Title: BREAKAGE-RESISTANT POLYFUNCTIONAL CLEANING TABLETS WITH A LONG SHELF LIFE, PROCESS FOR PRODUCING THEM AND THEIR USE

Bezeichnung: BRUCH- UND LAGERSTABILE, POLYFUNKTIONELLE REINIGUNGSTABLETTEN, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG

Abstract
Breakage-resistant polyfunctional washing and cleaning agent tablets with a long shelf life, of any composition, in which non-aqueous or low hydration powdered or crystalline components or subsequently powdered or possibly granular mixtures compatible with each other are coated with a hydrophobic compound and containing further possibly coated damp-sensitive components, eventually with their own coatings, process for producing them and their use.

Zusammenfassung
Bruch- und lagerstabile, polyfunktionelle Wasch- und Reinigungsmitteltabletten beliebiger Zusammensetzung, denen wasserfreie oder mit niedrigem Hydratationsgrad eingesetzte pulverförmige oder kristalline Bestandteile einzeln oder in miteinander verträglichen pulverförmigen oder gegebenenfalls granulierten Gemischen mit einer hydrophobierenden Verbindung beschichtet sind und die darüber hinaus noch weitere feuchteigenschaftspfändliche Bestandteile, gegebenenfalls mit eigener Beschichtung, enthalten können, Verfahren zu ihrer Herstellung und ihre Verwendung.
<table>
<thead>
<tr>
<th>Code</th>
<th>Land(ung)</th>
<th>Code</th>
<th>Land(ung)</th>
<th>Code</th>
<th>Land(ung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritannien</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GE</td>
<td>Georgien</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Niederlanden</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Griechenland</td>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>HU</td>
<td>Ungarn</td>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Irland</td>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IT</td>
<td>Italien</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>KE</td>
<td>Kenia</td>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
<td>KG</td>
<td>Kirgisistan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KR</td>
<td>Republik Korea</td>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KZ</td>
<td>Kasachstan</td>
<td>SK</td>
<td>Slowakei</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>CS</td>
<td>Tschechoslowakei</td>
<td>LU</td>
<td>Luxemburg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LV</td>
<td>Lettland</td>
<td>TJ</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>MC</td>
<td>Monaco</td>
<td>TT</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>MD</td>
<td>Republik Moldau</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
<td>MG</td>
<td>Madagaskar</td>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
<td>ML</td>
<td>Mali</td>
<td>UZ</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
<td>MN</td>
<td>Mongolei</td>
<td>VN</td>
<td>Vietnam</td>
</tr>
</tbody>
</table>
"Bruch- und lagerstabile, polyfunktionelle Reinigungstabletten, Verfahren zu ihrer Herstellung und ihre Verwendung"

Die für die maschinelle Reinigung von Geschirr eingesetzten Mittel können flüssig, pastös, pulverförmig und tablettenförmig sein. Die Anwendung in Tablettenform erfreut sich wegen leichter Handhabbarkeit zunehmender Be- liebtheit. Es sind schon eine Reihe von Herstellungsverfahren beschrieben worden, die zu Tabletten mit zeitlich steuerbarem Auflöseverhalten führen. Diese Tabletten werden häufig im Maschinenraum selbst und nicht mehr in den für die Reinigungsmitteldosierung vorgesehenen Kästchen im Türraum positioniert, was gestattet, daß ein gewisser Teil der Tabletten bereits im Vorspülgang angelöst wird und so die Wirkung des üblicherweise zusätz- freien Leitungswassers bereits in dieser Phase chemisch unterstützt. So sind beispielsweise aus der DE 35 41 145 einheitlich zusammengesetzte al- kalische Reinigungsmitteltablletten für das maschinelle Geschirrspülen be- kannt, die ein breites Löslichkeitsprofil aufweisen und ein Gemisch aus Natriummetasilikationonahydrat und wasserfreiem Metasilikat sowie wasser- freiem Pentanatriumtriphaspat und gegebenenfalls weiteren Bestandteilen enthalten. Aus der DE 41 21 307 sind stabile, bifunktionelle, phosphat- und metasilikatfreie niederalkalische Reinigungsmitteltabletten für das maschinelle Geschirrspülen bekannt, deren Gerüstsubstanzen bestandteile teil- weise in wasserfreier Form eingesetzt und bei der Herstellung mit Wasser besprüht wurden, was das gewünschte Löslichkeitsprofil und eine gute Ver- preßbarkeit bewirkte.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, nach einem Verfahren zu suchen, das nicht nur zu bruch- und lagerstabilen, polyfunktionalen Tabletten führt, sondern insbesondere die Einarbeitung wasser- bzw. feuchtigkeitsempfindlicher Bestandteile von bekannten Reinigungsmitteltabletten gestattet und ihre Beeinträchtigung bei Herstellung und Lagerung vermeidet.

Es wurde gefunden, daß man zu bruch- und lagerstabilen, polyfunktionalen Reinigungsmitteltabletten kommt, wenn man bei deren Herstellung auf den Zusatz freien Wassers und die Verwendung leicht hydratwasserabspaltender Verbindungen verzichtet und die pulverförmigen oder kristallinen Bestandteile des Reinigungsmittelgemisches einzeln und/oder als miteinander verträgliche pulverförmige oder gegebenenfalls granulierte Teilmischungen hydrophobiert, gegebenenfalls erneut miteinander mischt, weitere hydrophobierte oder auch nicht hydrophobierte Bestandteile zusetzt und die daraus resultierende Mischung zu Tabletten verpreßt.

Die vorliegende Erfindung betrifft somit bruch- und lagerstabile, polyfunktionelle Wasch- und Reinigungsmitteltabletten beliebiger Zusammensetzung, wobei die wasserfreien oder mit niedrigem Hydratationsgrad einge-
setzten pulverförmigen oder kristallinen Bestandteile einzeln oder in miteinander verträglichen pulverförmigen oder gegebenenfalls granulierten Gemischen mit einer hydrophobierenden Verbindung beschichtet sind und die darüber hinaus noch weitere feuchtigkeitsempfindliche Bestandteile, gegebenenfalls mit eigener hydrophobierender Beschichtung, enthalten können.

Die vorliegende Erfindung betrifft vorzugsweise bruch- und laberstabile, phosphat- und vorzugsweise alkalisilikatfreie, niederalkalische polyfunktionelle Reinigungsmitteltabletten, insbesondere für das maschinelle Spülen von Geschirr auf Basis von Gerüstsubstanzen, nichtionischen Tensiden, Enzymen, Bleichmitteln und Aktivatoren für diese, die dadurch gekennzeichnet sind, daß die pulverförmigen oder kristallinen Bestandteile einzeln oder als miteinander verträgliche pulverförmige oder gegebenenfalls granulierte Gemische mit gleichen oder verschiedenen hydrophobierenden Verbindungen beschichtet sind, wobei die hydrophobierenden Verbindungen als solche noch flüssige oder auch pulverförmige Tablettenbestandteile enthalten können.

Die hydrophobierenden Verbindungen werden in flüssiger oder verflüssigter Form über eine in bekannter Weise regelbare Düse auf die pulverförmigen oder kristallinen Bestandteile oder deren Mischungen aufgebracht, wobei
sich auf den festen Stoffen ein dünner schützender Überzug bildet, der
umso einheitlicher und stabiler ist, je feinverteilter die Flüssigkeits-
teilchen nach dem Austritt aus der Düse vorliegen. Der hydrophobierende
Stoff liegt beim Hydrophobierungsprozeß in flüssiger Form vor. Er kann
unter Normalbedingungen eine Flüssigkeit, z.B. ein Öl sein, oder es kann
auch ein Feststoff, z.B. Wachs sein, welches in aufgeschmolzenem Zustand
in der Hydrophobierstufe verarbeitet wird. Der Schmelzbereich des hydro-
phobierenden Stoffes muß in jedem Falle unterhalb der gewünschten Anwen-
dungstemperatur liegen, wobei sich durch die Wahl von hydrophobierenden
Mitteln mit unterschiedlichen Siede- bzw. Schmelzbereichen, die auch durch
die diesen gegebenenfalls beigefügten flüssigen oder pulverförmigen Ta-
bletenbestandteilen variiert werden können, beliebige Löslichkeitsvarianten
der einzelnen Bestandteile oder Bestandteilmischungen vorgeben las-
sen, so daß sich ihre gewünschte Auflösung bei der Anwendung in Abhängig-
keit von der Temperatur und der Zeit eines maschinellen Reinigungsprozes-
ses steuern läßt. Da diese hydrophobierenden Mittel teilweise auch als Tabletenpreßhilfsmittel bekannt sind, läßt sich auf diese Weise als Nebeneffekt das Verpressen der Tabletten besonders betriebssicher durchfüh-
ren. Durch die Umhüllung mit hydrophobierenden Stoffen lassen sich nicht
nur in einfacher Weise miteinander unverträgliche Substanzen hervorragend
mischen, sondern auch zu lagerstabilen Tabletten verpressen.

Als Gerüstsubstanzen kommen im wesentlichen wasserfreies Trinatriumcitrat
bzw. vorzugsweise Trinatriumcitratdihydrat in Betracht. Trinatriumcitrat-
dihydrat kann als fein- oder grobkristallines Pulver eingesetzt werden.
Der Gehalt an Trinatriumcitratdihydrat beträgt etwa 20 bis 80, vorzugs-
weise etwa 30 bis 60 Gew.-%; er kann ganz oder teilweise, d.h. bis zu etwa
80, vorzugsweise etwa 50 Gew.-% seines Gewichtes durch in der Natur vor-
kommende Hydroxycarbonsäuren wie z.B. Mono-, Dihydroxybernstiinsäure, α-
Hydroxypropionsäure und Gluconsäure ersetzt werden.

Als weitere Gerüst- und/oder Füllsubstanzen können die erfindungsgemäßen
Tabletten auch noch Alkalicarbonate, Alkalihydrogencarbonate, Alkalisul-
fate oder Polycarboxylate enthalten. Letztere, etwa Sokalan(R) CP 5 (BASF) oder auch vollständig biologisch abbaubare Polymere, wie oxydierte Stärken oder auch Dextrin können gleichzeitig als zusätzliche Tablettierhilfsmittel dienen.

Wenn die Reiniger kennzeichnungsfrei bleiben sollen, muß man sich dabei an die EG-Zubereitungsrichtlinien für Wasch- und Reinigungsmittel halten. Die einsetzbare Menge an vorzugsweise in kompakter Form eingesetzten Alkalikarbonaten liegt dann bei etwa 0 bis etwa 15, vorzugsweise bei etwa 2 bis 12 Gew.-%. Setzt man natürlich vorkommendes Na\textsubscript{2}CO\textsubscript{3}xNaHCO\textsubscript{3} (Trona/Firma Solvay) ein, so muß man die Einsatzmenge gegebenenfalls verdoppeln. Zur Korrosionsinhibierung des Spülguts, insbesondere Aluminium, Aufglasurdekors und Gläsern, kann zweckmäßigerweise Natriumdisilikat (Na\textsubscript{2}O : SiO\textsubscript{2} = 1 : 2) zugesetzt werden. Die Mengen brauchen nur gering zu sein und liegen bei 0 bis etwa 5, vorzugsweise bei 0 bis etwa 2 Gew.-%.

Das Alkalihydrogencarbonat ist vorzugsweise Natriumbicarbonat. Das Natriumbicarbonat soll vorzugsweise in grober kompakter Form mit einer Korngröße in der Hauptfraktion zwischen etwa 0,4 bis 1,0 mm eingesetzt werden. Sein Anteil am Mittel bildet die Differenz zwischen der Summe der anderen Bestandteile und 100 Gew.-% Gesamtsubstanz.

Ein Zusatz von nativen oder vorzugsweise synthetischen Polymeren ist nicht erforderlich, er kann jedoch bei Reinigungsmitteln, die für den Einsatz in Hartwasserregionen bestimmt sind, bis maximal etwa 20, vorzugsweise 0 bis 10 Gew.-% erfolgen. Zu den nativen Polymeren gehören beispielsweise oxydierte Stärke (z.B. DE 42 28 786) und Polyaminsäuren wie Polyglutaminsäure oder Polyasparaginsäure etwa der Firmen Cygnus bzw. SRCHEM. Die synthetischen Poly(meth)acrylate können als Pulver bzw. als 40 %ige wäßrige Lösung, vorzugsweise aber in granulierter Form eingesetzt werden. Zu den brauchbaren Polyacrylaten gehören Alcosperse(R) der Firma Alco: Alcosperse(R) 102, 104, 106, 404, 406); Acrysole(R) der Firma Norsohaas: Acrysole(R) A 1N, LW 45 N, LW 10 N, LW 20 N, SP 02 N, Norasole(R) WL1, WL2, WL3, WL4, Degapas(R) der Firma Degussa; Good-Rite(R) K-XP 18 der Firma
Goodrich. Auch Copolymeren aus Polyacrylsäure und Maleinsäure (Poly(meth)-acrylate) können eingesetzt werden, beispielsweise Sokalane(R) der Firma BASF: Sokalan(R) CP 5, CP 7; Acrysole(R) der Firma Norsohaas: Acrysol(R) QR 1014, Alcosperse(R) der Firma Alco: Alcosperse(R) 175; granulares alkalisch reinigungsadditiv nach DE 39 37 469.

Zur besseren Ablösung Eiweiß-, Stärke- bzw. etwa Talgfett-haltiger Speisereste werden Enzyme wie Proteasen, Amylase, Lipase und Celullulasen eingesetzt, beispielsweise Proteasen wie BLAP(R) 140 der Firma Henkel; Optimase(R) -M-440, Optimase(R) -M-330, Opticlean(R) -M-375, Opticlean(R)
-M-250 der Firma Solvay Enzymes; Maxacal(R) CX 450.000, Maxapem(R) der Firma Ibis, Savinase(R) 4,0 T 6,0 T 8,0 T der Firma Novo oder Experase(R) T der Firma Ibis und Amylase wie Termamy(R) 60 T, 90 T der Firma Novo; Amylace-LT(R) der Firma Solvay Enzymes oder Maxamy(R) P 5000, CXT 5000 oder CXT 2900 der Firma Ibis, Lipasen wie Lipolase(R) 30 T der Firma Novo, Cellulase wie Celluzym(R) 0,7 T der Firma Novo Nordisk. Die Mengen der meist als Gemisch eingesetzten Enzyme im gesamten Mittel liegen jeweils bei etwa 0,5 bis 5, vorzugsweise bei etwa 1 bis 4 Gew.-%.

Schließlich kann man den Mitteln noch sonstige hierfür übliche Bestandteile zusetzen wie beispielsweise Farb- und Duftstoffe sowie Korrosionsinhibitoren für Edelmetalle, insbesondere Silber.

Die Zusammensetzung der erfindungsgemäßen Mittel kann somit etwa in folgendem Rahmen liegen:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Gehalt (Gew.-%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na-citratdihydrat</td>
<td>20 - 80 Gew.-%, vorzugsweise 30 - 60 Gew.-%</td>
</tr>
<tr>
<td>Na-carbonat</td>
<td>0 - 50 Gew.-%, vorzugsweise 1 - 35 Gew.-%</td>
</tr>
<tr>
<td>Na-disilikat</td>
<td>0 - 50 Gew.-%, vorzugsweise 1 - 35 Gew.-%</td>
</tr>
<tr>
<td>Polycarboxylat</td>
<td>0 - 20 Gew.-%, vorzugsweise 0 - 10 Gew.-%</td>
</tr>
<tr>
<td>Niotenside</td>
<td>0,1 - 5 Gew.-%, vorzugsweise 0,2 - 4 Gew.-%</td>
</tr>
<tr>
<td>Enzyme, insgesamt</td>
<td>0,5 - 10 Gew.-%, vorzugsweise 0,5 - 7 Gew.-%</td>
</tr>
<tr>
<td>Silberschutzmittel</td>
<td>0,05 - 5 Gew.-%, vorzugsweise 0,05 - 3 Gew.-%</td>
</tr>
<tr>
<td>Paraffin</td>
<td>0,5 - 10 Gew.-%, vorzugsweise 1 - 5 Gew.-%</td>
</tr>
</tbody>
</table>
Aktivsauerstoffverbindungen 1 - 20 Gew.-%, vorzugsweise 2 - 12 Gew.-%

Bleichaktivatoren 0 - 8 Gew.-%, vorzugsweise 0 - 4 Gew.-%

Na-hydrogencarbonat Rest

pH-Wert der 1%-igen wässrigen Lösung 8,5 - 11,5 Gew.-%, vorzugsweise 9,0 - 11,0 Gew.-%

Die Erfindung betrifft darüber hinaus auch ein Verfahren zur Herstellung bruch- und lagerstabiler, polyfunktioneller Wasch- und Reinigungsmitteltabletten, daß dadurch gekennzeichnet ist, daß man die von freiem Wasser und hochhydraulisch Salzen freien pulverförmigen und/oder kristallinen Bestandteile allein oder zusammen mit anderen gütlichen pulverförmigen oder gegebenenfalls granulierten anorganischen Bestandteilen durch Aufsprühen einer flüssigen oder verflüssigten hydrophobierenden Verbindung, die ihrerseits flüssige oder pulverförmige Komponenten, wie beispielsweise nichtionische Tenside, Duftstoffe oder Korrosionsinhibitoren beigemischt enthalten kann, mit diesen überzieht, und das Gemisch anschließend, mit gegebenenfalls auch hydrophobierten weiteren Feststoffbestandteilen vermischt und gegebenenfalls unter Zugabe weiterer bekannter Tablettermittel wie beispielsweise Celluloseether, mikrokristalline Cellulose, Stärke und dergleichen, auf üblichen Tablettenpressen zu Tabletten verpreßt.

wird. Das erhaltene Gemisch hat ein Litergewicht von etwa 600 - 1000 g/l und wird auf üblichen Tablettenpressen mit einer Preßkraft von 60 kN zu etwa 25 g schweren Tabletten mit einem Durchmesser von 38 mm und einer Dichte von 1,6 g/cm³ verpreßt.

Als übliche Tablettenpressen können beispielsweise Exzenterpressen, Hydraulikpressen oder auch Rundläuferpressen eingesetzt werden. Hierbei werden Tabletten mit einer Bruchfestigkeit > 150 N, vorzugsweise > 300 N erhalten. Unter Bruchfestigkeit ist die Kraft zu verstehen, die bei Keilbelastung benötigt wird, um eine Tablette zu zerstören. Sie bezieht sich auf die angegebenen Tablettenausmaße von 25 g Gewicht und einem Durchmesser von 38 mm.

Durch die Wahl des hydrophobierenden Stoffes, wozu vorzugsweise Paraffine mit unterschiedlichen Schmelzpunkten gehören können, ist es möglich, zu bewirken, daß eine bestimmte Menge der Tablette bereits im Vorspülgang bei Leitungswassertemperaturen gelöst wird und zur Einwirkung auf das verschmutzte Geschirr kommt, während der Rest erst bei den im Reinigungsgang vorherrschenden Temperaturen aufgelöst wird und seine Wirkung dort entfaltet. Darüber hinaus können durch weitere Variationen der Schmelzbereiche auch die oxidationsempfindlichen Enzyme von sauerstoffabspaltenden Verbindungen und deren Aktivatoren getrennt gelöst werden und dadurch nach einander zur Wirkung kommen. Auch ein Einsatz etwa von feuchtigkeitsempfindlichem Mangansulfat als Silberschutzmittel in die Tablette ist möglich. Durch Einarbeiten von unbehandeltem Mangansulfat in das hydrophobierte Vorgemisch, zweckmäßigerverweise als Suspension in Paraffin, werden stabile oder nicht zur Verfärbung neigende Tabletten erhalten.

Schließlich betrifft die Erfindung auch noch die Verwendung der erfindungsgemäß hergestellten Tabletten durch ihr Einbringen in einen strömungstechnisch günstigen Teil der Wasch- bzw. Geschirrspülmaschine, vorzugsweise in den Besteckkorb oder in einem separat eingehängten gesonder-
ten Gebinde, das zusammen mit der Tablette (den Tabletten) auch als Vertriebseinheit dienen kann, und die Tabletten bereits dem Vorspülgang ausgesetzt.
Beispiele

Es wurde mit folgender Basiszusammensetzung gearbeitet:

- Sokalan® verschnitt (50 % CP5) 20,0 Gew.-%
- Natriumcarbonat, wasserfrei 5,7 Gew.-%
- Na-hydrogencarbonat, wasserfrei 30,0 Gew.-%
- Trinatriumcitratdihydrat 30,0 Gew.-%
- Perboratmonohydrat 5,0 Gew.-%
- TAED-Granulat 2,0 Gew.-%
- Enzyme 2,5 Gew.-%
- Plurafac® LF 403 (BASF) 0,9 Gew.-%
- Duftstoff 0,6 Gew.-%
- Paraffin/oder Paraffinöl (F 42-44°C) 3,0 Gew.-%
- Mn-II-sulfat 0,3 Gew.-%

Die daraus hergestellten Tabletten hatten:

- Tablettendurchmesser 38 mm
- Dichte 1,57 - 1,64 g/cm³
- Tablettengewicht 25 - 27 g

Plurafac® LF 403: Fettalkoholethoxylat mit einem Trübungspunkt von 41 °C, einem Erstarrungspunkt < 5°C und einer Viskosität von 50 mPas bei 23 °C.

Beispiel 1

Auf Na-citratpulver wurde vor dem Verpressen mit einer Einstoffvollkegel-
düse mit einer Bohrung von 1,6 mm unter einem Druck von 7 - 8 bar ein Ge-
misch aus Paraffinöl und Parfüm aufgesprühlt, in dem das mit 78 % Fuller-
wachs (Lunaflex® 902 E 36) besprühte Mn-II-sulfat suspendiert war. Dann
wurde unter gleichzeitigem Außdüsen von mit den Restfeststoffen mit glei-
der Düse bei einem Druck von 0,7 - 0,8 MPa vermischt. Die Verpressung bei
zylindrischen Tabletten mit einem Durchmesser von 38 mm erfolgte bei Preß-
kräften von 60 - 70 KN auf einer Exzenterpresse.
Beispiel 2
Wie Beispiel 1, jedoch unter Verwendung von grobem kristallinem Na-citrat-dihydrat.

Beispiel 3
Wie Beispiel 2, jedoch wurde anstelle von Paraffinöl Paraffin mit einem Schmelzbereich von 40 - 42 °C aufgedüst. Das Paraffin wurde dazu auf 80 - 85 °C erwärmt. Der Düsendruck betrug etwa 0,7 - 0,8 MPa.

Beispiel 4
Wie Beispiel 2; es wurde jedoch freies pulverförmiges Mn-II-sulfat eingesetzt.

Beispiel 5
Wie Beispiel 2, es wurde jedoch freies pulverförmiges Mn-II-sulfat mit dem Na-citratdihydrat vermischt und dann beide Bestandteile gemeinsam hydrophobiert.

Beispiel 6
Wie Beispiel 4, jedoch unter Verwendung von Paraffin mit einem Schmelzbereich von 44 - 46 °C.

Beispiel 7
Wie Beispiel 6, jedoch wurden Na-hydrogencarbonat und TAED-Granulat zusammen mit dem groben kristallinen Na-Citratdihydrat vermischt und gemeinsam hydrophobiert.

Beispiel 8
Wie Beispiel 4, jedoch wurde TAED-Pulver zusammen mit dem groben kristallinen Na-Citratdihydrat hydrophobiert.
Beispiel 9
Wie Beispiel 7, jedoch wurde anstelle von Perboratmonohydrat Percarbonat eingesetzt.

Polymerfreie Basiszusammensetzung:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Gew.-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natriumcarbonat, wasserfrei</td>
<td>10,0</td>
</tr>
<tr>
<td>Natriumhydrogencarbonat, wasserfrei</td>
<td>30,0</td>
</tr>
<tr>
<td>Trinatriumcitratdihydrat</td>
<td>45,0</td>
</tr>
<tr>
<td>Natriumpercarbonat</td>
<td>5,0</td>
</tr>
<tr>
<td>TAED-Granulat</td>
<td>2,0</td>
</tr>
<tr>
<td>Amylase</td>
<td>1,0</td>
</tr>
<tr>
<td>Protease</td>
<td>1,0</td>
</tr>
<tr>
<td>Lipase</td>
<td>1,0</td>
</tr>
<tr>
<td>Plurafac(R) LF 403 (BASF)</td>
<td>1,0</td>
</tr>
<tr>
<td>Duftstoff</td>
<td>0,6</td>
</tr>
<tr>
<td>Paraffin (F. 42 - 44 °C)</td>
<td>3,0</td>
</tr>
<tr>
<td>Mangan-II-sulfat</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Die daraus hergestellten Tabletten hatten:
Tablettendurchmesser 38 mm
Dichte 1,57 - 16,4 g/cm³
Tablettengewicht 25 - 27 g

Beispiel 10
Es wurde polymerfrei gearbeitet. Auf ein Gemisch aus groben kristallinen Trinatriumcitratdihydrat, kompakter Soda und TAED wurde mit einer Kreiselnebeldüse, Bohrung 1,6 mm, Düsendruck 0,7 - 0,8 MPa, eine 75 bis 85 °C heiße Paraffinschmelze (Schmelzbereich 42 - 44 °C), in der das Mangan-
Beispiel 11
Wie Beispiel 10, jedoch unter Verwendung eines Vorgemisches aus Percarbonat und auch dieses aufgedüstes nichtionisches Tensid.

<table>
<thead>
<tr>
<th>Beispiel</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabletten-</td>
<td>1,60</td>
<td>1,61</td>
<td>1,63</td>
<td>1,61</td>
<td>1,59</td>
<td>1,57</td>
<td>1,64</td>
<td>1,64</td>
<td>1,61</td>
<td>1,60</td>
<td>1,61</td>
</tr>
<tr>
<td>dichte g/cm³</td>
<td></td>
</tr>
<tr>
<td>Bruchfestig-</td>
<td>273</td>
<td>440</td>
<td>456</td>
<td>312</td>
<td>297</td>
<td>415</td>
<td>336</td>
<td>379</td>
<td>387</td>
<td>270</td>
<td>307</td>
</tr>
<tr>
<td>keit / N</td>
<td></td>
</tr>
<tr>
<td>Ablösung im</td>
<td>36,4</td>
<td>34</td>
<td>20,3</td>
<td>34</td>
<td>36,5</td>
<td>23,4</td>
<td>16</td>
<td>33,6</td>
<td>17,2</td>
<td>24,6</td>
<td>19,6</td>
</tr>
<tr>
<td>Vorspulgang %</td>
<td></td>
</tr>
</tbody>
</table>
Patentansprüche

1. Bruch- und lagerstabile, polyfunktionelle Wasch- und Reinigungsmitteltabletten beliebiger Zusammensetzung, dadurch gekennzeichnet, daß die wasserfreien oder mit niedrigem Hydratationsgrad eingesetzten pulverförmigen oder kristallinen Bestandteile einzeln oder in miteinander verträglichen pulverförmigen oder gegebenenfalls granulierten Gemischen mit einer hydrophobierenden Verbindung beschichtet sind und daß sie darüber hinaus noch weitere feuchtigkeitsempfindliche Bestandteile, gegebenenfalls mit eigener Beschichtung, enthalten können.

2. Tabletten nach Anspruch 1, dadurch gekennzeichnet, daß sie niederalkalisch wirken, phosphat- und vorzugsweise silikatfrei und für das maschinelle Reinigen von Geschirr geeignet sind, ihre pulverförmigen oder kristallinen Bestandteile einzeln oder als miteinander verträchtliche pulverförmigen oder gegebenenfalls granulierten Gemische mit gleichen oder verschiedenen hydrophobierenden Verbindungen beschichtet sind, wobei die hydrophobierenden Verbindungen als solche noch flüssige oder auch pulverförmige Tablettenbestandteile enthalten können, sowie daß sie zusätzlich Bleichmittel, gegebenenfalls Aktivatoren für diese und Enzyme und schwuchschäumende, nichtionische Tenside enthalten, die ebenfalls einzeln oder in verträglichen Gemischen miteinander hydrophobiert sein können.

3. Tabletten nach Anspruch 2, dadurch gekennzeichnet, daß sie als Gerüstsubstanzen jeweils allein oder im Gemisch miteinander hydrophobierte Zitronensäure oder deren Salze, Alkalcarbonate, Alkalihydrogencarbonate und gegebenenfalls Acrylsäure/Maleinsäure-Copolymerisate enthalten.

4. Tabletten nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß sie Enzyme enthalten, die gegebenenfalls hydrophobiert wurden.
5. Tabletten nach Anspruch 1, dadurch gekennzeichnet, daß sie stark alkalisich wirken und pH-Werte > 11 aufweisen und ein mit hydrophobierenden Verbindungen beschichtetes Gemisch aus Pentaalkalitriphosphaten, Alkalisilikaten, Alkalicarbonaten, Bleichmittel und gegebenenfalls Aktivatoren für diese, Alkalihydroxiden, Zeolithe und/oder Enzyme sowie schwachschäumende nichtionische Tenside enthalten, wobei wiederum einzelne Bestandteile oder Gemische davon hydrophobiert sein können.

6. Tabletten nach Anspruch 3, dadurch gekennzeichnet, daß sie in das Hydrophobierungsmittel eingearbeitete nichtionische Tenside enthalten.

7. Tabletten nach Anspruch 1 und 3 bis 6, dadurch gekennzeichnet, daß sie zusätzlich gegebenenfalls hydrophobierte Silberschutzmittel enthalten.

8. Tabletten nach Anspruch 1 und 3 bis 7, dadurch gekennzeichnet, daß die Silberschutzmittel in den Hydrophobierungsmitteln suspendiert sind.

10. Tabletten nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß sie als Hydrophobierungsmittel Paraffinwachs mit einem Schmelzbereich von 30 bis 60 °C enthalten.

11. Verfahren zur Herstellung von Tabletten nach Anspruch 1 bis 10, dadurch gekennzeichnet daß man die pulverförmigen und/oder kristallinen Bestandteile allein oder zusammen mit anderen gutlöslichen pulverförmigen oder gegebenenfalls granulierten anorganischen Bestandteilen durch Aufsprühen einer flüssigen oder verflüssigten hydrophobierenden Verbindung, die ihrerseits flüssige Komponenten, wie beispielsweise nichtionische Tenside oder Duftstoffe, beigemischt enthalten kann, mit
diesen überzieht, und das Gemisch anschließend, gegebenenfalls unter weiterer Zugabe eines/mehrerer üblicher Preßhilfsmittel zu Tabletten verpreßt.

13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß man vor dem Hydrophobieren flüssige Bestandteile auf die festen Trägerstoffe aufbringt.

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C11D17/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE,A,41 21 307 (HENKEL KGAA) 7 January 1993 cited in the application see page 4, line 5 - line 14; examples</td>
<td>1, 2, 4, 11, 13, 14</td>
</tr>
<tr>
<td></td>
<td>P,A WO,A,94 23011 (HENKEL KGAA ;KRUSE HANS (DE); BEAUJEAN HANS JOSEF (DE); SCHAEFER N) 13 October 1994 see claims 1-6,8; examples</td>
<td>1-3, 5, 9, 11, 13-15</td>
</tr>
<tr>
<td>A</td>
<td>DE,A,31 04 371 (HENKEL KGAA) 11 November 1982 see claims</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 A document member of the same patent family

Date of the actual completion of the international search

18 July 1995

Date of mailing of the international search report

21.07.95

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tél. (+31-70) 340-2040, Tél. 31 651 epos, nl,
Fax (+31-70) 340-3016

Authorized officer

Grittern, A

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-A-3104371</td>
<td>11-11-82</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 C11D17/00

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCIERTE GEBIETE

Recherchierten Mindestprüfstoff (Klassifikationssystem und Klassifikations symbole)
IPK 6 C11D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konnultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE,A,41 21 307 (HENKEL KGAA) 7.Januar 1993 in der Anmeldung erwähnt siehe Seite 4, Zeile 5 – Zeile 14; Beispiele</td>
<td>1,2,4, 11,13,14</td>
</tr>
<tr>
<td>P,A</td>
<td>WO,A,94 23011 (HENKEL KGAA ;KRUSE HANS (DE); BEAUJEAN HANS JOSEF (DE); SCHAEPER N) 13.Oktober 1994 siehe Ansprüche 1-6,8; Beispiele</td>
<td>1-3,5,9, 11,13-15</td>
</tr>
<tr>
<td>A</td>
<td>DE,A,31 04 371 (HENKEL KGAA) 11.November 1982 siehe Ansprüche</td>
<td>1</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

<table>
<thead>
<tr>
<th>X</th>
<th>Siehe Anhang Patentfamilie</th>
</tr>
</thead>
</table>

* Besondere Kategorien von angegebenen Veröffentlichungen :
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutend ansehen ist
 E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 L Veröffentlichung, die geeignet ist, einen Prioritätanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung bestätigt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausführbar)
 O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Bemerkung, eine Ausstellung oder andere Maßnahmen bezieht (wie ausführbar)
 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beantragten Prioritätsdatum veröffentlicht worden ist
 T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zur Veranschaulichung der Erfahrung zugrundeliegenden Prinzipien oder der ihr zugrundeliegenden Theorie angegeben ist
 X Veröffentlichung von besonderer Bedeutung, die beantragte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
 Y Veröffentlichung von besonderer Bedeutung, die beantragte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
 & Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

18. Juli 1995

Abschiedsstelle des internationalen Recherchenberichts

21. 07. 95

Name und Postanschrift der Internationale Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentdaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2060, Fax. +31-70) 340-3016

Bevollmächtigter Bediensteter

Grittern, A
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentoakument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(e) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-A-3104371</td>
<td>11-11-82</td>
<td>KEINE</td>
<td></td>
</tr>
</tbody>
</table>