wo 2016/085875 A1 [N I N0F V00 00O 00O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/085875 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

2 June 2016 (02.06.2016) WIPOIPCT
International Patent Classification: (81)
GO6F 17/30 (2006.01)

International Application Number:
PCT/US2015/062185

International Filing Date:
23 November 2015 (23.11.2015)

Filing Language: English
Publication Language: English
Priority Data:

14/555,013 26 November 2014 (26.11.2014) US

Applicant: LOOKER DATA SCIENCES, INC.
[US/US]; 101 Church Street, 4th Floor, Santa Cruz, Cali-
fornia 95060 (US).

Inventors: TABB, Lloyd; 3345 Lora Alta Lane, Santa
Cruz, California 95065 (US). TOY, Michael; 753 Sun-
shine Drive, Los Altos, California 94024 (US). HOOVER,
Scott; 322 1/2 Maple Street, Santa Cruz, California 95060
(US).

Agent: RUBIN, Michael B.; Bozicevic, Field & Francis
LLP, 1900 University Ave, Suite 200, East Palo Alto, Cali-
fornia 94303 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: RELATION AWARE AGGREGATION (RAA) ON NORMALIZED DATASETS

CLIENT DEVICE
162
/ DATA
NETWORK
104
DEVICE HW
1z8
SOFTWARE
APP 122
FiG. 1

SERVER 106

DATABASE 11

3

DATABASE 108

(57) Abstract: The present disclosure provides methods for performing a computation with an aggregate function using a database
query, wherein the database query joins a plurality of database tables and includes a distinct aggregation function, which, when ex-
ecuted against one or more databases aggregates only values of database records corresponding to distinct keys by which the tables
are joined, regardless of the cardinality of the joined tables. Related devices and systems are also provided.

WO 2016/085875 PCT/US2015/062185

RELATION AWARE AGGREGATION (RAA) ON NORMALIZED DATASETS

INTRODUCTION
[0001] Structured Query Language (SQL) databases are designed to work optimally when
data is stored in collections of relatively compact units, along with data needed to specify the
relational connection between collections in the database. These disparate sources of
information are then combined using a variety of relational combinatoric calculations to
create a data set with all of the appropriate information needed to answer a question or query.
[0002] This “normalization” of data makes it possible for the database to store and index
the data efficiently and to theoretically have the flexibility to explore the data along any
dimension. However, queries against data in this form can be inefficient, requiring a second
layer of processing on the normalized data, in order to respond to queries that join more than
one table.
[0003] This second layer of processing can be avoided if the set of questions the database
is expected to answer efficiently is known in advance. A common solution is to build a
summarization layer of data on top of the normalized tables. This is inefficient in terms of

space, but removes the computational burden.

SUMMARY
[0001] Relation Aware Aggregation (RAA) is a method of computing aggregate
functions on data sets that avoids the inefficiencies of normalized data while still maintaining
the flexibility of a pure normalized database. RAA provides an effective means of obtaining
result sets for aggregate functions, while reducing the number of processing steps and/or
memory required to obtain such result sets.
[0002] The present disclosure provides methods for performing a computation with an
aggregate function using a database query, wherein the database query joins a plurality of
database tables and includes a distinct aggregation function, which, when executed against
one or more databases aggregates only values of database records corresponding to distinct
keys by which the tables are joined, regardless of the cardinality of the joined tables. Related
devices and systems are also provided.
[0003] Aspects, including embodiments, of the present subject matter described herein
may be beneficial alone or in combination, with one or more other aspects or embodiments.
Without limiting the foregoing or subsequent description, certain non-limiting aspects of the

disclosure numbered 1-86 are provided below. As will be apparent to those of skill in the art

WO 2016/085875 PCT/US2015/062185

upon reading this disclosure, each of the individually numbered aspects may be used or
combined with any of the preceding or following individually numbered aspects. This is
intended to provide support for all such combinations of aspects and is not limited to

combinations of aspects explicitly provided below.

1. In one aspect, the present disclosure provides a method for performing an aggregate

function using a database query, the method including:

executing a database query with a processor of a database engine having
access to one or more databases, wherein the database query joins a plurality of
database tables of the one or more databases and includes a distinct aggregation
function, which, when executed against the one or more databases, aggregates only
values of database records corresponding to distinct keys by which the tables are
joined, regardless of the cardinality of the joined tables.

2. The method of aspect 1, wherein the processor is comprised by a server device, and
wherein the method includes providing results of the database query to a client device
over a network connection.

3. The method of aspect 1 or 2, wherein the one or more databases are relational
databases and the database query is a single Structured Query Language (SQL) query
statement.

4. The method of aspect 3, wherein the method includes:

generating a distinct key value-record value composite integer for each record
value to be aggregated via the distinct aggregation function, wherein generating the
distinct key value-record value composite integer includes:
applying a uniform hash function to covert a key value corresponding
to a record value into a random value; and
adding the record value to the random value to provide a distinct key
value-record value composite integer.

5. The method of aspect 4, wherein the distinct aggregation function is a summation
function configured to compute a sum of record values corresponding to distinct keys,
and wherein the summation function includes

summing the distinct key value-record value composite integers and
subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

WO 2016/085875 PCT/US2015/062185

6.

10.

11.

12.

The method of aspect 4, wherein the distinct aggregation function is an average
function configured to compute an average of record values corresponding to distinct
keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the record values corresponding to
the distinct keys.
The method of any one of aspects 4-6, including selecting for use in connection with
the generation of the distinct key value-record value composite integer a bit depth
data type for the distinct key value-record value composite integer which is sufficient
to contain a full summation of all the record values to be aggregated.
The method of aspect 1, wherein the executing includes:

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,
instructions which, when executed by the processor of the database engine, cause the
database engine to:

examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.
The method of aspect 8, wherein the collection of computation instructions is
provided to the database engine by a client device.
The method of aspect 8, wherein the collection of computation instructions is loaded
as source or compiled code by the database engine.
The method of aspect 8, wherein the collection of computation instructions is
comprised by the database engine.
The method of aspect 1, wherein the executing includes accessing a user-defined
library, wherein the user-defined library includes instructions, which, when executed
by the processor of the database engine, cause the processor of the database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

WO 2016/085875 PCT/US2015/062185

13.

14.

15.

16.

The method of aspect 12, wherein the user-defined library is stored in database
memory.
In another aspect, the present disclosure provides a method for facilitating the
performance an aggregate function using a database query, wherein the database
query joins a plurality of database tables and includes a distinct aggregation function,
which, when executed against one or more databases aggregates only values of
database records corresponding to distinct keys by which the tables are joined,
regardless of the cardinality of the joined tables, the method including:

providing a collection of aggregation computation instructions to a processor
of a database engine, wherein the collection of aggregation computation instructions
includes instructions, which, when executed by the processor of the database engine,
cause the database engine to:

examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given

key in the distinct aggregation function.
In another aspect, the present disclosure provides a method for facilitating the
performance an aggregate function using a database query, wherein the database
query joins a plurality of database tables and includes a distinct aggregation function,
which, when executed against one or more databases aggregates only values of
database records corresponding to distinct keys by which the tables are joined,
regardless of the cardinality of the joined tables, the method including:

providing a user-defined library accessible to a server device, wherein the
user-defined library includes instructions, which, when executed by a processor of the
server device, cause the server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key in
the distinct aggregation function.
In another aspect, the present disclosure provides a method for performing an
aggregate function using a database query, the method including:

receiving a database query at a server device, wherein the database query joins
a plurality of database tables and includes a distinct aggregation function, which,
when executed against one or more databases aggregates only values of database
records corresponding to distinct keys by which the tables are joined, regardless of the

cardinality of the joined tables;

WO 2016/085875 PCT/US2015/062185

17.

18.

19.

20.

21.

22.

executing the database query against the one or more databases; and

providing results of the database query to a client device over a network
connection.
The method of aspect 16, wherein the one or more databases are relational databases
and the database query is a single Structured Query Language (SQL) query statement.
The method of aspect 17, wherein the method includes:

generating a distinct key value-record value composite integer for each record
value to be aggregated via the distinct aggregation function, wherein generating the
distinct key value-record value composite integer includes:

applying a uniform hash function to covert a key value corresponding
to a record value into a random value; and
adding the record value to the random value to provide a distinct key

value-record value composite integer.
The method of aspect 18, wherein the distinct aggregation function is a summation
function configured to compute a sum of record values corresponding to distinct keys,
and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record
values corresponding to distinct keys.
The method of aspect 18, wherein the distinct aggregation function is an average
function configured to compute an average of record values corresponding to distinct
keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the record values corresponding to
the distinct keys.
The method of any one of aspects 18-20, including selecting for use in connection
with the generation of the distinct key value-record value composite integer a bit
depth data type for the distinct key value-record value composite integer which is
sufficient to contain a full summation of all the record values to be aggregated.
The method of aspect 16, wherein the executing includes

accessing a collection of aggregation computation instructions;

WO 2016/085875 PCT/US2015/062185

23.

24.

25.

26.

selecting from the collection of aggregation computation instructions,
instructions which, when executed by a processor of the server device, cause the
server device to:
examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given
key value in the distinct aggregation function.
The method of aspect 16, wherein the executing includes
accessing a user-defined library, wherein the user-defined library includes
instructions, which, when executed by a processor of the server device, cause the
server device to:
examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given
key value in the distinct aggregation function.
In another aspect, the present disclosure provides a method for performing an
aggregate function using a database query, the method including:
receiving, at a server device, a query input from a client device over a network
connection,;
generating a database query based on the query input, wherein the database
query joins a plurality of database tables and includes a distinct aggregation function,
which, when executed against one or more databases aggregates only values of
database records corresponding to distinct keys by which the tables are joined,
regardless of the cardinality of the joined tables;
executing the database query against the one or more databases; and
returning results of the database query to the client device over a network
connection.
The method of aspect 24, wherein the one or more databases are relational databases
and the database query is a single Structured Query Language (SQL) query statement.
The method of aspect 25, wherein the method includes:
generating a distinct key value-record value composite integer for each record
value to be aggregated via the distinct aggregation function, wherein generating the
distinct key value-record value composite integer includes:
applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

WO 2016/085875 PCT/US2015/062185

27.

28.

29.

30.

31.

adding the record value to the random value to provide a distinct key
value-record value composite integer.
The method of aspect 26, wherein the distinct aggregation function is a summation
function configured to compute a sum of record values corresponding to distinct keys,
and wherein the summation function includes
summing the distinct key value-record value composite integers and
subtracting the sum of the random values to provide the sum of the record
values corresponding to distinct keys.
The method of aspect 26, wherein the distinct aggregation function is an average
function configured to compute an average of record values corresponding to distinct
keys, and wherein the average function includes
summing the distinct key value-record value composite integers,
subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and
dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the record values corresponding to
the distinct keys.
The method of aspect any one of aspects 26-28, including selecting for use in
connection with the generation of the distinct key value-record value composite
integer a bit depth data type for the distinct key value-record value composite integer
which is sufficient to contain a full summation of all the record values to be
aggregated.
The method of aspect 24, wherein the executing includes
accessing a collection of aggregation computation instructions;
selecting from the collection of aggregation computation instructions,
instructions which, when executed by a processor of the server device, cause the
server device to:
examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given
key value in the distinct aggregation function.
The method of aspect 24, wherein the executing includes accessing a user-defined
library, wherein the user-defined library includes instructions, which, when executed
by a processor of the server device, cause the server device to:

examine only the first instance of each given key value; and

WO 2016/085875 PCT/US2015/062185

32.

33.

34.

35.

36.

37.

utilize the record value corresponding to the first instance of the given key
value in the distinct aggregation function.
The method of aspect 31, wherein the user-defined library is stored in database
memory.
In another aspect, the present disclosure provides a method for generating a distinct
key value-record value composite integer for use in an aggregation function, the
method including:

applying a uniform hash function to covert a key value corresponding to a
record value into a random value; and

adding the record value to the random value to provide a distinct key value-
record value composite integer, wherein the applying and adding are performed by a
processor of a database engine.
The method of aspect 33, including selecting for use in connection with the generation
of the distinct key value-record value composite integer a bit depth data type for the
distinct key value-record value composite integer which is sufficient to contain a full
summation of all the record values to be aggregated.
In another aspect, the present disclosure provides a method for generating a distinct
key value-record value composite integer for use in an aggregation function, the
method including:

applying a uniform hash function to covert a key value corresponding to a
record value into a random value; and

adding the record value to the random value to provide a distinct key value-
record value composite integer, wherein the applying and adding are performed by a
processor of a server device.
The method of aspect 35, including selecting for use in connection with the generation
of the distinct key value-record value composite integer a bit depth data type for the
distinct key value-record value composite integer which is sufficient to contain a full
summation of all the record values to be aggregated.
In another aspect, the present disclosure provides a non-transitory recording medium
including instructions, which, when executed by a processor of a database engine,
cause the database engine to:

execute a database query against one or more databases, wherein the database
query joins a plurality of database tables and includes a distinct aggregation function,

which, when executed against the one or more databases aggregates only values of

WO 2016/085875 PCT/US2015/062185

38.

39.

40.

41.

42.

database records corresponding to distinct keys by which the tables are joined,
regardless of the cardinality of the joined tables.
The non-transitory recording medium of aspect 37, wherein the processor is
comprised by a server device, and wherein the non-transitory recording medium
includes instructions, which when executed by the processor, cause the processor to
provide results of the database query to a client device over a network connection.
The non-transitory recording medium of aspect 37 or 38, wherein the one or more
databases are relational databases and the database query is a single Structured Query
Language (SQL) query statement.
The non-transitory recording medium of aspect 39, wherein the non-transitory
recording medium includes instructions, which, when executed by the processor,
cause the database engine to:

generate a distinct key value-record value composite integer for each record
value to be aggregated via the distinct aggregation function, wherein generating the
distinct key value-record value composite integer includes:

applying a uniform hash function to covert a key value corresponding
to a record value into a random value; and
adding the record value to the random value to provide a distinct key

value-record value composite integer.
The non-transitory recording medium of aspect 40, wherein the distinct aggregation
function is a summation function configured to compute a sum of record values
corresponding to distinct keys, and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record
values corresponding to distinct keys.
The non-transitory recording medium of aspect 40, wherein the distinct aggregation
function is an average function configured to compute an average of record values
corresponding to distinct keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

WO 2016/085875 PCT/US2015/062185

43.

44,

45.

46.

The non-transitory recording medium of any one of aspects 39-42, wherein the non-
transitory recording medium includes instructions, which, when executed by the
processor, cause the database engine to select for use in connection with the
generation of the distinct key value-record value composite integer a bit depth data
type for the distinct key value-record value composite integer which is sufficient to
contain a full summation of all the record values to be aggregated.
The non-transitory recording medium of aspect 37, wherein the executing includes
accessing a collection of aggregation computation instructions;
selecting from the collection of aggregation computation instructions,
instructions which, when executed by the processor of the database engine, cause the
database engine to:
examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given
key value in the distinct aggregation function.
The non-transitory recording medium of aspect 37, wherein the executing includes
accessing a user-defined library, wherein the user-defined library includes
instructions, which, when executed by the processor of the database engine, cause the
processor of the database engine to:
examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given
key value in the distinct aggregation function.
In another aspect, the present disclosure provides a non-transitory recording medium
including instructions which, when executed by a processor of a server device, cause
the server device to:
receive a query input from a client device over a network connection;
generate a database query based on the query input, wherein the database
query joins a plurality of database tables and includes a distinct aggregation function,
which, when executed against one or more databases aggregates only values of
database records corresponding to distinct keys by which the tables are joined,
regardless of the cardinality of the joined tables;
execute the database query against the one or more databases; and
return results of the database query to the client device over a network

connection.

10

WO 2016/085875 PCT/US2015/062185

47. The non-transitory recording medium of aspect 46, wherein the one or more databases
are relational databases and the database query is a single Structured Query Language
(SQL) query statement.

48. The non-transitory recording medium of aspect 47, wherein the non-transitory
recording medium includes instructions, which, when executed by the processor of
the server device, cause the server device to: generate a distinct key value-record
value composite integer for each record value to be aggregated via the distinct
aggregation function, wherein generating the distinct key value-record value
composite integer includes:

applying a uniform hash function to covert a key value corresponding
to a record value into a random value; and

adding the record value to the random value to provide a distinct key
value-record value composite integer.

49. The non-transitory recording medium of aspect 48, wherein the distinct aggregation
function is a summation function configured to compute a sum of values
corresponding to distinct keys, and wherein the summation function includes

summing the distinct key value-record value composite integers and
subtracting the sum of the random values to provide the sum of the record
values corresponding to distinct keys.

50. The non-transitory recording medium of aspect 48, wherein the distinct aggregation
function is an average function configured to compute an average of record values
corresponding to distinct keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the values corresponding to the
distinct keys.

51. The non-transitory recording medium of any one of aspects 48-50, wherein the non-
transitory recording medium includes instructions, which, when executed by the
processor of the server device, cause the server device to select for use in connection
with the generation of the distinct key value-record value composite integer a bit
depth data type for the distinct key value-record value composite integer which is

sufficient to contain a full summation of all the record values to be aggregated.

11

WO 2016/085875 PCT/US2015/062185

52.

53.

54.

55.

56.

The non-transitory recording medium of aspect 46, wherein the executing includes

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,
instructions which, when executed by the processor of the server device, cause the
server device to:

examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.
The non-transitory recording medium of aspect 46, wherein the executing includes
accessing a user-defined library, wherein the user-defined library includes
instructions, which, when executed by a processor of the server device, cause the
server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key
value in the distinct aggregation function.
In another aspect, the present disclosure provides a non-transitory recording medium
including instructions, which, when executed by a processor of a server device, cause
the server device to:

execute a database query against one or more databases, wherein the database
query joins a plurality of database tables and includes a distinct aggregation function,
which, when executed against the one or more databases aggregates only values of
database records corresponding to distinct keys by which the tables are joined,
regardless of the cardinality of the joined tables; and

provide results of the database query to a client device over a network
connection.
The non-transitory recording medium of aspect 54, wherein the one or more databases
are relational databases and the database query is a single Structured Query Language
(SQL) query statement.
The non-transitory recording medium of aspect 55, wherein the non-transitory
recording medium includes instructions, which, when executed by the processor of
the server device, cause the server device to:

generate a distinct key value-record value composite integer for each record
value to be aggregated via the distinct aggregation function, wherein generating the

distinct key value-record value composite integer includes:

12

WO 2016/085875 PCT/US2015/062185

57.

58.

59.

60.

applying a uniform hash function to covert a key value corresponding
to a record value into a random value; and
adding the record value to the random value to provide a distinct key
value-record value composite integer.
The non-transitory recording medium of aspect 56, wherein the distinct aggregation
function is a summation function configured to compute a sum of record values
corresponding to distinct keys, and wherein the summation function includes
summing the distinct key value-record value composite integers and
subtracting the sum of the random values to provide the sum of the record
values corresponding to distinct keys.
The non-transitory recording medium of aspect 56, wherein the distinct aggregation
function is an average function configured to compute an average of record values
corresponding to distinct keys, and wherein the average function includes
summing the distinct key value-record value composite integers,
subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and
dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the record values corresponding to
the distinct keys.
The non-transitory recording medium of any one of aspects 56-58, wherein the non-
transitory recording medium includes instructions, which, when executed by the
processor of the server device, cause the server device to select for use in connection
with the generation of the distinct key value-record value composite integer a bit
depth data type for the distinct key value-record value composite integer which is
sufficient to contain a full summation of all the record values to be aggregated.
The non-transitory recording medium of aspect 54, wherein the executing includes
accessing a collection of aggregation computation instructions;
selecting from the collection of aggregation computation instructions,
instructions which, when executed by the processor of the server device, cause the
server device to:
examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

13

WO 2016/085875 PCT/US2015/062185

61.

62.

63.

64.

The non-transitory recording medium of aspect 54, wherein the executing includes
accessing a user-defined library, wherein the user-defined library includes
instructions, which, when executed by a processor of the server device, cause the
server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key
value in the distinct aggregation function.
In another aspect, the present disclosure provides a non-transitory recording medium
including instructions which, when executed by a processor of a server device, cause
the server device to:

receive a query input from a client device over a network connection;

generate a database query based on the query input, wherein the database
query joins a plurality of database tables and includes a distinct aggregation function,
which, when executed against one or more databases aggregates only values of
database records corresponding to distinct keys by which the tables are joined,
regardless of the cardinality of the joined tables;

execute the database query against the one or more databases; and

return results of the database query to the client device over a network
connection.
The non-transitory recording medium of aspect 62, wherein the one or more databases
are relational databases and the database query is a single Structured Query Language
(SQL) query statement.
The non-transitory recording medium of aspect 63, wherein the non-transitory
recording medium includes instructions, which, when executed by the processor of
the server device, cause the server device to: generate a distinct key value-record
value composite integer for each record value to be aggregated via the distinct
aggregation function, wherein generating the distinct key value-record value
composite integer includes:

applying a uniform hash function to covert a key value corresponding
to a record value into a random value; and
adding the record value to the random value to provide a distinct key

value-record value composite integer.

14

WO 2016/085875 PCT/US2015/062185

65.

66.

67.

68.

69.

The non-transitory recording medium of aspect 64, wherein the distinct aggregation
function is a summation function configured to compute a sum of values
corresponding to distinct keys, and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record
values corresponding to distinct keys.
The non-transitory recording medium of aspect 64, wherein the distinct aggregation
function is an average function configured to compute an average of record values
corresponding to distinct keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the values corresponding to the
distinct keys.
The non-transitory recording medium of any one of aspects 64-66, wherein the non-
transitory recording medium includes instructions, which, when executed by the
processor of the server device, cause the server device to select for use in connection
with the generation of the distinct key value-record value composite integer a bit
depth data type for the distinct key value-record value composite integer which is
sufficient to contain a full summation of all the record values to be aggregated.
The non-transitory recording medium of aspect 62, wherein the executing includes

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,
instructions which, when executed by the processor of the server device, cause the
server device to:

examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.
The non-transitory recording medium of aspect 62, wherein the executing includes
accessing a user-defined library, wherein the user-defined library includes
instructions, which, when executed by a processor of the server device, cause the
server device to:

examine only the first instance of each given key value; and

15

WO 2016/085875 PCT/US2015/062185

70.

71.

72.

73.

74.

utilize the record value corresponding to the first instance of the given key
value in the distinct aggregation function.
In another aspect, the present disclosure provides a method for performing an
aggregate function using a database query, the method including:

transmitting a database query over a network connection from a client device
to a server device, which, when received by the server device, causes the server
device to execute the database query against one or more databases, wherein the
database query joins a plurality of database tables and includes a distinct aggregation
function, which, when executed against the one or more databases aggregates only
values of database records corresponding to distinct keys by which the tables are
joined, regardless of the cardinality of the joined tables; and

receiving results of the database query at the client device from the server
device.

The method of aspect 70, wherein the one or more databases are relational databases
and the database query is a single Structured Query Language (SQL) query statement.
The method of aspect 71, wherein the method includes:

causing the server device to generate a distinct key value-record value
composite integer for each record value to be aggregated via the distinct aggregation
function, wherein generating the distinct key value-record value composite integer
includes:
applying a uniform hash function to covert a key value corresponding
to a record value into a random value; and
adding the record value to the random value to provide a distinct key
value-record value composite integer.
The method of aspect 72, wherein the distinct aggregation function is a summation
function configured to compute a sum of record values corresponding to distinct keys,
and wherein the summation function includes
summing the distinct key value-record value composite integers and
subtracting the sum of the random values to provide the sum of the record
values corresponding to distinct keys.
The method of aspect 72, wherein the distinct aggregation function is an average
function configured to compute an average of record values corresponding to distinct
keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

16

WO 2016/085875 PCT/US2015/062185

75.

76.

77.

78.

subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and
dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the record values corresponding to
the distinct keys.
The method of any one of aspects 72-74, wherein the server utilizes, in connection
with the generation of the distinct key value-record value composite integer, a bit
depth data type for the distinct key value-record value composite integer which is
sufficient to contain a full summation of all the record values to be aggregated.
The method of aspect 70, wherein the executing includes:
accessing a collection of aggregation computation instructions;
selecting from the collection of aggregation computation instructions,
instructions which, when executed by the processor of the server device, cause the
server device to:
examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given
key value in the distinct aggregation function.
The method of aspect 70, wherein the executing includes accessing a user-defined
library, wherein the user-defined library includes instructions, which, when executed
by a processor of the server device, cause the server device to:
examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given key
value in the distinct aggregation function.
In another aspect, the present disclosure provides a method for performing an
aggregate function using a database query, the method including:
transmitting a query input over a network connection from a client device to a
server device, which, when received by the server device, causes the server device to
generate a database query based on the query input, wherein the
database query joins a plurality of database tables and includes a distinct
aggregation function, which, when executed against the one or more databases
aggregates only values of database records corresponding to distinct keys by
which the tables are joined, regardless of the cardinality of the joined tables,
and

execute the database query against the one or more databases; and

17

WO 2016/085875 PCT/US2015/062185

79.

80.

81.

82.

&3.

&4.

receiving results of the database query at the client device from the server
device.

The method of aspect 78, wherein the one or more databases are relational databases
and the database query is a single Structured Query Language (SQL) query statement.
The method of aspect 79, wherein the method includes:

causing the server device to generate a distinct key value-record value
composite integer for each record value to be aggregated via the distinct aggregation
function, wherein generating the distinct key value-record value composite integer
includes:

applying a uniform hash function to covert a key value corresponding
to a record value into a random value; and
adding the record value to the random value to provide a distinct key

value-record value composite integer.
The method of aspect 80, wherein the distinct aggregation function is a summation
function configured to compute a sum of record values corresponding to distinct keys,
and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record
values corresponding to distinct keys.
The method of aspect 80, wherein the distinct aggregation function is an average
function configured to compute an average of record values corresponding to distinct
keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the record values corresponding to
the distinct keys.
The method of any one of aspects 80-82, wherein the server utilizes, in connection
with the generation of the distinct key value-record value composite integer, a bit
depth data type for the distinct key value-record value composite integer which is
sufficient to contain a full summation of all the record values to be aggregated.
The method of aspect 78, wherein the executing includes:

accessing a collection of aggregation computation instructions;

18

WO 2016/085875 PCT/US2015/062185

85.

86.

selecting from the collection of aggregation computation instructions,
instructions which, when executed by the processor of the server device, cause the
server device to:

examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.
The method of aspect 78, wherein the executing includes accessing a user-defined
library, wherein the user-defined library includes instructions, which, when executed
by a processor of the server device, cause the server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key
value in the distinct aggregation function.
In another aspect, the present disclosure provides a system for performing an
aggregate function using a database query, the system including:

a client device;

a server device; and

one or more databases,

wherein the client device transmits a database query over a network
connection from the client device to the server device, which, when received by the
server device, causes the server device to execute a database query against the one or
more databases,

wherein the database query joins a plurality of database tables and includes a
distinct aggregation function, which, when executed against the one or more
databases aggregates only values of database records corresponding to distinct keys
by which the tables are joined, regardless of the cardinality of the joined tables, and
wherein the server device returns results of the database query to the client device

over a network connection.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a block diagram of an example system for querying one or more
databases, according to an example embodiment.
[0005] FIG. 2 is a block diagram of the arrangement of components of a computing

device configured to query one or more databases, according to an example embodiment.

19

WO 2016/085875 PCT/US2015/062185

[0006] FIG. 3 is a block diagram of example functional components for a computing

device, according to one embodiment.

DETAILED DESCRIPTION

[0007] As discussed above, RAA is a method of computing aggregate functions on
data sets that avoids the inefficiencies needed to accurately calculate aggregate functions on
joined normalized data while still maintaining the flexibility of a pure normalized database.
The present disclosure provides methods for performing an aggregate function using a
database query, wherein the database query joins a plurality of database tables and includes a
distinct aggregation function, which, when executed against one or more databases
aggregates only values of database records corresponding to distinct keys by which the tables
are joined, regardless of the cardinality of the joined tables.

[0008] Before the present invention is described in greater detail, it is to be understood
that this invention is not limited to particular embodiments described, as such may vary. It is
also to be understood that the terminology used herein is for the purpose of describing
particular embodiments only, and is not intended to be limiting, since the scope of the present
invention will be limited only by the appended claims.

[0009] Unless defined otherwise, all technical and scientific terms used herein have the
same meaning as commonly understood by one of ordinary skill in the art to which this
invention belongs.

[0010] Any and all publications mentioned herein are incorporated herein by reference to
disclose and describe the methods and/or materials in connection with which the publications
are cited. It is understood that the present disclosure supersedes any disclosure of an
incorporated publication to the extent there is a contradiction. Further, the dates of any such
publications provided may be different from the actual publication dates which may need to
be independently confirmed.

[0011] It must be noted that as used herein and in the appended claims, the singular forms
"a", "an", and "the" include plural referents unless the context clearly dictates otherwise.
Thus, for example, reference to "a database" includes a plurality of such databases, and so
forth.

[0012] It is further noted that the claims may be drafted to exclude any element, e.g., any

optional element. As such, this statement is intended to serve as antecedent basis for use of

20

WO 2016/085875 PCT/US2015/062185

b I 1

such exclusive terminology as “solely”, “only” and the like in connection with the recitation
of claim elements, or the use of a “negative” limitation.

[0013] As will be apparent to those of skill in the art upon reading this disclosure, each of
the individual embodiments described and illustrated herein has discrete components and
features which may be readily separated from or combined with the features of any of the
other several embodiments without departing from the scope or spirit of the present
invention. Any recited method can be carried out in the order of events recited or in any other
order which is logically possible.

[0014] Although any methods and materials similar or equivalent to those described
herein can be used in the practice of the present invention, some potential and exemplary
methods and materials are now described.

[0015] An example of the inefficiencies addressed via RAA is provided below with
reference to Tables 1 and 2. An extremely common pattern in database architecture is to have
a first table of entities and a second table which describes the activities of those entities.
Information unique to the entities is kept distinct from information unique to the activities.
Queries about the activities can join in the entity table to get information about the entities
performing the activities. For example, Table 1 below provides a simple table including data
for a set of users. Table 2 below provides a table including a set of orders that users identified

in Table 1 have placed.

Table 1
user_id|{user_name ?g state
1 Marcus ? CA
2 Andrea ? NV
3 Shimrod ? NV
4 Laura ? NV

21

WO 2016/085875 PCT/US2015/062185

Table 2
order_id||luser_id|lorder_amount
1 3 20
2 3 30
3 3 20
4 1 100
5 2 1000
6 2 20
7 3 50

[0016] An exemplary question that a user might ask of a database containing the above
tables is: “What is the average age of a customer who has placed an order?” With this small
data set, the answer can be picked out and computed by simply looking at the tables. Marcus,
Andrea and Shimrod have all ordered, so the average age is the sum of their ages, divided by
three, (23 + 34 +45) / 3, or 34. However, writing the SQL query for this computation is more
complex. A first attempt at answering the above question might utilize the following query

using the aggregation function “AVG()” in SQL:

SELECT AVG(users.age) AS average age of purchaser

FROM orders

LEFT JOIN users ON orders.user id = users.user id
[0017] The above calculation will sum the age of the user who made each order, and
divide that by the number of orders, or (45 + 45 + 45 + 23 + 34 + 34 + 45) / 7, which results
in an answer of approximately 38.7. This is the answer to a different question, such as “What
is the average age of a customer that one should expect when answering the phone to take an
order?” The answer to this question, while potentially interesting, is not the answer to the
question that was originally posed.
[0018] In order to use the AVG function in SQL in the above context, the average must
be run on a dataset with the same number of rows as the number of unique users who have
ordered. This calculation requires two queries, a first query to summarize by user all of the
order activity, and a second query to compute the average. In SQL-99 this can be written

using a “WITH” expression to combine the two calculations.

22

WO 2016/085875 PCT/US2015/062185

WITH user order activity AS (
SELECT user id, age, COUNT (*) as order count
FROM ORDERS
GROUP BY user 1id)

SELECT AVG(users.age) as average age of purchaser
FROM user order activity
LEFT JOIN users ON user order activity.user id =

users.user id

[0019] Using a second nested query will produce the correct result, however, in order to
handle queries about more complex orders, for example if an order could include many order
items, or if a user could have multiple shipping addresses, the number of these intermediate
calculations needed to answer questions about orders quickly becomes quite large and a
single query very often will require several of these sub-queries. Accordingly, this approach
represents an inefficient means of obtaining the desired information.

[0020] The RAA method described herein represents an improved approach, which does
not suffer from the inefficiencies described above. RAA is a method for computing the
aggregation of a number by using knowledge of how that number was joined into the query to
express a computation of the aggregation which avoids the unexpected results from joining
tables of different cardinality, and the inefficiency of having to create an intermediate table.
For example, in one aspect, RAA provides a solution to the problem which arises when a
standard aggregation technique results in an aggregate value which is skewed relative to an
expected value due to the presence of more than one instance of the primary key in the tables
being queried.

[0021] This concept is an extension of the notion in SQL of a “distinct value”. There
currently exists in SQL a computation COUNT(DISTINCT()) meaning “count unique values
of this expression across the current data set” which you can use to properly count items
across an aggregation. A similar expression, albeit less generally useful, is
SUM(DISTINCT()), which computes all the unique values of an expression and then sums
them.

[0022] RAA may be characterized as a method for aggregating values for records with
distinct keys. With RAA the problem query above could be written simply and efficiently as:

23

WO 2016/085875 PCT/US2015/062185

SELECT
AVG DISTINCT (users.age,users.user 1id) AS average age
FROM orders

LEFT JOIN users ON orders.user id = users.user id

[0023] The RAA technique is to ask for an aggregation across a distinct key, which is not
the value being used in the aggregation calculation, but rather is the key used to correlate the
seperate data sets into the single data set for the computation.
[0024] The simple example above could also have been written without RAA using the
GROUP BY keyword in SQL to compute the distinction across the correlation as in:

SELECT

AVG (users.age) AS average age

FROM orders

LEFT JOIN users ON orders.user id = users.user id

GROUP by users.user id
[0025] However in a query with multiple columns, it is not possible to GROUP BY
differently for each value to produce a correct aggregation calculation for each column in the
result set. For example, if the list of items in the order was also joined on the order id, it
would be impossible to both group by user_id to get the correct aggregation for computations
about the user and order id to correctly aggregate on the order. RAA allows each aggregation
to be performed with the correct grouping, in one efficient query, even if several different
tables are being joined to gather enough data to compute the results.
[0026] This technique of selecting distinct values for aggregation across a correlation key
can be applied to extend the usefulness of a variety of aggregation functions, such as these
which are typically provided by a database engine: average, collect, correlation, covariance,

density, median, rank, percentile, standard deviation and variance.

SOL Implementation

[0027] An implementation of RAA exists which can be expressed in SQL for the
operations SUM_DISTINCT and AVG_DISTINCT. This implementation uses a fixed length
integer arithmetic (e.g., a 128-bit arithmetic) to convert the knowledge of the key value and
corresponding record value to a new value, e.g., a 128 bit value, in such a way that the
resulting set of values actually are distinct by key and not just by raw value. This allows the

use of the built-in SUM(DISTINCT()) of the underlying SQL engine to be used to apply

24

WO 2016/085875 PCT/US2015/062185

DISTINCT with the correct semantics, i.¢. on the key in question and not on the raw value of
the column being summed. The implementation uses a uniform hash to convert the key value
into a random value, and then addition to encode the record value into the hash for purposes
of distinct key value-record value computation. Subtraction is then utilized to remove the
hash from the composite value when the aggregate total is required.

[0028] Assuming the existence of a uniform hash function (which exists, but generally
has a different name in every SQL dialect) “HASH”, the pseudo SQL to compute the sum of

distinct values for an expression V across a join which uses the key K looks like this:

SUM(DISTINCT (HASH(K)+V)) — SUM(DISTINCT (HASH(K)))

[0029] And the computation for average V across a join on K would follow as:

SUM(DISTINCT (HASH (K)+V)) — SUM(DISTINCT (HASH(K)))
/ COUNT (DISTINCT (K))

[0030] If the value being aggregated is not an integer, it would need to be converted into
an integer in order to be encoded in the composite key value, and then converted back after
the computation, this may require additional information about the range of values and
precision needed in those values.

[0031] For a SQL implementation with 256 bit integers, this implementation can be used
without any concern of overflow. However, using 128 bit implementations, computing a
composite value from a hash requires some advance knowledge about the dataset, about the
range of values possible, and the number of distinct values in the dataset. When a database
server does not provide a native implementation, this will, for many uses, be equivalent to the
native implementation in terms of accuracy.

[0032] Using 128 bit implementation, the number of bits generated by the hash function
are restricted, in essence creating a uniform hash function 4(K,N) which can map a key into
an N bit space. It is desirable to allocate as many bits to N as possible to minimize the
probability of collisions. In a data set with A distinct values, it may be necessary to sum the
hash value A times, which means a maximum sum would be 4 x2". Thus when choosing N, it
should be equal to the maximum number of bits for computations (128 in this example)
minus /og(4).

[0033] Once an N has been chosen, the probability of a collision can be computed as

25

WO 2016/085875 PCT/US2015/062185

AZ

l_e 2N+1

[0034] As an example of how an SQL implementation would select an N, the formula
above can be used to create the following “C” program to calculate the probability of a
collision for sets of a given size, also determining whether such a set would overflow the

remaining bits that would be used to sum the results:

#include <cmath>
#include <cstdlib>

#include <iostream>

void agg prob(long agg size, long hashbits) {
long numbits = 128- hashbits;
double probability = 1.0 - exp(-

(pow (agg_size,2)/(2*pow (2, hashbits))));
long 1 = long(l/probability);

double max agg size = pow (2, numbits);
if (agg size > max agg size) {
std::cout << "Overflow, ";
} else {
if (1 > 0) {

std::cout << "1 in " << long(l/probability) << ",

} else {

std::cout << "1 in " << 1/probability << ", ";

int main(int argc, char ** argv) {

long hashbits;

26

WO 2016/085875 PCT/US2015/062185

std::cout << "Hash Bits, Overflow Size, 1000, 1M, 500M, 1B,
108, 100B, 1T, 10T,\n";
for (hashbits = 85; hashbits <= 100; hashbits++) {
double max_agg _size = pow (2, 128 - hashbits);
std::cout << hashbits << ", " << long(max_agg size)
<< ",
agg_prob(1000L, hashbits);
agg prob(1000000L, hashbits);
agg prob(500000000L, hashbits);
agg _prob(1000000000T, hashbits);
agg_prob(10000000000L, hashbits);
agg prob(100000000000L, hashbits);
agg_prob(1000000000000L, hashbits);
agg_prob(10000000000000L, hashbits);
std::cout << std::endl;
}

return 0;

[0035] Table 3 below was generated using the above program, which shows the
relationships between likelihood of a collision and the number of bits allocated to the hash
space. An implementation in SQL can use this information to choose an N appropriate for the
data being queried.

Table 3

HashBits OverflowSize 1000 IM 500M 18 108 1008 1 101
85 §796093022208 Lininf 1in77648269437422 1in309485014 1in77371253 1n773713 Lin7737 1in77 Overflow
8 4398046511104 Lininf 1in155296538874844 1in618070029 1in154742504 1in1547425 1in15474 1in155 Overflow
87 1199023255552 Lininf 1in310593077748688 1in1237939973 1in300485014 1in3094850 1in30943 1in30¢ Overflow
88 1099511627776 Lininf 1in600479950316066 1in 2475879947 1in618970029 1in6189700 1in61897 1in618 Overflow
9 549755813888 Lininf 1in 1286742750677284 1in49517612% 1in1237939973 1in 12379400 1in123794 Overflow Overflow
90 274877906944 Lininf 1in2251799813685248 1in9903517066 1in2475879947 1in24758801 1in247588 Overflow Overflow
1 137438953472 Lininf 1in4503599627370496 1in 19807055911 1in4951761255 1in49517601 1in495176 Overflow Overfow
) 68719476736 Llininf 1in9007199254740952 1in39614024711 1in9903517066 199035203 Overflow Overflow Overflow
3 34359738368 Lininf Lininf 1in 79228049422 1in 19807055911 1in 198070406 Overflow Overflow Overfow
f
f
f
f
f
f
f

o

w0 w w

94 17179865184 Llininf Lininf Lin 15845749650 1in 39614024711 1in 396140804 Overflow Overflow Overflow
5 8589934592 linin
b 4294%729 Linin
7 1147883648 linin
B 1073741824 linin
9 536870912 linin
0 268435456 linin

Lininf 1in 316909410130 1in79228049422 Overflow Overflow Overflow Overflow

w

Lininf 1in 633818820261 1in 158457492650 Overflow Overflow Overflow Overflow

w

f
Lininf Lin 1267726847957 1in 316909410130 Overflow Overflow Overflow Overflow
Lininf 1in 2535095891286 1in 633818820261 Overflow Overflow ~ Overflow Overflow
f
f

w0 W v

Lininf 1in 5071621201993 Overflow Overflow QOverflow Overflow Overflow

f
f
f
f
f
f
f
Lininf Overflow Qverflow Overflow Overflow Overflow Overflow

1

=

27

SUBSTITUTE SHEET (RULE 26)

WO 2016/085875 PCT/US2015/062185

Native Implementation

[0036] A native implementation of RAA will have access to the full dataset being queried
and be able to perform accurate selection of distinct values for aggregation across a wide
variety of aggregate functions without having to resort to the construction of a composite
value as described above for the SQL implementation. A native implementation is thus
simpler in theory than the SQL implementation.

[0037] The details of a specific native implementation will vary, as each native
implementation will be provided as an extension to an existing database engine, and so will
have access to the data through methods which will be unique to each database engine.
However the general technique for implementing RAA will be the same in each instance.
Generally, such an implementation includes a process by which a processor, ¢.g., a processor
of a database engine, accesses a collection of aggregation computation instructions and
selects from the collection of aggregation computation instructions, instructions which, when
executed by the processor, cause the processor to examine only the first instance of each
given key value, and utilize the record value corresponding to the first instance of the given
key value in the distinct aggregation function. Where the processor is a processor of a
database engine, the collection of aggregation computation instructions may be provided to
the database engine by a client device. In another embodiment, the collection of aggregation
computation instructions is loaded as source or compiled code by the database engine. In yet
another embodiment, the collection of aggregation computation instructions is combined
along with other instructions in the construction of the database engine.

[0038] In some embodiments, such an implementation includes a process by which a
server device accesses a user-defined library, wherein the user-defined library includes
instructions, which, when executed by a processor of the server device, cause the server
device to examine only the first instance of a given key value, and utilize the record value
corresponding to the first instance of the given key value in the distinct aggregation function.
[0039] The specific steps involved in the examination and utilization will vary, e.g.,
depending on the particular aggregation function being performed. The collection of
aggregation computation instructions, ¢.g., the user-defined library, described above may be
stored in database memory or any other suitable location which may be accessed by a suitable
processor, ¢.g., a processor of a database engine and/or a processor of a server device.

[0040] For example, in one open source database engine, to provide a function for

"variance" and other aggregations, a single shared library was constructed for the target

28

WO 2016/085875 PCT/US2015/062185

platform that implements the following functions for each aggregate function to be loaded by

SQL statements such as:

CREATE AGGREGATE FUNCTION variance distinct on key
RETURNS REAL SONAME "lib raa.so";

[0041] The following functions were added to the shared library:

my bool variance distinct on key init(

UDF INIT* initid, UDF ARGS* args, char* message);
void variance distinct on key deinit(

UDF INIT* initid);
void variance distinct on key reset (

UDF INIT* initid, UDF ARGS* args, char* is null, char
*error);
void variance distinct on key clear (

UDF INIT* initid, char* is null, char *error);
void variance distinct on key add(

UDF INIT* initid, UDF ARGS* args, char* is null, char
*error);
double variance distinct on key(

UDF INIT* initid, UDF ARGS* args, char* is null, char

*error);

[0042] The important function here is variance distinct_on_key add, which, for each
row in the result set, it will be passed the value of the primary key for the DISTINCT and the
value of the field to be aggregated.

[0043] The first time it encounters a row with a given value of the primary key, it adds a
new element to the data structure representing the aggregate; this element has both the value
of the primary key and the value of the field stored in it.

[0044] For each subsequent row with the same value of the primary key, if the value of
the field to be aggregated is the same, it is ignored. If this value is different for the same

value of the primary key, an error is flagged.

29

WO 2016/085875 PCT/US2015/062185

[0045] The variance distinct_on_key will actually compute and return the variance based
on the stored values in the aggregate data structure, and the deinit function will free any
resources associated with storing the aggregate data structure.

[0046] Certain types of aggregation will lend themselves to optimization of this process,
for example sum_distinct on_key can maintain a running sum and does not need to store the

whole aggregate data structure.

Methods, Svstems and Devices

[0047] Exemplary methods, systems and devices of the present disclosure are now
described with reference to the Figures.

[0048] FIG. 1 is a block diagram of an example system for querying one or more
databases, according to an example embodiment. The system includes a client device 102, a
data network 104, one or more servers 106, and databases 108 and 110.

[0049] The client device 102 can be any type of computing device, including a personal
computer, laptop computer, mobile phone with computing capabilities, or any other type of
device. The client device 102 includes, among other things, device hardware 120, a software
application 122, other application(s), a communications client, output devices (¢.g., a
display), and input devices (e.g., keyboard, mouse, touch screen), etc. In some embodiments,
a client device 102 may act as both an output device and an input device.

[0050] Device hardware 120 includes physical computer components, such as a processor
and memory. The software application 122 is configured to receive input for querying the one
or more databases 108, 110. According to various embodiments, the software application 122
can be implemented in the OS (operating system) of the client device 102 or as a stand-alone
application installed on the client device 102. In one embodiment, the software application
122 is a web browser application.

[0051] The data network 104 can be any type of communications network, including an
Internet network (e.g., wide area network (WAN) or local area network (LAN)), wired or
wireless network, or mobile phone data network, among others.

[0052] The client device 102 is configured to communicate with a server 106 via the data
network 104. The server 106 includes a software application executed by a processor that is
configured to generate a query against the databases 108, 110 based on an input received
from the client device 102. The server 106 is in communication with databases 108 and 110.

The databases 108, 110 are configured to store data. The databases 108, 110 can be any type

30

WO 2016/085875 PCT/US2015/062185

of database, including relational databases, non-relational databases, file-based databases,
and/or non-file-based databases, among others.

[0053] FIG. 2 is a block diagram of the arrangement of components of a computing
device 200 configured to query one or more databases, according to an example embodiment.
As shown, computing device 200 includes a processor 202 and memory 204, among other
components (not shown). In one embodiment, the computing device 200 comprises the client
device 102. In another embodiment, the computing device 200 comprises the server 106.
[0054] The memory 204 includes various applications that are executed by processor 202,
including installed applications 210, an operating system 208, and software application 222.
In embodiments where the computing device 200 comprises the client device 102, the
software application 222 comprises a web browser application. In embodiments where the
computing device 200 comprises the server 106, the software application 222 comprises a
software application configured to receive and execute a database query and/or receive a
query input, generate a database query based on the query input, and execute the database
query.

[0055] FIG. 3 is a block diagram of example functional components for a computing
device 300, according to one embodiment. One particular example of computing device 300
is illustrated. Many other embodiments of the computing device 300 may be used. In one
embodiment, the computing device 300 comprises the client device 102. In another
embodiment, the computing device 300 comprises the server 106.

[0056] In the illustrated embodiment of FIG. 3, the computing device 300 includes one or
more processor(s) 311, memory 312, a network interface 313, one or more storage devices
314, a power source 315, output device(s) 360, and input device(s) 380. The computing
device 300 also includes an operating system 318 and a communications client 340. Each of
components 311, 312, 313, 314, 315, 360, 380, 318, and 340 is interconnected physically,
communicatively, and/or operatively for inter-component communications in any operative
manner.

[0057] As illustrated, processor(s) 311 are configured to implement functionality and/or
process instructions for execution within computing device 300. For example, processor(s)
311 execute instructions stored in memory 312 or instructions stored on storage devices 314.
Memory 312, which may be a non-transient, computer-readable storage medium, is
configured to store information within computing device 300 during operation. In some
embodiments, memory 312 includes a temporary memory, area for information not to be

maintained when the computing device 300 is turned OFF. Examples of such temporary

31

WO 2016/085875 PCT/US2015/062185

memory include volatile memories such as random access memories (RAM), dynamic
random access memories (DRAM), and static random access memories (SRAM). Memory
312 maintains program instructions for execution by the processor(s) 311.

[0058] Storage devices 314 also include one or more non-transient computer-readable
storage media. Storage devices 314 are generally configured to store larger amounts of
information than memory 312. Storage devices 314 may further be configured for long-term
storage of information. In some examples, storage devices 314 include non-volatile storage
elements. Non-limiting examples of non-volatile storage elements include magnetic hard
disks, optical discs, floppy discs, flash memories, or forms of electrically programmable
memories (EPROM) or electrically erasable and programmable (EEPROM) memories.
[0059] The computing device 300 uses network interface 313 to communicate with
external devices via one or more networks, such as server 106 and/or database 108, 110
shown in FIG. 1. Network interface 313 may be a network interface card, such as an Ethernet
card, an optical transceiver, a radio frequency transceiver, or any other type of device that can
send and receive information. Other non-limiting examples of network interfaces include
wireless network interfaces, e.g., Bluetooth®, 4G and WiFi® radios in mobile computing
devices, and USB (Universal Serial Bus). In some embodiments, the computing device 300
uses network interface 313 to wirelessly communicate with an external device, a mobile
phone of another, or other networked computing device.

[0060] Wireless networks as described herein may include, but are not limited to, Code
Divisional Multiple Access (CDMA) networks, the Group Special Mobile or the Global
System for Mobile Communications (GSM) and the General Packet Radio Service (GPRS)
networks, third-generation (3G) networks such as Enhanced Data-rates for Global Evolution
(EDGE) and Universal Mobile Telecommunications Systems (UMTS), fourth-generation
(4G) networks such as Mobile WiMax and Long Term Evolution (LTE), International Mobile
Telecommunications-Advanced (IMT-Advanced) networks, and future fifth-generation (5G)
networks exceeding the capabilities of the current 4G/IMT-Advanced standards. Examples of
wireless networks include, for example, a BLUETOOTH network, a wireless personal area
network, a wireless 802.11 local area network (LAN), and/or wireless telephony network
(e.g., a cellular, PCS, or GSM network).

[0061] The computing device 300 includes one or more input devices 380. Input devices
380 are configured to receive input from a user through tactile, audio, video, or other sensing
feedback. Non-limiting examples of input devices 380 include a presence-sensitive screen, a

mouse, a keyboard, a voice responsive system, camera 302, a video recorder 304, a

32

WO 2016/085875 PCT/US2015/062185

microphone 306, a GPS module 308, or any other type of device for detecting a command
from a user or sensing the environment. In some examples, a presence-sensitive screen
includes a touch-sensitive screen.

[0062] One or more output devices 360 are also included in computing device 300.
Output devices 360 are configured to provide output to a user using tactile, audio, and/or
video stimuli. Output devices 360 may include a display screen (part of the presence-sensitive
screen), a sound card, a video graphics adapter card, or any other type of device for
converting a signal into an appropriate form understandable to humans or machines.
Additional examples of output device 360 include a speaker, a cathode ray tube (CRT)
monitor, a liquid crystal display (LCD), or any other type of device that can generate
intelligible output to a user. In some embodiments, a device may act as both an input device
and an output device.

[0063] The computing device 300 includes one or more power sources 315 to provide
power to the computing device 300. Non-limiting examples of power source 315 include
single-use power sources, rechargeable power sources, and/or power sources developed from
nickel-cadmium, lithium-ion, or other suitable material. The computing device 300 includes
an operating system 318, such as a Windows®, Apple® OS, iOS®, or Android® operating
system. The operating system 318 controls operations of the components of the computing
device 300. For example, the operating system 318 facilitates the interaction of
communications client 340 with processors 311, memory 312, network interface 313, storage
device(s) 314, input device 380, output device 360, and power source 315.

[0064] As also illustrated in FIG. 3, the computing device 300 includes communications
client 340. Communications client 340 includes communications module 345. Each of
communications client 340 and communications module 345 includes program instructions
and/or data that are executable by the computing device 300. For example, in one
embodiment, communications module 345 includes instructions causing the communications
client 340 executing on the computing device 300 to perform one or more of the operations
and actions described in the present disclosure. In some embodiments, communications client
340 and/or communications module 345 form a part of operating system 318 executing on the
computing device 300.

[0065] As described in greater detail herein, one or more embodiments of the disclosure
provide methods and related systems for performing an aggregate function using a database
query. For example, in some embodiments, the present disclosure provides a method for

performing an aggregate function using a database query, wherein the method includes

33

WO 2016/085875 PCT/US2015/062185

receiving a database query at a server 106, wherein the database query joins a plurality of
database tables, ¢.g., database tables of database 108, 110, and comprises a distinct
aggregation function, which, when executed against one or more databases 108, 110
aggregates only values of database records corresponding to distinct keys by which the tables
are joined, regardless of the cardinality of the joined tables. The server 106 then executes the
database query against the one or more databases 108, 110, and provides results of the
database query to a client device 102 over a data network 104. As described above, the client
device 102 may be a first computing device 200 or a component thereof. Alternatively, or in
addition, a second computing device 200 includes the server 106. Similarly, the client device
102 may be a first computing device 300, or a component thereof, as described herein.
Alternatively, or in addition, a second computing device 300 includes the server 106.

[0066] The one or more databases 108, 110 can be relational databases. In some
embodiments, the database query is a SQL query. In some such embodiments, methods
according to the present disclosure include steps of generating a distinct key value-record
value composite integer for each record value to be aggregated via the distinct aggregation
function, wherein generating the distinct key value-record value composite integer includes
applying a uniform hash function to covert a key value corresponding to a record value into a
random value, and adding the record value to the random value to provide a distinct key
value-record value composite integer.

[0067] Where the distinct aggregation function is a summation function configured to
compute a sum of record values corresponding to distinct keys, the summation function can
include steps of summing the distinct key value-record value composite integers and
subtracting the sum of the random values to provide the sum of the record values
corresponding to distinct keys.

[0068] Where the distinct aggregation function is an average function configured to
compute an average of record values corresponding to distinct keys, the average function can
include summing the distinct key value-record value composite integers, subtracting the sum
of the random values to obtain the sum of the record values corresponding to distinct keys,
and dividing the sum of the record values corresponding to distinct keys by the number of
distinct keys to provide the average of the record values corresponding to the distinct keys.
[0069] For methods involving the generation of a distinct key value-record value
composite integer as described above, a bit depth data type for the distinct key value-record
value composite integer should generally be utilized which is sufficient to contain a full

summation of all the record values to be aggregated. As discussed previously herein, when

34

WO 2016/085875 PCT/US2015/062185

implementing RAA in a device with constrained precision, such as an database server with
only 128 bits of arithmetic precision), some advance knowledge about the dataset, about the
range of values possible, and the number of distinct values in the dataset may be necessary to
avoid collisions.

[0070] In other embodiments, the present disclosure provides a method for performing an
aggregate function using a database query, wherein the method includes receiving, at a server
106, a query input from a client device 102 over a data network 104. The server 106 then
generates a database query based on the query input, wherein the database query joins a
plurality of database tables, ¢.g., database tables of database 108, 110, and includes a distinct
aggregation function, which, when executed against one or more databases 108, 110
aggregates only values of database records corresponding to distinct keys by which the tables
are joined, regardless of the cardinality of the joined tables. The server 106 then executes the
database query against the one or more databases 108, 110, and returns results of the database
query to the client device 102 over the data network 104.

[0071] As described above, the client device 102 may be a first computing device 200 or
a component thereof. Alternatively, or in addition, a second computing device 200 includes
the server 106. Similarly, the client device 102 may be a first computing device 300, or a
component thereof, as described herein. Alternatively, or in addition, a second computing
device 300 includes the server 106.

[0072] The one or more databases 108, 110 can be relational databases. In some
embodiments, the database query is a SQL query. In some such embodiments, methods
according to the present disclosure include steps of generating a distinct key value-record
value composite integer for each record value to be aggregated via the distinct aggregation
function, wherein generating the distinct key value-record value composite integer includes
applying a uniform hash function to covert a key value corresponding to a record value into a
random value, and adding the record value to the random value to provide a distinct key
value-record value composite integer.

[0073] Where the distinct aggregation function is a summation function configured to
compute a sum of record values corresponding to distinct keys, the summation function can
include the steps of summing the distinct key value-record value composite integers and
subtracting the sum of the random values to provide the sum of the record values
corresponding to distinct keys.

[0074] Where the distinct aggregation function is an average function configured to

compute an average of record values corresponding to distinct keys, the average function can

35

WO 2016/085875 PCT/US2015/062185

include summing the distinct key value-record value composite integers, subtracting the sum
of the random values to obtain the sum of the record values corresponding to distinct keys,
and dividing the sum of the record values corresponding to distinct keys by the number of
distinct keys to provide the average of the record values corresponding to the distinct keys.
[0075] For methods involving the generation of a distinct key value-record value
composite integer as described above, a bit depth data type for the distinct key value-record
value composite integer should generally be utilized which is sufficient to contain a full
summation of all the values to be aggregated. As discussed previously herein, when using a
128 bit implementation, some advance knowledge about the dataset, about the range of
values possible, and the number of distinct values in the dataset may be necessary to avoid
collisions.

[0076] As discussed above, in some embodiments, the present disclosure provides a
method for performing an aggregate function using a database query, wherein the method
includes receiving a database query at a server 106, wherein the database query joins a
plurality of database tables, ¢.g., database tables of database 108, 110, and comprises a
distinct aggregation function, which, when executed against one or more databases 108, 110
aggregates only values of database records corresponding to distinct keys by which the tables
are joined, regardless of the cardinality of the joined tables. The server 106 then executes the
database query against the one or more databases 108, 110, and provides results of the
database query to a client device 102 over a data network 104.

[0077] The step of executing the database query against the one or more databases 108,
110 includes, in some embodiments, accessing a collection of aggregation computation
instructions and selecting from the collection of aggregation computation instructions,
instructions which, when executed by the server 106, cause the server 106 to examine only
the first instance of each given key value and utilize the record value corresponding to the
first instance of the given key value in the distinct aggregation function. In some
embodiments, this includes accessing a user-defined library, wherein the user-defined library
comprises instructions, which, when executed by a processor associated with the server 106,
cause the server 106 to examine only the first instance of each given key value, and utilize the
record value corresponding to the first instance of a given key value in the distinct
aggregation function. In some embodiments, this may include providing a data structure
including only the first instance of each given key value and its corresponding record value to

be aggregated. In such embodiments, the server may then aggregate the record values of the

36

WO 2016/085875 PCT/US2015/062185

data structure. The processor associated with the server 106 may be, e.g., a processor 202 or
311 of computing device 200 or 300 respectively.

[0078] As described above, the client device 102 may be a first computing device 200 or
a component thereof. Alternatively, or in addition, a second computing device 200 includes
the server 106. Similarly, the client device 102 may be a first computing device 300, or a
component thereof, as described herein. Alternatively, or in addition, a second computing
device 300 includes the server 106.

[0079] The user-defined library described above may be stored in database memory, ¢.g.,
database memory of one or more databases 108, 110 or any other suitable location which may
be accessed by the server 106.

[0080] In connection with the above, in some embodiments, the present disclosure
provides a method for facilitating the performance an aggregate function using a database
query, wherein the database query joins a plurality of database tables, ¢.g., database tables of
databases 108, 110, and comprises a distinct aggregation function, which, when executed
against one or more databases 108, 110 aggregates only values of database records
corresponding to distinct keys by which the tables are joined, regardless of the cardinality of
the joined tables, and wherein the method includes providing a collection of aggregation
computation instructions, ¢.g., a user-defined library, accessible to a server 106, wherein the
collection of aggregation computation instructions, e.g., the user-defined library, comprises
instructions, which, when executed by a processor associated with the server 106, cause the
server 106 to examine only the first instance of each given key value, and utilize the record
value corresponding to the first instance of a given key value in the distinct aggregation
function. In some embodiments, this may include providing a data structure including only
the first instance of each given key value and its corresponding record value to be aggregated.
In such embodiments, the server may then aggregate the record values of the data structure.
[0081] As discussed above, in some such embodiments, methods according to the present
disclosure include steps of generating a distinct key value-record value composite integer for
cach record value to be aggregated via the distinct aggregation function. Accordingly, in
some embodiments, the present disclosure provides a method for generating a distinct key
value-record value composite integer for use in an aggregation, wherein the method includes:
applying a uniform hash function to covert a key value corresponding to a record value into a
random value, and adding the record value to the random value to provide a distinct key
value-record value composite integer, wherein the applying and adding are performed by a

processor associated with a server 106, e.g., a processor 202 or 311 as described herein. In

37

WO 2016/085875 PCT/US2015/062185

some embodiments, such a method will include the selection of a bit depth data type for the
distinct key value-record value composite integer which is sufficient to contain a full
summation of all the values to be aggregated.

[0082] The above methods can also be described from the point of view of the client
device 102. For example, in some embodiments, the present disclosure provides a method
which includes steps of transmitting a database query over a data network 104 from a client
device 102 to a server 106, which, when received by the server 106, causes the server 106 to
execute the database query against one or more databases 108, 110, wherein the database
query joins a plurality of database tables, e.g., a plurality of database tables of database 108,
110, and comprises a distinct aggregation function, which, when executed against the one or
more databases 108, 110 aggregates only values of database records corresponding to distinct
keys by which the tables are joined, regardless of the cardinality of the joined tables. The
method further includes a step of receiving results of the database query at the client device
102 from the server 106.

[0083] Similarly, in some embodiments, the present disclosure provides a method which
includes steps of transmitting a query input over a data network 104 from a client device 102
to a server 106, which, when received by the server 106, causes the server 106 to generate a
database query based on the query input, wherein the database query joins a plurality of
database tables and comprises a distinct aggregation function, which, when executed against
the one or more databases aggregates only values of database records corresponding to
distinct keys by which the tables are joined, regardless of the cardinality of the joined tables,
and execute the database query against the one or more databases. The method further
includes a step of receiving results of the database query at the client device 102 from the
server 106.

[0084] Instructions implementing one or more of the various steps of the methods
described herein may be embodied in any suitable non-transitory recording medium known in
the art and/or described herein.

[0085] In some embodiments, one or more of the various steps of the methods described
herein may be performed by one or more software applications, e.g., software applications
designed to run on a computing device as described herein and/or stored on a non-transient,
computer-readable storage medium as described herein. In some embodiments, the one or
more software applications are provided with or configured to access metadata associated
with one or more databases as described herein, e.g., metadata describing the schema of the

one or more databases. In some embodiments, metadata associated with the one or more

38

WO 2016/085875 PCT/US2015/062185

databases is utilized in the formation and/or execution of a database query including a distinct
aggregation function as described herein. For example, in some embodiments, a particular
distinct aggregation function is selected and/or implemented, ¢.g., in response to a question
posed by a user, based on metadata associated with the one or more databases. Such metadata
may include, e.g., information regarding the structure and/or relationship of tables within the
one or more databases.

[0086] It will also be appreciated that the present disclosure provides systems and
subsystems which incorporate a plurality of the individual components describe herein in a
functional relationship. For example, in some embodiments, a system of the present
disclosure includes a client device 102, a server 106 (including, ¢.g., server hardware, e.g.,
one or more associated processors), and one or more databases 108, 110, wherein the client
device 102 transmits a database query over a data network 104 from the client device 102 to
the server 106, which, when received by the server 106, causes the server 106 to execute a
database query against the one or more databases 108, 110, wherein the database query joins
a plurality of database tables, ¢.g., database tables of the one or more databases 108, 110, and
includes a distinct aggregation function, which, when executed against the one or more
databases 108, 110 aggregates only values of database records corresponding to distinct keys
by which the tables are joined, regardless of the cardinality of the joined tables. The system is
further configured such that the server 106 returns results of the database query to the client

device 102 over a data network, ¢.g., a data network 104.

[0087] Although the foregoing invention has been described in some detail by way of
illustration and example for purposes of clarity of understanding, it should be readily
apparent to those of ordinary skill in the art in light of the teachings of this disclosure that
certain changes and modifications may be made thereto without departing from the spirit or
scope of the appended claims.

[0088] Accordingly, the preceding merely illustrates the principles of the invention. It
will be appreciated that those skilled in the art will be able to devise various arrangements
which, although not explicitly described or shown herein, embody the principles of the
invention and are included within its spirit and scope. Furthermore, all examples and
conditional language recited herein are principally intended to aid the reader in understanding
the principles of the invention being without limitation to such specifically recited examples
and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments

of the invention as well as specific examples thereof, are intended to encompass both

39

WO 2016/085875 PCT/US2015/062185

structural and functional equivalents thereof. Additionally, it is intended that such equivalents
include both currently known equivalents and equivalents developed in the future, i.¢., any
elements developed that perform the same function, regardless of structure. The scope of the
present invention, therefore, is not intended to be limited to the exemplary embodiments
shown and described herein. Rather, the scope and spirit of present invention is embodied by

the appended claims.

40

WO 2016/085875 PCT/US2015/062185

CLAIMS

What 1s claimed is:

1. A method for performing an aggregate function using a database query, the method
comprising:
executing a database query with a processor of a database engine having access to one
or more databases, wherein the database query joins a plurality of database tables of
the one or more databases and comprises a distinct aggregation function, which, when
executed against the one or more databases, aggregates only values of database
records corresponding to distinct keys by which the tables are joined, regardless of the

cardinality of the joined tables.

2. The method of claim 1, wherein the processor is comprised by a server device, and
wherein the method comprises providing results of the database query to a client

device over a network connection.

3. The method of claim 1 or 2, wherein the one or more databases are relational
databases and the database query is a single Structured Query Language (SQL) query

statement.

4. The method of claim 3, wherein the method comprises:
generating a distinct key value-record value composite integer for each record value
to be aggregated via the distinct aggregation function, wherein generating the distinct
key value-record value composite integer comprises:
applying a uniform hash function to covert a key value corresponding to a
record value into a random value; and
adding the record value to the random value to provide a distinct key value-

record value composite integer.
5. The method of claim 4, wherein the distinct aggregation function is a summation

function configured to compute a sum of record values corresponding to distinct keys,

and wherein the summation function comprises summing the distinct key value-record

41

WO 2016/085875 PCT/US2015/062185

10.

11.

value composite integers and subtracting the sum of the random values to provide the

sum of the record values corresponding to distinct keys.

The method of claim 4, wherein the distinct aggregation function is an average
function configured to compute an average of record values corresponding to distinct
keys, and wherein the average function comprises summing the distinct key value-
record value composite integers, subtracting the sum of the random values to obtain
the sum of the record values corresponding to distinct keys, and dividing the sum of
the record values corresponding to distinct keys by the number of distinct keys to

provide the average of the record values corresponding to the distinct keys.

The method of any one of claims 4-6, comprising selecting for use in connection with
the generation of the distinct key value-record value composite integer a bit depth
data type for the distinct key value-record value composite integer which is sufficient

to contain a full summation of all the record values to be aggregated.

The method of claim 1, wherein the executing comprises:
accessing a collection of aggregation computation instructions;
selecting from the collection of aggregation computation instructions, instructions
which, when executed by the processor of the database engine, cause the database
engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

The method of claim 8, wherein the collection of computation instructions is provided

to the database engine by a client device.

The method of claim 8, wherein the collection of computation instructions is loaded

as source or compiled code by the database engine.

The method of claim 8, wherein the collection of computation instructions is

comprised by the database engine.

42

WO 2016/085875 PCT/US2015/062185

12.

13.

14.

15.

The method of claim 1, wherein the executing comprises accessing a user-defined
library, wherein the user-defined library comprises instructions, which, when
executed by the processor of the database engine, cause the processor of the database
engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key value in

the distinct aggregation function.

The method of claim 12, wherein the user-defined library is stored in database

memory.

A method for facilitating the performance an aggregate function using a database
query, wherein the database query joins a plurality of database tables and comprises a
distinct aggregation function, which, when executed against one or more databases
aggregates only values of database records corresponding to distinct keys by which
the tables are joined, regardless of the cardinality of the joined tables, the method
comprising:

providing a collection of aggregation computation instructions to a processor
of a database engine, wherein the collection of aggregation computation instructions
comprises instructions, which, when executed by the processor of the database engine,
cause the database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key in

the distinct aggregation function.

A method for facilitating the performance an aggregate function using a database
query, wherein the database query joins a plurality of database tables and comprises a
distinct aggregation function, which, when executed against one or more databases
aggregates only values of database records corresponding to distinct keys by which
the tables are joined, regardless of the cardinality of the joined tables, the method
comprising:

providing a user-defined library accessible to a server device, wherein the
user-defined library comprises instructions, which, when executed by a processor of

the server device, cause the server device to:

43

WO 2016/085875 PCT/US2015/062185

16.

examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given key in

the distinct aggregation function.

A non-transitory recording medium comprising instructions, which, when executed by
a processor of a database engine, cause the database engine to:

execute a database query against one or more databases, wherein the database

query joins a plurality of database tables and comprises a distinct aggregation function,

which, when executed against the one or more databases aggregates only values of

database records corresponding to distinct keys by which the tables are joined, regardless

of the cardinality of the joined tables.

17.

18.

19.

The non-transitory recording medium of claim 16, wherein the processor is comprised
by a server device, and wherein the non-transitory recording medium comprises
instructions, which when executed by the processor, cause the processor to provide

results of the database query to a client device over a network connection.

The non-transitory recording medium of claim 16 or 17, wherein the one or more
databases are relational databases and the database query is a single Structured Query

Language (SQL) query statement.

The non-transitory recording medium of claim 18, wherein the non-transitory
recording medium comprises instructions, which, when executed by the processor,
cause the database engine to:
generate a distinct key value-record value composite integer for each record
value to be aggregated via the distinct aggregation function, wherein generating the
distinct key value-record value composite integer comprises:
applying a uniform hash function to covert a key value corresponding
to a record value into a random value; and
adding the record value to the random value to provide a distinct key

value-record value composite integer.

44

WO 2016/085875 PCT/US2015/062185

20.

21.

22.

23.

The non-transitory recording medium of claim 19, wherein the distinct aggregation
function is a summation function configured to compute a sum of record values
corresponding to distinct keys, and wherein the summation function comprises
summing the distinct key value-record value composite integers and subtracting the
sum of the random values to provide the sum of the record values corresponding to

distinct keys.

The non-transitory recording medium of claim 19, wherein the distinct aggregation
function is an average function configured to compute an average of record values
corresponding to distinct keys, and wherein the average function comprises

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record
values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the
number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

The non-transitory recording medium of any one of claims 18-21, wherein the non-
transitory recording medium comprises instructions, which, when executed by the
processor, cause the database engine to select for use in connection with the
generation of the distinct key value-record value composite integer a bit depth data
type for the distinct key value-record value composite integer which is sufficient to

contain a full summation of all the record values to be aggregated.

The non-transitory recording medium of claim 16, wherein the executing comprises
accessing a collection of aggregation computation instructions;
selecting from the collection of aggregation computation instructions,
instructions which, when executed by the processor of the database engine, cause the
database engine to:
examine only the first instance of each given key value; and
utilize the record value corresponding to the first instance of the given key
value

in the distinct aggregation function.

45

WO 2016/085875 PCT/US2015/062185

24. The non-transitory recording medium of claim 16, wherein the executing comprises

25.

accessing a user-defined library, wherein the user-defined library comprises
instructions, which, when executed by the processor of the database engine, cause the
processor of the database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value

in the distinct aggregation function.

A system for performing an aggregate function using a database query, the system
comprising:

a client device;

a server device; and

one or more databases,

wherein the client device transmits a database query over a network
connection from the client device to the server device, which, when received by the
server device, causes the server device to execute a database query against the one or
more databases,

wherein the database query joins a plurality of database tables and comprises a
distinct aggregation function, which, when executed against the one or more
databases aggregates only values of database records corresponding to distinct keys
by which the tables are joined, regardless of the cardinality of the joined tables, and

wherein the server device returns results of the database query to the client

device over a network connection.

46

PCT/US2015/062185

3 E

WO 2016/085875

BOT asvavivd
221 ddy
AUV AALAOE
~ 744
/\/ A FOIASG
¥57
_) ‘IVA HAUOMLEN
k- AR-14
J— /l\/ 42
L 28YEY IV BOT MIAHIS e — ARAZG LNED

WO 2016/085875 PCT/US2015/062185

)
i

COMPUTING DEVICE 208

PROCESSOR 282

MEMORY 204

SOFTWARE APPLICATION 242

08 APPLICATION(S)}
208 218

WO 2016/085875

PROCESSOR(S)
11

MEMORY
312

NETWORK
INTERFAGCE
313

DEV] {:&(S}
214

POWER SQURCE
313

Gomputing
Device

OPERATING
SYSTEM
318

PCT/US2015/062185

COMM. CLIENT
348

COMM,
MODULE
43

!

OUTPUT
DEVICE(S)
380

INFUT DEVICES
380

(CAMERA

BEQ REC,
304

MIC
208

GP&
308

/"\/’\/\
ANAY,

	Abstract
	Description
	Claims
	Drawings

