PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7

HO04L 29/06 Al

(11) International Publication Number:

WO 00/56027

(43) International Publication Date: 21 September 2000 (21.09.00)

(21) International Application Number: PCT/CA00/00276

(22) International Filing Date: 15 March 2000 (15.03.00)

(30) Priority Data:

60/124,487 US

15 March 1999 (15.03.99)

(71) Applicant: TEXAR SOFTWARE CORP. [CA/CA]; Suite 135,
1101 Prince of Wales Drive, Ottawa, Ontario K2C 3W7
(CA).

(72) Inventor: BACIC, Eugen; 56 Castlethorpe Crescent, Nepean,
Ontario K2G 5R1 (CA).

(74) Agent: MITCHELL, Richard, J.; Marks & Clerk, P.O. Box
957, Station B, Ottawa, Ontario KIP 587 (CA).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, Fl, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: COMPUTER SECURITY SYSTEM

(57) Abstract

A generic policy engine (GPE) uses a verifiable,
Scheme-like language to generate security policies rang-
ing from the classical, hierarchical models to modern,
commercial models. The GPE provides system designers
with well-known security entry points, a generic defini-
tion of "object", and a means to manipulate these objects
in terms of a security policy. The centralized nature of the
system allows for experimentation with different security
policies rapidly and economically.

Application

A 4

Custom Policy API

Logic

Custom Security Policy

Generic Policy Engine API

D

ARI{E a

ﬁ L | cilnt
d o P cg@a
i g A ehijib
t s s t|ta
ss|{ys

e

\‘m ~ --m(l)'/k

Idyllic Interpreter




AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA

CG
CH
CI

cM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
Us
uz
VN
YU
YAV

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




WO 00/56027 PCT/CA00/00276

20

25

30

Computer Security System

Cross Reference to Related Applications
This invention claims the benefit under 35 USC 199(e) from US provisional application
no. 60/124,487 filed on March 15, 1999.

Field of the Invention
This invention relates to the field of computer networks, and in particular to a security
server for providing a network with sophisticated access controls.
Background of the Invention

As computer networks grow, security is becoming more of a concern with each passing
day. Organizations view and relate to information differently and have differing
requirements for the protection, dissemination, and modification of their information
stores. Most organizations are moving towards heavily interconnected systems with links
to the Internet. System architectures that were safe, due to limited accessibility, even a
few short years ago are now being designed with wide access capabilities to meet the

requirements of internal users, shareholders, customers, and clients.

For example, suppliers may wish to give third party customers'limited access to their
networks in order to facilitate design, ordering and accounting functions. Such third
parties must not, however, have access to confidential corporate data, although in the case
of co-operative design work, for example, there may be specific data files that the
customer is authorized to access that would not normally be available to external

organizations. This requires the ability to exercise highly sophisticated access control.

To meet security concerns, many organizations have opted for firewalls, virtual private
networks (VPNs), and virus protection. These are commonly referred to as first
generation security solutions. General access to host systems is provided based on the

premise that once authenticated, users can be given full freedom to perform their duties.

Not only do first generation products protect only the perimeter, but fhey are islands of
security, each performing a single task very well. They operate under their own control
and their own rules; they do not play well with others, such as in the case of the third

party customer example given above. These products have been defined and refined to

control external access to information and ensure that only legitimate users gain access to



WO 00/56027 PCT/CA00/00276

15

20

25

30

networks and their resources. Once a user is past these defences, little, if any, security

exists to protect valuable corporate information assets.

Windows NT and UNIX systems, for example, offer access controls, but these are often
implemented incorrectly, or disabled altogether, due to previous bad experiences on the
part of users or systems administrators. Moreover, they are sufficiently different to offer

little help in integrating security.

First generation companies cannot obtain the trust required from their competitors to
create integrated solutions. The fear of competitive advantage ensures that players will
not engage in an integration effort. While some companies have emerged to provide a
limited form of integration for audit, they do not address the other concerns that security

officers have, nor is it clear that they will provide solutions in the foreseeable future.

Reliance on first generation products that protect the periphery of the information rather
than the information itself is no longer sufficient. Security requirements are changing,
placing new demands on security officers and system administrators. They must now

fulfil six security demands:

Integration among existing security products.

A high water mark for overall network security.

Controlled trust between systems even within an Intranet.

Centralized and uniform controls

Compartmentalized and configurable information controls.

Flexible and customer-oriented security rules.
First generation security products can be viewed as offering a wall of protection around
information stores. Even though this wall may be sufficiently strong to thwart outside
attack, it does not dissuade attack from the most common access point: the inside. These
products are not designed to stop authorized users from accessing information. They are
meant primarily to authenticate that a user is authorized to access the resources on the

network. Once inside, few checks are performed, giving the user free rein.

Because of their distributed nature and the requirement to secure communications
between machines, networked architectures are much more difficult to secure than single

machines. This inherent difficulty is exacerbated by the fact that most networks do not



WO 00/56027 PCT/CA00/00276

15

20

25

30

have security systems and policies which were designed for the entire network. In most
cases, security has been grown by combining preexisting security systems as individual

machines are connected.

With advances in network computing, increased requirements to share information and
processing power among physically separate locales, and worries about information
sensitivity, existing security can no longer suffice. When two or more computer systems
are linked, their security policies often clash and overall security actually diminishes. If
policies have evolved over time, rather than being designed for the network, solving these

problems becomes more difficult.

To deal with combined legacy architectures, encryption is used to at least guarantee that
information gets safely to its destination. Encryption, however, ié a coarse technique for
protecting information from disclosure. With no standardized method of creating security
policies, encryption has become the de facto method of protecting information network-
wide, even though its use surrenders the fine-grained control that was available prior to

the networking of the computers.

The need for a security infrastructure has been fueled by the desire to provide new
solutions in the face of increasing incidents of unauthorized access to and manipulation of
computer systems, data, and communications. Malicious misuse of computer systems can

be classified into three groups based on the origins of the threat:

1. Outsider Threat — This is an external individual or group attempting to breach the
security of the system. Outsiders breach communications access controls but operate
under the constraints of the communications protocols. This is the standard cracker
attack. Outsider attacks are typically defended against by proper system
administration and correctly designed and implemented access-control protocols and
mechanisms, such as virtual private networks (VPNs) and firewalls.

2. Malicious Software — This is a piece of malicious code introduced into the system.
The attack takes place within the communications perimeter, but remains bounded by
the general access available to the operating system and the executing user. Malicious
software may be introduced with or without a user’s consent. The most common
forms of this attack are the virus and Trojan horse.

3. Insider Threat — Here, the perpetrator is an individual with authorized access to the
system. An insider may have wide-reaching control of the system or its components.
The perpetrator may opt to replace hardware or software, and may observe any
communications channel. This attack occurs within the boundaries of the VPNs or



WO 00/56027 PCT/CA00/00276

10

15

20

25

30

firewalls as the perpetrator is an authenticated user. Insider threats commonly come
from disgruntled or compromised employees.

A solid defense against insider threats can deter perpetrators by ensuring that they will get
only a poor return on their investment. Such a defense can limit the damage done,
minimize the information stolen or modified, and ensure that the perpetrator can be
caught. In many Cases, such a defence can stop most attacks, alerting authorities and
ensuring that the threat is limited to system components which the insider generally has

access to.

There is a need for a second generation security product that provides security across the
network, security which is highly trustworthy, which is configurable to the needs of
clients, which can be fully integrated with existing technology, and which is centralized

for audit and administrative purposes.

Security policy refers to the rules governing the flow of information between two entities
via predefined means and channels. A policy engine is a program that defines in logic
those governing rules for a particular security policy, typically located within a trusted
operating system. This patent presents a new method for the generation of policy engines

using a high-level, verifiable language and generic security functionality.

Conceptually, security policies are accomplished in two stages, analysis followed by
synthesis. In the first stage, a natural language description of the security policy model is
created so that it can be verified as reflecting the policy for the product being developed.
The second stage describes this security policy model as a contrivance of logic within the
actual product. Thus security policies rely on the correct modeling of the policies of the
target environment and the ability of the designers and implementers to translate these

models into functioning security policies within the product.

Historically the development of security policies has tended towards meeting the
perceived needs of the largest market and embedding a static security policy within the
product, typically an operating system. The first such system was Multics which
implemented the Bell-LaPadula Security Policy Model which closely reflected the
requirements of the military establishment: the implementers. As time progressed and

security became a serious concern to commercial interests, the security policies found



WO 00/56027 PCT/CA00/00276

10

15

20

25

30

within existing operating systems did not adequately reflect their needs. Further -
aggravation was wrought by the fact that the embedded security policies could not be
modified. In fact, the system was meant to handle information security in but one manner
and if the methodology did not match that of the purchaser, the client was forced to either
adjust their policies to more closely match that of the system or operate with less security
than would be desired. To further aggravate the issue, even when two systems implement
identical security policy models, say Bell-LaPadula, the implementations of these models
within the products security policies don’t match and communication between two

machines often leads to security breaches.
Summary of the Invention

According to the present invention there is provided a method of controlling access to a
network wherein security policies are determined by using a verifiable language

consisting of formal definitions of the syntax and semantics.

A generic policy engine (GPE) uses the language to execute a policy in order to mediate
access to an object entity by a subject entity. The invention abstracts the security

information from the physical data.

Besides eliminating the requirement to custom develop security policies for every product
under development, formal descriptions of security policies by means of a language
allows the development of a semantics-directed security policy generator, one which
simplifies formal proofs of the validity of the security policies and ensures valid

generation of the security policies for inclusion within a product.

Several methods exist for formally describing the semantics of programming languages,
and hence of security policies. Denotational Semantics has gained particularly wide
acceptance among semanticists and language designers. This patent bases the verifiability
of the language defined on the provability of systems developed using Denotational

Semantics, such as VLISP.

In accordance with a further aspect the invention provides a security policy engine known
as Generic Policy Engine (GPE) for controlling access to a network in accordance with
policies determined with the aid of a verifiable language consisting of formal definitions

of the syntax and semantics.



PCT/CA00/00276

WO 00/56027

20

25

30

Security policies can be developed more efficiently, in a greater variety, and with
comparable or greater trust than with traditional implementations. Security policies
developed with the Generic Policy Engine (GPE) using the security language can be
customized to reflect end-user security requirements as opposed to single-purpose
security policies in common usage today. In order to provide for a generic policy engine a
general, information neutral architecture must be used, one that is applicable across all
operating systems or applications (henceforth collectively called “products”). Information
must be encapsulated by the security measures required. The granularity of the
information encapsulated defines the granularity of the security provided. The
information thus encapsulated is the entity against which the GPE operates. By removing
the restriction of specific products or data storage technologies, the GPE provides a
trusted, extensible mechanism by which to implement security not only on a local system
but also across heterogeneous networks. Providing custom security policies that provide
equivalent trust to those currently in use and with similar efficiency would be a major
advancement in the information security field. To attain this level of flexibility with the
Generic Policy Engine one must have at one’s disposal a high-level, verifiable language.
All security relevant architecture must be written using this language which provides both
the formalisms required for high security systems as well as the implementation specifics
necessary to integrate it into a viable product. Such a language, which is referred to as
Idyllic, will be described along with its use as the base language of the Generic Policy

Engine.

Idyllic is a Scheme dialect. The Generic Policy Engine comprises a language interpreter
plus the associated security extensions and functionality coupled with the ability to
generate executable security policies. Thus, Idyllic provides a representation to easily

define and implement verifiable security policies.

Entities are the unified security object against which all security related functions are
performed. Both the base security application and any ancillary security relevant
applications utilize entities in order to manage and maintain the security attributes of the
applications. By adopting an entity-based approach to the name space being secured, the
advantages of encapsulation and, to some extent, inheritance can be leveraged to create a

succinct language definition for the creation of security policies. The new approach is to



WO 00/56027

10

15

20

25

30

PCT/CA00/00276

utilize a language renown for its small footprint, efficiency, and simplicity and use it to
implement security policies. Embedding the GPE as a secure extension with a system
provides a trusted, extensible mechanism by which to implement security not only locally
but across networks, within operating systems or applications, such as Web servers. The
Generic Policy Engine provides system and application developers a means by which to
provide equivalent trust to systems currently in use with smaller footprints and with at

least equivalent verifiability, speed, and efficiency.

In accordance with the invention security policies can be developed more efficiently, in a
greater variety, and with comparable or greater trust than traditional implementations.
Security policies developed with the Generic Policy Engine can be customized to reflect
end-user security requirements as opposed to single-purpose security policies in common
usage today utilizing an information neutral architecture applicable across operating
systems and applications. As proof of concept, a working Bell-LaPadula Security Policy

model has been implemented as has a Message Trusted Guard.
Brief Description of the Drawings

The invention will now be described in more detail, by way of example only, with

reference to the accompanying drawings, in which:-

Figure 1 is a Stylized Diagram of the Generic Policy Engine;

Figure 2 is an overview of the Generic Policy Engine;

Figure 3 shows a Classical Subject/Object Interaction as per TCSEC;

Figure 4 illustrates the Dual Requirement for Object Reuse at the System and GPE Level.

Figure 1 illustrates a system that produces security policies from formal definitions of the
security policy model using a higher order, lambda calculus based language. This
provides several advantages. First, it creates a uniform, universal language for developing
and proving the correctness of security policies and their models. Instead of the current
assortment of policy verification mechanisms developers would have one language, one
semantics, and one syntax to implement their security policies. Second, the proofs for the
security policies could be automatically generated from the formal semantics of the base

lambda calculus. Third, by providing a uniform language environment, connectivity



WO 00/56027 PCT/CA00/00276

20

25

30

between security policies can be improved since they would be based on higher level

semantics than is currently available.

The GPE must provide a one-for-one mapping between the entities to be protected in the
calling application and the security information maintained by it. In order to accomplish
this, the GPE utilizes an entity-based approach defining an encapsulation with all the
security relevant components within its boundary. Security relevant application
programming interfaces (APIs) are provided so applications can manipulate security
attributes and determine proper information flow, call the security policy, examine audit
logs, and perform regular maintenance on the entity. The GPE’s purpose is to provide
sufficient security to an application so that the application requires only minor security
specific instructions to meet even the highest security requirements of the various

international evaluation criteria.

Figure 2 presents an overview of the Generic Policy Engine. The GPE is written in and
controlled by Idyliic. The language is fully extensible and comes with a highly capable
library of functions. The GPE’s primary data structure is called the entity containing all
the security data pertaining to an entity under its control along with the application
programming interface (API) to manipulate the entity. Customizable elements, which can
differ from application to application, can be provided by application programmers and
are referenced via the APIs. The two programmer configurable components are the I&A

mechanism and the security policy.

The various components of the GPE, which are discussed in more detail below, are the
structure of the entity, its data elements, the facilities provided in the various APIs, the

functionality provided by Idyllic, and the security functionality.

Mechanisms are put in place to uniquely identify and authenticate users and to
dynamically track their actions within an application or system. Security controls,
regardless of type, are not foolproof and to ensure a system of recourse after a security
breach a non-circumventable, unalterable, continuous audit mechanism must be in place
and operational. A base set of auditable events must exist which can never be disabled.
The routines must be non-circumventable ensuring that neither accidental nor intentional

modification of the audit system occurs.



WO 00/56027 PCT/CA00/00276

20

25

30

The unique identification and authentication of every user or a particular user or system
ensures that individuals utilizing the system can be held accountable for their actions. The

mechanics behind identification and authentication can vary greatly and as such the core

.elements should be customizable to suit the threat assessment and the particular

architecture. The guarantee of a minimal auditable event list is vital to maximize the

trustworthiness of an application.

Information flow is controlled so that access to and manipulation of information is
restricted to a specific set of individuals utilizing specific tools. As such there must be a
mechanism provided to store and manipulate access controls for the various entities that
are to be controlled. Each entity contains its own access controls entries to which
programmers have access via the Access Controls API. The Access Controls data
elements themselves are accessible only to the Access Controls API. The API is the sole
method of retrieving pertinent information concerning an entity so that the security policy
can operate effectively. The security policy itself is programmable by the developers
though the Security Policy API is fixed. This provides the maximum flexibility: auditable
events can be established at the API junction while removing any concern that the
developers need remember to insert specific auditable events into the security policy they
are writing. The security policy is customizable but is restricted to using the Access

Controls API to access the Access Controls.

As a general purpose programming language additional security policies can be modeled
which enhance, complement, or override the default security policy implemented within
each entity. Security policies written in Idyllic can be modified to reflect the requirements
of the applications developers thus reflecting the general policies and procedures
pertaining to information flow and control for a specific organization. Default security
policies, those applicable to all entities, can be provided to simplify security policy
maintenance. Furthermore, compatible and cooperative security policies can be written to

represent the nuances particular to a given department or section.

A virtual machine architecture for Idyllic and the Generic Policy Engine has been adopted
to maximize portability and simplify the core and primitive elements of the language.

Virtual Machines have been shown to be small and efficient and relatively simple to port.



WO 00/56027

PCT/CA00/00276

The following table outlines the base entity within the Generic Policy Engine that

represents the actual data stored by the calling application. The entity is subdivided into

seven basic components: unique identifier, entity type, authentication information,

security policy, audit history, privileges, and access controls.

Unique Identifier

Entity Type

Authentication

Security Policy

Audit History

Owner
Last Modified
Last Access

Purge Rate

Privileges

Groups

Associations

Level

Defined by the developer, usually reflective of the underlying application or
operating system.

The type of entity. There are two distinct types. Those of type group are those
which define a group of entities for a particular purpose. Those of type entity
are for all other entities. A strict entity can contain multiple groups to which it
belongs. A group contains a list of entities forming the particular group. The
delineation assists the GPE in quickly traversing associations in order to
simplify the security policy’s goal of determining whether or not an information
flow is to be permitted.

String or data required for access (i.e., Password, private key, etc). This can
contain more than one authentication attribute, each associated with a
mechanism within the security policy.

The security policy for the entity. Each entity can have a different policy or can
adopt a general one for the specific machine, domain, network, or institution to
which it belongs.

A history of who “owns” this entity, most recent 1%, original owner (i.e., creator)
last including timestamps.

A history of who last modified this entity, most recent 1%, original creator of file
last including timestamps.

A history of who last accessed this entity and by what means, most recent 1%,
original creator of file last including timestamps.

When events should be purged from the audit log.

Historically these have been hierarchical in nature, but more modern security
policies require @ more flexible alternative.

To which groups or roles does this entity belong?

To which associations does this entity belong? Typically these are roles and
the like.

What “security level” does this entity have? This is security policy specific in
that some require an individual level, others a range, and other none at all. In
the cases where it can be within a range, the first element of the list can
indicate the currently valid level and subsequent elements can either list the
valid range values or provide a minimum and maximum level as per the
security policy.

- 10 -



WO 00/56027 PCT/CA00/00276

10

20

Categories To which “categories” does this entity belong? This is security policy specific.
Caveats What “caveats” does this entity have as restrictions? This is security policy
specific.
Access Controls What are the controls associated with this entity? The two most common are

Access Control Lists (ACLs) and Roles.

Read What other entities can request disclosure of information from this entity?
Write What other entities can request to update the information in this entity?
Execute What other entities can activate this entity?

Delete What other entities can request that this entity destroy itself?

Copy What other entities can request this entity create a copy itself?

Grant What other entities have been granted temporary owner-based rights?

In order to map the entities managed by the Generic Policy Engine back to the entities
under control of the calling application there must be some unique mechanism in place
which can determine absolutely which entity corresponds to which application controlled
data item. The calling application will ailways utilize the unique name when requesting or

adjusting information stored and managed by the Generic Policy Engine.

To access some entities it may be necessary to provide appropriate authentication, i.e.,
entities that hold user authentication information or protect data items that have been
password protected by the system or owner. To meet expanding authentication needs and
retain compatibility with existing identification and authentication schemes the entity
allows for a series of zero or more authentication strings to be stored by the entity and

access by the Identification and Authentication API (I&A API).

As changes are applied to the item being protected the entity must track the changes,
when and by whom they were performed, and the status of the attempt. This information
is maintained by the Generic Policy Engine’s audit facility. It allows each entity to

maintain their own audit information.

Access controls are, in reality, split into two distinct portions: privileges and access
controls. The former is maintenance information used to track groups, associations,
levels, etc. to which this particular entity is a member; included in the list of maintenance
information are all those entities which reference this entity. Access controls can be

broken out into five standard “controls”: read, write, execute, delete, and copy. Any

=11 -



WO 00/56027 PCT/CA00/00276

15

20

25

30

number of these can be utilized, in any fashion required to assist the security policy in

performing its duties. It is irrelevant whether the security policy is access control based,
capabilities based, role based, or otherwise based. The information required to properly
execute such policies is provided within the entity, and especially within the Privileges

component.

Groups, associations, levels, categories, and caveats provide a mechanism by which like
entities can be grouped together. For example, all entities classified Secret would have the
same Level. Definition of a group, say Engineering, could further subdivide the entities

classified as Secret to those that are Secret and available only to someone in Engineering.

Each definition of a privilege for an entity further restricts access. Similarly, when an
entity becomes active, its privileges define the domain to which it belongs and is utilized

by the GPE to determine which passive entities can be accessed.

The other privileges provide a further refinement along traditional lines, namely

categories and caveats.

The security policy, dependent and written for a particular application, utilizes the access
controls and privileges to determine what is considered appropriate information access. A
pointer to the security policy is provided within each entity allowing for individual
policies per entity or for policies to follow the information as it is copied from one host or
application to another. In this manner the information understands its policy and the
validity of requests made by entities outside its original domain. Thus, applications
protected by Generic Policy Engine built security components could move information
securely between themselves knowing that not only the base data is transmitted during the
flow of information between the applications but that the security information is passed
along as well. This can be utilized to ensure that information to which one individual has
access remains with that individual, even though the information was moved to a
secondary system for whatever reason. Historically, once information left one trusted
system with a given security policy to another, the new security policy determined access
controls. In this scenario, if the new security policy was not disclosure driven, for
example, it might permit accesses to the information that would be forbidden under the

original security policy. By having the security policy move with the entity it requires a

-12-



WO 00/56027 PCT/CA00/00276

20

25

conscious effort by the owner of the item to modify the security policy to the policy of the

new host application along with all that it entails.

The flexibility the entity provides, regardless of overhead, to handle any security policy,

individually or in tandem, is unique and revolutionary but does not come without cost.

The base language, known as Idyllic, of the Generic Policy Engine is based on two simple

premises:

1. Manipulation of user information must be done efficiently and with minimal

overhead.

2. "The language must be provably correct in order for the GPE to attain the

highest levels of trust within the various criteria.

Premise 1 removes most languages from contention, most notably Smalltalk and the other
object oriented languages. The class library overhead of OOP languages is unnecessary

baggage that in turn impacts on Premise 2.

Premise 2 requires a simple language that is easily understandable. In computer security,
the development language for secure components must be well defined. To be well
defined a language must have a formally defined grammar, a stable history (few, well
defined and delineated changes over time), and supporting documentation available to the
computer industry. Most computer languages (i.e., C/C++, Smalltalk) meet these
requirements. However, for a language to be provably correct requires that all aspects of
a language be properly defined and mathematically (or otherwise) provable to function as
advertised. This would include all class libraries, control mechanisms, etc. Classical
languages such as C/C++ and Smalltalk have large class libraries that preclude them from

easily being proven correct.

The major differences between Scheme and Idyllic are that Idyllic has no provisions for:
1. lazy evaluation;
2. use of rational or floating point numbers; or
3. for calls with current continuations.

Strings are provided but at a drastically reduced functionality than found in Scheme. As

programs written in Idyllic have no need for I/O, no method of I/O is provided in the

-13-



WO 00/56027 PCT/CA00/00276

10

20

production environment, though one is provided via special debugging routines in the

debugging environment.
Idyllic’s control structures resemble Scheme.

The standard Boolean values for true and false are written as #t and #£, case is
unimportant. The empty list, (), can be used as false, unlike some implementations of
Scheme. In Idyllic, only #£ or () are considered to represent false in a conditional
expression. #t and all non-empty lists are considered to denote true. Note that the symbol

nil is undefined in Idyllic.

(boolean? obj) boolean? returns #t if obj is #t, #f, or () and #f otherwise,
(not obj) Not returns #t if obj is false, and #f otherwise
(or «<test;> ...) The test expressions are evaluated from left to right, and

the value of the first expression that evaluates to a non-
false (not #f) value is returned. If all expressions evaluate
to a false value, #f is returned

(and <test;> ...) The test expressions are evaluated from left to right, and
the value of the first expression that evaluates to a false
(#f) value is returned. If all values evaluate to non-false
values, the last expression’s result is returned

A predicate is a procedure that always returns a boolean value (#t or #£). An

equivalence predicate is the computational analogue of a mathematical equivalence
relation (it is symmetric, reflexive, and transitive). Of the equivalence predicates found in
Scheme only equal? is implemented in Idyllic. This is primarily for reasons of clarity
rather than efficiency since equal? is usually the least efficient equivalence predicates

available.

(equal? obj, obj,) Equal? returns #t if obj, is equivalent to obj,

Note that the advantage of using equal? as the only equivalence predicate is that it
allows the policy designer to focus on the task at hand rather than on whether or not

particular entities are equivalent. Equal?’s greatest advantage is that, generally, if two

-14-



WO 00/56027 PCT/CA00/00276

expressions print the same they are equivalent. This is not true of most equivalence

predicates available in Scheme.

Idyllic has but one type of number: integers. The reason for not implementing any other
form of number is that, historically, operating systems and their components have never
required floating point nor rational numbers, let alone complex numbers. To that end,

Idyllic contains only integers.

An implementation of Idyllic must support integers throughout the range of numbers that
may be used for indices of lists, vectors, and strings or that may result from computing
the length of a list, vector, or string. The length, vector-length, and string-

length procedures must return an integer. Mathematical functions always return an

integer result.

Idyllic includes but a fraction of Scheme’s control structures. Scheme allow for numerous
looping constructs as well as numerous conditional expressions. Idyllic, on the other
hand, has opted for simplicity. Programs executing under Idyllic need to be trusted and to
be trusted they must be simple. Additional layers of complexity simply cloud the issues of

security, complicate formal proofs, and obfuscate correctness.

To that end, Idyllic contains only eight control structures: apply, cond, define,

lambda, let, map, quote, and set!.

(apply fn largs) Calls the function fn with the elements of the list largs.
Returns the value fn typically returns after evaluation. For
functions that accept no parameters, largs is the empty list.

(cond <clause> Each <clause> should be of the form
) (<test> <expression> ...)

where <test> is any expression. The last <clause> may be an
“else clause’, which has the form:

(else <expressions ...)

A cond expression is evaluated by evaluating each the <test>
of each <clause> until one evaluates to true. The associated
list of <expression>s is then evaluated. The final
<expression>'s value is returned by the cond. If no <test>
expression evaluates to true, then the else clause is
evaluated. If no else exists, #f is returned.

(define <var> Binds the expression <exp> to the variable <var> at the
current level of scope. This is the only method by which a
<exp>) variable can be created into the current enviroment. Further,

definition of a function is performed by having <exp> be a

-15-



WO 00/56027

(lambda
<args>

<body>)

(let
<bind>

<body>)

(map fn list)

(quote atom)

(set! <vars

<expr>)

PCT/CA00/00276

valid A (lambda) expression. Once bound, a function can be
called by simply placing parenthesis around the variable
along with any required parameters.

<args> is a formal parameter list and <body> is a sequence
of one or more expressions. The lambda expression
evaluates to a function. This lambda is the only method by
which programmable information can be stored within Idyllic.
Evaluating the lambda expression along with the appropriate
number of parameters is the method of calling functions in
ldyllic. By using define one can store the definitions of the
various functions within the current scope.

The let expression is, in fact, syntactic sugar for a lambda.
However, to aid in readability of Idyllic code, the let has been
allowed to be the one exception that defines the rule of
ldyllic’s simplicity. <Bind> is a list of variable/expression pairs
evaluated in turn with each expression being evaluated and
bound to the provided variable. Once the binding is
complete, the <body> is evaluated and the evaluation of the
final expression found within the body returned.

List must be a list and fn must be a function taking as many
arguments as there are lists. If more than one list is provided,
then all must be the same length. Map applies fn element-
wise to all elements of the provided lists and returns a list of
the results, in order.-

Evaluates the provided atom to create a literal constant
defined as atom. Quote can be abbreviated as the single
quote character .

The expression <expr> is evaluated and the resulting value is
stored in the location to which the variable <var> is bound.
The variable <var> must have been defined within the current
scope or within the global scope. A variable is defined within
a scope by means of the define structure, above.

Security is concerned with limiting access between entities to only those authorized by

the security policy. Security is usually defined in terms of an entity-based model which

defines all entities controlled by the security policy as entities in one of two states:

subject, the active state or object, the passive state, as shown in Figure 3. This definition

has been shown to be limiting and causes problems when attempting to define security

policies across an object-oriented system. The primary issue remains one of state and how

the transitions from one state to another are accomplished.

In the present invention all subjects and objects are transformed into entities. By

removing the distinctiveness of subjects and objects the definition of security policies

becomes one of restricting flow between peers, rather than between “active” and

- 16 -



WO 00/56027 PCT/CA00/00276

20

25

30

“passive” entities. An entity's passiveness or activeness is then directly related to whether

the entity is actually being acted upon or performing the action.

An external application, such as an operating system, can utilize a policy written in the
GPE. There are two customizable portions to the security policy: the I&A mechanisms
and the Security Policy, both indicated in white. Login requests are handled via the
standardized GPE API but the login mechanism can be any the developers feel would be
most appropriate. This allows for rudimentary login facilities as found on most operating
systems today or complex login facilities, such as those based on certificate authorities

and X.500 directory services.

In Figure 2, a stylized structural of the Generic Policy Engine is presented. Each
application wishing to utilize the Generic Policy Engine’s security features would
instantiate their own copy. Each GPE would be protected by the underlying hardware and
memory management, ensuring information can’t cross application boundaries. It is
assumed that the GPE will be utilized in those environment which properly adopt memory

management, object reuse, and 32 bit (or greater) architectures.

Without the adoption of these elements, the running application cannot be deemed trusted
in the evaluation criteria sense of the word. Hence, the Generic Policy Engine would
allow for multiple environments by providing for instantiations capable of creating their
own secure environments and namespaces governed by the GPE for a particular domain

such as an operating system or a database.

The utility of multiple environments is that various applications can use the Generic
Policy Engine to create and manage their security policies and their particular
authorization rules. This provides, in the case of an operating system, the ability to
provide a fully functional security API for applications to use courtesy of the operating
system and one that is as powerful as the native operating system’s security system. Since
all security is handled by the GPE, it can resist tampering and ensure logs are properly

maintained.

Once authentication to the security policy has been achieved, all information access
requests made to the Policy API are either boolean or string in value. Boolean values are

returned when a request is made for specific access to a given controlled data item, such

-17-



WO 00/56027 PCT/CA00/00276

10

15

20

30

as a file. Strings are returned when the request must return other than true or false, such as
a cryptographic key, the true location of a file, current access controls for a particular

controlled entity, etc.

It 1s impossible to have a security system without a mechanism of identification and
authentication. Historically, identification and authentication (I&A) referred to the
login/password pair which greeted users prior to the system allowing the user to begin
processing. As time progressed, so have the I&A mechanisms until today we have
numerous technologies ranging from login/password pairs to one-time passwords to

crypto-tokens.

For the Generic Policy Engine to be generic from an I&A point of view it is sufficiently
flexible to allow one or more varied identification and authentication mechanisms. To
ensure that programming for the I&A mechanisms chosen remains as simple as possible,
a fixed API is required guaranteeing programmers are met with a uniform interface
regardless of underlying mechanism. To that end, the Generic Policy Engine must provide
a standardized I&A API which interfaces to application specific identification and

authentication mechanisms.

Further security is added by providing full audit trails that are customizable by the
systems programmers. Since the security policy is available for perusal by the designers,
the audit requirements of a particular application can be customized as required. As little
or as much audit data can be written to various logs as required. The particular
information written to the logs is also under the full control of the designers and no limits
are placed on the complexities of the source defining how the audit records are created.
This provides further flexibility in granting the security policy the option of calling helper
functions to create detailed audit records in some instances while in others the records
could be less detailed prior to pushing them out through the standardized audit
mechanisms provided by Idyllic and the Generic Policy Engine. There exists, at all times,
a lowest common denominator of auditable events that cannot be turned off. These are
hard coded into the actual APIs ensuring that the system programmers cannot accidentally

circumvent the audit system.

There are many forms of access controls. The primary form is known as confidentiality

access controls, controls that define to whom information can be released. Conversely, the

-18 -



WO 00/56027 PCT/CA00/00276

10

15

20

25

control of who can manipulate information stored by an application is known as integrity

access controls and operate along similar lines.

Access controls are further divided into the mechanism employed. The classic method is
the use of access control lists that place the control information on each entity with
explicit user names as to who can and cannot access the information. A modification of
this form is role-based access controls whereby users are associated with roles and it is the
role by which each entity determines whether or not an individual can have access. Other

access control mechanisms operate similarly.

The Generic Policy Engine must be flexible enough to handle any form of access control,
regardless of whether the controlling action is performed by the active entity, passive
entity, or some combination thereof. The entity defines the information pertinent to the
decision making of the security policy and contains sufficient information to model any
known security policy. Since each entity controlled by the Generic Policy Engine is
actually defined by an entity, the security policy defined is not restricted to a single form
of access control. Thus, the application developer can define security policies that utilize
information stored in an entity, regardless of state (active or passive) and determine via

appropriate combination the access permissions.

For example, if the access control model is role-based then passive entities only indicate
the type of access associated with a given role. The user entities actually define the roles
to which they belong. Thus, if UserI’s only role is clerk and Entityl only allows a clerk to
read its contents, then User! will be granted read permission. If User! is removed from
the system, Entityl does not need to be modified since it has no direct reference to User].
The same cannot be said for access control lists that reference the actual users in each

entity’s access list.

The entities under the control of the Generic Policy Engine encapsulators defining the
security attributes of the data. The Generic Policy Engine ensures that information
between entities is not accidentally shared. The Generic Policy Engine does provide
object reuse so that entities no longer in use can be reclaimed. This call is part of the

Generic Policy Engine’s AP

-19-



WO 00/56027 PCT/CA00/00276

15

20

25

30

The Generic Policy Engine has no mechanism to ensure that a trusted path has been set up
between the application and the end user. This physical mechanism must be provided by
the application whenever the user issues a predefined key sequence to the application. The
security policy for the application can be coded such that it requires specific information
prior to performing specific actions, such as information downgrades. This then becomes

an issue addressed by the programmable security policy.

The actual code for the various parts of the GPE described above will now be presented,

describing the entity data structure, its associated functions, and the resulting class-like

structure.

In most cases, data structures are passive entities against which a system or application
applies procedures or functions. In the Generic Policy Engine a sihgle, state-aware data
structure represents all the actual items within a system or application being secured, be
they passive, such as files or active, such as processes. The entity can be in one of two
states: active or passive. The first state is associated with information processing and
typically operates against passive entities. To any active entity all other entities in a
system appear passive. This allows for the manipulation and access of entities by entities

to be generalized.

Entity = STRUCTURE

UniqueIdentifier: string

EntityType: Atom

References: LIST of Entity
Authentication: string

SecurityPolicy: Lambda, Default = NOACCESS

//* Audit Logs

Owner: LIST of Entity

LastModified: LIST of (Entity, Timestamp)
LastAccess: LIST of (Entity, Timestamp)
PurgeRate: Lambda, Default = NEVER

//* Privileges

Groups: LIST of Entity
Associations: LIST of Entity
Level: LIST of Entity

-20-



WO 00/56027 PCT/CA00/00276

15

20

25

30

Categories: LIST of Entity
Caveat: LIST of Entity
//* Access Controls
Read: PAIR (Allow: LIST of Entity,
Deny: LIST of Entity)
Write: PAIR (Allow: LIST of Entity,
Deny: LIST of Entity)
Execute: PAIR (Allow: LIST of Entity,
Deny: LIST of Entity)
Delete: PAIR (Allow: LIST of Entity,
Deny: LIST of Entity)
Copy: PAIR (Allow: LIST of Entity,
'Deny:v LIST of Entity)
ENDSTRUCTURE

Pseudo-code Data Structure for GPE Entity

Further, it is the entity, defined using pseudo-code above, itself that understands how it is
to be manipulated or accessed and can control the type of access via the security policy
embedded within it. This is accomplished by storing the security policy for each entity
within the entity. This allows the security policy to travel with the entity, regardless of
environment. Thus a user requesting access to a passive entity would have to be allowed
access by the security policy of the entity itself, even though this policy may be a general
one applicable to and shared by all entities in the system. By providing each entity with
the ability to carry its own security policy the Generic Policy Engine provides a
mechanism by which the information can be transmitted to another GPE controlied

system, retaining the original access controls and security policy.

Idyllic implicitly manages all its data structures as symbolic expressions. The entity is by
definition a symbolic expression and therefore properly handled by Idyllic. In order to
differentiate between entities, each entity is uniquely identified so as to be accessible
locally, internally to Idyllic, and externally to the calling application. Each entity has a
current state, which indicates whether it refers to a user, process, or data. The data

remains private with access permitted only via an exported API.

221 -



WO 00/56027 PCT/CA00/00276

15

20

30

In a manner of speaking, an entity can be viewed as a database entry where the database
management system is Idyllic and the database language is the GPE’s APIs. The entity is
managed as are all symbolic expressions within Idyllic. Accessing and manipulating
entities via the APIs provides the security functionality associated with audit,
identification and authentication (I&A), access controls, privileges, and security policy.

The APIs can be subdivided into:

e General Entity API
o I&A API

e Audit API

e Access Controls API
e Privileges API

¢ Security Policy API

The API is used in order that the entity be useful outside the bounds of Idyllic. The entity
is stored as a series of symbolic expressions and each is uniquely identified and mapable
to an external calling application. This one-to-one relationship between the external
representation of the entity and the GPE representation of the entity is vital to the sedurity
and integrity of the system. As each entity is manipulated it is fetched and stored in the
access controls database. Each entity is identical in look and can be utilized for any
purpose. This lack of typing is crucial to ensure that the GPE be sufficiently flexible in

implementing any form of security policy utilizing its framework.

The “defaultSecurityPolicy” defined below is an explicit denial security policy. In other
words, any action taken while this security policy was in force would be summarily
denied. It must be changed, a conscious decision to override the default with a custom
built security policy. It is in the interest of the application developer to utilize an

appropriate and secure security policy.

(define (defaultSecurityPolicy . parameters)

.k
.

;* The default security policy declines every request for

;* information. This follows the standard edict of computer

222



WO 00/56027 PCT/CA00/00276

15

20

25

30

* gecurity: if not explicitly allowed, it is denied. This
* forces the developer to create a security policy. If the
;* developer opts to replace the “#f” with a “#t”, it is a
* conscience effort to forego creating a valid security

;* policy.

Default Security Policy for the GPE

The choice of a monolithic entity encumbers the software by making it less modular.
According to the current object-oriented programming style, a structurally cleaner and
aesthetically more pleasing solution would be to have the various audit logs refer to an
audit log, which in turn would contain the methods used to manipulate the logs. High-end
security (e.g., the CTCPEC’s T-5 and T-6 or the Orange Book’s B3 and Al) require a
tight coupling of all security relevant data within the GPE. In order to provide the tightest
coupling, the GPE couples all the elements of the entity — the audit logs, the I&A, the
access controls, privileges, and the security policy — directly to the data being controlled.
This, in turn, results in all the security data elements being controlled and stored within a
weIl-deﬁne_d, controlled area, easily placed under the auspices of a memory manager or

other well-defined hardware device.

In order to utilize a true object-oriented approach, the linkages between entities and the
notion of what constitutes an entity would have to written into the underpinnings of
Idyllic. Tracking and understanding the couplings for a given entity would require
extensive syntactic extensions at the primitive level removing much of the simplicity and
élegance found in Jdyllic. This increase in complexity would not provide any additional
security or trustworthiness to the GPE. Understanding the relevance of the links while
utilizing memory management techniques to track and isolate the various memory
elements that constitute an entity would be creating an artifice of memory management
for the sole purpose of adhering to an object-oriented paradigm when one is not required.
The use of a monolithic entity has been chosen to simplify and address the issues at hand,
namely the creation of a security solution capable of generically describing and

implementing security policies for any situation.

-23.



WO 00/56027 PCT/CA00/00276

10

20

25

30

One question that does arise is whether a programmer has the flexibility to create
additional audit logs or I& A mechanisms. Should the need arise, additional security logs
or I&A mechanisms can be provided by utilizing existing mechanisms within the entity
while ignoring other present capabilities. Capabilities not utilized can be viewed as being

dormant, but available should the programmer wish to utilize them at a later time.

For each application requiring the functionality of the GPE a copy of the GPE is
instantiated with its own memory area and entities. This adheres to the data separation
requirements of many security criteria while simplifying the implementation. This also
provides a clean and elegant solution to providing unique security policies to any

application within a system requiring security functionality.

The entity with the elements expanded to include stylized contents within their
association lists 1s shown below. Each entity is uniquely identified to the calling
application by its <uid> (unique identifier) allowing for full cross-referencing. The
cross-referencing is used to quickly remove all references to the entity should it ever be
required. Hence, each time one entity refers to another, for whatever reason, the
referenced entity is updated. Some fields contain lists that refer to various data instances
such as time or entity identifiers (uid). For example, owner is a list of all the individuals
who have ever owned a particular entity, with the first owner listed being the current
owner and the last owner being the original owner, or creator. Similarly, LastModified
lists in order, from most recent to least recent, which entities performed modifications to

the entity.

Although it would be efficient in design terms to define the various audit logs as separate
definitions pointing towards an AuditLog, it is more beneficial to define the logs within
each entity so that the audit information can be properly protected. Access to the audit
logs, elemental to the sanity of the entity and as a mechanism to provide additional
warranties that the security has not been breached, requires access to the entity.
Replication of I&A information and the possibility for error is removed, albeit at the

expense of some processing overhead during audit log review.

Of particular interest in the above table is the use and reuse of the unique identifiers
<uid>. Entities are utilized and referenced by the security policy, which places specific

information within each. Thus, Level would contain pointers to such entities as Secret,

-4 -



WO 00/56027 PCT/CA00/00276

10

15

20

25

30

Unclassified, and Top Secret. The security policy would be able to request which the
Level for a particular entity, compare it to other entities, and determine the validity of *
information access requests. Similarly, a group of entities can be placed into a particular
role via the Associations tag. The <uid> for the entity could be Programmer and reference -
the entities which are programmers. And again, Categories can be used to define category
subsets for use by the security policy. Thus a banking security policy could define valid
categories as Teller, Bank Manager, Branch Manager, Loan Maﬁager, Clerk, and
Financial Analyst and compartmentalize information appropriately. This cross-
referencing could be graphically illustrated to visually create representations of how
information, one way or another, is related. This could greatly assist the security officer in
determining whether there are any information flows that should not exist, such as data

path from a higher hierarchical level to a lower one.

By providing a unified interpretation for Entity the GPE is generic. It is the interpretation
of the information stored within the various elements of the Entity by the security policy
that determines the form of the security policy, be it role based or access control based, or

otherwise. Generic use of the entity generalizes security to its constituent components.

In any secure system it is vital that the security information remain protected at all times
and that the mechanisms utilized to access the information remain immutable. Object
oriented technologies provide a partial solution by formalizing the notion of data hiding
with both the data and the procedures to manipulate the data stored within an object
defined by a class. This notion can be extended to assist us in creating a viable storage
mechanism for the Generic Policy Engine. Each entity corresponds to an item on the
application side that the application programmer wishes to secure. The entity is the

manifestation of the security attributes of the data in the application.

The combination of the data found within the entity and the procedures to manipulate the
entity constitute the entity-based form of the GPE. This works well for static procedures
which remain constant. The GPE must allow the flexibility to insert custom portions that
reflect the unique identification and authentication mechanisms and the unique security
policies of various organizations. At the same time, it must be able to put forward a well
defined interface and functionality that would meet international security criteria. The

solution is to utilize a standard API for each of the procedures while allowing specific

-25.



WO 00/56027

15

20

25

30

PCT/CA00/00276

procedures, such as the Security Policy and Identification and Authentication routines, to

have replaceable internals.

The following sections present the various procedures and their respective APIs. The final
section presents the entire entity-based “class” for GPE-Entity that contains the data
described above and all of the APIs and associated functions for manipulating the data

within the confines of good security practice.

Creating a new entity requires no more than a call to define-entity. This special form
accepts only a single parameter: the entity’s name. It must be unique. Define-entity will
ensure that the identifier provided is unique and if not, will issue an error. It is these
structures that are maintained and manipulated by the GPE. They encapsulate the security
of the items referred to by the calling application. Idyllic and the GPE maintain all the
created entities in a persistent state. Each entity is a self-contained security module
capable of determining whether or not another entity is granted access and the type of

access allowed. Access to the entity is available only through the defined APIs.

(define-entity <uniquelID>)
creates
<uniqueIDs> <=

(variables (<var> <value>)
(<vars> <value>))
(private-methods (message . args)
((message) <body>)
((message) <body>))
(public-methods (message . args)

((message) <body>)

((message) <body>)))
General Structure of an Entity

The above code provides a completed entity structure for a generic entity, slightly stylized

-26 -



WO 00/56027 PCT/CA00/00276

for readability. As will be noted, many portions of the object-oriented paradigm are
utilized in the design and implementation of the entity. However, it cannot truly be called
object oriented as the only elements of object oriented computing utilized in the GPE are
garbage collection (inherent in Idyllic), polymorphism, and encapsulation. Inheritance is

5  notably absent. This is the primary reason why the GPE is referred to as entity-based.

_27.



WO 00/56027

15

20

25

30

35

PCT/CA00/00276
(define-entity GenericEntity)
creates
GenericEntity <=
((variables (Uniqueldentifier GenericEntity)
(EntityType Entity)
(References ())
(Authentication (Active <Expiry> NoPassword))
(SecurityPolicy defaultSecurityPolicy)
;* Audit Logs
(Owner (<creators))
(LastModified ((<timestamp> <uids>)))
(LastAccess ({<timestamp> <uid>)))
(PurgeRate (lambda () #£))
;* Privileges
(Groups ()
(Associations )
(Level (<currentLevel> <min> <max>))
(Categories (<currentCategory> <fullSets))
(Céveats (<currentCaveat> <fullSets))
;* Access Controls
(Read ((allow (GenericEntity
<creators))
(deny ())))
(Write ((allow (GenericEntity
<creator>))
(deny ())))
(Execute ((allow ())
(deny ())))
(Delete ((allow (GenericEntity
<creators))
(deny ())))
(Copy ((allow (GenericEntity
<creators))
(deny ())))

) ;* end variables

. Kk
’

;* Typical housekeeping functions (BetterHomesé&Gardens)

-28 -



WO 00/56027 PCT/CA00/00276

15

20

25

30

35

(private-methods (message . args)
((getReferences)

<code>) )

;* The APIs, though their “C-like” form, look nothing
;* like what we have here. The APIs in reality are
;* syntactic sugar but use these calls. Pure GPE coding

;* would be too cumbersome otherwise.

(public-methods (message . args)
((get)
<code>
)
((put)
<code>
)
((remove)
<code>
) )} ;* end public-methods

) +* end entity definition

Generic Definition of an Entity

Uniqueldentifiers refer to the <uid>s found within the GPE entity. This provides closure
betweenvthe various classes, linking them together explicitly in a large lattice. Code
fragments have been removed for clarity and brevity. <creator> is the creator of the new
entity. Each entity is created by another entity, which is its creator. All entities can trace
their heritage back to the original entity, the system entity, similar to the class Object in

Smalltalk. The other parenthesized elements (< ... >) are self-explanatory.

A Trusted Computing Base (TCB) is the term that defines a boundary within which all
controlled entities reside. In trusted systems, developers typically define which entities
are under the control of the reference monitor and which are not. The defined subset of
entities are considered to be inside the TCB boundary while the remainder are considered

to reside outside the TCB boundary. The application using the GPE must provide the

-29.



WO 00/56027 PCT/CA00/00276

10

15

20

25

additional security features of memory management and non-circumventability of the

security policy.

By default the GPE provides a security policy. This security policy must be invoked by
the calling application in order to properly function. There is no mechanism by which the
GPE can guarantee the proper invocation, but by simplifying the mechanics behind the
actual call, we can ensure that overhead and complexity are removed as viable answers to

not utilizing the security procedures of the GPE.

Assuming the security policy is always invoked by the application, the application must
be able to ensure the information being protected, say files within an operating system,
cannot be accessed by standard operating system calls, such as low level disk reads.
Although this latter form of access can be viewed as circumventihg the security policy,
many times this form of access is ignored especially when considering direct memory
accesses. Modern memory management assists in preventing cross boundary access and

alleviating many attempts at direct manipulation of memory.

In order for the GPE to be considered “trusted” it must meet the requirements which

define a reference monitor:
e tamperproof;
e always be invoked; and
¢ small enough to be subjected to analysis and tests to ensure its correctness.

To be tamperproof the GPE must reside within a protected memory space. Modemn
computer hardware provides such mechanisms which are difficult to circumvent and meet
the requirement of non-circumventability. Invocation requires that the application being
protected always invoke the GPE for every transaction. This is something that falls to the
application developer to address and if security is paramount, then invocation will occur.
The final requirement is met by ensuring that both the GPE, Idyllic, and any security
policies written in Idyllic are simple enough to be subjected to analysis and proven
correct. As defined in the next section, policies that typically took thousands of lines in

classical security policies can be defined in less than a hundred lines using the GPE.

-30-



WO 00/56027 PCT/CA00/00276

15

20

25

30

One of the most difficult areas in computer security is ensuring that the system being
developed is trustworthy. By using reference monitors and trusted computing bases, it is
possible to increase the amount of trust that can placed in a specific trusted product.
However, for each secure product developed, all aspects must be examined by an
approved evaluation authority. This is a time consuming process. One of the main goals

of the GPE is to reduce the amount of time required to evaluate a trusted product.

The controlled entities must be readily available between invocations. Idyllic can store all
of the entities in its address space, readily available to the GPE. On large scale
applications a caching scheme is used that is capable of ensuring entities are fetched and
stored on disk depending on usage and when modified. Modifications to an entity must be
written to disk immediately to minimize the likelihood that security information would be
lost for whatever reason. The caching scheme would ensure that the most used entities
rematn in RAM, those less often used would be removed from memory after Idyllic

guarantees that the information has been saved properly.

The simplest method of providing persistence is for the operating system to always keep
the GPE and its associated entities in active memory. This would also provide for the
quickest reaction time but may not be expedient when the number of entities controlled
becomes large, as inevitably will be the case. Regardless of the system used to keep the
entities readily available, it must ensure the isolation, availability, and correctness of all
GPE data. Caching schemes are sufficiently well understood that one could be adopted for

use by Idyllic to guarantee the integrity of its dynamic namespace.

Upon system shutdown, the GPE would have to be called to ensure orderly shut down of
the security policy and proper storage of all databases. In a production version of the GPE
a shutdown function would be used to initiate security shutdown. Similarly, when an

application shuts down, it must properly terminate any copies of the GPE it instantiated.

Two versions of the Application Programming Interface exist: the internal, LISP-like API
and the external, C-like API. The C-like API provides standard procedural prototypes for
using the capabilities of the GPE. These C-like calls are converted into the internal LISP-
like API. Provided in subsequent sections are the C-like APIs. The full LISP-like API is
provided as part of the full definition of the Entity found discussed above.

-31-



WO 00/56027

PCT/CA00/00276

Of note is that all LISP-like API calls are found within the entity as the exported public
functions available to manipulate the data contained within. This gives the entity an
object-based feel, retains strong encapsulation, and provides a single, cohesive unit to

refer to the protected item in the calling application.

The GPE’s purpose is to provide security to a calling application. Each application
requests its own instantiation of the GPE. Each instantiation provides a fully functional
copy of Idyllic and the GPE APIs. There are four function calls divided into two calls for
opening a namespace of GPE entities for manipulation and a third to close the namespace.
In order for the GPE to operate, a namespace must be opened and available to the calling

application.

gpelD = gpeCreate () Returns a reference to a new namespace. The application is
expected to use gpelD whenever it requires access to the
security functionality. If gpeCreate () could not create a new
namespace, 0 is returned. gpelD is a long unsigned integer.

Once opened, all initialization to the global status of the
GPE must be performed.

gpeOpen (gpelD) The application requests a previously opened GPE
namespace to be opened by calling the function with gpelD.
If the namespace exists, #T otherwise #F.

Once opened, all initialization to the global status of the GPE
must be performed.

gpeStart () All initialization and global sets must occur prior to the
gpeStart () command being issued. This ensures that certain
attributes are frozen for the running duration of the GPE,
such as audit level.

gpeClose (gpelD) Close the namespace associated with gpelD. #T on
success, #F on failure.

Instantiating a co;}y of the GPE

Every entity has a unique identifier provided by the calling application. This unique
identifier (uid) uniquely identifies each entity managed by the GPE and provides a
consistent mapping from the GPE entities back to the controlled items of the calling
application. This simple, one-to-one mapping enhances the reliability and security of the
GPE and ensures that identifier translation routines are not required thereby removing a

source of possible error.

-32.



WO 00/56027

10

15

PCT/CA00/00276

1.1.1 The Entity API

The GPE Entity API refers to what is normally called class methods in object-oriented
programming. The functions defined in this AP, see below, allow the programmer to

manipulate the entity namespace in a coarse manner; strictly at the entity level.

gpeEntity (uid create) Creates a new entity within the namespace with the unique
identifier provided. All information for the entity must be filled
in piecemeal. Returns #T on successful creation, #F
otherwise.

gpeEntity (uid remove) Removes the entity referred to as uid. Returns #T on
success, #F otherwise.

gpeEntity (uid SP securityPolicy) Sets the security policy for the entity referred to as uid to
securityPolicy. SecurityPolicy must be a valid lambda
expression. Returns #T on success, #F otherwise.

gpeEntity (uid SP DEFAULT) Sets the security policy back to the GPE default. Returns #T
on success, #F otherwise.

The Entity API

The GPE Identification and Authentication (I&A) API provides access to the [& A data of
an entity. These calls allow for the creation of entities and the definition of unique
identification and authentication of entities, regardless of whether they refer to a user or
data object externally. The calling application need not track which users are valid nor
which privileges they have. The GPE API provides system calls that can authenticate
individuals. The GPE API provides additional system calls to add, remove, and update
information concerning users of the application. The I&A database is maintained and
protected by the GPE within each unique entity. The following table provides a summary
of tﬁe Identification and Authentication API.

gpeAuth (uid Add authStr) Adds uid, plus its authentication string (authStr) to the entity
referred to by uid. Returns #T on success, #F otherwise.

gpeAuth (uid Remove) Removes uid (i.e., the entity it refers to). Returns #T on
success, #F otherwise. :

gpeAuth (uid equal? authStr) Is the uid and authentication string (authStr) correct? #T if
correct, #F otherwise.

gpeAuth (uid Expires date) Sets the expiry date for uid. #T on success, #F on failure

-33.



WO 00/56027 ’ PCT/CA00/00276

15

20

gpeAuth (uid Expires?) Returns #F if the uid’s password never expires, the date of
' expiry otherwise.

gpeAuth (uid SetPaswd old new) Sets the password to the new one provided the old
password matches the existing one. Returns #T on
success, #F on failure.

gpeAuth (uid SetPassten Sets the password length to the new one provided so long
as it is between the predefined min and max password
newlen) lengths. Returns #T on success, #F on failure.
gpeAuth (uid deactivate) Deactivate the uid. #T on success, #F otherwise.
gpeAuth (uid activate) (Re)activates the uid. Returns #T on success, otherwise #F.

Identification and Authentication API

The Generic Policy Engine provides a built in audit capability capable of auditing every
request by the calling application for mediation between a requesting entity and the
targeted entity. Each entity, when accessed, logs all requests, the time of each request, and
the status of the request to their internal logs. Each entity has a default audit level. These
audit levels can be adjusted so more or less information is gathered. Therefore, to collect
less information the audit level is lowéred; to gather more, the audit level is raised. Entity
level auditing cannot be completely shut off since a base number of auditable events must
be tracked for security reasons, such as entity create, access, delete, etc. These typically
correspond to system level actions such as file open, file close, file delete, add user,
remove user, etc. Logs are lists with each entry stored as a sublist. Each entry contains the
following information: requesting entity, time of request, action requested, and return
status of request. This information is available, typically to the security officer and the

audit tools, via the Audit APL

There exist four logs associated with each entity: default log, owner log, last modified log,
and Jast accessed log. The default log is provided to allow calling application to insert
specific information on events the application feels are security relevant. The default log
can be used to create general logs by creating an entity whose entire purpose is restricted
to logging information on behalf of the application. The owner log tracks who the owner
of the entity is from the entity’s inception through to its final destruction. The last
modified log tracks all attempts at modification to a particular entity. And, the last

accessed log tracks all accesses made to a particular entity.

-34.-



WO 00/56027

10

MinimalAuditLevel
AuditLevell
AuditLevel2
AuditLevel3

AuditLeveld

MaximumAuditLevel

DefaultAuditLevel

PCT/CA00/00276

The only auditing done is the bare minimum, namely
recording entity creates and destroys.

Same as MinimalAudit but with the inclusion of open entity
and close entity requests.

Same as Level1 but with the inclusion of modifications
(write) to an entity.

Same as Level2 but with the inclusion of access (read) to an
entity.

Same as Level3 but with the inclusion of copies so as to
track if information is being moved from user to user via
copies rather than standard reads.

Same as Leveld.

Set to one of the above audit /eve/s.

Defined Audit levels In the GPE

For different applications, different levels of audit are required. Some require no more

than the rudimentary audit granularity of when an entity was created and when it is

modified. Others require a finer granularity capable of indicating whenever an entity has

been accessed, or attempted to be accessed, by another entity. As the granularity becomes

finer, the amount of information stored increases. This finer granularity provides a fuller

picture of what is occurring from a security perspective, but requires a much larger

storage allocation or more frequent examination of the logs. The GPE defines a specific

set of audit levels, as defined above. These are adjustable prior to the issuance of the

gpeStart () command. Once the GPE starts, these global audit values are immutable.

gpelog (GetLevel)

gpelLog (SetLevel <level>)

gpelog (setOptions ...)
gpel.og (SetGMT)
gpelLog (SetLocal)

gpelLog (Time)

Return the currently set level of audit.
The GPE provides predefined levels of granularity for audit.

<level> must correspond to one of the predefined audit
levels. Returns #T on success, #F on failure.

Sets the option list to the list provided (future).
Sets the time to GMT, default for Time is local time.
Sets the time to local time, this is the default.

Returns the current setting, either Local or GMT.

-35.



WO 00/56027 PCT/CA00/00276

10

15

20

25

Audit Log API (Global)

Manipulating the fixed elements is provided by a set of global audit functions, defined

above. These are the functions which must be called prior to gpeStart ().

As time progresses in any security system, logs grow increasingly larger until they occupy
all available space. There must be some mechanism to limit their size. In the GPE each
entity has a lambda expression which defines the purge rate. This function determines
when the log is to be purged, be it by age or by size. If by size, the log is truncated by
removing the older data and retaining the newer information. If logs are never to be
removed, then the purge date must be set as never. This ensures that the GPE never

removes the logs but will, if the logs become full, halt the GPE. -

Manipulating the logs requires an entirely different set of functions. Typically logs can be
accessed in one of two ways: read and append. Many modern logs do not require the
selective editing of the logs but rather only the wholesale purge, which is logged in the
new log created after the existing log is closed for purging. This ensures a trace exists of
all actions throughout the life of the system. The destructive functions are typically
restricted to the Security Officer user.

The following API defines the common log access functions. The two system calls

provided allow access to the four types of log, defaultLog, Owner, LastModified, and

LastAccessed; <log> refers to one of these.

gpelLog (uid put <log> data) Appends data to <log> for the entity defined by uid.

gpelog (uid get <log> expr) Returns all entries for the entity uid which match expr. expr
can be a wildcard, which returns the entire log.

Audit Log API (Entity Specific)

Privileges in the GPE retain grouping information. There are two distinct types of group:
hierarchical and non-hierarchical. Both are defined and accessible to security policies
within the GPE framework and both are accessed using the calls defined in the API

below.

236 -



WO 00/56027 PCT/CA00/00276

15

20

25

All relevant grouping information is stored within the entity. Groups, associations,
categories, and caveats are all non-hierarchical grouping mechanisms. They follow the
common mechanisms found in many security policies which provide for the ability to
group users or information in specific ways. For example, UNIX allows users to be
grouped so as to provide specific groups with certain functionality. The military groups
information via categories and caveats in order to limit who within a specific
organization, regardless of clearance, can actually see the information. Fo‘r example,
information labeled Secrer NATO would be visible only to those individuals holding a
Secret clearance with the NATO category. Categories and caveats are often called

compartments.

Hierarchical groupings are typically found in the military where the hierarchy is directly
related to the classification system used to store information. The most common
classifications are Urnclassified, Confidential, Secret, and Top Secret. As a hierarchy, each
1s more restrictive than the former. Thus, Secret information is extremely sensitive but
less so than Top Secret information. Typically, individuals with access to a higher level in
the hierarchy also have access to information at lower levels in the hierarchy.
Manipulation of the hierarchical mechanisms is performed in exactly the same manner as

for non-hierarchical information.

gpePriv (uid put <priv> uid2) Adds uid?2 to the <priv> list for uid. Returns #T on success,
#F otherwise.
gpePriv (uid remove <priv> uid2) Removes uid2 from uid’s <priv> list. Returns #T on success,
#F otherwise.
gpePriv (uid get <priv>) Returns the complete <priv> list for the given uid.
Privileges API

Privileges usually form the most secure mechanism of a secure system. As such, they
must be easy to access. Although the entity’s Privileges API provides sufficient
mechanisms to extract the required information, there must be additional functionality

provided in order to extract individual fields from within a record.

-37-



WO 00/56027

15

20

PCT/CA00/00276

The granularity provided by the above functions is rather coarse. However, Idyllic
provides a rich environment in which to extend the syntax by means of macros or user-
defined functions. These extensions will be highlighted later when the GPE is illustrated

by implementing a few well-understood security problems.

The access controls subsystem is actually divided into two distinct pieces: the data storing
the information and the API providing the access routines. Since the entity stores all
relevant information so as to be applicable to any security policy, the authors of a
particular security policy must create appropriate helper functions that retrieve and
manipulate the entity information. In the case of Bell-LaPadula, the helper functions
would focus on retrieving classification levels for the mandatory controls. In conjunction
with these, it is highly probable that the authors would provide functions to perform
appropriate evaluations for set inclusion and dominance to further enhance readability.
The GPE, however, provides sufficient syntactic enhancements to lessen the difficulty of

programming in the GPE’s base state.

gpeAC (uid put <right> allow uid2)  Modifies uid’s access controls to allow uid2 the specified
<right>. Returns #T on success, #F otherwise.

gpeAC (uid put <right> deny uid2) Modifies uid’s access controls to deny uid2 the specified
<right>. Returns #T on success, #F otherwise.

gpeAC (uid remove <right> Removes uid2 privilege to access uid via <right>. Returns

#T on success, #F otherwise.
allow uid2)

gpeAC (uid remove <right> Removes uid2 explicit denial of access to uid via <right>.

Returns #T on success, #F otherwise.
deny uid2)
gpeAC (uid get <right> allow) Returns the allow list for the given <right> for the given uid.
gpeAC (uid get <right> deny) Returns the deny list for the given <right> for the given uid

Access Controls API

Access controls have a number of elements that must be easy to access. Although the
entity’s Access Controls API provides sufficient mechanisms to extract the required
information, there must be additional functionality provided in order to extract individual

fields from within a record. The above table defines the API for accessing and

-38-



WO 00/56027 PCT/CA00/00276

manipulating the various aspects of the Access Controls data elements of the entity data

structure.

The GPE provides for a generic API to access the security policy. This interface consists
of a single call gpe () defined in below. Valid actions are summarized in the subsequent

table.

gpe (entity1 action entity2) Returns #T if entity1 can perform the indicated action
against entity2, #F otherwise.

GPE Security Policy API

Action

read On access, read the information protected by the entity. On
examine, view the list of entities allowed to read the
information.

write On access, write into the information protected by the entity.
On examine, view the list of entities allowed to write
information to the entity.

execute On access, execute the information protected by the entity.
On examine, view the list of entities allowed to execute the
entity’s information.

copy On access, copy the information protected by the entity. On
examine, view the list of entities allowed to copy the entity’s
information.

delete On access, delete information protected by the entity. On
examine, view the list of entities allowed to delete the
entity’s information.

grant To which entities can this entity be “given”, i.e., granted
ownership.

GPE API Commands

There must be two delineated access types: to the entity and to the data protected by the
entity. In the former, access controls manipulation and examination is performed without
accessing the data protected; examples from typical security includes changing the read
and write permissions to a file or device. The latter represents actual access requests to the
information protected by the entity. Although the Generic Policy Engine does not store

the actual information, it acts as arbitrator on behalf of the calling application.

-39-



WO 00/56027 PCT/CA00/00276

10

15

20

25

This delineation is vital since the Generic Policy Engine does not store the actual
information being protected but merely the encapsulator and mediates information

requests from the calling application.

The following table enumerates the valid calls to the GPE for invocation of the security
policy. As can be seen, the invocation is a simple entity x action x entity triple which can
map elegantly to any security policy. The simple invocation also allows for easy

integration into procedural languages, such as C/C++ or Pascal.

gpe (entity1 read entity2) According to the security policy, can entity1 read entity2?

gpe (entity1 write entity2) According to the security policy, can entity1 write entity2?

gpe (entity1 execute entity2) According to the security policy, can entity1 execute entity2?

gpe (entity1 delete entity2) According to the security policy, can entity1 delete entity2?

gpe (entity1 copy entity2) According to the security policy, can entity1 copy entity2?

gpe (entity1 grant entity2) According to the security policy, can entity1 grant ownership
to entity2?

Enumerated GPE Security Policy Function Calls

These calls work for any security policy that can be broken down into one entity
requesting access to another through the provided actions (read, write, execute, delete,
and copy). These requests for access to information can then be arbitrated by the Generic

Policy Engine.

The security policy in the GPE is not integral to the interface but rather interprets
incoming requests in a particular manner and passes these requests down to the meta
Generic Policy Engine’s Security Policy. The meta GPE Security Policy is the default
security policy applied when an entity does not have a policy of its own. The customized
portion, that dealing with access, is defined to handle the nuances of the particular
security policy. Thus a GPE written Bell-LaPadula Security Policy handles mandatory
access controls and discretionary access controls internally, accessing entity control
information via the access controls API. Other security policies can also be defined to
control access to the information by utilizing the generic nature of the GPE. The
subsequent chapter illustrates the generality of the Generic Policy Engine by

implementing a few security policies in common use today.

- 40 -



10

15

20

WO 00/56027 PCT/CA00/00276

There are two distinct forms of security policy: the administrative security policy,

discussed in this subsection, and the explicit security policy, discussed above.

The administrative security policy implicitly defines the behaviour of the explicit security
policy by outlining exactly who, what, and how the various fields of an entity can be
examined and updated. For example, Bell-LaPadula strictly restricts the motion of
information. An entity at a given hierarchical level cannot be downgraded. A mechanism
must exist to downgrade information for the system to be useful in the real world. This
special case must be handled by defining individuals, known as security officers, with the
special ability to circumvent the security policy. This power, obviously, must be
controlled. In order to ensure the use is minimized, or at best properly controlled,
gpeManage () contains special code which may circumvent the overall security policy.

Any code that must circumvent the explicit security policy must be placed within

gpeManage ().

gpeManage (entity1 field entity2) Returns #T if entity1 can update the indicated field of
entity2, #F otherwise.

GPE Security Policy Management Private AP]

The fields which are passed to gpeManage () are provided below.

Uniqueldentifier Owner Groups
EntityType LastModified Associations
References LastAccess Level
Authentication PurgeRate Categories
SecurityPolicy AccessControls Caveat

GPE Field List

Security operates under a simple assumption: every action must be approved. Once the
action has been approved, the specific action can occur. Sometimes the action requires

modifying one of the elements of an entity. In these cases, a subsequent call is made via

-4] -



15

20

25

30

WO 00/56027 PCT/CA00/00276

one of the previously defined APIs which perform the manipulation. All of the APIs,
except for the Security Policy API, require only the targeted entity’s uid. The GPE
remembers the last access request, the requesting uid, the target uid, and the status of the
request. For a subsequent call to one of the APIs the requester is therefore known. The
action can proceed if and only if the status is #7 and the API provided uid is identical to

the one remembered by the security policy for the target. If not, the request 1s refused.

The following pseudo-code shows how the GPE is used in-line to check on the validity of
one entity, in this case a user, attempting to access another entity, a file.
if gpe (user read file)
then
readLine (file)
else
warn ‘access denied’

endif
The example illustrates a general use of the GPE to control access to a file by a user for a
specific access method. If the security policy determines that the access should be
allowed, the readLine is invoked; otherwise, a warning is issued. This general form is all

that is required to invoke the security policy implemented in the GPE.

Although the security policy could be called for each invocation of the other API calls
used in a program, calls are instead handled implicitly by a call to gpeManager () by the
API function.

As with any program that must maintain what is, in effect, a database, a number of
housekeeping elements and routines are provided to keep the GPE operating smoothly
and efficiently. Of particular note is the References list which provides pointers back to
every entity which refers to a particular entity. This provides the GPE with the ability to
rapidly remove references to a particular entity when it is destroyed and no longer
required. Although the GPE could operate correctly without a References list, it would be
inefficient to examine an entire namespace to determine which entities refer to a particular

entity.

Object reuse comes in two parts: the reuse of the physical data storage used by a given

entity protected by Idyllic; and, the actual security parameters stored for a particular

.42 .



WO 00/56027 PCT/CA00/00276

15

20

25

30

destroyed entity. The former case must be handled by the underlying application, the
latter is part of the garbage collection regimen of Idyllic. It must be guaranteed that the
underlying application, prior to reallocation, clears any information stored within the
entity. Similarly, the garbage collection routines for Idyllic must clear any security

information from the entity prior to reallocation.

In some cases, such as UNIX, information at the memory level is cleared prior to
reallocation. Disk files, however, must be cleared using an additional set of software
either at file destruction time or just prior to reallocation. In the cases of other products, it
may be necessary to create custom destruction routines to ensure the information is
cleared prior to handoff to an underlying operating system or network. Encryption can be
used to perform the object reuse either by the calling application or by Idyllic. It is
logically infeasible to define interfaces to every possible kind of program to which the

GPE may provide security.

In the Generic Policy Engine, the request to delete an entity automatically forces the
system to delete the information associated with that particular entity. Prior to

reallocation, Idyllic ensures any information within the entity is purged.

No trusted path mechanisms are provided by the Generic Policy Engine. A trusted path
mechanism, if required for the evaluation of the application utilizing the GPE, must be
provided for by the application itself since it is a direct user-system interaction.
Additional logic in the security policy can be utilized to ensure the appropriateness of the

trusted path command request.

Security requires that the security mechanism always be invoked. For any application
wherein the flow of information from any point to any other point is well known and
defined the GPE will work perfectly. Those applications where there is little clear
definition as to where the information is supposed to flow and the paths taken, the GPE
will be difficult to incorporate. That said, the latter will also be the least likely
applicatibns to be secured and even less likely to be evaluated at anything other than the

lowest level of trust within any of the evaluation criteria currently available.

Thus, the GPE is based on the premise that it will be embedded within a properly modular

system with clearly defined and controlled flows of information against which policies

-43 -



WO 00/56027 PCT/CA00/00276

15

20

implemented in the GPE can operate. Idyllic and its associated Generic Policy Engines do
not rely on any specific operating system or application type. The only requirement is that
the underlying operating system or application provide information to the implemented

security policy in a format compatible with the GPE APL.

The Generic Policy Engine provides core functionality for implementing security policies.
It is not concerned with the details of each and every security policy but rather provides
the basic elements required for any security policy. To that end, the functionality provided
is simple, and elegant. Since Idyllic is a lambda-based language, extending the syntax is a
straightforward exercise; syntactic extensions are used to address the readability
limitations of the Generic Policy Engine’s base functionality. The following paragraphs
present a number of security policies which, in order to make the security policies more

readable, are provided with their own system calls.

Bell and LaPadula defined their security policy in terms of subjects (active entities) and
objects (passive entities). In the original definition, subjects were processes and objects
were files associated with an operating system. For our purposes we shall define the Bell-
LaPadula Security Policy in terms of their classical use where subjects define active users

and objects define passive files and peripherals, such as tape drives and printers.

The Bell-LaPadula Security Policy is described in terms of a simple triple containing the
user (or subject), the data (object), and the action. The two governing rules of the Bell-

LaPadula Security Policy below.

Simple Security Property: Also known as the no read up (NRU) rule, states
that a subject with security label Lg can only read
information of an object with security label L if
and only if Ls dominates (is greater than) L,

*-Property: Also known as the no write down (NWD) rule,
states that a subject with security label Lg can only
write information to an object with security label L,
if and only if L, dominates Lg.

Bell-LaPadula Security Properties

Each entity controlled by the Bell-LaPadula Security Policy retains state.

-44 .



WO 00/56027 PCT/CA00/00276

wh

20

25

30

Implementing Bell-LaPadula in the Generic Policy Engine is straightforward. Subjects
become active entities while objects become passive entities. In actuality, subjects would
be defined .strictly as processes in the calling application though with this implementation
of Bell-LaPadula it does not necessarily have to be so.

There are many aspects of the policy that presuppose specific attributes existing prior to
the security policy coming into force. Three of the most crucial are identification and
authentication (I&A), trusted path, and audit mechanisms. These are typically deemed
outside the realm of the security policy. The Generic Policy Engine, however, provides a
unified approach to security and hence an integrated solution to I&A and audit. These will
be utilized in the implementation to provide necessary identification and accountability
information necessary for a properly defined security solution. Trusted path is attainable
only by the calling application and cannot be completely addressed by the Generic Policy
Engine, it is not implemented below. Object reuse requires corresponding code in both the
calling application and the GPE. Within the GPE, object reuse is implicitly handled by

housekeeping functions such as garbage collection.

The Bell-LaPadula Security Policy is known as an hierarchical model. This means that the
information is segregated into distinct, hierarchical levels each separate and
distinguishable from all others and each defined via a dominance relationship with the
others. Typically the hierarchy consists of the military classifications Top Secret, Secret,
Confidential, and Unclassified. They are related in that each in turn dominates the next in

a simple mathematical relationship:
Top Secret > Secret > Confidential > Unclassified.

This allows for simple arithmetic rules to be utilized to determine whether an active entity
can view an entity by what Bell and LaPadula called dominance relationships. For
example, an entity at Top Secret would be invisible and unavailable to an active entity at
Secret; conversely, an entity at Confidential would be visible and available to the same

active entity.

But the Bell-LaPadula Security Policy has other aspects, namely categories and caveats
that are not hierarchical in nature. A given entity is not bound to a single category or
caveat as they are to a single level of a hierarchy. Categories and Caveats are viewed as

sets with any entity within the Bell-LaPadula Security Policy belonging to a predefined

- 45 -



WO 00/56027 PCT/CA00/00276

15

20

25

set. These categories and caveats are, typically, available to each level and to all entities
though not all categories or caveats may be utilized for all entities. Namely, each entity is
allowed a specific, predefined subset of the category and caveat sets. Each entity is then

restricted to any and all subsets of that predefined subset, including the null set.

Bell-LaPadula models an active set of processes, one where information is moved from
one secure or trusted state to another. In order for information to be moved between states
it must first be created. If it is to be created, there may come a time when it needs to be
destroyed. The Generic Policy Engine provides mechanisms to create and destroy entities
and their associated linkages and information. For this implementation of the Bell-

LaPadula Security Policy we require two functions as defined below.

createEntity (type entity Creates one of the two types of entity required by the Bell-
classification) LaPadula Security Policy (subject or object). The
classification level for the new entity is passed as a
parameter. On successful creation #T is returned, #F
otherwise.

destroyEntity (entity) Destroys the entity and removes all references within the
GPE namespace to it. Returns #T on successful
destruction, #F otherwise.

These two functions simply call the existing internal entity creation and destruction
routines. All housekeeping functions are handled implicitly by the Generic Policy Engine

leaving the security policy uncluttered by such matters.

The least privilege requires that the person performing a duty must be granted only those
system privileges necessary to properly perform a particular duty. This is contrary to
many systems, such as UNIX, that provide all or nothing privileges under the guise of a
super user or administrator. The typical solution is to create privileges that ensure a
particular task requires a particular privilege. Therefore, the tasks associated with an
operator — mounting tapes, starting and stopping the printer queues, routine non-security
related maintenance — would require operator privilege; the creation or modification of
user accounts, upgrade or removal of applications, etc. would require system privilege.
The privileges are typically associated with roles such as operator or system

administrator. Applying this solution to UNIX would result in at least three distinct user

- 46 -



WO 00/56027 PCT/CA00/00276

10

20

25

30

types: unprivileged user, operator, and system administrator. Security officer is typically
added and is responsible for the system logs, maintenance of the security policy, security

policy enforcement, and information flow, typically in the form of document downgrades.

Each entity must be assigned a privilege set at creation time. The privilege set is used to
determine which functionality the entity can utilize during its operation as an active
entity. Least privilege further stipulates that the entity activate only those privileges

required to perform its duties.

The Bell-LaPadula policy does not require the inclusion of privileges, relying instead on
the division of "subjects" and "objects" according to the defined hierarchy. By defining
system applications as “System Low”, i.e., below all other levels of the hierarchy,
sensitive files can be protected from inadvertent modification. By defining unique
categories specific to the various system administrative duties, specific tasks can be
delegated to specific individuals. In this way we can subdivide all users into one of two
types: privileged users and unprivileged users. We can further subdivide each of these
groupings as required by allocating specific categories to differentiate specific privileged
sets. For example, categories could be defined to represent the system administrator,

operator, and security officer.

Mandatory access controls (MAC) provides system administrators the ability to control
access to entities by active entities in a mandatory (system defined) way. These controls
are regarded by some as system administrator discretionary controls over the entire
system. MAC controls typically compartmentalize information. The most common use is
to impose hierarchies upon the information such as unclassified, confidential, secret, and
top secret. The rules governing MAC define groupings of information to which a active
entity must belong prior to access. The GPE provides for Levels which are used to
compartmentalize entities to better control information flow through the system. The
compartmented entities are usually further subdivided by means of categories and caveats.
The definition of valid sensitivity levels, categories, and caveats must be defined prior to
the first utilization of the GPE. This is accomplished by defining each valid level, the

explicit hierarchy they represent, and the valid category and caveat sets.

Using syntactic extensions that create and populates appropriate entities for us, we first

create each hierarchical level.

-47 -



WO 00/56027 PCT/CA00/00276

20

25

30

[
'

(createLevel 'SystemHigh)
(createLevel ’Topsécret)
(createLevel ‘Secret)
(createLevel ‘Confidential)
(createLevel ‘Unclassified)

(createlevel ‘SystemLow) ;* where the system files live

Once all the levels have been created we create the explicit hierarchy. Idyllic allows us to
create the hierarchy simply as a list. This list explicitly defines the hierarchy and allows
for simple arithmetic operations to be utilized to determine which security level
dominates another relative to position in the list; the higher the position, the higher the
level.
(define BLPHierarchy (LIST SystemHigh

TopSecret

Secret

Confidential

Unclassified

SystemLow) )

Categories and caveats are unordered sets and are similarly created. Instead of creating a

hierarchy, they represent valid sets.

(createCategories ‘NATO)

(createCategories ‘NUCLEAR)

(define BLPCategories (LIST NUCLEAR NATO))

(createCaveats ’CanadianEyesOnly)

(createCaveats ‘PrivyCouncilOnly)

(define BLPCaveats (LIST CanadianEyesOnly PrivyCouncilOnly))

Every entity begins with the féllowing set as the default when created:

((SystemLow SystemLow SystemLow) (] [1 // Categories
([1 (1)) // caveats

Current Min Max Current Fullset

Levels

This triple defines the entity at SystemLow, and has empty sets for both the category and

-48 -



WO 00/56027 PCT/CA00/00276

15

20

25

caveat lists. One of the first actions performed is to upgrade the entity to its appropriate
current, minimum, and maximum levels, which in our example would be anything from
Unclassified through TopSecret; the GPE would also insert the appropriate caveats and

categories for the current active set and the full set.

Therefore, an entity with a security level of:

((Confidential Confidential Secret) ([1 [1) ([1 [1))

1s said to dominate one with the following level:

((Unclassified Unclassified Confidential) ([} []) ([] 01))

since the current hierarchical level of the former is Confidential and that of the latter

Unclassified, regardless of how high or low any given entity may reside.

Two system calls are typically required to utilize MAC: setMAC () and getMAC (). The

MAC settings are usually defined as ranges:

SecurityLevel = [min, max]

Categories = [ct;, ct,, ..., cty]
Caveats ={cv,, cVy, ..., CVy]
setMAC (entity classification) Sets the security level, categories, and caveats for entity to

the classification information provided.

getMAC (entity) Returns the classification information for entity as a triple. If
entity doesn't exist, the request is refused.

Discretionary Access Controls (DAC) correspond to Axiom 3 of the Bell-LaPadula
model. DAC allows system users to restrict access of the entities that they own to specific
active entities, in a discretionary way. The TCSEC requires at C2 and above that “access
controls ... be capable of including or excluding access to the granularity of a single user”
Some operating systems, most notably UNIX, do not support such permissions via
self/group/public permission bits. True access controls follow those outlined in Multics

and implemented by the Generic Policy Engine.

- 49 -



WO 00/56027 PCT/CA00/00276

15

20

25

30

Permissions come in two primary flavours: role based and access control based. Both are
very similar with role based access control defining what specific roles can or cannot
access particular information and having all users within the system defined by specific
roles. Strict access controls define specific users or groups of users as having access to
particular information. Both are equally valid. For our purposes, we will use access
controls since they more closely correspond to a majority of the Bell-LaPadula
interpretations currently in use throughout computer security. Permissions are typically

defined by read, write, and execute controls.

For our purposes we will define access controls as lists of the following form:

(deny (. . .))
(allow (. . .))

for each of read, write, and execute controls. The full access control list (ACL) for any
given entity controlled via the Bell-LaPadula Security Policy would have the following

general format:

(read (deny (. . .))
(allow (. . .)))

(write (deny (. . .))
(allow (. . .)))

(execute (deny (. . .))

(allow (. . .)))
Therefore, an ACL for a given entity of the form:
(read (deny ( ))
(allow (engineering eugen)))
(write (deny (engineering))
(allow (eugen)))

(execute (deny ( ))

(allow ( )))

would permit engineering and eugen to read the contents of the entity while denying all
others. Similarly, although engineering is explicitly denied write access, eugen is
explicitly allowed access. If eugen was also a member of engineering the specific granting

of a privilege always supercedes the general denial, and vice versa. In Windows NT this is

-50-



WO 00/56027 PCT/CA00/00276

10

15

20

25

not the case. In Windows NT a specific grant of access can be superceded by a more
general denial of access; this contradicts the intent of security policies based on Bell-
LaPadula wherein the most specific grant of access always supercedes the more general

denial of access.

This general ACL structure allows us to create any variation of permissions desired for
any application, be it an operating system or otherwise. This differs from the mechanisms
typically employed by trusted UNIX implementations, such as Trusted Xenix and HP-UX
in that they employ a fixed size ACL (1 kilobyte per file) and utilize a triple (user, group,

access permissions).

In order to manipulate the access control lists a number of system calls are required. The
following table summarizes the three functions which provide the Bell-LaPadula Security
Policy with the functionality required to manage the ACLs. Although not explicitly
mentioned, the Bell-LaPadula Security Policy model requires mechanisms by which the

ACLs can be updated, removed, and fetched.

removeACL (entity access Access can be one of deny or allow. Entity2 is removed
privilege entity2) from the provided privilege in the ACL.
modifyACL (entity ACL) Modify an existing ACL by replacing the ACL with the one
provided.
getACL (entity) Retrieve the access control lists for entity. If entity doesn’t

exist, return #F otherwise the ACL.
As entities are dynamically created and destroyed, the issue of object reuse must be
addressed. Object reuse provides for the return of information to the system’s free pool
allowing the space occupied to be reused by other applications. Any system that uses
Idyllic to implement and maintain its security policy divides the issue of object reuse into
two distinct types: Idyllic object reuse and system object reuse. Figure 4 illustrates what
happens when there is a request for the deletion or creation of a particular data file within
the system. When a request is received by the system for the destruction of a particular
data file, the system must ensure that the requesting entity has appropriate access. If all
controls are correct, then the entity in question can be destroyed. This destruction is
twofold: First, the instance representing the entity within the security policy under Idyllic

must remove the entity and all references to it. Once that process has successfully

-51-



WO 00/56027

20

25

PCT/CA00/00276

completed, the system itself can remove the physical storage for the entity and, if need be,

sanitize it.

All security criteria require some form of object reuse that ensures that any reallocated
entity’s contents are independent from its previous instance. Some operating systems,
such as UNIX, clear all memory prior to reallocation; others, such as DOS, do not.
Therefore, depending on the operating system or application using Idyllic, it may be
necessary to create an object reuse function to properly sanitize entities returned to the

free memory pool.

In order for the Bell-LaPadula policy to operate a mechanism of identification and
authentication must be in place. The GPE provides identification and authentication
functionality fully capable of delivering sufficient uniqueness to describe all operational
active enﬁties within the model. For the purposes of this example a simple login ID and
password suffices to properly and uniquely identify each active entity to the security
policy. In order to facilitate the usage, the following routines are provided which provide

[& A mechanisms for the Bell-LaPadula Security Policy.

Login (user password Attempts to log in the user with the provided password,
level category caveat) level, category, and caveat. On success, #T is returned,
otherwise #F.
Logout (user) Logs the user out.

Many high security systems provide a trusted path mechanism whereby a secured line of
communication is set up between the user and the system. As the trusted path attention
mechanism is typically hardware oriented, it is outside the Generic Policy Engine.
However, the Generic Policy Engine does provide a system call that can be utilized to

invoke specific system commands securely by the user.

The Generic Policy Engine implicitly handles the most common forms of audit found in
many trusted systems. Auditable events such as entity creation, entity destruction,
modification of an entity’s security parameters, etc. are all logged by the Generic Policy
Engine. Bell-LaPadula does not explicitly require audit since in a perfectly functioning

Bell-LaPadula Security Policy, no breaches would be possible. It is only when the

-52.



WO 00/56027

20

25

30

PCT/CA00/00276

implementation moves from the realm of mathematics to one of computer logic that errors
can occur that cannot be easily verified. These errors could result in breaches of security
with a resulting improper disclosure or manipulation of protected information. Audit
facilities are therefore utilized in an attempt to catch breaches as they occur for various
reasons including possible prosecution. However, for our purposes and since the Bell-
LaPadula Security Policy does not explicitly require audit, it is sufficient to rely on what
the Generic Policy Engine provides as default — namely, all major entity modifications are

logged by the GPE for future perusal by appropriate security personnel.

Now that the entire infrastructure is in place, we need to define the actual Bell-LaPadula
Security Policy. The implementation of the Bell-LaPadula Security Policy is defined
below. Utilizing the extensions defined, we have avoided using raw GPE calls. This
allows for a shorter and more readable Bell-LaPadula Security Policy implementation
without diminishing the verifiability provided by the GPE security framework. When
writing code with the GPE framework, it is important to remember the primary goals of
the GPE, and, in fact, all security policy implementations: small, readable code that is
verifiable and efficient. The following definition epitomizes this goal.

(define (Bell-LaPadula subject access object)

(let* (

(Subject-Level (getLevel subject)) ii* MAC info
(Subject-Cats (getCategories subject))

(Subject-Cavs (getCaveats subject))
(Object-Level (getLevel object))
(Object-Cats (getCategories object))
(Object-Cavs (getCaveats object))
(Allowed (getRight object access ‘allow)) ;;* DAC info
(Denied (getRight object access ‘deny)))
; in
(and (or (= Subject-Level Object-Level) ;:* MAC

;:* no read up
(and (> Subject-Level Object-Level)

(eq? access 'Read)

(subset? Object-Cavs Subject-Cavs))
;:* no write down

(and (< Subject-Level Object-Level)

-53-



20

25

30

WO 00/56027

PCT/CA00/00276

(eq? access 'Write)
q

(subset? Object-Cavs Subject-Cavs)))

(and (member subject Allowed) ::* DAC

(not (member subject Denied)))

The simplicity of the above is a direct outgrowth of:
 the ease with which one can manipulate symbols in a symbolic language; and,

e the underlying functionality provided by the GPE which provides additional
security relevant facilities. These additional facilities provide for the needed

security functionality typically lacking in operating systems.

Standard access control lists are not typically defined within the two properties associated
with the Bell-LaPadula policy even though they are always included within operational
implementations of the security policy. For completeness, the above policy definition

includes access control lists as defined on many systems.

Now, in the implemented prototype the Bell-LaPadula Security Policy uses readable
names to differentiate various entities. If the GPE were connected to a working operating
system, however, unique identifiers understood by the operating system would be used
instead. The GPE requires only that the identifiers be unique, regardless of syntax. Most
operating systems use numeric representations to ensure uniqueness. This is sufficient for

the GPE.

With the Generic Policy Engine, the entire Bell-LaPadula Security Policy, typically
thousands of lines of system code, has been implemented in less than 10 lines of code.
This security policy would be embedded as the default security policy for all entities that
were to be governed by the Bell-LaPadula Security Policy.

Even though there exists within the GPE and the earlier syntactic sugar routines for
accessing the various security aspects of an entity, the security policy proper requires
specific routines which return numeric values for the security information to be able to

properly execute the security policy.

-54-



WO 00/56027 PCT/CA00/00276

The Bell-LaPadula Security Policy definition utilizes five functions, as defined below, to

assist in manipulating the security information properly and efficiently for the Bell-

LaPadula Security Policy.
getlLevel (entity) Returns the current security level for the entity as a numeric
quantity.
getRight (entity privilege) Returns the requested privilege as a list for the entity.
getCategories (entity) Returns the current category set for the entity.
getCaveat (entity) Returns the current caveat set for the entity.
subset? (set1 set2) Returns #T if the set1 is a true subset of set2, #F otherwise.

The Bell-LaPadula Security Policy controls the disclosure of information. To perform this

task in a dynamic environment requires that the access controls be constantly updated

with current and relevant information pertaining to valid subject-object (active entity-

passive entity) interactions. The following figures illustrate how the access controls can
10 be updated and how the Bell-LaPadula Security Policy is invoked to mediate subject-

object interaction.
gpeAC (ebacic put write Request that ebacic be aliowed to write to GPE.doc
allow GPE.doc)

gpeAC (jagoda put read Request that jagoda be allowed to read GPE.doc
allow GPE.doc)

gpeAC (ariana put write Request that ariana be denied write access to GPE.doc
deny GPE.doc)

gpeAC (goran put delete Request that goran be denied delete privilege to GPE.doc
deny GPE.doc)

Updating the Access Controls via the GPE

gpeAC (GPE.doc get read allow) Returns all entities that are allowed to read GPE.doc

-55.



WO 00/56027 PCT/CA00/00276

20

gpe (DOR get execute deny) Returns all entities that are allowed to execute DOR

Examining Access Controls via the GPE

gpe (ed read GPE.doc) returns whether ed can read the file GPE.doc
gpe (john write bp.doc) returns whether john can write to the file bp.doc
gpe (dan delete john) returns whether dan has the right to delete john

Access Control Mediation by the GPE

Message Trusted Guards (MTGs) are defined in terms of users and electronic mail
addresses. Controls are placed upon the destinations to which specific users can transmit
electronic mail messages. No restrictions are placed on incoming e-mail, even though a
Message Trusted Guard is capable of controlling both incoming and outgoing

connections.

Modern implementations of Message Trusted Guards are embedded within Firewalls,
however, earlier this decade stand-alone MTGs were quite common and typically were
thousands of lines of C code, much of which handled housekeeping functions for the
security controls. The GPE implementation, described below, is less than 50 lines and

offers the same functionality.

Implementing a MTG Security Policy in the GPE is straightforward with the active entity
being the actual e-mail message/sender pair and the passive entity being the recipient/e-
mail address pair. The action is always "send". Therefore the calling sequence to the GPE

coded security policy is: gpe (sender send recipient).

There are two types of entities that are maintained by the Message Trusted Guard: senders
and recipients. The most common implementation places restrictions on who can transmit
to a given recipient. If a given sender is not explicitly permitted, transmission is denied.
In order for the e-mail messages to be transmitted from the current site to a desired
destination both the sender and recipient must exist. To exist the entities must be created.

There may come a time when an entity needs to be destroyed. We'll utilize the Generic

-56-



WO 00/56027 PCT/CA00/00276

20

25

Policy Engine's mechanisms to create and destroy entities and their associated linkages

and information. For the Message Trusted Guard we will define two functions.

createEntity (type uid) Creates one of the two types of entity (site or user) with the
provided unique identifier. On successful creation #T is
returned, #F otherwise.

destroyEntity (uid) Destroys the entity and removes all references. Returns #T
on successful destruction, #F otherwise.

These two functions simply call the existing internal entity creation and destruction
routines. All housekeeping functions are handled implicitly by the Generic Policy Engine

leaving the security policy uncluttered by such matters.

All users of a network capable of transmitting e-mail would be registered with the
Message Trusted Guard when their accounts and e-mail are initially set up. Recipient
restrictions are created by the security officer on an address by address basis. If a given
address is not in the Message Trusted Guard's list of restricted addresses, then all traffic
can flow to that address. This eliminates the need to have a constantly updated table of

Internet sites in the Message Trusted Guard.

Whether or not a user can transmit to an address follows a simple rule:

if exists (recipientAddress)
then
return (user not in recipientAddress.deny) and
(user in recipientAddress.allow)

else

return True ;* address is not explicitly indicated - allow

endif

By default, the e-mail must go through. Therefore, it is up to the security officer to
modify the transmission rights for particular sites. Although this is opposite to the typical
"deny unless explicitly allowed" rule of computer security, it makes more sense for e-
mail. For particularly sensitive destinations, the security officer should preconfigure the

MTG to ensure some semblance of protection is provided.

-57-



WO 00/56027 PCT/CA00/00276

10

15

20

25

In order to define those sites which are to be restricted and for which users, the following

functions are defined:

removeSite (site) Remove site from the list of sites to which access is
restricted.

addSite (site) Add site to the list of sites to which access is restricted.
Initially the allow and deny lists are empty.

denySite (user site) Disallow user from transmitting to site.

allowSite (user site) Allow user to transmit to site.

removeUser (user site) Remove user from the allow or deny lists (the user can only

reside on a single list).

A Message Trusted Guard requires user identification and authentication. All users must
be registered with the Message Trusted Guard prior to being allowed to transmit. If they
are not in the Message Trusted Guard's list of users, all e-mail by the user is rejected and

the action audited for future actioning by the security officer.
No trusted path is required by the Message Trusted Guard.

The Generic Policy Engine implicitly handles audit for the Message Trusted Guard. All
mail messages are audited as the flow through the system by explicitly calling the GPE
audit routines. Information stored includes sender, recipient, message ID, and status of the

transmission.

Historically, the most difficult aspect of the Message Trusted Guard is all the supporting
security software. Utilizing the GPE reduces the surrounding code to a mere fraction of C
implementations. The implementation of the Message Trusted Guard Security Policy is

defined below.

;* define "send" as "write" to make the security policy
;* that much more readable.

(define send 'write)

.k
’

;* The security policy proper

.k
’

(define (Message-Trusted-Guard sender messagelD recipient)
(cond

((not (entityExists? sender))

-58-



WO 00/56027 PCT/CA00/00276

10

15

20

25

30

(define status #F)) ::* deny send
((not (entityExists? recipient))
(define status #T)) ;:* allow send
(else
(let* (
(Allowed (gpeAC recipient 'get send 'allow))
(Denied (gpeAC recipient 'get send ‘deny)))

;* allow only if not explicitly denied,
;* but explicitly allowed!
(define status (and (not (member sender Denied))
(member sender Allowed)))))
(gpeLog sender put (list sender messagelD recipient status))
;* return the status of the send

status

Message Trusted Guard Security Policy Model in the GPE

The Message Trusted Guard Policy Model controls the transmission of electronic mail
between a host site and select destinations. The following illustrates how a calling
application can quickly deduce whether or not a message can be transmitted to the

destination:

gpe (user@secret.org send dictator@banana.republic)

The function gpe () invokes the security policy Message-Trusted-Guard () and either a
true is received granting transmission rights to the electronic mail message or a false is

received, denying transmission rights.

The GPE offers a unique and flexible approach to creating security policies. The policies
are defined solely as security policies performing a singular task: that of mediating
information flow. The security policies implemented utilizing the GPE are short and easy
to read guaranteeing fewer errors and omissions. Two example security policies have
been provided illustrating the elegance of GPE implemented security policies. These

security policies illustrate two popular security policies currently in use.

-59.



15

20

25

30

35

WO 00/56027

PCT/CA00/00276

To illustrate the flexibility of the GPE, the following prdvides the code for the Biba

Integrity Security Policy utilizing the existing code of the Bell-LaPadula Security Policy.

As Biba is the complement of the Bell-LaPadula Security Policy it should be a simple

matter to modify Bell-LaPadula into Biba. As can be seen, the only changes required (as

noted) are trivial. Furthermore, the support routines for Bell-LaPadula remain unchanged.

(define (Biba subject access object)

(let* (

(Subject-Level (getLevel subject)) ;3* MAC info

(Subject-Cats (getCategories subject))

(Subject-Cavs (getCaveats subject))

(Object-Level (getLevel object))

(Object-Cats (getCategories object))

(Object-Cavs (getCaveats object))

(Allowed (getRight object access ‘allow)) ;:;* DAC info
(Denied (getRight object access ‘deny)))

(and (or (= Subject-Level Object-Level) 3% MAC

;:* no write up

(and (> Subject-Level Object-Level)
(eg? access 'Write) 2;* CHANGE
(subset? Object-Cavs Subject-Cavs))

;i* no read down

(and (< Subject-Level Object-Level)
(eq? access 'Read) ;7 * CHANGE

(subset? Object-Cavs Subject-Cavs)))

(and (member subject Allowed) ;:* DAC

(not (member subject Denied)))

Biba Security Policy Model in the GPE

By abstracting out the security to a GPE Server performance would be foremost on any

implementor’s mind. However, in terms of performance the GPE excels. The performance

- 60 -



WO 00/56027 PCT/CA00/00276

15

20

of the interpreted GPE embedded within an HTTP Server on an Intel Pentium 166
running FreeBSD performance was clocked at 100,000 lines of HTML processed per
minute through a simplified Bell-LaPadula Security Policy. There was no noticeable
impact observed in the throughput of the server, even though each line had to be

processed and approved by the security policy.

Currently the slowest aspect of the GPE is the entity space, which is managed akin to a
sirﬁple database. Although this could be viewed as a possible trouble spot, there is no
reason why a commercial-grade database couldn't be used to manage and maintain the
entities on behalf of the GPE. The performance issue would disappear as would other, less
obvious concerns regarding persistence and robustness of the current entity space

implementation.

The current implementation of Idyllic is small and interpreted. It offers adequate
performance in its interpreted state. However, being small allows it to be easily optimized
and the use of a simple language based on Scheme allows for faster, compiled

implementations.

As networks become more prevalent, distributed computing will become commonplace.
Networks introduce a plethora of concerns not evident with stand-alone systems.
Foremost among these is the need to ensure traffic is guaranteed to arrive at its destination
without any modifications. The Generic Security Services API (GSSAPI) presented
provides a baseline upon which to build. As users become more sophisticated and their
security requirements increase in complexity, the GPE will provide system administrators

with the ability to modify the security underpinnings to meet user demands.

-6l -



WO 00/56027 PCT/CA00/00276

20

25

We claim:

1. A method of controlling access to a network wherein security policies are defined
by using a verifiable language consisting of formal definitions of the syntax and

semantics, whereby security policy is abstracted from physical data.

2. A method as claimed in claim 1, which is controlled by a generic policy engine

(GPE) , which executes the policies defined by said language.

3. A method as claimed in claim 1, wherein said GPE mediates access to an object
entity by a subject entity, there being a series of defined actions that can be performed on

each entity.

4, A method as claimed in claim 2, wherein said GPE encapsulates security
information in entities describing attributes, policy and relationships with items to be

protected.

5. A method as claimed in claim 4, wherein said entities are mapped on a one-for-

one basis with items to be protected.
6. A method as claimed in claim 5, wherein each said entity has a unique identifier.

7. A method as claimed in claim 6, wherein said GPE provides Application
Programming Interfaces (APIs) to permit third party applications to manipulate security

attributes and thereby determine information flow.

8. A method as claimed in claim 7, wherein said APIs comprise an entity AP], a

Security Policy API, an identification and authentication API, an audit API, and Access

Rights API, and a Privileges API.

9. A method as claimed in claim 7, wherein each calling application obtains its own

instantiation of the GPE.

10. A security policy engine for controlling access to a network in accordance with
policies defined with the aid of a verifiable language consisting of formal definitions of

the syntax and semantics.

11. A security policy engine as claimed in claim 10, comprising a plurality of
Application Programming Interfaces to receive requests for access controls from third

party applications.

-62 -



WO 00/56027 PCT/CA00/00276

12. A security policy engine as claimed in claim 10, 'comprising entities containing

security information for external items.

13. A security policy engine as claimed in claim 10, further comprising language

support libraries for said verifiable language.

-63 -



WO 00/56027 PCT/CA00/00276

1/3

Application

4

Custom Policy API
RN
Custom Security Policy Logic
_/
Generic Policy Engine API \
D
A AR|Ea S
" L | e ifnt f
d o Py cg|ta
- g eh|ib a
i A
s s t|ta
t t
s siys
€ e
Idyllic Interpreter J
Fig. 1
Subject = Object

Fig. 3

SUBSTITUTE SHEET (RULE 26)



WO 00/56027

2/3

Entity

Unique Identifier  Access Rights
References Groups
Authentication Associations
Security Policy Level
Audit Logs Categories

Owner Caveats

Last Modified  Entity Rights

Last Access Read, Write

Defaulit Execute, Delete,

Purge Rate Copy

Entity AP!
Security Policy AP| —11

ldentification & Authentication APl =

Audit AP|

Access Rights API

Privileges API

Custom
Security
Policy

PCT/CA00/00276

Custom
1&A
echanism,

GPE Security Support

ldyllic Support Libraries

Idyllic

Fig. 2

SUBSTITUTE SHEET (RULE 26)



WO 00/56027 PCT/CA00/00276

3/3
incoming Create or Create or Réamove GPE V\(Ith
— Destroy Request Data _Flle ntry Security
(Security Specific) Policy
Physical'Create or Delete Creation or Destruction of
off of the Disk Media Security Attributes

Security

Tables on
Data File

Fig. 4

SUBSTITUTE SHEET (RULE 26)



INTERNATIONAL SEARCH REPORT im__stional Application No

PCT/CA 00/00276

A. CLASSIFICATION OF SBJECT MATTER
IPC 7 HO4L29/06

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 HOAL

Minimum documentation searched (classification system followed by classification symbole)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

applications”

874-879, XP002142413
ISBN: 0-7803-4984-9

<URL:www.iel.ihs>
‘retrieved on 2000-07-12!
abstract

GLOBAL TELECOMMUNICATIONS CONFERENCE,
1998. GLOBECOM 1998. THE BRIDGE TO GLOBAL
INTEGRATION. IEEE, ‘Online!

vol. 2, 8 - 12 November 1998, pages

Retrieved from the Internet:

page 874, right-hand column, line 39 -page -
875, left-hand column, line 11
page 875, right-hand column, Tine 1 -page
876, left-hand column, line 19
page 877, left-hand column, line 25 - line

A VARADHARAJAN, V.; CRALL, C; PATO, J.: 1-13
"Issues in the design of secure
authorization service for distributed

D] Further documents are listed in the continuation of box C.

D Patent family members are listed In annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

*E* sartier document but published on or after the intemational
fillng date

" * document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of ancther
citation or other special reason (as specified)

*0O* document referring to an oral disclosure, use, exhibition or
other means

*P* document published prior to the intemational filing date but
later than the priority date claimed

“T* later document published after the international filing date
or priority date and not in conflict with the application but
;:Ited :‘% understand the principle or theory underlying the
nvention

*X* document of particular relevance; the claimed Invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

*Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-—
gneﬂl:;s. ;‘wch combination being obvious to a person skilled
in the art.

"&* document member of the same patent family

Date of the actual completion of the intemational search Date of mailing of the international search report
12 July 2000 26/07/2000
Name and mailing addrees of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
;ilr -(- 2280 H)V Rijewijk 651 |
. (+31-70) 3402040, Tx. 31 eponl, :
Fax: (+31-70) 340~3016 Adkhis, F

Fomn PCTASA/210 (second sheet) (July 1892)

page 1 of 2




INTERNATIONAL SEARCH REPORT

Int.  tonal Application No

PCT/CA 00/00276

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

VISUAL LANGUAGES, 1997. PROCEEDINGS. 1997
IEEE SYMPOSIUM ON, ‘Online!

23 - 26 September 1997, pages 110-118,
XP002142414

ISBN: 0-8186-8144-6

Retrieved from the Internet:
<URL:www.iel.ihs>

‘retrieved on 2000-07-12!

abstract
page 110, right-hand column, Tine 28 -page
111, left-hand column, Tine 24
page 115, left-hand column, line 27
-right-hand column, line 51

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
44
page 878, right-hand column, line 6 -page
879, left-hand column, line 32
A CHANG, S.K.; POLESE, G.; THOMAS, R.; DAS, 1-13
S.: "A Visual language for authorization
modeling"

Form PCTASA/210 (continuation of second sheet) (July 1962)

page 2 of 2




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

