
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/018931.0 A1

Tuck et al.

US 2014O1893 10A1

(54)

(71)

(72)

(73)

(21)

(22)

(51)

FAULT DETECTION IN INSTRUCTION
TRANSLATIONS

Applicant: NVIDIA CORPORATION, Santa
Clara, CA (US)

Inventors: Nathan Tuck, Corvallis, OR (US);
David Dunn, Sammamish, WA (US);
Ross Segelken, Portland, OR (US);
Madhu Swarna, Portland, OR (US)

Assignee: NVIDIA CORPORATION, Santa
Clara, CA (US)

Appl. No.: 13/728,669
Filed: Dec. 27, 2012

Publication Classification

Int. C.
G06F 9/30 (2006.01)

(43) Pub. Date: Jul. 3, 2014

(52) U.S. Cl.
CPC G06F 9/30.145 (2013.01)
USPC .. 712/209

(57) ABSTRACT

In one embodiment, a method for identifying and replacing
code translations that generate spurious fault events includes
detecting, while executing a first native translation of target
instruction set architecture (ISA) instructions, occurrence of
a fault event, executing the target ISA instructions or a func
tionally equivalent version thereof, determining whether
occurrence of the fault event is replicated while executing the
target ISA instructions or the functionally equivalent version
thereof, and in response to determining that the fault event is
not replicated, determining whether to allow future execution
of the first native translation or to prevent such future execu
tion in favor of forming and executing one or more alternate
native translations.

1. d

:

EEC O&CRRCC FA EN RS
RASA RNS EXECON FRS RASAON

ECCs AR; SA NS RCS NC CCNAY
EijiVAN NATVE \SiR CONS., ARNARE
ECORN RESONS O SECG (CRRCE -

A. Eji XEC SNARANSAC

EXECE ARCSE SA. SRCNS OR NCCA
WAE Cir-RES ONGC RS NAV 3ANSAC:

EER, is fir A. E.EN OCCRS NARE SA
NSRCTIONS OR FINCONA, ECWAN

CORRESRONG: RS AWRANSAON

F. A. EVEN OOES NO CRN ARE ISA
NSR CONS OR NONA, EQVALEN. RiiN
ERA, RE EXEC, FRSA

RANSACN RRE REXEC RS
A RASAO

3.

FOR, NE OR i{RE AERNAE NAE RANSANS OF
ARGE SA, NSRCNS

EXECE ONE OR ORE ERNAENAERANSAONS
{ARGE SA SRCOS

Jul. 3, 2014 Sheet 1 of 3 US 2014/O18931.0 A1 Patent Application Publication

oni :

Patent Application Publication Jul. 3, 2014 Sheet 2 of 3 US 2014/O18931.0 A1

RANSA, SONARY

FG, 2

RANSA.N EONARY

308 N A

32

FG. 3

Patent Application Publication Jul. 3, 2014 Sheet 3 of 3 US 2014/O18931.0 A1

SAR

st

EC, OCCURRENCE OF FA EVEN N FRS
RANSAON RNG EXECON }. RS RANSAON

a 4

CO ARGE SANSR CONS NO CONAY
QWAN NAV NSR CONSW ARNARE
SCOR N RESONS O CNG CCRRENCE O

FA WSN E EXECNG FRS, NAE RANSAON

EXECE ARGE SA SR CONS OR NCCNA
ECWAN CORRESPONING O RS, NAWE RANSAEON

ORAN WEER A. EVEN OCCRS NARGE SA
NSR CONS OR FINCONA. QVAN

CORRESNNG RS NAVE RANSAON

s

F FA EN DOES NO CCR N ARGE SA
NSR CONS OR NCONA, QVAEN, EERN
WEERO AON RE EXECON OF RS NAVE
RANSAON OR PREVEN REXCON OF ERS

NA, RANSAC

FOR, N OR i{}RE AERNAE NAW RANSAENS OF
ARGE SANSRC(ONS

44.

EXECE ONE OR iORE AERNAE NAFE RANSAONS
O ARGE SA, NSRiiONS

F.G. 4

US 2014/O 1893 1.0 A1

FAULT DETECTION IN INSTRUCTION
TRANSLATIONS

BACKGROUND

0001. Some computing systems implement translation
Software to translate portions of target instruction set archi
tecture (ISA) instructions into native instructions that may be
executed more quickly and efficiently through various opti
mization techniques such as combining, reorganizing, and
eliminating instructions. More particularly, in transactional
computing systems that have the capability to speculate and
rollback operations, translations may be optimized in ways
that potentially violate the semantics of the target ISA. Due to
Such optimizations, once a translation has been generated, it
can be difficult to distinguish whether events (e.g., architec
tural fault Such as a page violation) encountered while execut
ing a translation are architecturally valid or are spuriously
created by over-optimization of the translation.

BRIEF DESCRIPTION OF THE DRAWINGS

0002 FIG. 1 schematically shows an example computing
system in accordance with an embodiment of the present
disclosure.
0003 FIG. 2 shows an example of a trap mechanism for
pausing execution in order to determine whether a fault event
is spuriously created by a translation.
0004 FIG. 3 shows an example of a counter mechanism
for pausing execution in order determine whether a fault event
is spuriously created by a translation.
0005 FIG. 4 shows an example of a method for identifying
and replacing code translations that generate spurious fault
events in accordance with an embodiment of the present
disclosure.

DETAILED DESCRIPTION

0006. The present disclosure provides a mechanism for
optimizing native translations of corresponding non-native
code portions, such as targetinstruction set architecture (ISA)
code portions. The intelligent generation of translations, and
the optimization thereof, may be handled by translation soft
ware, which may be included as part of a software layer that
provides an interface between an ISA and a processor core.
More particularly, the present disclosure provides a fault nar
rowing mechanism that identifies and replaces code transla
tions that generate spurious fault events (e.g., architectural
faults). As discussed above, in some cases, a translation may
be aggressively or overly optimized such that the translation
generates spurious fault events. Note that "spurious' means
that if the corresponding target ISA code or a functional
equivalent thereof were executed, then the fault event would
not occur. In other cases, a fault event may be generated by the
target ISA code. The mechanism determines whether a fault
event encountered in a translation is generated spuriously by
the translation, for example due to over-optimization of the
translation, and if it is determined that the fault event was
spuriously caused by the translation, it generates a different
translation.
0007. In one example, the translation software redirects
execution to an instruction pointer (IP) of a native translation
in lieu of corresponding target ISA code by the processor
core. The native translation may be executed without using a
hardware decoder located on the processor core. Note that
when this disclosure refers to execution “without using the

Jul. 3, 2014

hardware decoder” that language may still encompass minor
or trivial uses of decode logic in hardware while a translation
is being executed. Circumventing the hardware decoder (i.e.,
by executing a translation) in many cases will improve speed
of execution, reduce power consumption, and provide various
other benefits. During execution of the native translation, a
fault may be encountered. At this point, it is unknown whether
the fault is an actual architectural event or if it is an artifact of
the way that the code has been optimized in the translation. As
Such, execution is rolled back to a committed State (e.g.,
through a checkpoint mechanism), and a different version of
code corresponding to the translation that does not produce
the artifact event is executed. In one example, the alternate
version of the code corresponding to the translation is target
ISA code that is decoded by a hardware decoder into native
instructions. If the fault is encountered during execution of
the alternate code, then it is concluded that the translation
itself was not the cause of the fault. If the fault is not encoun
tered during execution of the alternate code, then it is con
cluded that the translation generated the artifact, and it is
determined whether to allow future execution of the native
translation or to prevent such future execution in favor of
forming and executing one or more alternate native transla
tions. In some embodiments, the translation is reformed in a
different way, and the reformed translation is executed sub
sequently. In one example, the translation is reformed with
fewer optimizations so as not to cause the fault during execu
tion.

0008. By using this mechanism, a translation can be
aggressively over-optimized, then quickly narrowed if neces
sary using the hardware decoder to get to a translation that is
Suitably optimized to be executed without generating fault
events. Implementations without this mechanism would find
the overhead of narrowing or re-optimizing to be high enough
that translations would tend to be overly conservative or
under-optimized to avoid the narrowing process. For
example, a software interpreter may be adequate to isolate an
architectural event or lack thereof, but would be obtrusively
slow for narrowing and re-optimizing as the Software inter
preter can require hundreds of native instructions to emulate
a single target ISA instruction.
0009 FIG. 1 shows aspects of an example micro-process
ing and memory system 100 (e.g., a central processing unit or
graphics processing unit of a personal computer, game sys
tem, Smartphone, etc.) including processor core 102.
Although the illustrated embodiment includes only one pro
cessor core, it will be appreciated that the micro-processing
system may include additional processor cores in what may
be referred to as a multi-core processing system. Micropro
cessor core? die 102 variously includes and/or may commu
nicate with various memory and storage locations 104. In
Some cases, it will be desirable to allocate a portion (some
times referred to as a “carveout') of memory as secure and
private such that it is invisible to the user and/or instruction set
architecture (ISA) code 106. Various data and software may
run from, and/or be stored in said allocation, such as Software
layer 108 and related software structures. As will be discussed
in greater detail below, the software layer may be configured
to generate, optimize, and store translations of ISA code 106.
and further to manage and interact with related hardware on
core 102 to determine whether translations are suitably opti
mized (e.g., the translations do not generate faults or other
artifacts).

US 2014/O 1893 1.0 A1

0010 Memory and storage locations 104 may include L1
processor cache 110, L2 processor cache 112, L3 processor
cache 114, main memory 116 (e.g., one or more DRAM
chips), secondary storage 118 (e.g., magnetic and/or optical
storage units) and/or tertiary storage 120 (e.g., a tape farm).
Processor core 102 may further include processor registers
121. Some or all of these locations may be memory-mapped,
though in some implementations the processor registers may
be mapped differently than the other locations, or may be
implemented Such that they are not memory-mapped. It will
be understood that the memory/storage components are listed
above in increasing order of access time and capacity, though
there are possible exceptions. In some embodiments, a
memory controller may be used to handle the protocol and
provide the signal interface required of main memory 116.
and, typically, to schedule memory accesses. The memory
controller may be implemented on the processor die or on a
separate die. It is to be understood that the locations set forth
above are non-limiting and that other memory/storage loca
tions may be used instead of, or in addition to, those described
above without departing from the scope of this disclosure.
0011 Microprocessor 102 includes a processing pipeline
which typically includes one or more of fetch logic 122,
decode logic 124 (referred to herein as a hardware decoder or
hardware decode logic (HWD)), execution logic 126, mem
logic 128, and writeback logic 130. Note that one or more of
the stages in the processing pipeline may be individually
pipelined to include a plurality of stages to perform various
associated operations. It should be understood that these five
stages are somewhat specific to, and included in, a typical
RISC implementation. More generally, a microprocessor
may include fetch, decode, and execution logic, with mem
and writeback functionality being carried out by the execu
tion logic. The present disclosure is equally applicable to
these and other microprocessor implementations, including
hybrid implementations that may use VLIW instructions and/
or other logic instructions.
0012 Fetch logic 122 retrieves instructions from one or
more of memory locations 104 (e.g., unified or dedicated L1
caches backed by L2-L3 caches and main memory). In some
examples, instructions may be fetched and executed one at a
time, possibly requiring multiple clock cycles.
0013 Microprocessor 102 is configured to execute
instructions, via execution logic 126. Such instructions are
generally described and defined by an ISA that is native to the
processor, which may be generated and/or executed in differ
ent modes of operation of the microprocessor. A first mode
(referred to herein as the “hardware decoder mode’) of execu
tion includes utilizing the HWD 124 to receive and decode
(e.g., by parsing opcodes, operands, and addressing modes,
etc.) target ISA or non-native instructions of ISA code 106
into native instructions for execution via the execution logic.
It will be appreciated that the native instructions dispatched
by the HWD may be functionally equivalent to the non-native
instructions, in that execution of either type of instructions
achieves the same final result or outcome.

0014. A second mode (referred to herein as the “transla
tion mode’) of execution includes retrieving and executing
native instructions without use of the HWD. A native trans
lation may cover and provide Substantially equivalent func
tionality for any number of portions of corresponding target
ISA or non-native ISA code 106. The corresponding native
translation is typically optimized to some extent by the trans
lation software relative to the corresponding non-native code

Jul. 3, 2014

that would be dispatched by the HWD. However, it will be
understood that a variety of optimizations and levels of opti
mization may be employed.
0015. A third mode (referred to herein as “software inter
pretation mode’) of execution includes utilizing a Software
interpreter 134 located in the software layer 108 to execute
target ISA code one instruction at a time by translating the
target ISA instruction into corresponding native instructions.
0016 Typically, translation mode provides the fastest and
most efficient operation out of the above described execution
modes. However, there may be substantial overhead costs
associated with generating an optimized translation of target
ISA instructions. Accordingly, a translation may be generated
for portions of target ISA code that are executed frequently or
consume Substantial processing time. Such as frequently used
or “hot” loops or functions in order to control such translation
overhead. In one example, a translation may be generated for
a portion of target ISA code in response to the portion of code
being executed a number of times that is greater thana thresh
old value.
0017 Hardware decoder mode may be slower or less effi
cient than translation mode and faster or more efficient than
software interpretation mode. For example, hardware
decoder mode may be used to execute portions of target ISA
code that do not have corresponding translations. As another
example, hardware decoder mode may be used to determine
whether or not a translation is over-optimized based on
encountering a fault during execution of a translation as will
be discussed in further detail below.
0018 Software interpretation mode may be used in corner
cases or other unusual/rare circumstances. Such as to isolate a
fault or lack of a fault. The software interpretation mode may
be used least frequently of the above described modes of
operation, because the Software interpretation mode may be
substantially slower than the other modes of operation. For
example, Software interpretation mode may require hundreds
of native instructions to emulate a single target ISA instruc
tion.
0019 For the sake of clarity, the native instructions output
by the HWD in hardware decoder mode will in some cases be
referred to as non-translated instructions, to distinguish them
from the native translations that are executed in the translation
mode without use of the HWD.
0020 Native translations may be generated in a variety of
ways. As discussed above, due to the high overhead of gen
erating translations, in some embodiments, code portions of
non-native ISA code may be profiled in order to identify
whether and how those code portions should be included in
new or reformed translations. When operating in hardware
decoder mode, the system may dynamically change and
update a code portion profile in response to the use of the
HWD to execute a portion of non-native ISA code. For
example, profiled codeportions may be identified and defined
by taken branches. This is but one example, however, and any
Suitable type of code portion associated definition may be
used.
0021. In certain embodiments, the code portion profile is
stored in an on-core micro-architectural hardware structure
(e.g., on core 102), to enable rapid and lightweight profiling
of code being processed with the HWD. For example, the
system may include a branch count table (BCT) 136 and a
branch history table (BHT) 138 each including a plurality of
records containing information about code portions of non
native ISA code 106 encountered by the HWD as branch

US 2014/O 1893 1.0 A1

instructions are processed. In general, the BCT tracks the
number of times a branch target address is encountered, while
the BHT records information about the taken branch when a
branch target address is encountered. Furthermore, the BCT
is used to trigger profiling for translation upon Saturation of a
particular code portion. For example, the BCT may be used to
determine whether a code portion has been executed a num
ber of times that exceeds a threshold value, which triggers
reforming of a corresponding translation.
0022. As the code portions of non-native ISA code are
processed by HWD, records may be dynamically added to
BCT and BHT. For example, as the HWD processes taken
branches leading to a branch target address, a record for that
branch target address is added to the BCT and an initial value
is inserted into a counter associated with the record. Alterna
tively, if a record already exists for the target address, the
counter is incremented or decremented, as appropriate to the
implementation. As such, the system may include micro
architectural logic for adding and updating records in the
BCT and the BHT. This logic may be a distinct component or
distributed within various components of the processing pipe
line, though typically this logic will be operatively coupled
closely with the HWD since it is the use of the HWD that
results in changes to the BCT and the BHT.
0023. From time to time, the records of BCT and/or BHT
may be sampled and processed, for example by a Summarizer
140 of software layer 108. As described above, the software
layer may reside in a secure/private memory allocation of
storage locations 104 that is accessible by microprocessor
102 during execution of native ISA instructions. In other
words, Such an allocation may be inaccessible by ISA code.
0024. The summarizer may be implemented as a light
weight event handler that is triggered when a record in the
BCT produces an event (e.g., the counter for the record satu
rates). In other words, the BCT produces an event, and the
Summarizer handles the event (e.g., by sampling and process
ing records in the BHT). Each counter maintained in the BCT
for a target address is used to control how many times the
associated code portion will be encountered before an event is
taken for that code portion.
0025. The summarizer identifies flow into, out of, and/or
between code portions when using the hardware decoder.
Furthermore, the Summarizer identifies one or more non
translated code portions to be included in a new native trans
lation by producing a Summarized representation (e.g., a con
trol flow graph) of code portion control flow involving the
HWD. For example, the sampling and processing by the
Summarizer may be used to generate and update a meta
branch history table (MBHT) 142 in and between non-native
code portions processed by the HWD. It will be appreciated
that information about code portions and control flow may be
represented in any suitable manner, data structure, etc. The
information in the MBHT is subsequently consumed by a
region former 144, which is responsible for forming new
translations of non-native ISA code. Once formed, transla
tions may be stored in one or more locations (e.g., a trace
cache 146 of software layer 108). The region former may
employ various optimization techniques in creating transla
tions, including, but not limited to, reordering instructions,
renaming registers, consolidating instructions, removing
dead code, unrolling loops, etc. It will be understood that
these translations may vary in length and the extent to which
they have been optimized. For example, the region former
may vary the aggressiveness at which a translation is opti

Jul. 3, 2014

mized in order to strike a balance between increasing perfor
mance and generating spurious architectural events or arti
facts during execution. It will be appreciated that the
structures stored in the software layer may be included in or
collectively referred to herein as a translation manager or as
translation management Software.
0026. During operation, the existence of a translation may
be determined using an on-core hardware redirector 132 (a.k.
a., a THASH). The hardware redirector is a micro-architec
tural structure that includes address information or mappings
Sufficient to allow the processing pipeline to retrieve and
execute a translation or a portion thereof associated with a
non-native portion of ISA code via address mapping. Specifi
cally, when the processing pipe branches to a target address of
a non-native portion of ISA code, the target address is looked
up in the THASH. Over time, translations that are frequently
and/or recently requested are indexed by, and incorporated
into, the hardware redirector. Each entry in the hardware
redirector is associated with a translation, and provides redi
rection information that enables the microprocessor, during a
fetch operation for a selected code portion, to cause execution
to be redirected away from that code portion and to its asso
ciated translation. In order to save on processor die area and to
provide rapid lookups, the hardware redirector may be of
limited size, and it is therefore desirable that it be populated
with entries providing redirection for the most “valuable'
translations (e.g., translations that are more frequently and/or
recently used). Accordingly, the hardware redirector may
include usage information associated with the entries. This
usage information varies in response to the hardware struc
ture being used to redirect execution, and thus the entries are
maintained in, or evicted from, the hardware redirector based
on this usage information.
(0027. In the event of a hit in the THASH, the lookup
returns the address of an associated translation (e.g., transla
tion stored in trace cache 146), which is then executed in
translation mode (i.e., without use of HWD 124). Alterna
tively, in the event of a miss in the THASH, the portion of
code may be executed through a different mode of operation
and one or more of the mechanisms described above may be
usable to generate a translation. The THASH lookup may
therefore be usable to determine whether to add/update
records in BCT and BHT. In particular, a THASH hit means
that there is already a translation for the non-native target
code portion, and there is thus no need to profile execution of
that portion of target code in hardware decoder mode. Note
that the THASH is merely one example of a mechanism for
locating and executing translations, and it will be appreciate
that the processor hardware and/or software may include
other mechanisms for locating and executing translations
without departing from the scope of the present description.
0028. Throughout operation, a state of the microprocessor
(e.g., registers 121 and/or other Suitable states) may be check
pointed or stored to preserve the state of the microprocessor
while a non-checkpointed working state version of the micro
processor speculatively executes instructions. For example,
the state of the microprocessor may be checkpointed when
execution of an instruction (or bundle, code portion of a
translation, etc.) is completed without encountering an archi
tectural event, artifact, exception, fault, etc. For example, an
architectural event (e.g., a fault event) may include a page
violation, a memory alignment violation, a memory ordering
violation, a break point, execution of an illegal instruction,
etc. If a fault event is encountered during execution, then the

US 2014/O 1893 1.0 A1

instruction may be rolled back, and state of the microproces
Sor may be restored to the checkpointed State. Then operation
may be adjusted to handle the fault event. For example, the
microprocessor may operate in hardware decoder mode and
mechanisms for determining whether the encountered event
is an artifact of the translation may be employed. In one
example, the decode logic is configured to manage check
pointing/rollback/restore operations. Although it will be
appreciated that in some embodiments a different logical unit
may control Such operations. In some embodiments, check
pointing/rollback/restore schemes may be employed in con
nection with the memory and storage locations 104 in what
may be generally referred to as transactional memory. In
other words, microprocessor 102 may be a transaction-based
system.

0029. Furthermore, during execution of a native transla
tion, the execution logic may be configured to detect occur
rence of a fault event in the native translation. Since at the
time of encountering the fault event, it may not be known
whether or not the fault event is an artifact generated due to a
particular way in which the native translation was formed, the
translation manager causes the code portion to be executed
differently. For example, the target ISA instructions or a
functionally equivalent version thereof may be executed
without executing the native translation to determine whether
the fault event was a product of the native translation.
0030) If a fault event is encountered in the translation, then
the translation manager may note the IP boundaries of the
translation before execution of the translation is rolled back.
In some cases, the IP boundaries may include one contiguous
portion of target ISA code. In other cases, the IP boundaries
may include multiple non-contiguous portions of target ISA
code (e.g., if the translation was formed including a target ISA
branch that was assumed to be taken when the translation was
generated). The IP boundaries may be used during execution
of the target ISA instructions or a functionally equivalent
version thereof to determine whether a fault event occurs in
the code portion corresponding to the native translation.
0031. In one example, the system may operate inhardware
decoder mode to produce a functional equivalent of the target
ISA instructions. In particular, the HWD receives target ISA
instructions starting at the IP boundary corresponding to the
beginning of the native translation, decodes them into native
instructions, and dispatches the native instruction to the
execution logic for execution. The native instructions may be
executed by the execution logic until the fault eventis encoun
tered again, or execution leaves the code portion correspond
ing to the native translation (e.g., the IP is beyond the IP
boundary corresponding to the end of the translation). Vari
ous mechanisms for determining whether execution has left
the code portion corresponding to the native translation may
be employed during operation in hardware decoder mode.
Several non-limiting examples of Such mechanisms are dis
cussed in further detail below with reference to FIGS. 2 and 3.

0032. If the event is encountered during execution of the
target ISA instruction or their functional equivalent (e.g., in
the hardware decoder mode), it can be assumed that the event
is an architectural fault that was not created by the translation,
and redirection of control flow to the architectural exception
vector is performed where control is passed to the translation
manager or other architectural event handling logic to correct
the architectural event or provide other event handling opera
tions.

Jul. 3, 2014

0033. If execution leaves the translation without encoun
tering the fault event, then it can be assumed that the native
translation spuriously caused the fault event. In other words,
the translation manager determines that the fault event is not
replicated during execution of the target ISA instructions or
the functionally equivalent version thereof. In response to
determining that the fault event is not replicated, the transla
tion manager is configured determine whether to allow future
execution of the native translation or to prevent such future
execution in favor of forming and executing one or more
alternate native translations. Note that a future execution of
the native translation may include any execution Subsequent
to determining that the native translation spuriously caused
the fault event. The native translation may be prevented from
being executed in order to reduce the likelihood of the fault
event from occurring during Subsequent executions of the
target ISA instructions or the functionally equivalent version
thereof. In some embodiments, the determination whether to
allow future execution of the native translation or to prevent
Such future execution may include forming and executing the
one or more alternate translations upon determining that a
performance cost associated with forming the one or more
alternate translations is less than a performance cost associ
ated with continuing to execute the first native translation,
executing the target ISA instructions or a functionally equiva
lent version thereof, without executing the first native trans
lation, or a combination thereof. It will be appreciated that the
performance costs may be calculated in any Suitable manner
without departing from the scope of the present disclosure.
0034. In some embodiments, the native translation may be
prevented from being executed immediately after determin
ing that the native translation spuriously caused the fault
event such that the translation is not executed again. For
example, when the code portion corresponding to the native
translation is encountered Subsequent to the determination,
the system may operate inhardware decoder mode to execute
the code portion instead of executing the native translation.
As another example, a different translation may be executed
instead of the native translation.

0035. In some embodiments, the native translation may be
executed one or more times Subsequent to the determination
before the native translation is prevented from being
executed. For example, the native translation may be
executed subsequently in order to determine if the native
translation spuriously causes any different faults. In one par
ticular example, the native translation is not prevented from
being executed until a first fault and a second fault are encoun
tered a designated number of times as a result of executing the
native translation. In other words, the native translation may
be repeatedly executed until it can be assumed with a level of
confidence that the native translation is the cause of a number
of different faults before execution of the native translation is
prevented.
0036. In some cases, the system may operate in software
interpreter mode instead of hardware decoder mode in
response to encountering a fault event during execution of the
native translation (e.g., to handle of corner cases). As dis
cussed above, hardware decoder mode may be preferred over
Software interpreter mode for fault narrowing operation
because the software interpreter mode may be significantly
slower to execute the target ISA instructions. For example,
the software interpreter may take over one hundred times
longer to execute an instruction than the HWD may take to
execute the same instruction.

US 2014/O 1893 1.0 A1

0037. In some embodiments, the translation manager may
be configured to generate an updated or reformed translation
of the target ISA instructions that is optimized differently
based on encountering an artifact or fault event in the first
translation. In one example, the reformed translation is opti
mized differently so as not to generate the architectural event.
For example, the updated translation may include fewer opti
mizations than the previous translation, such as less combi
nations, reorganizations, and/or eliminations of target ISA
instructions. Further, the execution logic may be configured
to, upon Subsequently encountering the code portion of the
target ISA instructions, execute the updated or reformed
translation instead of the previous translation that spuriously
caused the fault event.

0038 Since there may be substantial overhead costs asso
ciated with generating an optimized translation of target ISA
instructions, in some embodiments, the translation manager
may be configured to track activity related to the translation
Subsequent to determining that the fault was an artifact of the
translation, and determine if or when it would be suitable to
update the translation. In one example, the translation man
ager is configured to increment a counter associated with the
native translation Subsequent to determining that the fault
event is an artifact of the translation. Further, the translation
manager may generate the updated translation of the target
ISA instructions responsive to the counter Saturating or
becoming greater than a threshold value. The counter may be
employed to track or count a variety of different factors,
events, parameters, or execution properties associated with
the translation that spuriously caused the fault event. Non
limiting examples of these factors that the counter may track
include time, a number of translation executions, a number of
translation executions that spuriously cause a fault event, a
number of translation execution that spuriously cause a num
ber of different fault events. In some embodiments the
counter may include a decision function that includes a com
bination of these factors.
0039. It will be appreciated that the counter may be used to
track any suitable parameter or event associated with the
translation in order to determine if or when to reform the
translation. Moreover, it will be appreciated that the counteris
merely one example of a tracking mechanism, and any Suit
able mechanism may be employed to decide when to reform
the translation.

0040. In some embodiments, the translation manager may
be configured to reform the translation (or generate a new
translation) of only a subset of the target ISA instructions that
were represented by the translation that spuriously created the
fault. In some embodiments, the translation manager may be
configured to generate a plurality of translations that span the
target ISA instructions that were represented by the transla
tion that spuriously created the fault.
0041 FIGS. 2 and 3 show examples of various mecha
nisms that may be employed to pause execution during opera
tion inhardware decoder mode in order to determine whether
the code portion corresponding to the translation is executed
without encountering the event, which may be used to deter
mine whether an event is spuriously created by the transla
tion. FIG. 2 shows an example of a mechanism 200 that
causes execution to be paused responsive to encountering a
target of a branch instruction that is dispatched by the HWD.
In particular, when an event is encountered in translation
mode, execution is rolled back to the beginning of the IP
boundary 210 of the translation. The IP boundary defines the

Jul. 3, 2014

code region of the translation by denoting the IP at the begin
ning of the translation and the IP at the end of the translation.
The translation manager calls the HWD to operate in hard
ware decoder mode with a particular jump instruction that
includes a “sticky bit 202 that is set based on encountering
the event. By setting the sticky bit in the jump instruction that
invokes the HWD, each branch causes a field 204 to be set that
is associated with the branch target. The set bit is recognized
upon execution of the branch target causing execution in
hardware decoder mode to be paused. The set bit is cleared
and control is passed from the HWD to the translation man
ager. The translation manager determines whether the IP is
within the IP boundary of the code portion corresponding to
the translation. If the IP is beyond the IP boundary of the
translation, then the event was not encountered in the code
portion at issue and it can be assumed that the event was an
artifact of the translation, and the translation may need to be
reformed in a different manner and the sticky bit is cleared. If
the IP is within the IP boundary of the translation, then control
is passed back to the HWD and execution in hardware
decoder mode continues until another branch target having a
set bit is encountered or the event is encountered. If the event
is encountered, then it can be assumed that the event is not an
artifact of the translation and the translation may not be over
optimized and the sticky bit is cleared.
0042. The above described mechanism may be referred to
as a “branch callback trap' because each time a branch target
is encountered with a set bit, execution in hardware decoder
mode is paused and control is passed to the translation man
ager. In other words, the sticky bit is the mechanism by which
the translation manager gets passed control from hardware
decoder mode. Note that when the HWD is called for opera
tion other than when an event is encountered, the sticky bit in
the jump instruction may be cleared to Suppress the branch
callback trap mechanism.
0043. In some microprocessor implementations that
include a hardware redirector or THASH that is accessed by
the HWD to check for a translation, access to the THASH by
the HWD is disabled or matches in the THASH are inhibited
based on the event being encountered. In one example, access
to the THASH is disabled when the sticky bit in the jump
instruction that calls the HWD is set. By suppressing the
lookup of the THASH, execution is not redirected to the
translation so that execution in hardware decoder mode may
be performed to determine whether the event is generated by
the translation. In other words, access to the THASH is dis
abled when executing the target ISA instructions without
executing the native translation.
0044 FIG. 3 shows an example of a counter mechanism
300 that causes execution to be paused responsive to a counter
expiring or elapsing. Similar to the above described example,
when the HWD is called based on encountering an event
during operation in translation mode, a counter 302 may be
set, for example by setting a bit in a particular jump instruc
tion that calls the HWD. During execution in hardware
decoder mode, the counter counts down and when the counter
expires execution is paused and control is passed to the trans
lation manager. The translation manager determines whether
the IP306 is within the IP boundary 308 of the code portion
corresponding to the translation. If the IP is beyond the IP
boundary of the translation, then the event was not encoun
tered in the code portionatissue and it can be assumed that the
event was an artifact of the translation, and the translation
may need to be reformed in a different manner. If the IP is

US 2014/O 1893 1.0 A1

within the IP boundary of the translation, then control is
passed back to the HWD and execution in hardware decoder
mode continues until the counter expires again or the event is
encountered. If the event is encountered, then it can be
assumed that the event is not an artifact of the translation and
the translation may not be over-optimized.
0045. It will be appreciated that the counter may be set to
any suitable duration or may track any Suitable execution
property or parameter. In one example, the counter may be set
to for a designated number of clock cycles. In another
example, the counter may be set for a designated number of
instructions. In yet another example, the counter may expire
in response to encountering a branch instruction. In still yet
another example, the counter may expire in response to
encountering a designated number of branch instructions.
0046. It will be appreciated that the above described
mechanisms may be particularly applicable to operation in
hardware decodermode, because control is passed from hard
ware (e.g., execution logic) to Software (e.g., translation man
ager) when execution is paused to determine whether execu
tion has left the IP boundary of the code portion at issue.
Moreover, such mechanisms may allow for execution to be
paused occasionally in order to performan IP boundary check
that allows for faster execution relative to an approach that
checks after execution of each instruction.

0047 FIG. 4 shows an example of a method 400 for opti
mizing a translation of target ISA instructions in accordance
with an embodiment of the present disclosure. The method
400 may be implemented with any suitable software/hard
ware, including configurations other than those shown in the
foregoing examples. In some cases, however, the process
flows may reference components and processes that have
already been described. For purposes of clarity and minimiz
ing repetition, it may be assumed that these components/
processes are similar to the previously described examples.
0048. At 402, the method 400 includes, detecting, while
executing a first native translation of target ISA instructions,
occurrence of a fault event in the first native translation. The
first native translation may be executable to achieve substan
tially equivalent functionality as obtainable via execution of
the target ISA instructions. In other words, the first native
translation is designed such that execution of the first native
translation should produce the same output as the target ISA
instructions. In one example, the fault event includes one of a
page violation, a memory alignment violation, a memory
ordering violation, a break point, and execution of an illegal
instruction.

0049. At 404, the method 400 includes decoding the target
ISA instructions into functionally equivalent native instruc
tions with a hardware decoder in response to detecting occur
rence of the fault event while executing the first native trans
lation;
0050. At 406, the method 400 includes executing the tar
get ISA instructions or a functionally equivalent version
thereof, where such execution is performed without execut
ing the first native translation.
0051. At 408, the method 400 includes determining
whether occurrence of the fault event is replicated while
executing the target ISA instructions or the functionally
equivalent version thereof.
0052 At 410, the method 400 includes in response to
determining that the fault event is not replicated, determining
whether to allow future execution of the first native transla

Jul. 3, 2014

tion or to prevent Such future execution in favor of forming
and executing one or more alternate native translations.
0053 At 412, the method 400 may optionally include in
response to determining that the fault event is not replicated,
forming one or more alternate native translations of the target
ISA instructions. The one or more alternate native transla
tions may be executable to achieve Substantially equivalent
functionality as obtainable via execution of the target ISA
instructions. In some cases, the one or more alternative native
translations are optimized differently than the first native
translation so as to avoid occurrence of the fault event that was
encountered during execution of the first native translation. In
Some cases, the one or more alternative native translations
may include fewer optimizations than employed in the first
native translation
0054. At 414, the method 400 may optionally include
executing the one or more alternate native translations upon
Subsequently encountering the target ISA instructions.
0055 While the depicted method may be performed in
connection with any Suitable hardware configuration, it will
be appreciated that modifications, additions, omissions, and
refinements may be made to these steps in accordance with
method descriptions included above and described with ref
erences to the mechanisms, hardware, and systems shown in
FIG 1-3.
0056. This written description uses examples to disclose
the invention, including the best mode, and also to enable a
person of ordinary skill in the relevant art to practice the
invention, including making and using any devices or systems
and performing any incorporated methods. The patentable
Scope of the invention is defined by the claims, and may
include other examples as understood by those of ordinary
skill in the art. Such other examples are intended to be within
the scope of the claims.

1. A method for identifying and replacing code translations
that generate spurious fault events, comprising:

detecting, while executing a first native translation of target
instruction set architecture (ISA) instructions, occur
rence of a fault event, the first native translation being
executable to achieve Substantially equivalent function
ality as obtainable via execution of the target ISA
instructions;

decoding the target ISA instructions into functionally
equivalent native instructions with a hardware decoder
in response to detecting occurrence of the fault event
while executing the first native translation;

executing the target ISA instructions or a functionally
equivalent version thereof, where Such execution is per
formed without executing the first native translation;

determining whether occurrence of the fault event is repli
cated while executing the target ISA instructions or the
functionally equivalent version thereof, and

in response to determining that the fault event is not repli
cated, determining whether to allow future execution of
the first native translation or to prevent such future
execution in favor of forming and executing one or more
alternate native translations.

2. The method of claim 1, where determining whether to
allow or prevent future execution of the first native translation
includes forming and executing the one or more alternate
translations upon determining that a performance cost asso
ciated with forming the one or more alternate translations is
less than a performance cost associated with continuing to
execute the first native translation.

US 2014/O 1893 1.0 A1

3. The method of claim 1, further comprising incrementing
a counter associated with the first native translation, and
where determining whether to allow or prevent future execu
tion of the first native translation includes preventing Such
execution and forming and executing the one or more alter
nate translations in response to Saturating the counter.

4. The method of claim3, where the counteris incremented
in response to determining that a fault event occurring during
execution of the first native translation is not replicated when
executing target ISA instructions or a functionally equivalent
version thereof.

5. The method of claim 1, further comprising forming one
or more alternate native translations to be executed instead of
the first native translation, where the one or more alternative
native translations are optimized differently than the first
native translation so as to avoid occurrence of the fault event
that was encountered during execution of the first native
translation.

6. The method of claim 5, where the one or more alternative
native translations include fewer optimizations than
employed in the first native translation.

7. The method of claim 1, further comprising:
pausing execution of the target ISA instructions or the

functionally equivalent version thereof responsive to
encountering a target of a branch instruction;

determining whether an instruction pointer is within an
instruction pointer boundary corresponding to the first
native translation when execution is paused; and

if the instruction pointer is beyond the instruction pointer
boundary when execution is paused, determining that
occurrence of the fault event is not replicated while
executing the target ISA instructions or the functionally
equivalent version thereof.

8. The method of claim 7, where the target of the branch
instruction includes a field having a bit that is set responsive
to detecting occurrence of the fault event while executing the
first native translation, and execution is paused responsive to
encountering the set bit.

9. The method of claim 8, where the microprocessor
includes a hardware redirector that is accessed by a hardware
decoder to check for a native translation corresponding to a
portion of target ISA instructions, and where access to the
hardware redirector by the hardware decoder is disabled
when executing the target ISA instructions or the functionally
equivalent version thereof without executing the first native
translation

10. The method of claim 1, further comprising:
setting a counter for execution of the target ISA instruc

tions or the functionally equivalent version thereof
based on the fault event,

pausing execution of the target ISA instructions or the
functionally equivalent version thereof responsive to the
counter expiring;

determining whether an instruction pointer is within an
instruction pointer boundary corresponding to the first
native translation when execution is paused; and

if the instruction pointer is beyond the instruction pointer
boundary when execution is paused, determining that
occurrence of the fault event is not replicated while
executing the target ISA instructions or the functionally
equivalent version thereof.

11. A micro-processing and memory system comprising:
memory configured to store target ISA instructions and a

first native translation executable to achieve substan

Jul. 3, 2014

tially equivalent functionality as obtainable via execu
tion of the target ISA instructions;

a microprocessor including, execution logic configured to
(1) detect, during execution of the first native translation,
occurrence of a fault event, (2) roll back execution of the
first native translation in response to detecting occur
rence of the fault event while executing the first native
translation;

a hardware decoder configured to decode the target ISA
instructions into functionally equivalent native instruc
tions in response to detecting occurrence of the fault
event while executing the first native translation, where
the execution logic is configured to execute the target
ISA instructions or a functionally equivalent version
thereof, where such execution is performed without
executing the first native translation; and

a translation manager configured to (1) determine whether
occurrence of the fault event is replicated while execut
ing the target ISA instructions or the functionally
equivalent version thereof, and (2) in response to deter
mining that the fault event is not replicated, determine
whether to allow future execution of the first native
translation or to prevent such future execution in favor of
forming and executing one or more alternate native
translations.

12. The system of claim 11, where determining whether to
allow or prevent future execution of the first native translation
includes forming and executing the one or more alternate
translations upon determining that a performance cost asso
ciated with forming the one or more alternate translations is
less than a performance cost associated with continuing to
execute the first native translation.

13. The system of claim 11, where the execution logic is
configured to increment a counter associated with the first
native translation, and where determining whether to allow or
preventfuture execution of the first native translation includes
preventing Such execution and forming and executing the one
or more alternate translations in response to Saturating the
COunter.

14. The system of claim 12, where the translation manager
is configured to form one or more alternate native translations
to be executed instead of the first native translation, where the
one or more alternative native translations are optimized dif
ferently than the first native translation so as to avoid occur
rence of the fault event that was encountered during execution
of the first native translation.

15. The system of claim 11, where the execution logic is
configured to pause execution of the target ISA instructions or
the functionally equivalent version thereof responsive to
encountering a target of a branch instruction, and where the
translation manager is configured to (1) determine whetheran
instruction pointer is within an instruction pointer boundary
corresponding to the first native translation when execution is
paused, and (2) if the instruction pointeris beyond the instruc
tion pointer boundary when execution is paused, determine
that occurrence of the fault event is not replicated while
executing the target ISA instructions or the functionally
equivalent version thereof.

16. The system of claim 15, where the target of the branch
instruction includes a field having a bit that is set responsive
to detecting occurrence of the fault event while executing the
first native translation, and execution is paused responsive to
encountering the set bit

US 2014/O 1893 1.0 A1

17. The system of claim 11, where the translation manager
is configured to set a counter for execution of the target ISA
instructions or the functionally equivalent version thereof
based on detection of the fault event, where the execution
logic is configured to pause execution of the target ISA
instructions or the functionally equivalent version thereof
responsive to the counterexpiring, where the translation man
ager is configured to determine whetheran instruction pointer
is within an instruction pointer boundary corresponding to the
first native translation when execution is paused, and if the
instruction pointer is beyond the instruction pointer boundary
when execution is paused, determine that occurrence of the
fault event is not replicated while executing the target ISA
instructions or the functionally equivalent version thereof.

18. A method for identifying and replacing code transla
tions that generate spurious fault events, comprising:

detecting, while executing a first native translation of target
instruction set architecture (ISA) instructions, occur
rence of a fault event, the first native translation being
executable to achieve Substantially equivalent function
ality as obtainable via execution of the target ISA
instructions;

rolling back execution of the first native translation in
response to detecting the fault event;

decoding the target ISA instructions into functionally
equivalent native instructions with a hardware decoder
in response to detecting occurrence of the fault event
while executing the first native translation, where targets
of branch instructions decoded by the hardware decoder

Jul. 3, 2014

include a field having a bit that is set responsive to
encountering the fault event;

executing the native instructions dispatched by the hard
ware decoder;

pausing execution of the native instructions responsive to
encountering a set bit in the field of a target of a branch
instruction;

determining whether an instruction pointer is within an
instruction pointer boundary corresponding to the first
native translation when execution is paused;

if the instruction pointer is beyond the instruction pointer
boundary when execution is paused, determining that
occurrence of the fault event is not replicated while
executing the target ISA instructions or the functionally
equivalent version thereof, and

in response to determining that the fault event is not repli
cated, forming and executing one or more alternate
translations upon determining that a performance cost
associated with forming the one or more alternate trans
lations is less than a performance cost associated with
continuing to execute the first native translation.

19. The method of claim 18, where the one or more alter
native native translations are optimized differently than the
first native translation so as to avoid occurrence of the fault
event that was encountered during execution of the first native
translation.

20. The method of claim 19, where the one or more alter
native native translations include fewer optimizations than
employed in the first native translation.

k k k k k

