
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2016/085875 Al
2 June 2016 (02.06.2016) W I PO I P CT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 17/30 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

PCT/US2015/062 185 DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

23 November 2015 (23.11.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:
14/555,013 26 November 2014 (26.11.2014) US (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: LOOKER DATA SCIENCES, INC. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[US/US]; 101 Church Street, 4th Floor, Santa Cruz, Cali- TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
fornia 95060 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(72) Inventors: TABB, Lloyd; 3345 Lorna Alta Lane, Santa DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

Cruz, California 95065 (US). TOY, Michael; 753 Sun- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

shine Drive, Los Altos, California 94024 (US). HOOVER, SM, TR), OAPI (BF, BJ, CF, CG, C, CM, GA, GN, GQ,

Scott; 322 1/2 Maple Street, Santa Cruz, California 95060 GW, KM, ML, MR, NE, SN, TD, TG).

(US). Published:

(74) Agent: RUBIN, Michael B.; Bozicevic, Field & Francis - with international search report (Art. 21(3))
LLP, 1900 University Ave, Suite 200, East Palo Alto, Cali
fornia 94303 (US).

(54) Title: RELATION AWARE AGGREGATION (RAA) ON NORMALIZED DATASETS

CLIENT DEVICE SERVER 106 DATABASE1t0

4-/NETWORK

DEVICE HW

SOFTWARE
APP 12

DATABASE 108

(57) Abstract: The present disclosure provides methods for performing a computation with an aggregate function using a database
Query, wherein the database query joins a plurality of database tables and includes a distinct aggregation function, which, when ex

ecuted against one or more databases aggregates only values of database records corresponding to distinct keys by which the tables
are joined, regardless of the cardinality of the joined tables. Related devices and systems are also provided.

WO 2016/085875 PCT/US2015/062185

RELATION AWARE AGGREGATION (RAA) ON NORMALIZED DATASETS

INTRODUCTION

[0001] Structured Query Language (SQL) databases are designed to work optimally when

data is stored in collections of relatively compact units, along with data needed to specify the

relational connection between collections in the database. These disparate sources of

information are then combined using a variety of relational combinatoric calculations to

create a data set with all of the appropriate information needed to answer a question or query.

[0002] This "normalization" of data makes it possible for the database to store and index

the data efficiently and to theoretically have the flexibility to explore the data along any

dimension. However, queries against data in this form can be inefficient, requiring a second

layer of processing on the normalized data, in order to respond to queries that join more than

one table.

[0003] This second layer of processing can be avoided if the set of questions the database

is expected to answer efficiently is known in advance. A common solution is to build a

summarization layer of data on top of the normalized tables. This is inefficient in terms of

space, but removes the computational burden.

SUMMARY

[0001] Relation Aware Aggregation (RAA) is a method of computing aggregate

functions on data sets that avoids the inefficiencies of normalized data while still maintaining

the flexibility of a pure normalized database. RAA provides an effective means of obtaining

result sets for aggregate functions, while reducing the number of processing steps and/or

memory required to obtain such result sets.

[0002] The present disclosure provides methods for performing a computation with an

aggregate function using a database query, wherein the database query joins a plurality of

database tables and includes a distinct aggregation function, which, when executed against

one or more databases aggregates only values of database records corresponding to distinct

keys by which the tables are joined, regardless of the cardinality of the joined tables. Related

devices and systems are also provided.

[0003] Aspects, including embodiments, of the present subject matter described herein

may be beneficial alone or in combination, with one or more other aspects or embodiments.

Without limiting the foregoing or subsequent description, certain non-limiting aspects of the

disclosure numbered 1-86 are provided below. As will be apparent to those of skill in the art

1

WO 2016/085875 PCT/US2015/062185

upon reading this disclosure, each of the individually numbered aspects may be used or

combined with any of the preceding or following individually numbered aspects. This is

intended to provide support for all such combinations of aspects and is not limited to

combinations of aspects explicitly provided below.

1. In one aspect, the present disclosure provides a method for performing an aggregate

function using a database query, the method including:

executing a database query with a processor of a database engine having

access to one or more databases, wherein the database query joins a plurality of

database tables of the one or more databases and includes a distinct aggregation

function, which, when executed against the one or more databases, aggregates only

values of database records corresponding to distinct keys by which the tables are

joined, regardless of the cardinality of the joined tables.

2. The method of aspect 1, wherein the processor is comprised by a server device, and

wherein the method includes providing results of the database query to a client device

over a network connection.

3. The method of aspect 1 or 2, wherein the one or more databases are relational

databases and the database query is a single Structured Query Language (SQL) query

statement.

4. The method of aspect 3, wherein the method includes:

generating a distinct key value-record value composite integer for each record

value to be aggregated via the distinct aggregation function, wherein generating the

distinct key value-record value composite integer includes:

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

adding the record value to the random value to provide a distinct key

value-record value composite integer.

5. The method of aspect 4, wherein the distinct aggregation function is a summation

function configured to compute a sum of record values corresponding to distinct keys,

and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

2

WO 2016/085875 PCT/US2015/062185

6. The method of aspect 4, wherein the distinct aggregation function is an average

function configured to compute an average of record values corresponding to distinct

keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

7. The method of any one of aspects 4-6, including selecting for use in connection with

the generation of the distinct key value-record value composite integer a bit depth

data type for the distinct key value-record value composite integer which is sufficient

to contain a full summation of all the record values to be aggregated.

8. The method of aspect 1, wherein the executing includes:

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,

instructions which, when executed by the processor of the database engine, cause the

database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

9. The method of aspect 8, wherein the collection of computation instructions is

provided to the database engine by a client device.

10. The method of aspect 8, wherein the collection of computation instructions is loaded

as source or compiled code by the database engine.

11. The method of aspect 8, wherein the collection of computation instructions is

comprised by the database engine.

12. The method of aspect 1, wherein the executing includes accessing a user-defined

library, wherein the user-defined library includes instructions, which, when executed

by the processor of the database engine, cause the processor of the database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

3

WO 2016/085875 PCT/US2015/062185

13. The method of aspect 12, wherein the user-defined library is stored in database

memory.

14. In another aspect, the present disclosure provides a method for facilitating the

performance an aggregate function using a database query, wherein the database

query joins a plurality of database tables and includes a distinct aggregation function,

which, when executed against one or more databases aggregates only values of

database records corresponding to distinct keys by which the tables are joined,

regardless of the cardinality of the joined tables, the method including:

providing a collection of aggregation computation instructions to a processor

of a database engine, wherein the collection of aggregation computation instructions

includes instructions, which, when executed by the processor of the database engine,

cause the database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key in the distinct aggregation function.

15. In another aspect, the present disclosure provides a method for facilitating the

performance an aggregate function using a database query, wherein the database

query joins a plurality of database tables and includes a distinct aggregation function,

which, when executed against one or more databases aggregates only values of

database records corresponding to distinct keys by which the tables are joined,

regardless of the cardinality of the joined tables, the method including:

providing a user-defined library accessible to a server device, wherein the

user-defined library includes instructions, which, when executed by a processor of the

server device, cause the server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key in

the distinct aggregation function.

16. In another aspect, the present disclosure provides a method for performing an

aggregate function using a database query, the method including:

receiving a database query at a server device, wherein the database query joins

a plurality of database tables and includes a distinct aggregation function, which,

when executed against one or more databases aggregates only values of database

records corresponding to distinct keys by which the tables are joined, regardless of the

cardinality of the joined tables;

4

WO 2016/085875 PCT/US2015/062185

executing the database query against the one or more databases; and

providing results of the database query to a client device over a network

connection.

17. The method of aspect 16, wherein the one or more databases are relational databases

and the database query is a single Structured Query Language (SQL) query statement.

18. The method of aspect 17, wherein the method includes:

generating a distinct key value-record value composite integer for each record

value to be aggregated via the distinct aggregation function, wherein generating the

distinct key value-record value composite integer includes:

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

adding the record value to the random value to provide a distinct key

value-record value composite integer.

19. The method of aspect 18, wherein the distinct aggregation function is a summation

function configured to compute a sum of record values corresponding to distinct keys,

and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

20. The method of aspect 18, wherein the distinct aggregation function is an average

function configured to compute an average of record values corresponding to distinct

keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

21. The method of any one of aspects 18-20, including selecting for use in connection

with the generation of the distinct key value-record value composite integer a bit

depth data type for the distinct key value-record value composite integer which is

sufficient to contain a full summation of all the record values to be aggregated.

22. The method of aspect 16, wherein the executing includes

accessing a collection of aggregation computation instructions;

5

WO 2016/085875 PCT/US2015/062185

selecting from the collection of aggregation computation instructions,

instructions which, when executed by a processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

23. The method of aspect 16, wherein the executing includes

accessing a user-defined library, wherein the user-defined library includes

instructions, which, when executed by a processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

24. In another aspect, the present disclosure provides a method for performing an

aggregate function using a database query, the method including:

receiving, at a server device, a query input from a client device over a network

connection;

generating a database query based on the query input, wherein the database

query joins a plurality of database tables and includes a distinct aggregation function,

which, when executed against one or more databases aggregates only values of

database records corresponding to distinct keys by which the tables are joined,

regardless of the cardinality of the joined tables;

executing the database query against the one or more databases; and

returning results of the database query to the client device over a network

connection.

25. The method of aspect 24, wherein the one or more databases are relational databases

and the database query is a single Structured Query Language (SQL) query statement.

26. The method of aspect 25, wherein the method includes:

generating a distinct key value-record value composite integer for each record

value to be aggregated via the distinct aggregation function, wherein generating the

distinct key value-record value composite integer includes:

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

6

WO 2016/085875 PCT/US2015/062185

adding the record value to the random value to provide a distinct key

value-record value composite integer.

27. The method of aspect 26, wherein the distinct aggregation function is a summation

function configured to compute a sum of record values corresponding to distinct keys,

and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

28. The method of aspect 26, wherein the distinct aggregation function is an average

function configured to compute an average of record values corresponding to distinct

keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

29. The method of aspect any one of aspects 26-28, including selecting for use in

connection with the generation of the distinct key value-record value composite

integer a bit depth data type for the distinct key value-record value composite integer

which is sufficient to contain a full summation of all the record values to be

aggregated.

30. The method of aspect 24, wherein the executing includes

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,

instructions which, when executed by a processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

31. The method of aspect 24, wherein the executing includes accessing a user-defined

library, wherein the user-defined library includes instructions, which, when executed

by a processor of the server device, cause the server device to:

examine only the first instance of each given key value; and

7

WO 2016/085875 PCT/US2015/062185

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

32. The method of aspect 31, wherein the user-defined library is stored in database

memory.

33. In another aspect, the present disclosure provides a method for generating a distinct

key value-record value composite integer for use in an aggregation function, the

method including:

applying a uniform hash function to covert a key value corresponding to a

record value into a random value; and

adding the record value to the random value to provide a distinct key value

record value composite integer, wherein the applying and adding are performed by a

processor of a database engine.

34. The method of aspect 33, including selecting for use in connection with the generation

of the distinct key value-record value composite integer a bit depth data type for the

distinct key value-record value composite integer which is sufficient to contain a full

summation of all the record values to be aggregated.

35. In another aspect, the present disclosure provides a method for generating a distinct

key value-record value composite integer for use in an aggregation function, the

method including:

applying a uniform hash function to covert a key value corresponding to a

record value into a random value; and

adding the record value to the random value to provide a distinct key value

record value composite integer, wherein the applying and adding are performed by a

processor of a server device.

36. The method of aspect 35, including selecting for use in connection with the generation

of the distinct key value-record value composite integer a bit depth data type for the

distinct key value-record value composite integer which is sufficient to contain a full

summation of all the record values to be aggregated.

37. In another aspect, the present disclosure provides a non-transitory recording medium

including instructions, which, when executed by a processor of a database engine,

cause the database engine to:

execute a database query against one or more databases, wherein the database

query joins a plurality of database tables and includes a distinct aggregation function,

which, when executed against the one or more databases aggregates only values of

8

WO 2016/085875 PCT/US2015/062185

database records corresponding to distinct keys by which the tables are joined,

regardless of the cardinality of the joined tables.

38. The non-transitory recording medium of aspect 37, wherein the processor is

comprised by a server device, and wherein the non-transitory recording medium

includes instructions, which when executed by the processor, cause the processor to

provide results of the database query to a client device over a network connection.

39. The non-transitory recording medium of aspect 37 or 38, wherein the one or more

databases are relational databases and the database query is a single Structured Query

Language (SQL) query statement.

40. The non-transitory recording medium of aspect 39, wherein the non-transitory

recording medium includes instructions, which, when executed by the processor,

cause the database engine to:

generate a distinct key value-record value composite integer for each record

value to be aggregated via the distinct aggregation function, wherein generating the

distinct key value-record value composite integer includes:

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

adding the record value to the random value to provide a distinct key

value-record value composite integer.

41. The non-transitory recording medium of aspect 40, wherein the distinct aggregation

function is a summation function configured to compute a sum of record values

corresponding to distinct keys, and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

42. The non-transitory recording medium of aspect 40, wherein the distinct aggregation

function is an average function configured to compute an average of record values

corresponding to distinct keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

9

WO 2016/085875 PCT/US2015/062185

43. The non-transitory recording medium of any one of aspects 39-42, wherein the non

transitory recording medium includes instructions, which, when executed by the

processor, cause the database engine to select for use in connection with the

generation of the distinct key value-record value composite integer a bit depth data

type for the distinct key value-record value composite integer which is sufficient to

contain a full summation of all the record values to be aggregated.

44. The non-transitory recording medium of aspect 37, wherein the executing includes

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,

instructions which, when executed by the processor of the database engine, cause the

database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

45. The non-transitory recording medium of aspect 37, wherein the executing includes

accessing a user-defined library, wherein the user-defined library includes

instructions, which, when executed by the processor of the database engine, cause the

processor of the database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

46. In another aspect, the present disclosure provides a non-transitory recording medium

including instructions which, when executed by a processor of a server device, cause

the server device to:

receive a query input from a client device over a network connection;

generate a database query based on the query input, wherein the database

query joins a plurality of database tables and includes a distinct aggregation function,

which, when executed against one or more databases aggregates only values of

database records corresponding to distinct keys by which the tables are joined,

regardless of the cardinality of the joined tables;

execute the database query against the one or more databases; and

return results of the database query to the client device over a network

connection.

10

WO 2016/085875 PCT/US2015/062185

47. The non-transitory recording medium of aspect 46, wherein the one or more databases

are relational databases and the database query is a single Structured Query Language

(SQL) query statement.

48. The non-transitory recording medium of aspect 47, wherein the non-transitory

recording medium includes instructions, which, when executed by the processor of

the server device, cause the server device to: generate a distinct key value-record

value composite integer for each record value to be aggregated via the distinct

aggregation function, wherein generating the distinct key value-record value

composite integer includes:

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

adding the record value to the random value to provide a distinct key

value-record value composite integer.

49. The non-transitory recording medium of aspect 48, wherein the distinct aggregation

function is a summation function configured to compute a sum of values

corresponding to distinct keys, and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

50. The non-transitory recording medium of aspect 48, wherein the distinct aggregation

function is an average function configured to compute an average of record values

corresponding to distinct keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the values corresponding to the

distinct keys.

51. The non-transitory recording medium of any one of aspects 48-50, wherein the non

transitory recording medium includes instructions, which, when executed by the

processor of the server device, cause the server device to select for use in connection

with the generation of the distinct key value-record value composite integer a bit

depth data type for the distinct key value-record value composite integer which is

sufficient to contain a full summation of all the record values to be aggregated.

11

WO 2016/085875 PCT/US2015/062185

52. The non-transitory recording medium of aspect 46, wherein the executing includes

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,

instructions which, when executed by the processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

53. The non-transitory recording medium of aspect 46, wherein the executing includes

accessing a user-defined library, wherein the user-defined library includes

instructions, which, when executed by a processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

54. In another aspect, the present disclosure provides a non-transitory recording medium

including instructions, which, when executed by a processor of a server device, cause

the server device to:

execute a database query against one or more databases, wherein the database

query joins a plurality of database tables and includes a distinct aggregation function,

which, when executed against the one or more databases aggregates only values of

database records corresponding to distinct keys by which the tables are joined,

regardless of the cardinality of the joined tables; and

provide results of the database query to a client device over a network

connection.

55. The non-transitory recording medium of aspect 54, wherein the one or more databases

are relational databases and the database query is a single Structured Query Language

(SQL) query statement.

56. The non-transitory recording medium of aspect 55, wherein the non-transitory

recording medium includes instructions, which, when executed by the processor of

the server device, cause the server device to:

generate a distinct key value-record value composite integer for each record

value to be aggregated via the distinct aggregation function, wherein generating the

distinct key value-record value composite integer includes:

12

WO 2016/085875 PCT/US2015/062185

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

adding the record value to the random value to provide a distinct key

value-record value composite integer.

57. The non-transitory recording medium of aspect 56, wherein the distinct aggregation

function is a summation function configured to compute a sum of record values

corresponding to distinct keys, and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

58. The non-transitory recording medium of aspect 56, wherein the distinct aggregation

function is an average function configured to compute an average of record values

corresponding to distinct keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

59. The non-transitory recording medium of any one of aspects 56-58, wherein the non

transitory recording medium includes instructions, which, when executed by the

processor of the server device, cause the server device to select for use in connection

with the generation of the distinct key value-record value composite integer a bit

depth data type for the distinct key value-record value composite integer which is

sufficient to contain a full summation of all the record values to be aggregated.

60. The non-transitory recording medium of aspect 54, wherein the executing includes

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,

instructions which, when executed by the processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

13

WO 2016/085875 PCT/US2015/062185

61. The non-transitory recording medium of aspect 54, wherein the executing includes

accessing a user-defined library, wherein the user-defined library includes

instructions, which, when executed by a processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

62. In another aspect, the present disclosure provides a non-transitory recording medium

including instructions which, when executed by a processor of a server device, cause

the server device to:

receive a query input from a client device over a network connection;

generate a database query based on the query input, wherein the database

query joins a plurality of database tables and includes a distinct aggregation function,

which, when executed against one or more databases aggregates only values of

database records corresponding to distinct keys by which the tables are joined,

regardless of the cardinality of the joined tables;

execute the database query against the one or more databases; and

return results of the database query to the client device over a network

connection.

63. The non-transitory recording medium of aspect 62, wherein the one or more databases

are relational databases and the database query is a single Structured Query Language

(SQL) query statement.

64. The non-transitory recording medium of aspect 63, wherein the non-transitory

recording medium includes instructions, which, when executed by the processor of

the server device, cause the server device to: generate a distinct key value-record

value composite integer for each record value to be aggregated via the distinct

aggregation function, wherein generating the distinct key value-record value

composite integer includes:

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

adding the record value to the random value to provide a distinct key

value-record value composite integer.

14

WO 2016/085875 PCT/US2015/062185

65. The non-transitory recording medium of aspect 64, wherein the distinct aggregation

function is a summation function configured to compute a sum of values

corresponding to distinct keys, and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

66. The non-transitory recording medium of aspect 64, wherein the distinct aggregation

function is an average function configured to compute an average of record values

corresponding to distinct keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the values corresponding to the

distinct keys.

67. The non-transitory recording medium of any one of aspects 64-66, wherein the non

transitory recording medium includes instructions, which, when executed by the

processor of the server device, cause the server device to select for use in connection

with the generation of the distinct key value-record value composite integer a bit

depth data type for the distinct key value-record value composite integer which is

sufficient to contain a full summation of all the record values to be aggregated.

68. The non-transitory recording medium of aspect 62, wherein the executing includes

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,

instructions which, when executed by the processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

69. The non-transitory recording medium of aspect 62, wherein the executing includes

accessing a user-defined library, wherein the user-defined library includes

instructions, which, when executed by a processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

15

WO 2016/085875 PCT/US2015/062185

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

70. In another aspect, the present disclosure provides a method for performing an

aggregate function using a database query, the method including:

transmitting a database query over a network connection from a client device

to a server device, which, when received by the server device, causes the server

device to execute the database query against one or more databases, wherein the

database query joins a plurality of database tables and includes a distinct aggregation

function, which, when executed against the one or more databases aggregates only

values of database records corresponding to distinct keys by which the tables are

joined, regardless of the cardinality of the joined tables; and

receiving results of the database query at the client device from the server

device.

71. The method of aspect 70, wherein the one or more databases are relational databases

and the database query is a single Structured Query Language (SQL) query statement.

72. The method of aspect 71, wherein the method includes:

causing the server device to generate a distinct key value-record value

composite integer for each record value to be aggregated via the distinct aggregation

function, wherein generating the distinct key value-record value composite integer

includes:

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

adding the record value to the random value to provide a distinct key

value-record value composite integer.

73. The method of aspect 72, wherein the distinct aggregation function is a summation

function configured to compute a sum of record values corresponding to distinct keys,

and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

74. The method of aspect 72, wherein the distinct aggregation function is an average

function configured to compute an average of record values corresponding to distinct

keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

16

WO 2016/085875 PCT/US2015/062185

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

75. The method of any one of aspects 72-74, wherein the server utilizes, in connection

with the generation of the distinct key value-record value composite integer, a bit

depth data type for the distinct key value-record value composite integer which is

sufficient to contain a full summation of all the record values to be aggregated.

76. The method of aspect 70, wherein the executing includes:

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,

instructions which, when executed by the processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

77. The method of aspect 70, wherein the executing includes accessing a user-defined

library, wherein the user-defined library includes instructions, which, when executed

by a processor of the server device, cause the server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

78. In another aspect, the present disclosure provides a method for performing an

aggregate function using a database query, the method including:

transmitting a query input over a network connection from a client device to a

server device, which, when received by the server device, causes the server device to

generate a database query based on the query input, wherein the

database query joins a plurality of database tables and includes a distinct

aggregation function, which, when executed against the one or more databases

aggregates only values of database records corresponding to distinct keys by

which the tables are joined, regardless of the cardinality of the joined tables,

and

execute the database query against the one or more databases; and

17

WO 2016/085875 PCT/US2015/062185

receiving results of the database query at the client device from the server

device.

79. The method of aspect 78, wherein the one or more databases are relational databases

and the database query is a single Structured Query Language (SQL) query statement.

80. The method of aspect 79, wherein the method includes:

causing the server device to generate a distinct key value-record value

composite integer for each record value to be aggregated via the distinct aggregation

function, wherein generating the distinct key value-record value composite integer

includes:

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

adding the record value to the random value to provide a distinct key

value-record value composite integer.

81. The method of aspect 80, wherein the distinct aggregation function is a summation

function configured to compute a sum of record values corresponding to distinct keys,

and wherein the summation function includes

summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record

values corresponding to distinct keys.

82. The method of aspect 80, wherein the distinct aggregation function is an average

function configured to compute an average of record values corresponding to distinct

keys, and wherein the average function includes

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

83. The method of any one of aspects 80-82, wherein the server utilizes, in connection

with the generation of the distinct key value-record value composite integer, a bit

depth data type for the distinct key value-record value composite integer which is

sufficient to contain a full summation of all the record values to be aggregated.

84. The method of aspect 78, wherein the executing includes:

accessing a collection of aggregation computation instructions;

18

WO 2016/085875 PCT/US2015/062185

selecting from the collection of aggregation computation instructions,

instructions which, when executed by the processor of the server device, cause the

server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function.

85. The method of aspect 78, wherein the executing includes accessing a user-defined

library, wherein the user-defined library includes instructions, which, when executed

by a processor of the server device, cause the server device to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

86. In another aspect, the present disclosure provides a system for performing an

aggregate function using a database query, the system including:

a client device;

a server device; and

one or more databases,

wherein the client device transmits a database query over a network

connection from the client device to the server device, which, when received by the

server device, causes the server device to execute a database query against the one or

more databases,

wherein the database query joins a plurality of database tables and includes a

distinct aggregation function, which, when executed against the one or more

databases aggregates only values of database records corresponding to distinct keys

by which the tables are joined, regardless of the cardinality of the joined tables, and

wherein the server device returns results of the database query to the client device

over a network connection.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a block diagram of an example system for querying one or more

databases, according to an example embodiment.

[0005] FIG. 2 is a block diagram of the arrangement of components of a computing

device configured to query one or more databases, according to an example embodiment.

19

WO 2016/085875 PCT/US2015/062185

[0006] FIG. 3 is a block diagram of example functional components for a computing

device, according to one embodiment.

DETAILED DESCRIPTION

[0007] As discussed above, RAA is a method of computing aggregate functions on

data sets that avoids the inefficiencies needed to accurately calculate aggregate functions on

joined normalized data while still maintaining the flexibility of a pure normalized database.

The present disclosure provides methods for performing an aggregate function using a

database query, wherein the database query joins a plurality of database tables and includes a

distinct aggregation function, which, when executed against one or more databases

aggregates only values of database records corresponding to distinct keys by which the tables

are joined, regardless of the cardinality of the joined tables.

[0008] Before the present invention is described in greater detail, it is to be understood

that this invention is not limited to particular embodiments described, as such may vary. It is

also to be understood that the terminology used herein is for the purpose of describing

particular embodiments only, and is not intended to be limiting, since the scope of the present

invention will be limited only by the appended claims.

[0009] Unless defined otherwise, all technical and scientific terms used herein have the

same meaning as commonly understood by one of ordinary skill in the art to which this

invention belongs.

[0010] Any and all publications mentioned herein are incorporated herein by reference to

disclose and describe the methods and/or materials in connection with which the publications

are cited. It is understood that the present disclosure supersedes any disclosure of an

incorporated publication to the extent there is a contradiction. Further, the dates of any such

publications provided may be different from the actual publication dates which may need to

be independently confirmed.

[0011] It must be noted that as used herein and in the appended claims, the singular forms

a , "an", and "the" include plural referents unless the context clearly dictates otherwise.

Thus, for example, reference to "a database" includes a plurality of such databases, and so

forth.

[0012] It is further noted that the claims may be drafted to exclude any element, e.g., any

optional element. As such, this statement is intended to serve as antecedent basis for use of

20

WO 2016/085875 PCT/US2015/062185

such exclusive terminology as "solely", "only" and the like in connection with the recitation

of claim elements, or the use of a "negative" limitation.

[0013] As will be apparent to those of skill in the art upon reading this disclosure, each of

the individual embodiments described and illustrated herein has discrete components and

features which may be readily separated from or combined with the features of any of the

other several embodiments without departing from the scope or spirit of the present

invention. Any recited method can be carried out in the order of events recited or in any other

order which is logically possible.

[0014] Although any methods and materials similar or equivalent to those described

herein can be used in the practice of the present invention, some potential and exemplary

methods and materials are now described.

[0015] An example of the inefficiencies addressed via RAA is provided below with

reference to Tables 1 and 2. An extremely common pattern in database architecture is to have

a first table of entities and a second table which describes the activities of those entities.

Information unique to the entities is kept distinct from information unique to the activities.

Queries about the activities can join in the entity table to get information about the entities

performing the activities. For example, Table 1 below provides a simple table including data

for a set of users. Table 2 below provides a table including a set of orders that users identified

in Table 1 have placed.

Table 1

usr~djueame a~

EZagIe sat
41 Lr

21

WO 2016/085875 PCT/US2015/062185

Table 2

ordr~d ueridorder-amount

W 3 20

W30
W 3 20

4 1 100

5 2 1000

W20
W 3 50

[00161 An exemplary question that a user might ask of a database containing the above

tables is: "What is the average age of a customer who has placed an order?" With this small

data set, the answer can be picked out and computed by simply looking at the tables. Marcus,

Andrea and Shimrod have all ordered, so the average age is the sum of their ages, divided by

three, (23 + 34 + 45) / 3, or 34. However, writing the SQL query for this computation is more

complex. A first attempt at answering the above question might utilize the following query

using the aggregation function "AVGO" in SQL:

SELECT AVG(users.age) AS average age of purchaser

FROM orders

LEFT JOIN users ON orders.user id = users.user id

[0017] The above calculation will sum the age of the user who made each order, and

divide that by the number of orders, or (45 + 45 + 45 + 23 + 34 + 34 + 45) / 7, which results

in an answer of approximately 38.7. This is the answer to a different question, such as "What

is the average age of a customer that one should expect when answering the phone to take an

order?" The answer to this question, while potentially interesting, is not the answer to the

question that was originally posed.

[0018] In order to use the AVG function in SQL in the above context, the average must

be run on a dataset with the same number of rows as the number of unique users who have

ordered. This calculation requires two queries, a first query to summarize by user all of the

order activity, and a second query to compute the average. In SQL-99 this can be written

using a "WITH" expression to combine the two calculations.

22

WO 2016/085875 PCT/US2015/062185

WITH user orderactivity AS

SELECT user id, age, COUNT(*) as order-count

FROM ORDERS

GROUP BY userid)

SELECT AVG(users.age) as averageageofpurchaser

FROM user order activity

LEFT JOIN users ON user orderactivity.user id =

users.user id

[0019] Using a second nested query will produce the correct result, however, in order to

handle queries about more complex orders, for example if an order could include many order

items, or if a user could have multiple shipping addresses, the number of these intermediate

calculations needed to answer questions about orders quickly becomes quite large and a

single query very often will require several of these sub-queries. Accordingly, this approach

represents an inefficient means of obtaining the desired information.

[0020] The RAA method described herein represents an improved approach, which does

not suffer from the inefficiencies described above. RAA is a method for computing the

aggregation of a number by using knowledge of how that number was joined into the query to

express a computation of the aggregation which avoids the unexpected results from joining

tables of different cardinality, and the inefficiency of having to create an intermediate table.

For example, in one aspect, RAA provides a solution to the problem which arises when a

standard aggregation technique results in an aggregate value which is skewed relative to an

expected value due to the presence of more than one instance of the primary key in the tables

being queried.

[0021] This concept is an extension of the notion in SQL of a "distinct value". There

currently exists in SQL a computation COUNT(DISTINCTO) meaning "count unique values

of this expression across the current data set" which you can use to properly count items

across an aggregation. A similar expression, albeit less generally useful, is

SUM(DISTINCTO), which computes all the unique values of an expression and then sums

them.

[0022] RAA may be characterized as a method for aggregating values for records with

distinct keys. With RAA the problem query above could be written simply and efficiently as:

23

WO 2016/085875 PCT/US2015/062185

SELECT

AVGDISTINCT(users.age,users.user id) AS averageage

FROM orders

LEFT JOIN users ON orders.user id = users.user id

[0023] The RAA technique is to ask for an aggregation across a distinct key, which is not

the value being used in the aggregation calculation, but rather is the key used to correlate the

seperate data sets into the single data set for the computation.

[0024] The simple example above could also have been written without RAA using the

GROUP BY keyword in SQL to compute the distinction across the correlation as in:

SELECT

AVG(users.age) AS averageage

FROM orders

LEFT JOIN users ON orders.user id = users.user id

GROUP by users.user id

[0025] However in a query with multiple columns, it is not possible to GROUP BY

differently for each value to produce a correct aggregation calculation for each column in the

result set. For example, if the list of items in the order was also joined on the orderid, it

would be impossible to both group by user id to get the correct aggregation for computations

about the user and orderid to correctly aggregate on the order. RAA allows each aggregation

to be performed with the correct grouping, in one efficient query, even if several different

tables are being joined to gather enough data to compute the results.

[0026] This technique of selecting distinct values for aggregation across a correlation key

can be applied to extend the usefulness of a variety of aggregation functions, such as these

which are typically provided by a database engine: average, collect, correlation, covariance,

density, median, rank, percentile, standard deviation and variance.

SOL Implementation

[0027] An implementation of RAA exists which can be expressed in SQL for the

operations SUMDISTINCT and AVGDISTINCT. This implementation uses a fixed length

integer arithmetic (e.g., a 128-bit arithmetic) to convert the knowledge of the key value and

corresponding record value to a new value, e.g., a 128 bit value, in such a way that the

resulting set of values actually are distinct by key and not just by raw value. This allows the

use of the built-in SUM(DISTINCTO) of the underlying SQL engine to be used to apply

24

WO 2016/085875 PCT/US2015/062185

DISTINCT with the correct semantics, i.e. on the key in question and not on the raw value of

the column being summed. The implementation uses a uniform hash to convert the key value

into a random value, and then addition to encode the record value into the hash for purposes

of distinct key value-record value computation. Subtraction is then utilized to remove the

hash from the composite value when the aggregate total is required.

[0028] Assuming the existence of a uniform hash function (which exists, but generally

has a different name in every SQL dialect) "HASH", the pseudo SQL to compute the sum of

distinct values for an expression V across a join which uses the key K looks like this:

SUM(DISTINCT(HASH(K)+V)) - SUM(DISTINCT(HASH(K)))

[0029] And the computation for average V across a join on K would follow as:

SUM(DISTINCT(HASH(K)+V)) - SUM(DISTINCT(HASH(K)))

/ COUNT(DISTINCT(K))

[0030] If the value being aggregated is not an integer, it would need to be converted into

an integer in order to be encoded in the composite key value, and then converted back after

the computation, this may require additional information about the range of values and

precision needed in those values.

[0031] For a SQL implementation with 256 bit integers, this implementation can be used

without any concern of overflow. However, using 128 bit implementations, computing a

composite value from a hash requires some advance knowledge about the dataset, about the

range of values possible, and the number of distinct values in the dataset. When a database

server does not provide a native implementation, this will, for many uses, be equivalent to the

native implementation in terms of accuracy.

[0032] Using 128 bit implementation, the number of bits generated by the hash function

are restricted, in essence creating a uniform hash function h(K,N) which can map a key into

an N bit space. It is desirable to allocate as many bits to N as possible to minimize the

probability of collisions. In a data set with A distinct values, it may be necessary to sum the

hash value A times, which means a maximum sum would be A x2 N. Thus when choosing N, it

should be equal to the maximum number of bits for computations (128 in this example)

minus log2(A).

[0033] Once an N has been chosen, the probability of a collision can be computed as

25

WO 2016/085875 PCT/US2015/062185

A
2

1-e Z"

[0034] As an example of how an SQL implementation would select an N, the formula

above can be used to create the following "C" program to calculate the probability of a

collision for sets of a given size, also determining whether such a set would overflow the

remaining bits that would be used to sum the results:

#include <cmath>

#include <cstdlib>

#include <iostream>

void agg prob(long agg size, long hashbits)

long numbits = 128- hashbits;

double probability = 1.0 - exp(

(pow(aggsize,2)/(2*pow(2, hashbits))));

long 1 = long(1/probability);

double maxaggsize = pow(2, numbits);

if (aggsize > maxaggsize)

std::cout << "Overflow, ";

else {

if (1 > 0)

std::cout << "1 in " << long(1/probability) << ",

I

else

std::cout << "1 in " << 1/probability << ", ";

}

int main(int argc, char ** argv)

long hashbits;

26

WO 2016/085875 PCT/US2015/062185

std::cout << "Hash Bits, Overflow Size, 1000, 1M, 50CM, IB,

10B, 100B, IT, IOT,\n";

for (hashbits = 85; hashbits <= 100; hashbits++)

double maxaggsize = pow(2, 128 - hashbits);

std::cout << hashbits << ", " << long(maxaggsize)

<< "Y, "y;

agg-prob(1000L, hashbits);

agg prob(1000000L, hashbits);

aggprob(500000000L, hashbits);

aggprob(1000000000L, hashbits);

aggprob(10000000000L, hashbits);

aggprob(100000000000L, hashbits);

aggprob(1000000000000L, hashbits);

aggprob(10000000000000L, hashbits);

std::cout << std::endl;

return 0;

10035] Table 3 below was generated using the above program, which shows the

relationships between likelihood of a collision and the number of bits allocated to the hash

space. An implementation in SQL can use this information to choose an N appropriate for the

data being queried.

Table 3

Hash Bits OverflowSize 1000 1M 500M 1B 10B 100B IT lOT
85 8796093022208 lin inf lin 77648269437422 l in 309485014 1 in 77371253 l in 773713 l in 7737 1 in 77 Overflow
86 4398046511104 1 in nf 1 in 155296538874844 l in 618970029 lin 154742504 1 in 1547425 1 in 15474 1 in 155 Overflow
87 2199023255552 lin inf l1 in 310593077749689 l in 1237939973 lin 309485014 1 in 3094850 1 in 30949 1 in 309 Overflow
88 1099511627776 lin inf lin 600479950316066 l in 2475879947 1 in 618970029 l in 6189700 l in 61897 1 in 619 Overflow
89 549755813888 lin inf lin 1286742750677284 lin 4951761255 in 1237939973 1 in 12379400 1 in 123794 Overflow Overflow
90 274877906944 1 in inf 1 in 2251799813685248 1 in 9903517066 in 2475879947 1 in 24758801 1 in 247588 Overflow Overflow
91 137438953472 lin inf lin 4503599627370496 l in 19807055911 lin 4951761255 1 in 49517601 1 in 495176 Overflow Overflow
92 68719476736 lin inf 1 in 9007199254740992 l in 39614024711 lin 9903517066 1 in 99035203 Overflow Overflow Overflow
93 34359738368 lin inf lin inf lin 79228049422 in 19807055911 1 in 198070406 Overflow Overflow Overflow
94 17179869184 1 in inf 1 in inf 1 in 158457492650 lin 39614024711 1 in 396140804 Overflow Overflow Overflow
95 8589934592 1 in inf 1 in inf 1 in 316909410130 in 79228049422 Overflow Overflow Overflow Overflow
96 4294967296 1 in inf 1 in inf 1 in 633818820261 in 158457492650 Overflow Overflow Overflow Overflow
97 2147483648 1 in inf 1 in inf l in 1267726847957 in 316909410130 Overflow Overflow Overflow Overflow
98 1073741824 1 in inf 1 in inf 1 in 2535096891286 in 633818820261 Overflow Overflow Overflow Overflow
99 536870912 1 in inf 1 in inf 1 in 5071621201993 Overflow Overflow Overflow Overflow Overflow

100 268435456 1 in inf 1 in inf Overflow Overflow Overflow Overflow Overflow Overflow

27

SUBSTITUTE SHEET (RULE 26)

WO 2016/085875 PCT/US2015/062185

Native Implementation

[0036] A native implementation of RAA will have access to the full dataset being queried

and be able to perform accurate selection of distinct values for aggregation across a wide

variety of aggregate functions without having to resort to the construction of a composite

value as described above for the SQL implementation. A native implementation is thus

simpler in theory than the SQL implementation.

[0037] The details of a specific native implementation will vary, as each native

implementation will be provided as an extension to an existing database engine, and so will

have access to the data through methods which will be unique to each database engine.

However the general technique for implementing RAA will be the same in each instance.

Generally, such an implementation includes a process by which a processor, e.g., a processor

of a database engine, accesses a collection of aggregation computation instructions and

selects from the collection of aggregation computation instructions, instructions which, when

executed by the processor, cause the processor to examine only the first instance of each

given key value, and utilize the record value corresponding to the first instance of the given

key value in the distinct aggregation function. Where the processor is a processor of a

database engine, the collection of aggregation computation instructions may be provided to

the database engine by a client device. In another embodiment, the collection of aggregation

computation instructions is loaded as source or compiled code by the database engine. In yet

another embodiment, the collection of aggregation computation instructions is combined

along with other instructions in the construction of the database engine.

[0038] In some embodiments, such an implementation includes a process by which a

server device accesses a user-defined library, wherein the user-defined library includes

instructions, which, when executed by a processor of the server device, cause the server

device to examine only the first instance of a given key value, and utilize the record value

corresponding to the first instance of the given key value in the distinct aggregation function.

[0039] The specific steps involved in the examination and utilization will vary, e.g.,

depending on the particular aggregation function being performed. The collection of

aggregation computation instructions, e.g., the user-defined library, described above may be

stored in database memory or any other suitable location which may be accessed by a suitable

processor, e.g., a processor of a database engine and/or a processor of a server device.

[0040] For example, in one open source database engine, to provide a function for

"variance" and other aggregations, a single shared library was constructed for the target

28

WO 2016/085875 PCT/US2015/062185

platform that implements the following functions for each aggregate function to be loaded by

SQL statements such as:

CREATE AGGREGATE FUNCTION variance distinct on key

RETURNS REAL SONAME "lib raa.so";

[0041] The following functions were added to the shared library:

my bool variance distinct on key init(

UDFINIT* initid, UDFARGS* args, char* message);

void variancedistinctonkeydeinit(

UDFINIT* initid);

void variance distinct on key reset(

UDFINIT* initid, UDFARGS* args, char* is-null, char

*error);

void variancedistinctonkeyclear(

UDFINIT* initid, char* is-null, char *error);

void variancedistinctonkeyadd(

UDFINIT* initid, UDFARGS* args, char* is-null, char

*error);

double variance distinct on key(

UDFINIT* initid, UDFARGS* args, char* is-null, char

*error);

[0042] The important function here is variance distinctonkeyadd, which, for each

row in the result set, it will be passed the value of the primary key for the DISTINCT and the

value of the field to be aggregated.

[0043] Thefirst time it encounters a row with a given value of the primary key, it adds a

new element to the data structure representing the aggregate; this element has both the value

of the primary key and the value of the field stored in it.

[0044] For each subsequent row with the same value of the primary key, if the value of

the field to be aggregated is the same, it is ignored. If this value is different for the same

value of the primary key, an error is flagged.

29

WO 2016/085875 PCT/US2015/062185

[0045] The variancedistincton key will actually compute and return the variance based

on the stored values in the aggregate data structure, and the deinit function will free any

resources associated with storing the aggregate data structure.

[0046] Certain types of aggregation will lend themselves to optimization of this process,

for example sumdistinct on key can maintain a running sum and does not need to store the

whole aggregate data structure.

Methods, Systems and Devices

[0047] Exemplary methods, systems and devices of the present disclosure are now

described with reference to the Figures.

[0048] FIG. 1 is a block diagram of an example system for querying one or more

databases, according to an example embodiment. The system includes a client device 102, a

data network 104, one or more servers 106, and databases 108 and 110.

[0049] The client device 102 can be any type of computing device, including a personal

computer, laptop computer, mobile phone with computing capabilities, or any other type of

device. The client device 102 includes, among other things, device hardware 120, a software

application 122, other application(s), a communications client, output devices (e.g., a

display), and input devices (e.g., keyboard, mouse, touch screen), etc. In some embodiments,

a client device 102 may act as both an output device and an input device.

[0050] Device hardware 120 includes physical computer components, such as a processor

and memory. The software application 122 is configured to receive input for querying the one

or more databases 108, 110. According to various embodiments, the software application 122

can be implemented in the OS (operating system) of the client device 102 or as a stand-alone

application installed on the client device 102. In one embodiment, the software application

122 is a web browser application.

[0051] The data network 104 can be any type of communications network, including an

Internet network (e.g., wide area network (WAN) or local area network (LAN)), wired or

wireless network, or mobile phone data network, among others.

[0052] The client device 102 is configured to communicate with a server 106 via the data

network 104. The server 106 includes a software application executed by a processor that is

configured to generate a query against the databases 108, 110 based on an input received

from the client device 102. The server 106 is in communication with databases 108 and 110.

The databases 108, 110 are configured to store data. The databases 108, 110 can be any type

30

WO 2016/085875 PCT/US2015/062185

of database, including relational databases, non-relational databases, file-based databases,

and/or non-file-based databases, among others.

[0053] FIG. 2 is a block diagram of the arrangement of components of a computing

device 200 configured to query one or more databases, according to an example embodiment.

As shown, computing device 200 includes a processor 202 and memory 204, among other

components (not shown). In one embodiment, the computing device 200 comprises the client

device 102. In another embodiment, the computing device 200 comprises the server 106.

[0054] The memory 204 includes various applications that are executed by processor 202,

including installed applications 210, an operating system 208, and software application 222.

In embodiments where the computing device 200 comprises the client device 102, the

software application 222 comprises a web browser application. In embodiments where the

computing device 200 comprises the server 106, the software application 222 comprises a

software application configured to receive and execute a database query and/or receive a

query input, generate a database query based on the query input, and execute the database

query.

[0055] FIG. 3 is a block diagram of example functional components for a computing

device 300, according to one embodiment. One particular example of computing device 300

is illustrated. Many other embodiments of the computing device 300 may be used. In one

embodiment, the computing device 300 comprises the client device 102. In another

embodiment, the computing device 300 comprises the server 106.

[0056] In the illustrated embodiment of FIG. 3, the computing device 300 includes one or

more processor(s) 311, memory 312, a network interface 313, one or more storage devices

314, a power source 315, output device(s) 360, and input device(s) 380. The computing

device 300 also includes an operating system 318 and a communications client 340. Each of

components 311, 312, 313, 314, 315, 360, 380, 318, and 340 is interconnected physically,

communicatively, and/or operatively for inter-component communications in any operative

manner.

[0057] As illustrated, processor(s) 311 are configured to implement functionality and/or

process instructions for execution within computing device 300. For example, processor(s)

311 execute instructions stored in memory 312 or instructions stored on storage devices 314.

Memory 312, which may be a non-transient, computer-readable storage medium, is

configured to store information within computing device 300 during operation. In some

embodiments, memory 312 includes a temporary memory, area for information not to be

maintained when the computing device 300 is turned OFF. Examples of such temporary

31

WO 2016/085875 PCT/US2015/062185

memory include volatile memories such as random access memories (RAM), dynamic

random access memories (DRAM), and static random access memories (SRAM). Memory

312 maintains program instructions for execution by the processor(s) 311.

[0058] Storage devices 314 also include one or more non-transient computer-readable

storage media. Storage devices 314 are generally configured to store larger amounts of

information than memory 312. Storage devices 314 may further be configured for long-term

storage of information. In some examples, storage devices 314 include non-volatile storage

elements. Non-limiting examples of non-volatile storage elements include magnetic hard

disks, optical discs, floppy discs, flash memories, or forms of electrically programmable

memories (EPROM) or electrically erasable and programmable (EEPROM) memories.

[0059] The computing device 300 uses network interface 313 to communicate with

external devices via one or more networks, such as server 106 and/or database 108, 110

shown in FIG. 1. Network interface 313 may be a network interface card, such as an Ethernet

card, an optical transceiver, a radio frequency transceiver, or any other type of device that can

send and receive information. Other non-limiting examples of network interfaces include

wireless network interfaces, e.g., Bluetooth@, 4G and WiFi@ radios in mobile computing

devices, and USB (Universal Serial Bus). In some embodiments, the computing device 300

uses network interface 313 to wirelessly communicate with an external device, a mobile

phone of another, or other networked computing device.

[0060] Wireless networks as described herein may include, but are not limited to, Code

Divisional Multiple Access (CDMA) networks, the Group Special Mobile or the Global

System for Mobile Communications (GSM) and the General Packet Radio Service (GPRS)

networks, third-generation (3G) networks such as Enhanced Data-rates for Global Evolution

(EDGE) and Universal Mobile Telecommunications Systems (UMTS), fourth-generation

(4G) networks such as Mobile WiMax and Long Term Evolution (LTE), International Mobile

Telecommunications-Advanced (IMT-Advanced) networks, and future fifth-generation (5G)

networks exceeding the capabilities of the current 4G/IMT-Advanced standards. Examples of

wireless networks include, for example, a BLUETOOTH network, a wireless personal area

network, a wireless 802.11 local area network (LAN), and/or wireless telephony network

(e.g., a cellular, PCS, or GSM network).

[0061] The computing device 300 includes one or more input devices 380. Input devices

380 are configured to receive input from a user through tactile, audio, video, or other sensing

feedback. Non-limiting examples of input devices 380 include a presence-sensitive screen, a

mouse, a keyboard, a voice responsive system, camera 302, a video recorder 304, a

32

WO 2016/085875 PCT/US2015/062185

microphone 306, a GPS module 308, or any other type of device for detecting a command

from a user or sensing the environment. In some examples, a presence-sensitive screen

includes a touch-sensitive screen.

[0062] One or more output devices 360 are also included in computing device 300.

Output devices 360 are configured to provide output to a user using tactile, audio, and/or

video stimuli. Output devices 360 may include a display screen (part of the presence-sensitive

screen), a sound card, a video graphics adapter card, or any other type of device for

converting a signal into an appropriate form understandable to humans or machines.

Additional examples of output device 360 include a speaker, a cathode ray tube (CRT)

monitor, a liquid crystal display (LCD), or any other type of device that can generate

intelligible output to a user. In some embodiments, a device may act as both an input device

and an output device.

[0063] The computing device 300 includes one or more power sources 315 to provide

power to the computing device 300. Non-limiting examples of power source 315 include

single-use power sources, rechargeable power sources, and/or power sources developed from

nickel-cadmium, lithium-ion, or other suitable material. The computing device 300 includes

an operating system 318, such as a Windows@, Apple@ OS, iOS@, or Android® operating

system. The operating system 318 controls operations of the components of the computing

device 300. For example, the operating system 318 facilitates the interaction of

communications client 340 with processors 311, memory 312, network interface 313, storage

device(s) 314, input device 380, output device 360, and power source 315.

[0064] As also illustrated in FIG. 3, the computing device 300 includes communications

client 340. Communications client 340 includes communications module 345. Each of

communications client 340 and communications module 345 includes program instructions

and/or data that are executable by the computing device 300. For example, in one

embodiment, communications module 345 includes instructions causing the communications

client 340 executing on the computing device 300 to perform one or more of the operations

and actions described in the present disclosure. In some embodiments, communications client

340 and/or communications module 345 form a part of operating system 318 executing on the

computing device 300.

[0065] As described in greater detail herein, one or more embodiments of the disclosure

provide methods and related systems for performing an aggregate function using a database

query. For example, in some embodiments, the present disclosure provides a method for

performing an aggregate function using a database query, wherein the method includes

33

WO 2016/085875 PCT/US2015/062185

receiving a database query at a server 106, wherein the database query joins a plurality of

database tables, e.g., database tables of database 108, 110, and comprises a distinct

aggregation function, which, when executed against one or more databases 108, 110

aggregates only values of database records corresponding to distinct keys by which the tables

are joined, regardless of the cardinality of the joined tables. The server 106 then executes the

database query against the one or more databases 108, 110, and provides results of the

database query to a client device 102 over a data network 104. As described above, the client

device 102 may be a first computing device 200 or a component thereof. Alternatively, or in

addition, a second computing device 200 includes the server 106. Similarly, the client device

102 may be a first computing device 300, or a component thereof, as described herein.

Alternatively, or in addition, a second computing device 300 includes the server 106.

[0066] The one or more databases 108, 110 can be relational databases. In some

embodiments, the database query is a SQL query. In some such embodiments, methods

according to the present disclosure include steps of generating a distinct key value-record

value composite integer for each record value to be aggregated via the distinct aggregation

function, wherein generating the distinct key value-record value composite integer includes

applying a uniform hash function to covert a key value corresponding to a record value into a

random value, and adding the record value to the random value to provide a distinct key

value-record value composite integer.

[0067] Where the distinct aggregation function is a summation function configured to

compute a sum of record values corresponding to distinct keys, the summation function can

include steps of summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record values

corresponding to distinct keys.

[0068] Where the distinct aggregation function is an average function configured to

compute an average of record values corresponding to distinct keys, the average function can

include summing the distinct key value-record value composite integers, subtracting the sum

of the random values to obtain the sum of the record values corresponding to distinct keys,

and dividing the sum of the record values corresponding to distinct keys by the number of

distinct keys to provide the average of the record values corresponding to the distinct keys.

[0069] For methods involving the generation of a distinct key value-record value

composite integer as described above, a bit depth data type for the distinct key value-record

value composite integer should generally be utilized which is sufficient to contain a full

summation of all the record values to be aggregated. As discussed previously herein, when

34

WO 2016/085875 PCT/US2015/062185

implementing RAA in a device with constrained precision, such as an database server with

only 128 bits of arithmetic precision), some advance knowledge about the dataset, about the

range of values possible, and the number of distinct values in the dataset may be necessary to

avoid collisions.

[0070] In other embodiments, the present disclosure provides a method for performing an

aggregate function using a database query, wherein the method includes receiving, at a server

106, a query input from a client device 102 over a data network 104. The server 106 then

generates a database query based on the query input, wherein the database query joins a

plurality of database tables, e.g., database tables of database 108, 110, and includes a distinct

aggregation function, which, when executed against one or more databases 108, 110

aggregates only values of database records corresponding to distinct keys by which the tables

are joined, regardless of the cardinality of the joined tables. The server 106 then executes the

database query against the one or more databases 108, 110, and returns results of the database

query to the client device 102 over the data network 104.

[0071] As described above, the client device 102 may be a first computing device 200 or

a component thereof. Alternatively, or in addition, a second computing device 200 includes

the server 106. Similarly, the client device 102 may be a first computing device 300, or a

component thereof, as described herein. Alternatively, or in addition, a second computing

device 300 includes the server 106.

[0072] The one or more databases 108, 110 can be relational databases. In some

embodiments, the database query is a SQL query. In some such embodiments, methods

according to the present disclosure include steps of generating a distinct key value-record

value composite integer for each record value to be aggregated via the distinct aggregation

function, wherein generating the distinct key value-record value composite integer includes

applying a uniform hash function to covert a key value corresponding to a record value into a

random value, and adding the record value to the random value to provide a distinct key

value-record value composite integer.

[0073] Where the distinct aggregation function is a summation function configured to

compute a sum of record values corresponding to distinct keys, the summation function can

include the steps of summing the distinct key value-record value composite integers and

subtracting the sum of the random values to provide the sum of the record values

corresponding to distinct keys.

[0074] Where the distinct aggregation function is an average function configured to

compute an average of record values corresponding to distinct keys, the average function can

35

WO 2016/085875 PCT/US2015/062185

include summing the distinct key value-record value composite integers, subtracting the sum

of the random values to obtain the sum of the record values corresponding to distinct keys,

and dividing the sum of the record values corresponding to distinct keys by the number of

distinct keys to provide the average of the record values corresponding to the distinct keys.

[0075] For methods involving the generation of a distinct key value-record value

composite integer as described above, a bit depth data type for the distinct key value-record

value composite integer should generally be utilized which is sufficient to contain a full

summation of all the values to be aggregated. As discussed previously herein, when using a

128 bit implementation, some advance knowledge about the dataset, about the range of

values possible, and the number of distinct values in the dataset may be necessary to avoid

collisions.

[0076] As discussed above, in some embodiments, the present disclosure provides a

method for performing an aggregate function using a database query, wherein the method

includes receiving a database query at a server 106, wherein the database query joins a

plurality of database tables, e.g., database tables of database 108, 110, and comprises a

distinct aggregation function, which, when executed against one or more databases 108, 110

aggregates only values of database records corresponding to distinct keys by which the tables

are joined, regardless of the cardinality of the joined tables. The server 106 then executes the

database query against the one or more databases 108, 110, and provides results of the

database query to a client device 102 over a data network 104.

[0077] The step of executing the database query against the one or more databases 108,

110 includes, in some embodiments, accessing a collection of aggregation computation

instructions and selecting from the collection of aggregation computation instructions,

instructions which, when executed by the server 106, cause the server 106 to examine only

the first instance of each given key value and utilize the record value corresponding to the

first instance of the given key value in the distinct aggregation function. In some

embodiments, this includes accessing a user-defined library, wherein the user-defined library

comprises instructions, which, when executed by a processor associated with the server 106,

cause the server 106 to examine only the first instance of each given key value, and utilize the

record value corresponding to the first instance of a given key value in the distinct

aggregation function. In some embodiments, this may include providing a data structure

including only the first instance of each given key value and its corresponding record value to

be aggregated. In such embodiments, the server may then aggregate the record values of the

36

WO 2016/085875 PCT/US2015/062185

data structure. The processor associated with the server 106 may be, e.g., a processor 202 or

311 of computing device 200 or 300 respectively.

[0078] As described above, the client device 102 may be a first computing device 200 or

a component thereof. Alternatively, or in addition, a second computing device 200 includes

the server 106. Similarly, the client device 102 may be a first computing device 300, or a

component thereof, as described herein. Alternatively, or in addition, a second computing

device 300 includes the server 106.

[0079] The user-defined library described above may be stored in database memory, e.g.,

database memory of one or more databases 108, 110 or any other suitable location which may

be accessed by the server 106.

[0080] In connection with the above, in some embodiments, the present disclosure

provides a method for facilitating the performance an aggregate function using a database

query, wherein the database query joins a plurality of database tables, e.g., database tables of

databases 108, 110, and comprises a distinct aggregation function, which, when executed

against one or more databases 108, 110 aggregates only values of database records

corresponding to distinct keys by which the tables are joined, regardless of the cardinality of

the joined tables, and wherein the method includes providing a collection of aggregation

computation instructions, e.g., a user-defined library, accessible to a server 106, wherein the

collection of aggregation computation instructions, e.g., the user-defined library, comprises

instructions, which, when executed by a processor associated with the server 106, cause the

server 106 to examine only the first instance of each given key value, and utilize the record

value corresponding to the first instance of a given key value in the distinct aggregation

function. In some embodiments, this may include providing a data structure including only

the first instance of each given key value and its corresponding record value to be aggregated.

In such embodiments, the server may then aggregate the record values of the data structure.

[0081] As discussed above, in some such embodiments, methods according to the present

disclosure include steps of generating a distinct key value-record value composite integer for

each record value to be aggregated via the distinct aggregation function. Accordingly, in

some embodiments, the present disclosure provides a method for generating a distinct key

value-record value composite integer for use in an aggregation, wherein the method includes:

applying a uniform hash function to covert a key value corresponding to a record value into a

random value, and adding the record value to the random value to provide a distinct key

value-record value composite integer, wherein the applying and adding are performed by a

processor associated with a server 106, e.g., a processor 202 or 311 as described herein. In

37

WO 2016/085875 PCT/US2015/062185

some embodiments, such a method will include the selection of a bit depth data type for the

distinct key value-record value composite integer which is sufficient to contain a full

summation of all the values to be aggregated.

[0082] The above methods can also be described from the point of view of the client

device 102. For example, in some embodiments, the present disclosure provides a method

which includes steps of transmitting a database query over a data network 104 from a client

device 102 to a server 106, which, when received by the server 106, causes the server 106 to

execute the database query against one or more databases 108, 110, wherein the database

query joins a plurality of database tables, e.g., a plurality of database tables of database 108,

110, and comprises a distinct aggregation function, which, when executed against the one or

more databases 108, 110 aggregates only values of database records corresponding to distinct

keys by which the tables are joined, regardless of the cardinality of the joined tables. The

method further includes a step of receiving results of the database query at the client device

102 from the server 106.

[0083] Similarly, in some embodiments, the present disclosure provides a method which

includes steps of transmitting a query input over a data network 104 from a client device 102

to a server 106, which, when received by the server 106, causes the server 106 to generate a

database query based on the query input, wherein the database query joins a plurality of

database tables and comprises a distinct aggregation function, which, when executed against

the one or more databases aggregates only values of database records corresponding to

distinct keys by which the tables are joined, regardless of the cardinality of the joined tables,

and execute the database query against the one or more databases. The method further

includes a step of receiving results of the database query at the client device 102 from the

server 106.

[0084] Instructions implementing one or more of the various steps of the methods

described herein may be embodied in any suitable non-transitory recording medium known in

the art and/or described herein.

[0085] In some embodiments, one or more of the various steps of the methods described

herein may be performed by one or more software applications, e.g., software applications

designed to run on a computing device as described herein and/or stored on a non-transient,

computer-readable storage medium as described herein. In some embodiments, the one or

more software applications are provided with or configured to access metadata associated

with one or more databases as described herein, e.g., metadata describing the schema of the

one or more databases. In some embodiments, metadata associated with the one or more

38

WO 2016/085875 PCT/US2015/062185

databases is utilized in the formation and/or execution of a database query including a distinct

aggregation function as described herein. For example, in some embodiments, a particular

distinct aggregation function is selected and/or implemented, e.g., in response to a question

posed by a user, based on metadata associated with the one or more databases. Such metadata

may include, e.g., information regarding the structure and/or relationship of tables within the

one or more databases.

[0086] It will also be appreciated that the present disclosure provides systems and

subsystems which incorporate a plurality of the individual components describe herein in a

functional relationship. For example, in some embodiments, a system of the present

disclosure includes a client device 102, a server 106 (including, e.g., server hardware, e.g.,

one or more associated processors), and one or more databases 108, 110, wherein the client

device 102 transmits a database query over a data network 104 from the client device 102 to

the server 106, which, when received by the server 106, causes the server 106 to execute a

database query against the one or more databases 108, 110, wherein the database query joins

a plurality of database tables, e.g., database tables of the one or more databases 108, 110, and

includes a distinct aggregation function, which, when executed against the one or more

databases 108, 110 aggregates only values of database records corresponding to distinct keys

by which the tables are joined, regardless of the cardinality of the joined tables. The system is

further configured such that the server 106 returns results of the database query to the client

device 102 over a data network, e.g., a data network 104.

[0087] Although the foregoing invention has been described in some detail by way of

illustration and example for purposes of clarity of understanding, it should be readily

apparent to those of ordinary skill in the art in light of the teachings of this disclosure that

certain changes and modifications may be made thereto without departing from the spirit or

scope of the appended claims.

[0088] Accordingly, the preceding merely illustrates the principles of the invention. It

will be appreciated that those skilled in the art will be able to devise various arrangements

which, although not explicitly described or shown herein, embody the principles of the

invention and are included within its spirit and scope. Furthermore, all examples and

conditional language recited herein are principally intended to aid the reader in understanding

the principles of the invention being without limitation to such specifically recited examples

and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments

of the invention as well as specific examples thereof, are intended to encompass both

39

WO 2016/085875 PCT/US2015/062185

structural and functional equivalents thereof. Additionally, it is intended that such equivalents

include both currently known equivalents and equivalents developed in the future, i.e., any

elements developed that perform the same function, regardless of structure. The scope of the

present invention, therefore, is not intended to be limited to the exemplary embodiments

shown and described herein. Rather, the scope and spirit of present invention is embodied by

the appended claims.

40

WO 2016/085875 PCT/US2015/062185

CLAIMS

What is claimed is:

1. A method for performing an aggregate function using a database query, the method

comprising:

executing a database query with a processor of a database engine having access to one

or more databases, wherein the database query joins a plurality of database tables of

the one or more databases and comprises a distinct aggregation function, which, when

executed against the one or more databases, aggregates only values of database

records corresponding to distinct keys by which the tables are joined, regardless of the

cardinality of the joined tables.

2. The method of claim 1, wherein the processor is comprised by a server device, and

wherein the method comprises providing results of the database query to a client

device over a network connection.

3. The method of claim 1 or 2, wherein the one or more databases are relational

databases and the database query is a single Structured Query Language (SQL) query

statement.

4. The method of claim 3, wherein the method comprises:

generating a distinct key value-record value composite integer for each record value

to be aggregated via the distinct aggregation function, wherein generating the distinct

key value-record value composite integer comprises:

applying a uniform hash function to covert a key value corresponding to a

record value into a random value; and

adding the record value to the random value to provide a distinct key value

record value composite integer.

5. The method of claim 4, wherein the distinct aggregation function is a summation

function configured to compute a sum of record values corresponding to distinct keys,

and wherein the summation function comprises summing the distinct key value-record

41

WO 2016/085875 PCT/US2015/062185

value composite integers and subtracting the sum of the random values to provide the

sum of the record values corresponding to distinct keys.

6. The method of claim 4, wherein the distinct aggregation function is an average

function configured to compute an average of record values corresponding to distinct

keys, and wherein the average function comprises summing the distinct key value

record value composite integers, subtracting the sum of the random values to obtain

the sum of the record values corresponding to distinct keys, and dividing the sum of

the record values corresponding to distinct keys by the number of distinct keys to

provide the average of the record values corresponding to the distinct keys.

7. The method of any one of claims 4-6, comprising selecting for use in connection with

the generation of the distinct key value-record value composite integer a bit depth

data type for the distinct key value-record value composite integer which is sufficient

to contain a full summation of all the record values to be aggregated.

8. The method of claim 1, wherein the executing comprises:

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions, instructions

which, when executed by the processor of the database engine, cause the database

engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value in the distinct aggregation function.

9. The method of claim 8, wherein the collection of computation instructions is provided

to the database engine by a client device.

10. The method of claim 8, wherein the collection of computation instructions is loaded

as source or compiled code by the database engine.

11. The method of claim 8, wherein the collection of computation instructions is

comprised by the database engine.

42

WO 2016/085875 PCT/US2015/062185

12. The method of claim 1, wherein the executing comprises accessing a user-defined

library, wherein the user-defined library comprises instructions, which, when

executed by the processor of the database engine, cause the processor of the database

engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key value in

the distinct aggregation function.

13. The method of claim 12, wherein the user-defined library is stored in database

memory.

14. A method for facilitating the performance an aggregate function using a database

query, wherein the database query joins a plurality of database tables and comprises a

distinct aggregation function, which, when executed against one or more databases

aggregates only values of database records corresponding to distinct keys by which

the tables are joined, regardless of the cardinality of the joined tables, the method

comprising:

providing a collection of aggregation computation instructions to a processor

of a database engine, wherein the collection of aggregation computation instructions

comprises instructions, which, when executed by the processor of the database engine,

cause the database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key in

the distinct aggregation function.

15. A method for facilitating the performance an aggregate function using a database

query, wherein the database query joins a plurality of database tables and comprises a

distinct aggregation function, which, when executed against one or more databases

aggregates only values of database records corresponding to distinct keys by which

the tables are joined, regardless of the cardinality of the joined tables, the method

comprising:

providing a user-defined library accessible to a server device, wherein the

user-defined library comprises instructions, which, when executed by a processor of

the server device, cause the server device to:

43

WO 2016/085875 PCT/US2015/062185

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key in

the distinct aggregation function.

16. A non-transitory recording medium comprising instructions, which, when executed by

a processor of a database engine, cause the database engine to:

execute a database query against one or more databases, wherein the database

query joins a plurality of database tables and comprises a distinct aggregation function,

which, when executed against the one or more databases aggregates only values of

database records corresponding to distinct keys by which the tables are joined, regardless

of the cardinality of the joined tables.

17. The non-transitory recording medium of claim 16, wherein the processor is comprised

by a server device, and wherein the non-transitory recording medium comprises

instructions, which when executed by the processor, cause the processor to provide

results of the database query to a client device over a network connection.

18. The non-transitory recording medium of claim 16 or 17, wherein the one or more

databases are relational databases and the database query is a single Structured Query

Language (SQL) query statement.

19. The non-transitory recording medium of claim 18, wherein the non-transitory

recording medium comprises instructions, which, when executed by the processor,

cause the database engine to:

generate a distinct key value-record value composite integer for each record

value to be aggregated via the distinct aggregation function, wherein generating the

distinct key value-record value composite integer comprises:

applying a uniform hash function to covert a key value corresponding

to a record value into a random value; and

adding the record value to the random value to provide a distinct key

value-record value composite integer.

44

WO 2016/085875 PCT/US2015/062185

20. The non-transitory recording medium of claim 19, wherein the distinct aggregation

function is a summation function configured to compute a sum of record values

corresponding to distinct keys, and wherein the summation function comprises

summing the distinct key value-record value composite integers and subtracting the

sum of the random values to provide the sum of the record values corresponding to

distinct keys.

21. The non-transitory recording medium of claim 19, wherein the distinct aggregation

function is an average function configured to compute an average of record values

corresponding to distinct keys, and wherein the average function comprises

summing the distinct key value-record value composite integers,

subtracting the sum of the random values to obtain the sum of the record

values corresponding to distinct keys, and

dividing the sum of the record values corresponding to distinct keys by the

number of distinct keys to provide the average of the record values corresponding to

the distinct keys.

22. The non-transitory recording medium of any one of claims 18-2 1, wherein the non

transitory recording medium comprises instructions, which, when executed by the

processor, cause the database engine to select for use in connection with the

generation of the distinct key value-record value composite integer a bit depth data

type for the distinct key value-record value composite integer which is sufficient to

contain a full summation of all the record values to be aggregated.

23. The non-transitory recording medium of claim 16, wherein the executing comprises

accessing a collection of aggregation computation instructions;

selecting from the collection of aggregation computation instructions,

instructions which, when executed by the processor of the database engine, cause the

database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value

in the distinct aggregation function.

45

WO 2016/085875 PCT/US2015/062185

24. The non-transitory recording medium of claim 16, wherein the executing comprises

accessing a user-defined library, wherein the user-defined library comprises

instructions, which, when executed by the processor of the database engine, cause the

processor of the database engine to:

examine only the first instance of each given key value; and

utilize the record value corresponding to the first instance of the given key

value

in the distinct aggregation function.

25. A system for performing an aggregate function using a database query, the system

comprising:

a client device;

a server device; and

one or more databases,

wherein the client device transmits a database query over a network

connection from the client device to the server device, which, when received by the

server device, causes the server device to execute a database query against the one or

more databases,

wherein the database query joins a plurality of database tables and comprises a

distinct aggregation function, which, when executed against the one or more

databases aggregates only values of database records corresponding to distinct keys

by which the tables are joined, regardless of the cardinality of the joined tables, and

wherein the server device returns results of the database query to the client

device over a network connection.

46

	Abstract
	Description
	Claims
	Drawings

