发明名称 长余辉磷光材料及其制备

摘要

本发明是一种经激活的铝酸锶长余辉磷光材料及其制备。该材料的化学组成式为 m(Sr1-x Euₓ) O₃·nAl₂O₃·y B₂O₃, 其制备工艺如下：用铝、锶、铕及硼的氧化物或其氧化物的盐类按一定配比称量、研细，在高温炉中加热 1-6 小时，冷却后在 N₂+H₂ 气氛中灼烧 1-4 小时即得。该材料稳定性好，余辉时间长，紫外光或自然光照射几分钟，余辉时间可达十几至几十小时。可广泛用于有关器件或装饰物的表面，用于在黑暗环境中的显示和装饰。
1. 一种铕激活的铝酸锶长余辉磷光材料，含有锶、铕、铝等元素成份，其特征在于它还含有氧化镧成分，其化学组成式为：

$$m(Sr_{1-x}Eu_x)O \cdot nAl_2O_3 \cdot yB_2O_3$$ (1)

各系数范围为：$1 ≤ n ≤ 5$，$1 ≤ x ≤ 8$，$0.001 ≤ y ≤ 0.1$，$0.005 ≤ y ≤ 0.35$

2. 一种铕激活的铝酸锶长余辉磷光材料的制备方法，原料采用铝、镧、铕和镧的氧化物，或者经加热能产生上述氧化物盐类，按其化学组成式中各元素组成的配比关系称量，研磨混合，其特征在于按下列步骤中的一种制取：

(1) 将混合物在$1200 - 1600℃$的高温炉中灼烧$1 - 6$小时，冷却后取出，粉碎，再在$1000 - 1400℃$的N_2+H_2气氛中还原灼烧$1 - 4$小时；

(2) 将混合物直接在N_2+H_2气氛中灼烧至$1200 - 1600℃$，维持$1 - 5$小时。

3. 一种铕激活的铝酸锶长余辉磷光材料的应用，其特征在于将其涂覆于器件或装饰物的表面，经过紫外光或自然光照射，作为器件或装饰物在黑暗环境中的发光显示体。
长余辉磷光材料及其制备

本发明是一种铕激活的铝酸锶长余辉磷光材料。

通常的磷光体作为光致发光物质用于荧光灯。铕激活的铝酸锶磷光体被广泛用于高显色荧光灯。关于铕（Eu）激活的铝酸锶磷光体SrAl₂O₃:Eu，早在U.S. patent 3294699（1966）中已有记载，是一种绿色磷光体，发射光谱主峰为520nm。J.T.C. Van kememade and G.P.F. Hoeks, Eentented abstract No.607 E.C.S. Spring Meeting (1983)中报告了Sr₃Al₅O₁₄:Eu磷光体，呈兰绿色，发射光谱主峰为490nm。日本专利昭61-69885，提出了具有氧化铕组份的磷光体，化学结构式为₄(SrEu)₀·₅XAl₀·₅yP₀·₉，其中0≤x≤8，0≤y≤0.4。上述磷光体的改进是为了改善发光效率而进行的。但还没有将该磷光体直接涂覆于器件或装饰物的表面，作为黑暗环境中的夜光显示材料。

硫化物类长余辉磷光材料余辉时间都较短，化学性质不稳定，易分解，实用价值较少。例如ZnS:Cu或(ZnCo)S:Cu长余辉磷光体余辉时间仅十几分钟，添加Co后余辉时间可延长到几小时，但易发生红外猝灭。该类长余辉材料实际应用时需包膜处理，合成时使用H₂S气体，会造成环境污染。CaSrBi长余辉磷光体余辉时间较长，但化学性质不稳定。

本发明的目的是提供一种稳定性能好、余辉时间长的磷光材料及其制备工艺与实际应用。

本发明提出的长余辉磷光材料，含有锶、铕、铝等元素组份，此外，还含有氧化铕组份，其化学组成为:

\[m(Sr₁₊ₓEuₓO₃ · nAl₂O₃ · yB₂O₅) \]

各组份范围为: 1≤m≤5, 1≤n≤8, 0.001≤x≤0.1, 0.005≤y≤0.35

上述长余辉磷光材料的制备工艺如下：原材料采用铝、锶、铕和硼的氧化物，或者在加热后能相应产生上述氧化物的盐类。例如，氯化铝、碳酸锶、硝酸铽等。上述化合物按磷光材料化学组成中各元素组份的配比范围称量，研磨成细末，均匀混合。然后按如下步骤制取：将上述混合物在1200－1600℃高温炉中灼烧1－6小时，冷却后取出，粉碎，再在1000－1400℃的N₂+H₂气氛中还原灼烧1－4小时即可得。也可以将上述混合物直接在N₂+H₂气氛中灼烧至1200－1600℃，维持1－5小时制得。
按上述工艺制备的长余辉磷光材料，呈黄绿色或兰绿色，在紫外光激下，发射光谱主峰在500－520nm。这种磷光材料性能稳定，经紫外光或自然光照射后，有很长的余辉时间。一般在自然光中照射几分钟后，其余光辉时间为十几小时至几十小时。

利用上述磷光材料的稳定性和长余辉特性，可将其涂覆于一些器件或装饰物的表面，例如仪表、钟表、塑料、陶瓷器具、工艺美术品等表面，经紫外光或自然光照射后，用于在黑暗环境中的显示和装饰。

实施例1，取Al(OH)$_3$ 11.14克，Eu$_2$O$_3$ 0.21克，SrCO$_3$ 6.05克，H$_4$BO$_4$ 0.185克，将这些化合物研磨成细末，均匀混合，在1500℃的高温炉中灼烧3小时，冷却后取出粉碎，再在N$_2$+H$_2$气氛中加热至1200℃，维持1－4小时，即得长余辉磷光材料，其化学组成的系数分别为：m=4，n=3，x=0.03，y=0.15，发射光谱主峰为500nm。该磷光材料用于涂覆在仪表或钟表面，或其他装饰物的表面，经自然光照射几分钟后，其余辉时间为20小时左右。

实施例2，取Al(OH)$_3$ 79.6克，Eu$_2$O$_3$ 2.6克，SrCO$_3$ 71.6克和H$_4$BO$_4$ 0.618克，将这些化合物研细均匀混合，在1500℃的高温炉中灼烧3小时，冷却后取出粉碎，再在N$_2$+H$_2$气氛中加热至1200℃，维持3小时，即得长余辉磷光材料，发射主峰波长520nm，其化学组成的系数为：m=1，n=1，x=0.03，y=0.01。余辉时间大于10小时。