and 
most efficient operation out of the above described execution 
modes. However, there may be substantial overhead costs 
associated with generating an optimized translation of target 
ISA instructions. Accordingly, a translation may be generated 
for portions of target ISA code that are executed frequently or 
consume Substantial processing time. Such as frequently used 
or “hot” loops or functions in order to control such translation 
overhead. In one example, a translation may be generated for 
a portion of target ISA code in response to the portion of code 
being executed a number of times that is greater thana thresh 
old value. 
0017 Hardware decoder mode may be slower or less effi 
cient than translation mode and faster or more efficient than 
software interpretation mode. For example, hardware 
decoder mode may be used to execute portions of target ISA 
code that do not have corresponding translations. As another 
example, hardware decoder mode may be used to determine 
whether or not a translation is over-optimized based on 
encountering a fault during execution of a translation as will 
be discussed in further detail below. 
0018 Software interpretation mode may be used in corner 
cases or other unusual/rare circumstances. Such as to isolate a 
fault or lack of a fault. The software interpretation mode may 
be used least frequently of the above described modes of 
operation, because the Software interpretation mode may be 
substantially slower than the other modes of operation. For 
example, Software interpretation mode may require hundreds 
of native instructions to emulate a single target ISA instruc 
tion. 
0019 For the sake of clarity, the native instructions output 
by the HWD in hardware decoder mode will in some cases be 
referred to as non-translated instructions, to distinguish them 
from the native translations that are executed in the translation 
mode without use of the HWD. 
0020 Native translations may be generated in a variety of 
ways. As discussed above, due to the high overhead of gen 
erating translations, in some embodiments, code portions of 
non-native ISA code may be profiled in order to identify 
whether and how those code portions should be included in 
new or reformed translations. When operating in hardware 
decoder mode, the system may dynamically change and 
update a code portion profile in response to the use of the 
HWD to execute a portion of non-native ISA code. For 
example, profiled codeportions may be identified and defined 
by taken branches. This is but one example, however, and any 
Suitable type of code portion associated definition may be 
used. 
0021. In certain embodiments, the code portion profile is 
stored in an on-core micro-architectural hardware structure 
(e.g., on core 102), to enable rapid and lightweight profiling 
of code being processed with the HWD. For example, the 
system may include a branch count table (BCT) 136 and a 
branch history table (BHT) 138 each including a plurality of 
records containing information about code portions of non 
native ISA code 106 encountered by the HWD as branch 
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instructions are processed. In general, the BCT tracks the 
number of times a branch target address is encountered, while 
the BHT records information about the taken branch when a 
branch target address is encountered. Furthermore, the BCT 
is used to trigger profiling for translation upon Saturation of a 
particular code portion. For example, the BCT may be used to 
determine whether a code portion has been executed a num 
ber of times that exceeds a threshold value, which triggers 
reforming of a corresponding translation. 
0022. As the code portions of non-native ISA code are 
processed by HWD, records may be dynamically added to 
BCT and BHT. For example, as the HWD processes taken 
branches leading to a branch target address, a record for that 
branch target address is added to the BCT and an initial value 
is inserted into a counter associated with the record. Alterna 
tively, if a record already exists for the target address, the 
counter is incremented or decremented, as appropriate to the 
implementation. As such, the system may include micro 
architectural logic for adding and updating records in the 
BCT and the BHT. This logic may be a distinct component or 
distributed within various components of the processing pipe 
line, though typically this logic will be operatively coupled 
closely with the HWD since it is the use of the HWD that 
results in changes to the BCT and the BHT. 
0023. From time to time, the records of BCT and/or BHT 
may be sampled and processed, for example by a Summarizer 
140 of software layer 108. As described above, the software 
layer may reside in a secure/private memory allocation of 
storage locations 104 that is accessible by microprocessor 
102 during execution of native ISA instructions. In other 
words, Such an allocation may be inaccessible by ISA code. 
0024. The summarizer may be implemented as a light 
weight event handler that is triggered when a record in the 
BCT produces an event (e.g., the counter for the record satu 
rates). In other words, the BCT produces an event, and the 
Summarizer handles the event (e.g., by sampling and process 
ing records in the BHT). Each counter maintained in the BCT 
for a target address is used to control how many times the 
associated code portion will be encountered before an event is 
taken for that code portion. 
0025. The summarizer identifies flow into, out of, and/or 
between code portions when using the hardware decoder. 
Furthermore, the Summarizer identifies one or more non 
translated code portions to be included in a new native trans 
lation by producing a Summarized representation (e.g., a con 
trol flow graph) of code portion control flow involving the 
HWD. For example, the sampling and processing by the 
Summarizer may be used to generate and update a meta 
branch history table (MBHT) 142 in and between non-native 
code portions processed by the HWD. It will be appreciated 
that information about code portions and control flow may be 
represented in any suitable manner, data structure, etc. The 
information in the MBHT is subsequently consumed by a 
region former 144, which is responsible for forming new 
translations of non-native ISA code. Once formed, transla 
tions may be stored in one or more locations (e.g., a trace 
cache 146 of software layer 108). The region former may 
employ various optimization techniques in creating transla 
tions, including, but not limited to, reordering instructions, 
renaming registers, consolidating instructions, removing 
dead code, unrolling loops, etc. It will be understood that 
these translations may vary in length and the extent to which 
they have been optimized. For example, the region former 
may vary the aggressiveness at which a translation is opti 
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mized in order to strike a balance between increasing perfor 
mance and generating spurious architectural events or arti 
facts during execution. It will be appreciated that the 
structures stored in the software layer may be included in or 
collectively referred to herein as a translation manager or as 
translation management Software. 
0026. During operation, the existence of a translation may 
be determined using an on-core hardware redirector 132 (a.k. 
a., a THASH). The hardware redirector is a micro-architec 
tural structure that includes address information or mappings 
Sufficient to allow the processing pipeline to retrieve and 
execute a translation or a portion thereof associated with a 
non-native portion of ISA code via address mapping. Specifi 
cally, when the processing pipe branches to a target address of 
a non-native portion of ISA code, the target address is looked 
up in the THASH. Over time, translations that are frequently 
and/or recently requested are indexed by, and incorporated 
into, the hardware redirector. Each entry in the hardware 
redirector is associated with a translation, and provides redi 
rection information that enables the microprocessor, during a 
fetch operation for a selected code portion, to cause execution 
to be redirected away from that code portion and to its asso 
ciated translation. In order to save on processor die area and to 
provide rapid lookups, the hardware redirector may be of 
limited size, and it is therefore desirable that it be populated 
with entries providing redirection for the most “valuable' 
translations (e.g., translations that are more frequently and/or 
recently used). Accordingly, the hardware redirector may 
include usage information associated with the entries. This 
usage information varies in response to the hardware struc 
ture being used to redirect execution, and thus the entries are 
maintained in, or evicted from, the hardware redirector based 
on this usage information. 
(0027. In the event of a hit in the THASH, the lookup 
returns the address of an associated translation (e.g., transla 
tion stored in trace cache 146), which is then executed in 
translation mode (i.e., without use of HWD 124). Alterna 
tively, in the event of a miss in the THASH, the portion of 
code may be executed through a different mode of operation 
and one or more of the mechanisms described above may be 
usable to generate a translation. The THASH lookup may 
therefore be usable to determine whether to add/update 
records in BCT and BHT. In particular, a THASH hit means 
that there is already a translation for the non-native target 
code portion, and there is thus no need to profile execution of 
that portion of target code in hardware decoder mode. Note 
that the THASH is merely one example of a mechanism for 
locating and executing translations, and it will be appreciate 
that the processor hardware and/or software may include 
other mechanisms for locating and executing translations 
without departing from the scope of the present description. 
0028. Throughout operation, a state of the microprocessor 
(e.g., registers 121 and/or other Suitable states) may be check 
pointed or stored to preserve the state of the microprocessor 
while a non-checkpointed working state version of the micro 
processor speculatively executes instructions. For example, 
the state of the microprocessor may be checkpointed when 
execution of an instruction (or bundle, code portion of a 
translation, etc.) is completed without encountering an archi 
tectural event, artifact, exception, fault, etc. For example, an 
architectural event (e.g., a fault event) may include a page 
violation, a memory alignment violation, a memory ordering 
violation, a break point, execution of an illegal instruction, 
etc. If a fault event is encountered during execution, then the 
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instruction may be rolled back, and state of the microproces 
Sor may be restored to the checkpointed State. Then operation 
may be adjusted to handle the fault event. For example, the 
microprocessor may operate in hardware decoder mode and 
mechanisms for determining whether the encountered event 
is an artifact of the translation may be employed. In one 
example, the decode logic is configured to manage check 
pointing/rollback/restore operations. Although it will be 
appreciated that in some embodiments a different logical unit 
may control Such operations. In some embodiments, check 
pointing/rollback/restore schemes may be employed in con 
nection with the memory and storage locations 104 in what 
may be generally referred to as transactional memory. In 
other words, microprocessor 102 may be a transaction-based 
system. 

0029. Furthermore, during execution of a native transla 
tion, the execution logic may be configured to detect occur 
rence of a fault event in the native translation. Since at the 
time of encountering the fault event, it may not be known 
whether or not the fault event is an artifact generated due to a 
particular way in which the native translation was formed, the 
translation manager causes the code portion to be executed 
differently. For example, the target ISA instructions or a 
functionally equivalent version thereof may be executed 
without executing the native translation to determine whether 
the fault event was a product of the native translation. 
0030) If a fault event is encountered in the translation, then 
the translation manager may note the IP boundaries of the 
translation before execution of the translation is rolled back. 
In some cases, the IP boundaries may include one contiguous 
portion of target ISA code. In other cases, the IP boundaries 
may include multiple non-contiguous portions of target ISA 
code (e.g., if the translation was formed including a target ISA 
branch that was assumed to be taken when the translation was 
generated). The IP boundaries may be used during execution 
of the target ISA instructions or a functionally equivalent 
version thereof to determine whether a fault event occurs in 
the code portion corresponding to the native translation. 
0031. In one example, the system may operate inhardware 
decoder mode to produce a functional equivalent of the target 
ISA instructions. In particular, the HWD receives target ISA 
instructions starting at the IP boundary corresponding to the 
beginning of the native translation, decodes them into native 
instructions, and dispatches the native instruction to the 
execution logic for execution. The native instructions may be 
executed by the execution logic until the fault eventis encoun 
tered again, or execution leaves the code portion correspond 
ing to the native translation (e.g., the IP is beyond the IP 
boundary corresponding to the end of the translation). Vari 
ous mechanisms for determining whether execution has left 
the code portion corresponding to the native translation may 
be employed during operation in hardware decoder mode. 
Several non-limiting examples of Such mechanisms are dis 
cussed in further detail below with reference to FIGS. 2 and 3. 

0032. If the event is encountered during execution of the 
target ISA instruction or their functional equivalent (e.g., in 
the hardware decoder mode), it can be assumed that the event 
is an architectural fault that was not created by the translation, 
and redirection of control flow to the architectural exception 
vector is performed where control is passed to the translation 
manager or other architectural event handling logic to correct 
the architectural event or provide other event handling opera 
tions. 
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0033. If execution leaves the translation without encoun 
tering the fault event, then it can be assumed that the native 
translation spuriously caused the fault event. In other words, 
the translation manager determines that the fault event is not 
replicated during execution of the target ISA instructions or 
the functionally equivalent version thereof. In response to 
determining that the fault event is not replicated, the transla 
tion manager is configured determine whether to allow future 
execution of the native translation or to prevent such future 
execution in favor of forming and executing one or more 
alternate native translations. Note that a future execution of 
the native translation may include any execution Subsequent 
to determining that the native translation spuriously caused 
the fault event. The native translation may be prevented from 
being executed in order to reduce the likelihood of the fault 
event from occurring during Subsequent executions of the 
target ISA instructions or the functionally equivalent version 
thereof. In some embodiments, the determination whether to 
allow future execution of the native translation or to prevent 
Such future execution may include forming and executing the 
one or more alternate translations upon determining that a 
performance cost associated with forming the one or more 
alternate translations is less than a performance cost associ 
ated with continuing to execute the first native translation, 
executing the target ISA instructions or a functionally equiva 
lent version thereof, without executing the first native trans 
lation, or a combination thereof. It will be appreciated that the 
performance costs may be calculated in any Suitable manner 
without departing from the scope of the present disclosure. 
0034. In some embodiments, the native translation may be 
prevented from being executed immediately after determin 
ing that the native translation spuriously caused the fault 
event such that the translation is not executed again. For 
example, when the code portion corresponding to the native 
translation is encountered Subsequent to the determination, 
the system may operate inhardware decoder mode to execute 
the code portion instead of executing the native translation. 
As another example, a different translation may be executed 
instead of the native translation. 

0035. In some embodiments, the native translation may be 
executed one or more times Subsequent to the determination 
before the native translation is prevented from being 
executed. For example, the native translation may be 
executed subsequently in order to determine if the native 
translation spuriously causes any different faults. In one par 
ticular example, the native translation is not prevented from 
being executed until a first fault and a second fault are encoun 
tered a designated number of times as a result of executing the 
native translation. In other words, the native translation may 
be repeatedly executed until it can be assumed with a level of 
confidence that the native translation is the cause of a number 
of different faults before execution of the native translation is 
prevented. 
0036. In some cases, the system may operate in software 
interpreter mode instead of hardware decoder mode in 
response to encountering a fault event during execution of the 
native translation (e.g., to handle of corner cases). As dis 
cussed above, hardware decoder mode may be preferred over 
Software interpreter mode for fault narrowing operation 
because the software interpreter mode may be significantly 
slower to execute the target ISA instructions. For example, 
the software interpreter may take over one hundred times 
longer to execute an instruction than the HWD may take to 
execute the same instruction. 
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0037. In some embodiments, the translation manager may 
be configured to generate an updated or reformed translation 
of the target ISA instructions that is optimized differently 
based on encountering an artifact or fault event in the first 
translation. In one example, the reformed translation is opti 
mized differently so as not to generate the architectural event. 
For example, the updated translation may include fewer opti 
mizations than the previous translation, such as less combi 
nations, reorganizations, and/or eliminations of target ISA 
instructions. Further, the execution logic may be configured 
to, upon Subsequently encountering the code portion of the 
target ISA instructions, execute the updated or reformed 
translation instead of the previous translation that spuriously 
caused the fault event. 

0038 Since there may be substantial overhead costs asso 
ciated with generating an optimized translation of target ISA 
instructions, in some embodiments, the translation manager 
may be configured to track activity related to the translation 
Subsequent to determining that the fault was an artifact of the 
translation, and determine if or when it would be suitable to 
update the translation. In one example, the translation man 
ager is configured to increment a counter associated with the 
native translation Subsequent to determining that the fault 
event is an artifact of the translation. Further, the translation 
manager may generate the updated translation of the target 
ISA instructions responsive to the counter Saturating or 
becoming greater than a threshold value. The counter may be 
employed to track or count a variety of different factors, 
events, parameters, or execution properties associated with 
the translation that spuriously caused the fault event. Non 
limiting examples of these factors that the counter may track 
include time, a number of translation executions, a number of 
translation executions that spuriously cause a fault event, a 
number of translation execution that spuriously cause a num 
ber of different fault events. In some embodiments the 
counter may include a decision function that includes a com 
bination of these factors. 
0039. It will be appreciated that the counter may be used to 
track any suitable parameter or event associated with the 
translation in order to determine if or when to reform the 
translation. Moreover, it will be appreciated that the counteris 
merely one example of a tracking mechanism, and any Suit 
able mechanism may be employed to decide when to reform 
the translation. 

0040. In some embodiments, the translation manager may 
be configured to reform the translation (or generate a new 
translation) of only a subset of the target ISA instructions that 
were represented by the translation that spuriously created the 
fault. In some embodiments, the translation manager may be 
configured to generate a plurality of translations that span the 
target ISA instructions that were represented by the transla 
tion that spuriously created the fault. 
0041 FIGS. 2 and 3 show examples of various mecha 
nisms that may be employed to pause execution during opera 
tion inhardware decoder mode in order to determine whether 
the code portion corresponding to the translation is executed 
without encountering the event, which may be used to deter 
mine whether an event is spuriously created by the transla 
tion. FIG. 2 shows an example of a mechanism 200 that 
causes execution to be paused responsive to encountering a 
target of a branch instruction that is dispatched by the HWD. 
In particular, when an event is encountered in translation 
mode, execution is rolled back to the beginning of the IP 
boundary 210 of the translation. The IP boundary defines the 
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code region of the translation by denoting the IP at the begin 
ning of the translation and the IP at the end of the translation. 
The translation manager calls the HWD to operate in hard 
ware decoder mode with a particular jump instruction that 
includes a “sticky bit 202 that is set based on encountering 
the event. By setting the sticky bit in the jump instruction that 
invokes the HWD, each branch causes a field 204 to be set that 
is associated with the branch target. The set bit is recognized 
upon execution of the branch target causing execution in 
hardware decoder mode to be paused. The set bit is cleared 
and control is passed from the HWD to the translation man 
ager. The translation manager determines whether the IP is 
within the IP boundary of the code portion corresponding to 
the translation. If the IP is beyond the IP boundary of the 
translation, then the event was not encountered in the code 
portion at issue and it can be assumed that the event was an 
artifact of the translation, and the translation may need to be 
reformed in a different manner and the sticky bit is cleared. If 
the IP is within the IP boundary of the translation, then control 
is passed back to the HWD and execution in hardware 
decoder mode continues until another branch target having a 
set bit is encountered or the event is encountered. If the event 
is encountered, then it can be assumed that the event is not an 
artifact of the translation and the translation may not be over 
optimized and the sticky bit is cleared. 
0042. The above described mechanism may be referred to 
as a “branch callback trap' because each time a branch target 
is encountered with a set bit, execution in hardware decoder 
mode is paused and control is passed to the translation man 
ager. In other words, the sticky bit is the mechanism by which 
the translation manager gets passed control from hardware 
decoder mode. Note that when the HWD is called for opera 
tion other than when an event is encountered, the sticky bit in 
the jump instruction may be cleared to Suppress the branch 
callback trap mechanism. 
0043. In some microprocessor implementations that 
include a hardware redirector or THASH that is accessed by 
the HWD to check for a translation, access to the THASH by 
the HWD is disabled or matches in the THASH are inhibited 
based on the event being encountered. In one example, access 
to the THASH is disabled when the sticky bit in the jump 
instruction that calls the HWD is set. By suppressing the 
lookup of the THASH, execution is not redirected to the 
translation so that execution in hardware decoder mode may 
be performed to determine whether the event is generated by 
the translation. In other words, access to the THASH is dis 
abled when executing the target ISA instructions without 
executing the native translation. 
0044 FIG. 3 shows an example of a counter mechanism 
300 that causes execution to be paused responsive to a counter 
expiring or elapsing. Similar to the above described example, 
when the HWD is called based on encountering an event 
during operation in translation mode, a counter 302 may be 
set, for example by setting a bit in a particular jump instruc 
tion that calls the HWD. During execution in hardware 
decoder mode, the counter counts down and when the counter 
expires execution is paused and control is passed to the trans 
lation manager. The translation manager determines whether 
the IP306 is within the IP boundary 308 of the code portion 
corresponding to the translation. If the IP is beyond the IP 
boundary of the translation, then the event was not encoun 
tered in the code portionatissue and it can be assumed that the 
event was an artifact of the translation, and the translation 
may need to be reformed in a different manner. If the IP is 
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within the IP boundary of the translation, then control is 
passed back to the HWD and execution in hardware decoder 
mode continues until the counter expires again or the event is 
encountered. If the event is encountered, then it can be 
assumed that the event is not an artifact of the translation and 
the translation may not be over-optimized. 
0045. It will be appreciated that the counter may be set to 
any suitable duration or may track any Suitable execution 
property or parameter. In one example, the counter may be set 
to for a designated number of clock cycles. In another 
example, the counter may be set for a designated number of 
instructions. In yet another example, the counter may expire 
in response to encountering a branch instruction. In still yet 
another example, the counter may expire in response to 
encountering a designated number of branch instructions. 
0046. It will be appreciated that the above described 
mechanisms may be particularly applicable to operation in 
hardware decodermode, because control is passed from hard 
ware (e.g., execution logic) to Software (e.g., translation man 
ager) when execution is paused to determine whether execu 
tion has left the IP boundary of the code portion at issue. 
Moreover, such mechanisms may allow for execution to be 
paused occasionally in order to performan IP boundary check 
that allows for faster execution relative to an approach that 
checks after execution of each instruction. 

0047 FIG. 4 shows an example of a method 400 for opti 
mizing a translation of target ISA instructions in accordance 
with an embodiment of the present disclosure. The method 
400 may be implemented with any suitable software/hard 
ware, including configurations other than those shown in the 
foregoing examples. In some cases, however, the process 
flows may reference components and processes that have 
already been described. For purposes of clarity and minimiz 
ing repetition, it may be assumed that these components/ 
processes are similar to the previously described examples. 
0048. At 402, the method 400 includes, detecting, while 
executing a first native translation of target ISA instructions, 
occurrence of a fault event in the first native translation. The 
first native translation may be executable to achieve substan 
tially equivalent functionality as obtainable via execution of 
the target ISA instructions. In other words, the first native 
translation is designed such that execution of the first native 
translation should produce the same output as the target ISA 
instructions. In one example, the fault event includes one of a 
page violation, a memory alignment violation, a memory 
ordering violation, a break point, and execution of an illegal 
instruction. 

0049. At 404, the method 400 includes decoding the target 
ISA instructions into functionally equivalent native instruc 
tions with a hardware decoder in response to detecting occur 
rence of the fault event while executing the first native trans 
lation; 
0050. At 406, the method 400 includes executing the tar 
get ISA instructions or a functionally equivalent version 
thereof, where such execution is performed without execut 
ing the first native translation. 
0051. At 408, the method 400 includes determining 
whether occurrence of the fault event is replicated while 
executing the target ISA instructions or the functionally 
equivalent version thereof. 
0052 At 410, the method 400 includes in response to 
determining that the fault event is not replicated, determining 
whether to allow future execution of the first native transla 
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tion or to prevent Such future execution in favor of forming 
and executing one or more alternate native translations. 
0053 At 412, the method 400 may optionally include in 
response to determining that the fault event is not replicated, 
forming one or more alternate native translations of the target 
ISA instructions. The one or more alternate native transla 
tions may be executable to achieve Substantially equivalent 
functionality as obtainable via execution of the target ISA 
instructions. In some cases, the one or more alternative native 
translations are optimized differently than the first native 
translation so as to avoid occurrence of the fault event that was 
encountered during execution of the first native translation. In 
Some cases, the one or more alternative native translations 
may include fewer optimizations than employed in the first 
native translation 
0054. At 414, the method 400 may optionally include 
executing the one or more alternate native translations upon 
Subsequently encountering the target ISA instructions. 
0055 While the depicted method may be performed in 
connection with any Suitable hardware configuration, it will 
be appreciated that modifications, additions, omissions, and 
refinements may be made to these steps in accordance with 
method descriptions included above and described with ref 
erences to the mechanisms, hardware, and systems shown in 
FIG 1-3. 
0056. This written description uses examples to disclose 
the invention, including the best mode, and also to enable a 
person of ordinary skill in the relevant art to practice the 
invention, including making and using any devices or systems 
and performing any incorporated methods. The patentable 
Scope of the invention is defined by the claims, and may 
include other examples as understood by those of ordinary 
skill in the art. Such other examples are intended to be within 
the scope of the claims. 

1. A method for identifying and replacing code translations 
that generate spurious fault events, comprising: 

detecting, while executing a first native translation of target 
instruction set architecture (ISA) instructions, occur 
rence of a fault event, the first native translation being 
executable to achieve Substantially equivalent function 
ality as obtainable via execution of the target ISA 
instructions; 

decoding the target ISA instructions into functionally 
equivalent native instructions with a hardware decoder 
in response to detecting occurrence of the fault event 
while executing the first native translation; 

executing the target ISA instructions or a functionally 
equivalent version thereof, where Such execution is per 
formed without executing the first native translation; 

determining whether occurrence of the fault event is repli 
cated while executing the target ISA instructions or the 
functionally equivalent version thereof, and 

in response to determining that the fault event is not repli 
cated, determining whether to allow future execution of 
the first native translation or to prevent such future 
execution in favor of forming and executing one or more 
alternate native translations. 

2. The method of claim 1, where determining whether to 
allow or prevent future execution of the first native translation 
includes forming and executing the one or more alternate 
translations upon determining that a performance cost asso 
ciated with forming the one or more alternate translations is 
less than a performance cost associated with continuing to 
execute the first native translation. 
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3. The method of claim 1, further comprising incrementing 
a counter associated with the first native translation, and 
where determining whether to allow or prevent future execu 
tion of the first native translation includes preventing Such 
execution and forming and executing the one or more alter 
nate translations in response to Saturating the counter. 

4. The method of claim3, where the counteris incremented 
in response to determining that a fault event occurring during 
execution of the first native translation is not replicated when 
executing target ISA instructions or a functionally equivalent 
version thereof. 

5. The method of claim 1, further comprising forming one 
or more alternate native translations to be executed instead of 
the first native translation, where the one or more alternative 
native translations are optimized differently than the first 
native translation so as to avoid occurrence of the fault event 
that was encountered during execution of the first native 
translation. 

6. The method of claim 5, where the one or more alternative 
native translations include fewer optimizations than 
employed in the first native translation. 

7. The method of claim 1, further comprising: 
pausing execution of the target ISA instructions or the 

functionally equivalent version thereof responsive to 
encountering a target of a branch instruction; 

determining whether an instruction pointer is within an 
instruction pointer boundary corresponding to the first 
native translation when execution is paused; and 

if the instruction pointer is beyond the instruction pointer 
boundary when execution is paused, determining that 
occurrence of the fault event is not replicated while 
executing the target ISA instructions or the functionally 
equivalent version thereof. 

8. The method of claim 7, where the target of the branch 
instruction includes a field having a bit that is set responsive 
to detecting occurrence of the fault event while executing the 
first native translation, and execution is paused responsive to 
encountering the set bit. 

9. The method of claim 8, where the microprocessor 
includes a hardware redirector that is accessed by a hardware 
decoder to check for a native translation corresponding to a 
portion of target ISA instructions, and where access to the 
hardware redirector by the hardware decoder is disabled 
when executing the target ISA instructions or the functionally 
equivalent version thereof without executing the first native 
translation 

10. The method of claim 1, further comprising: 
setting a counter for execution of the target ISA instruc 

tions or the functionally equivalent version thereof 
based on the fault event, 

pausing execution of the target ISA instructions or the 
functionally equivalent version thereof responsive to the 
counter expiring; 

determining whether an instruction pointer is within an 
instruction pointer boundary corresponding to the first 
native translation when execution is paused; and 

if the instruction pointer is beyond the instruction pointer 
boundary when execution is paused, determining that 
occurrence of the fault event is not replicated while 
executing the target ISA instructions or the functionally 
equivalent version thereof. 

11. A micro-processing and memory system comprising: 
memory configured to store target ISA instructions and a 

first native translation executable to achieve substan 
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tially equivalent functionality as obtainable via execu 
tion of the target ISA instructions; 

a microprocessor including, execution logic configured to 
(1) detect, during execution of the first native translation, 
occurrence of a fault event, (2) roll back execution of the 
first native translation in response to detecting occur 
rence of the fault event while executing the first native 
translation; 

a hardware decoder configured to decode the target ISA 
instructions into functionally equivalent native instruc 
tions in response to detecting occurrence of the fault 
event while executing the first native translation, where 
the execution logic is configured to execute the target 
ISA instructions or a functionally equivalent version 
thereof, where such execution is performed without 
executing the first native translation; and 

a translation manager configured to (1) determine whether 
occurrence of the fault event is replicated while execut 
ing the target ISA instructions or the functionally 
equivalent version thereof, and (2) in response to deter 
mining that the fault event is not replicated, determine 
whether to allow future execution of the first native 
translation or to prevent such future execution in favor of 
forming and executing one or more alternate native 
translations. 

12. The system of claim 11, where determining whether to 
allow or prevent future execution of the first native translation 
includes forming and executing the one or more alternate 
translations upon determining that a performance cost asso 
ciated with forming the one or more alternate translations is 
less than a performance cost associated with continuing to 
execute the first native translation. 

13. The system of claim 11, where the execution logic is 
configured to increment a counter associated with the first 
native translation, and where determining whether to allow or 
preventfuture execution of the first native translation includes 
preventing Such execution and forming and executing the one 
or more alternate translations in response to Saturating the 
COunter. 

14. The system of claim 12, where the translation manager 
is configured to form one or more alternate native translations 
to be executed instead of the first native translation, where the 
one or more alternative native translations are optimized dif 
ferently than the first native translation so as to avoid occur 
rence of the fault event that was encountered during execution 
of the first native translation. 

15. The system of claim 11, where the execution logic is 
configured to pause execution of the target ISA instructions or 
the functionally equivalent version thereof responsive to 
encountering a target of a branch instruction, and where the 
translation manager is configured to (1) determine whetheran 
instruction pointer is within an instruction pointer boundary 
corresponding to the first native translation when execution is 
paused, and (2) if the instruction pointeris beyond the instruc 
tion pointer boundary when execution is paused, determine 
that occurrence of the fault event is not replicated while 
executing the target ISA instructions or the functionally 
equivalent version thereof. 

16. The system of claim 15, where the target of the branch 
instruction includes a field having a bit that is set responsive 
to detecting occurrence of the fault event while executing the 
first native translation, and execution is paused responsive to 
encountering the set bit 
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17. The system of claim 11, where the translation manager 
is configured to set a counter for execution of the target ISA 
instructions or the functionally equivalent version thereof 
based on detection of the fault event, where the execution 
logic is configured to pause execution of the target ISA 
instructions or the functionally equivalent version thereof 
responsive to the counterexpiring, where the translation man 
ager is configured to determine whetheran instruction pointer 
is within an instruction pointer boundary corresponding to the 
first native translation when execution is paused, and if the 
instruction pointer is beyond the instruction pointer boundary 
when execution is paused, determine that occurrence of the 
fault event is not replicated while executing the target ISA 
instructions or the functionally equivalent version thereof. 

18. A method for identifying and replacing code transla 
tions that generate spurious fault events, comprising: 

detecting, while executing a first native translation of target 
instruction set architecture (ISA) instructions, occur 
rence of a fault event, the first native translation being 
executable to achieve Substantially equivalent function 
ality as obtainable via execution of the target ISA 
instructions; 

rolling back execution of the first native translation in 
response to detecting the fault event; 

decoding the target ISA instructions into functionally 
equivalent native instructions with a hardware decoder 
in response to detecting occurrence of the fault event 
while executing the first native translation, where targets 
of branch instructions decoded by the hardware decoder 
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include a field having a bit that is set responsive to 
encountering the fault event; 

executing the native instructions dispatched by the hard 
ware decoder; 

pausing execution of the native instructions responsive to 
encountering a set bit in the field of a target of a branch 
instruction; 

determining whether an instruction pointer is within an 
instruction pointer boundary corresponding to the first 
native translation when execution is paused; 

if the instruction pointer is beyond the instruction pointer 
boundary when execution is paused, determining that 
occurrence of the fault event is not replicated while 
executing the target ISA instructions or the functionally 
equivalent version thereof, and 

in response to determining that the fault event is not repli 
cated, forming and executing one or more alternate 
translations upon determining that a performance cost 
associated with forming the one or more alternate trans 
lations is less than a performance cost associated with 
continuing to execute the first native translation. 

19. The method of claim 18, where the one or more alter 
native native translations are optimized differently than the 
first native translation so as to avoid occurrence of the fault 
event that was encountered during execution of the first native 
translation. 

20. The method of claim 19, where the one or more alter 
native native translations include fewer optimizations than 
employed in the first native translation. 
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