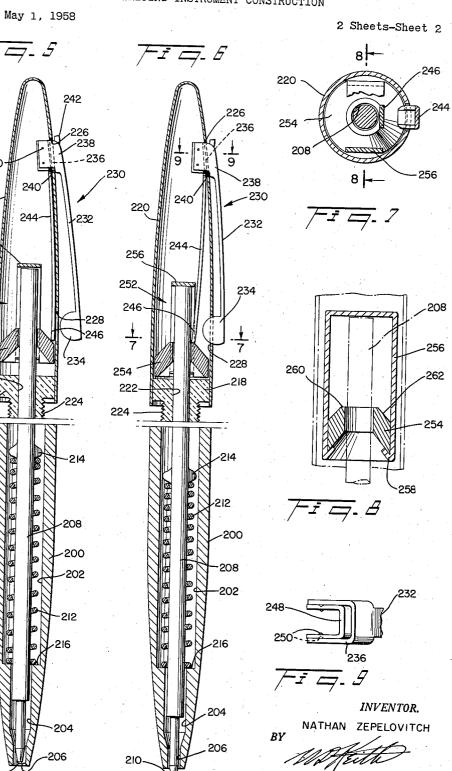

WRITING INSTRUMENT CONSTRUCTION

Filed May 1, 1958

2 Sheets-Sheet 1

ATTORNEY

WRITING INSTRUMENT CONSTRUCTION


Filed May 1, 1958

220

256

Ž52

218

1

2,881,736

WRITING INSTRUMENT CONSTRUCTION

Nathan Zepelovitch, New York, N.Y., assignor to Columbia Pen & Pencil Co., Inc., New Hyde Park, N.Y., a corporation of New York

> Application May 1, 1958, Serial No. 732,255 8 Claims. (Cl. 120-42.03)

This invention relates to retractable point writing 15 instruments and particularly to improved mechanisms for effecting extension and retraction of the writing points of ballpoint type writing instruments. This is a continuation-in-part of my now pending application Serial No. 706,162 filed December 30, 1957, now abandoned.

Conventional writing instruments of the ballpoint type generally include, in addition to the usual carrying clip, a botton member extending from one end of the barrel that is manually displaceable to effect extension of a retracted writing point from the other end thereof 25 together with associated means, of varying character, to effect retraction of the point usually by action of a biasing spring, in response to a manipulative act of the user. In such type construction, the hazard is always present that the user will forget to retract the writing point after use and will insert the pen, with the writing point extended, into a pocket, handbag or other receptacle. Disposition of the pen in a pocket or other receptacle with the writing point in its extended position is extremely likely to result in soilage due to a capillary flow of ink from the point to any surface that it may engage as well as in possible clogging of the point by contact with foreign matter, such as dirt, lint etc.

This invention may be briefly described as an improved mechanism for effecting the extension and retraction of the writing points of writing instruments preferably of the ballpoint type including a rocking clip assembly arranged so that pivotal displacement of the carrying clip in one direction effects an extension of the writing point from its retracted position and positioning of the 45 carrying clip so as to preclude its utilization for carrying purposes as long as the writing point is in its extended position together with associated means for effecting retraction of the point and concomitant exposure of the clip member to render the same available for carrying 50

Among the advantages attendant the present invention is the permitted elimination of the conventional button mechanism, a permitted wide range of writing instrument styling, a simple positive acting mechanism 55 effected entirely through manipulation of the carrying clip, preclusion of utilization of the clip member when the writing point is in its exposed position and a pen structure having a minimal number of component elements of a character that permits appreciable economics in component expense and assembly costs.

The object of this invention is the provision of improved mechanisms for effecting the extension and retraction of a writing point in a retractable point writing instrument.

Another object of the invention is the provision of a rocking clip mechanism for effecting the extension and retraction of a writing point which includes a displaceable carrying clip member arranged so as to preclude its use for carrying purposes when the writing 70 point is in an extended position.

Still another object of this invention is the provision of a rocking clip mechanism to effect the extension and retraction of the writing point in a retractable point writing instrument employing a displaceable clip member as the actuating means therefor and which is simple

and inexpensive in construction.

A further object of this invention is the provision of a rocking clip assembly for retractable point writing instruments whereby displacement of the carrying clip 10 member is utilized to effect advance and retraction of the writing point together with a disposition of the clip member so as to prevent its use for carrying purposes whenever the writing point is in extended position.

Other objects and advantages of this invention will be pointed out in the following disclosure and drawings which illustrate, by way of example, the principles of this invention, together with the presently preferred embodiments thereof incorporating those principles.

Referring to the drawings,

Fig. 1 is a vertical sectional view of one embodiment of a writing instrument of the ballpoint type incorporating the principles of this invention and showing the disposition of the component parts thereof when the point is disposed in its retracted position;

Fig. 2 is a view similar to that of Fig. 1 showing the disposition of the component parts thereof when the writing point is disposed in its extended position;
Fig. 3 is a vertical sectional view of a portion of

another embodiment of a ballpoint writing instrument incorporating the principles of this invention and showing the disposition of the component parts thereof when the writing point is disposed in retracted position;

Fig. 4 is a view similar to that of Fig. 3 and showing the disposition of the component parts thereof when 35 the writing point is disposed in its retracted position;

Fig. 5 is a vertical sectional view of the presently preferred embodiment of the invention as incorporated in a ballpoint writing instrument and is illustrative of the disposition of the component parts thereof when the writing point is disposed in retracted position;

Fig. 6 is a view similar to that of Fig. 5 but showing the disposition of the component parts when the writing

point is disposed in its extended position;

Fig. 7 is a sectional view taken on the line 7-7 of Figure 6; Fig. 8 is a sectional view taken on the line 8-8 of

Figure 7; Fig. 9 is a sectional view taken on the line 9-9 of

Figure 6.

Referring to the embodiment illustrated in Figs. 1 and 2, there is shown a writing instrument of the ballpoint type conventionally including a lower barrel portion or member 10 having a plurality of bores 12, 14 and 16 therewithin of successively decreasing diameter. Longitudinally disposed within the lower barrel portion 10 and sized to be slidably contained within the intermediate bore 14 is an elongate writing point assembled such as a conventional ballpoint cartridge member 18. The ballpoint cartridge member 18 is provided with a dependent writing tip portion 20 of reduced diameter and sized to be slidably disposed within the terminal bore 16 and having the ball writing point 22 mounted, in the conventional manner, on the dependent end thereof. The writing point assembly 18 is normally biased so that the ball writing point 22 is disposed in a retracted position relative to the bore 16 by a biasing spring 24. The biasing spring 24 is disposed within the bore 12 and preferably has one end thereof disposed in abutting relation with a lug member 26 extending outwardly from the surface of the cartridge member 18 and the other end thereof disposed in abutting relation with the horizontally disposed shoulder 28 formed by the junction of the bores 12 and 14.

Adapted to be secured to the upper end of the lower barrel portion 10 in any suitable manner is an upper barrel portion or member 30 having a guide sleeve or coupler 32 firmly secured in the lower end thereof. The guide sleeve or coupler 32 includes a lower bore 34 sized to slidably contain the cartridge member 18 and an enlarged upper bore 36. A convenient and preferred way of operatively securing the upper and lower barrel por- 10 tions together is to provide a external thread on the depending portion of the guide member 32 that extends outwardly beyond the dependent end of the upper barrel portion and a complemental internal thread engageable therewith on the upper end of the lower barrel 15 member 10.

The upper barrell portion 30 in this embodiment is provided with a vertically disposed elongate slot 38 of a width sufficient to closely accommodate a rocking clip The rocking clip 20 assembly, generally designated 40. assembly 40 may be of the illustrated unitary construction or may be formed by a plurality of suitably shaped individual elements suitably secured together to provide a structure that is similar in its operating characteristics to that specifically illustrated in the drawings.

In the illustrated embodiment the rocking clip assembly 40 includes a dependent carrying clip portion or member 42 having the usual inwardly directed bead 44 on the dependent end thereof. The upper end of the dependent clip portion 42 merges with the upper end of a 30 dependent springlike actuating member 46 which is, as will be described later, normally biased into the position illustrated in Fig. 1 closing the major portion of the slot 38. The lower end of the springlike actuating member 46 is provided with an extending dependent flange portion 48 disposed within the upper barrel portion 30 so as to prevent its displacement externally of the upper barrel portion 30 beyond the position thereof illustrated in Fig. 1. The upper end of the rocking clip assembly 40 is shaped to provide an actuating arm portion 50 sized 40 to close the remaining portion of the slot 38. The actuating arm portion 50 is generally triangular in shape and is provided with an extending flange 52 at the upper end thereof to limit the outward displacement of the actuating arm portion 50 relative to the upper barrel por- 45 tion 30 and to prevent displacement thereof outwardly beyond the positioning illustrated in Fig. 2. The rocking clip assembly 40 is pivotally supported, as at 54, intermediate the actuating arm portion 50 and the springlike actuating member 46 by a sleeve member 56 firmly 50 mounted within the upper barrel portion 30.

As illustrated in Figs. 1 and 2, the rocking clip assembly 40 is shaped so that when the writing point 22 is retracted, as illustrated in Fig. 1, the dependent springlike actuating member 46 is biased into closing engage- 55 ment with the slot 38 and the actuating arm portion 50 is disposed in its retracted position with the outer surface thereof disposed substantially flush with the outer surface of the upper barrel portion 30; and so that when the writing point 22 is in advanced position the actuating arm portion 50 is in its extended position and is disposed externally of the surface of the upper barrel portion 30 and the remainder of the slot 38 is closed by the disposition of the carrying clip member 42 in a concealed posi-

tion therein, as illustrated in Fig. 2.

The sleeve member 56 is provided with a bore 58 to guide and slideably contain the upper end of an actuating rod member 60. Mounted on the lower end of the rod member 60 is a cam means such as an actuating button generally designated 62. The actuating button 62 is provided with a retaining means in the form of a circularly shaped horizontally disposed upper surface 64 immediately surrounding the rod member 60 and sized to permit an abutting engagement with the dependent end of the extending flange 48 on the springlike member 46. 75

Immediately adjacent the surface 64 and surrounding the same is a downwardly inclined surface 66 of an extent sufficient to result in a loose slideable engagement of the inner walls of the upper barrel portion 30 by the peripheral portions thereof. Dependent from the underside of the actuating button member 62, as described above, is an integral sleeve portion 68 having an outside diameter sized to be contained within the bore 36 of the guide member 32 and an inside diameter sized to contain the

upper end of the cartridge member 18.

When the writing point 22 is disposed in retracted position the component elements of the assembly are positioned as illustrated in Fig. 1. As there set forth, it will be seen that the carrying clip member 42 is positioned externally of the surface of the upper barrel portion 30 and that the slot 38 is closed by the springlike actuating The cartridge member 18 forming the writing point assembly is biased upwardly, or in retracted position, by the action of the biasing spring 34. The upward biasing of the cartridge member 38 results in the actuating button 62 being positioned so that the lower portion of the inclined surface 66 thereof is disposed adjacent to the dependent end of the extending flange portion 48 of the springlike member 46. ward displacement of the cartridge member 18, actuating button 62 and actuating rod member 60 may be limited by engagement of the shoulder 70 with the sleeve With the parts so positioned, a manually effected inward displacement of the clip member 42 to its concealed position results in the bead portion 44 thereof displacing the lower end of the springlike actuating member 46 inwardly towards the center of the upper barrel portion 30. The inward displacement of the lower end of the springlike actuating member 46 results in a downward displacement of the actuating button 62 by engagement of the inclined surface 66 thereof by dependent flanged end 48 of the spring member. Inward displacement of the springlike actuating member 46 thus results in concomitant downward displacement of the cam means 62 until the dependent end of the flange portion 48 engages the horizontally disposed surface portion 64 immediately surrounding the rod member 60. As described earlier, the downward displacement of the actuating button 62, because of its mounting at the upper end of the cartridge member 18, effects a concomitant downward displacement of the writing point 22 and in extension of the same to its extended position, as illustrated in Fig. 2. When the limit of downward displacement is reached, the various component elements will be positioned as in Fig. 2, wherein the carrying clip member 42 is positioned to close the slot 38, the springlike actuating member 46 has its lower end disposed in engagement with the horizontal surface 64 and the actuating arm portion 50 of the rocking clip assembly is in its extended or exposed position with the outer surface thereof being positioned above the surface of the barrel member 30.

Retraction of the point from its extended position, as illustrated in Fig. 2, is readily effected by a manual inward displacement of the now exposed portion of the actuating arm 50. Such inward displacement thereof will result in a rotative displacement of the rocking clip assembly 40 about the pivot point 54 with the resulting disengagement of the dependent end of the actuating member 46 from the horizontally disposed retaining surface 64. The disengagement of the actuating member 46 from the horizontally disposed retaining surface 64 permits the biasing spring 24 to upwardly displace the writing point assembly 18 and the actuating button 62 mounted thereon. The upward displacement of the button 62 results in an outward displacement of the actuating member 46 to a position as illustrated in Fig. 1 with its concomitant exposure with the clip member 42.

The disposition of the component elements as illustrated in Figs. 1 and 2 clearly shows that when the writing point 22 is in its extended position, the carrying clip member 42 is disposed in its concealed position substantially flush with the outer surface of the barrel 30 and that the bead 44 on the dependent end thereof is completely or almost completely covered. Such disposition, apart from adding greatly to the appearance of the unit, precludes utilization of the clip member 42 for carrying purposes as long as the writing point 22 is in its extended position.

Figures 3 and 4 illustrate another embodiment incorporating the principles of the invention. For the pur- 10 poses of convenience, only the upper barrel portion thereof is shown, it being understood that such is intended to be utilized in conjunction with a lower barrel portion of the character heretofore described in detail in conjunction with the embodiment illustrated in Figures 1 and 2. 15

The embodiment of Figures 3 and 4 is essentially similar to that illustrated in Figures 1 and 2 and described heretofore with the points of difference lying primarily in the necessary adaptation to permit utilization of an elongate writing point assembly such as a cartridge mem- 20 ber 100 of sufficient length to extend substantially the full length of the assembled writing instrument. As shown in the drawings, there is provided a coupler or guide member 102 mounted in the lower end of the upper barrel portion 30 having a longitudinally disposed bore 25 104 therein sized to slideably contain an elongate writing point assembly such as the aforementioned elongate ballpoint cartridge member 100. In this embodiment, the sleeve member 56 mounted in the upper end of the upper barrel portion 30 is also provided with an enlarged bore 30 106 of a diameter to slideably contain the upper end of the ballpoint cartridge member 100. Mounted on the cartridge member 100 for conjoint displacement therewith and positioned thereon by the disposition of lugs 108 within a suitable recess 109 is a cam means such as the actuating sleeve 108. The actuating sleeve 108 is provided with a vertically disposed slotted portion 110 of sufficient width to contain the dependent end 48 of the springlike actuating member 46 and has a sloping cam surface 112 included therewithin. The sloping surface 112 upwardly terminates in a horizontally disposed retaining surface 114 or shoulder disposed adjacent the surface of the cartridge member 100.

The operation of this embodiment is essentially similar to that described earlier in conjunction with the embodi- 45 ment illustrated in Figs. 1 and 2. With the component elements positioned as illustrated in Fig. 3, the cartridge member 100 is biased in retracted position by the action of the biasing spring disposed within the lower barrel portion as described earlier in conjunction with the em- 50 bodiments of Figs. 1 and 2. With the parts so positioned a manually effected inward displacement of the exposed clip member 42 to its concealed position results in the dependent bead portion 44 thereof displacing the lower end 48 of the springlike actuating member 46 inwardly 55 toward the center of the upper barrel portion 30. The inward displacement of the lower end 48 of the springlike actuating member 46 results in a downward displacement of the actuating sleeve 108 by engagement of the inclined surface 112 thereof by the dependent flanged 60 end 48 of said actuating member. The so effected downward displacement of the actuating sleeve 108 will effect a conjoint downward displacement of the ballpoint cartridge member 100 until the depending end of the flange portion 48 of the actuating member 46 engages the hori- 65 zontally disposed surface 114. When such limit of displacement is reached, the component elements will be disposed as illustrated in Fig. 4 with the clip member 42 positioned in concealed position closing the longitudinal slot 38 in the surface of the upper barrel mem- 70 ber 30, the spring member 46 having its lower end disposed in engagement with the horizontal surface 114 to prevent retraction of the writing point assembly and with the actuating arm portion 50 of the rocking clip assembly

face thereof being positioned above the surface of the upper barrel portion 30.

Retraction of the writing point assembly 18 from its extended position, as illustrated in Fig. 4, is readily effected by a manual inward displacement of the now extended portion of the actuating arm 50. Such inward displacement thereof will result in a rotative displacement of the rocking clip assembly 40 about the pivot point 54 with a resulting disengagement of the dependent end 48 of the actuating member 46 from the horizontally disposed surface 114. The disengagement of the dependent end 48 of the actuating member 46 from the horizontally disposed surface 114 permits the biasing spring to effect a conjoint upward displacement of the cartridge member 100 and the actuating sleeve 103 mounted thereon. The upward displacement of the actuating sleeve 108 results in an outward displacement of the spring member 46 to the position illustrated in Fig. 3 with its concomitant exposure of the clip member 42 to permit utilization thereof for carrying purposes.

Figures 5 to 9 illustrate the constructional details of the presently preferred embodiment incorporating the principles of the invention and which is adapted for simple and inexpensive commercial manufacture. As there illustrated, there is provided a lower barrel portion 200 having a plurality of bores 202, 204 and 206 therewithin of successively decreasing diameter. Longitudinally disposed therewithin is a displaceable writing point assembly 208 such as a conventionally sized ballpoint cartridge member having a ball writing type 210 at the dependent end thereof. The writing point assembly 208 is normally biased in retracted position relative to the lower barrel portion 200 by the biasing spring 212 disposed intermediate the lugs 214 and the shoulder 216.

Adapted to be secured to the lower barrel portion 200 by the coupler member 218 is an upper barrel portion 220. The coupler member 218 is provided with an axially disposed bore 222 sized to slideably contain the cartridge 208 and a threaded extending sleeve 224 sized to engage a complemental internal thread on the upper extremity of the lower barrel portion 200.

The upper barrel portion is provided with aligned upper and lower apertures 226 and 228 respectively. Disposed within the upper aperture 226 and pivotally mounted on the lower defining edge thereof intermediate its extremities is a rocking clip assembly generally designated 230. The rocking clip assembly includes an externally disposed dependent clip member 232 having an inwardly directed bead 234 at the dependent end thereof and positioned to be displaceable into and be received by the lower aperture 228. The upper portion on the clip member includes a generally U-shaped clamping section 236 disposed substantially perpendicular to the clip member 232 and sized to be contained within the upper aperture 226 and to extend inwardly into the interior of the upper barrel portion 220. The exposed surface 238 of the clip member 232 disposed above the lower edge 240 of the upper aperture 226 may be provided with a retaining flange 242 to limit displacement thereof relative to the surface of the upper barrel portion 230.

Also included in the rocking clip assembly is an internally disposed dependent springlike actuating member 244 sized so that the dependent end 246 thereof covers the lower aperture 228. The upper end of the actuating member 244 is provided with a U-shaped mounting section 248 sized to be secured, as by a press fit, intermediate the extending arms of the U-shaped clamping section 236 of the clip member 232, as illustrated in Figure 9. In order to facilitate assembly and to prevent undesired separation thereof the abutting surfaces of the clamping section 236 and mounting section 248 are preferably provided with matching beads and bead receiving recesses, as indicated at 250 in Figure 9.

the actuating arm portion 50 of the rocking clip assembly
being disposed in its extended position with the outer sur- 75 sembly 208 and longitudinally displaceable in conjunc-

cam sleeve 254 results in an outward displacement of the dependent end 246 of the actuating member 244 to the position illustrated in Figure 5 with a concomitant displacement of the carrying clip 232 from its concealed

to its exposed position remote from the surface of the upper barrel portion 220. When so disposed in its exposed position, the carrying clip member 232 is available for carrying purposes.

Having thus described my invention, I claim:

tion therewith is a cam means assembly, generally designated 252. The cam means assembly includes a cam means 254 preferably in the form of a button or sleeve member supported at a predetermined location relative to the lower aperture, when the writing point 210 is re- 5 tracted, by a U-shaped strap member 256. As best shown in Figure 8, the strap member 256 is supported by the upper end of the cartridge member 208 and in turn supports the sleeve member 254 by diametrically opposed engagement with the undersurface thereof, as at 258. 10 The cam sleeve member 254 is provided with a horizontally disposed retaining surface 260 surrounding the axially disposed cartridge containing bore thereof and a surrounding downwardly inclined surface 262 of a peripheral extent sufficient to result in a slidable engage- 15 ment with the walls of the upper barrel portion 220.

When the writing point 210 is disposed in retracted position the component elements are positioned as illustrated in Figure 5. As there set forth, the dependent end of the actuating member 244 is disposed in covering 20 relation against the lower aperture 228 and in abutting limiting relation with the dependent portion of the inclined cam surface 262. Such disposition of the actuating member 244 results in disposition of the clip member 232 in its exposed position remote from the surface 25

of the upper barrel portion 230.

With the parts so positioned, a manually effected inward displacement of the bead portion of the clip member 232 to its concealed position results in said bead 234 entering the aperture 228 and displacing the lower end 30 246 of the actuating member 244 inwardly towards the center of the upper barrel portion 220. Because of the pivotal mounting of the rocking clip assembly as described above, the surface 238 disposed on the upper end of the clip member 232 is simultaneously advanced to its exposed or extended position. The inward displacement of the lower end 246 of the actuating member 244 results, from its engagement with the slopping surface 262 on the cam means sleeve 254, in a downward displacement of the sleeve 254 and a concomitant downward displacement of the writing point assembly 208 towards its exposed or extended position. Such downward displacement of the writing point assembly 208 and cam sleeve 254 will continue until the dependent end 246 of the actuating member 244 engages the horizontally retaining 45 surface 260. When so displaced, further downward displacement will not take place and the wiring point assembly 208 will be maintained in its extended position.

When the writing point is disposed in its extended position, the component elements will be positionally as 50

illustrated in Figure 6.

The action of the biasing spring 212 against such downward displacement results in a compressive engagement between said horizontally disposed surface 260 and the dependent end 246 of the actuating member 244 which 55 serves to maintain the clip member 232 in its concealed position wherein the bead 234 is disposed, entirely or in part, within the aperture 228. Such disposition of the bead member 232, when the writing point assembly 208 tion of the carrying clip 232 for carrying purposes.

Retraction of the writing point assembly 208 from its extended position, as illustrated in Figure 6, is readily effected by a manual inward displacement of the portion of the rocking clip assembly disposed above the pivotal 65 mounting thereof. Such inward displacement, as by manual pressure applied to the surface 238, results in a rotative displacement of the rocking clip assembly about its pivotal mounting with the resulting disengagement of the horizontally disposed retaining surface 260. The disengagement of the actuating spring member as described above permits the biasing spring 212 to upwardly displace the writing point assembly 208 and the cam sleeve 254 mounted thereon. The upward displacement of the 75 from said aperture to permit rotative displacement there-

1. In a writing instrument having a lower barrel portion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position and spring means normally biasing said writing point assembly in retracted position, mechanism for effecting extenson of said writing point assembly comprising an upper barrel portion having an aperture therein and disposed in aligned abutting engagement with said lower barrel portion, writing point assembly displacing means mounted on said writing point assembly longitudinally displaceable in conjunction therewith and disposed adiacent said aperture in said upper barrel portion, a rocking clip assembly, means pivotally mounting said rocking clip assembly intermediate its extremities on said upper barrel portion at a location remote from said aperture to permit rotative displacement thereof, said rocking clip assembly including an externally disposed clip member having an elongate lower portion disposed beneath said pivotal mounting means and provided with an inwardly directed bead on the dependent end thereof manually rotatably displaceable from an exposed position externally adjacent the surface of said upper barrel portion to a concealed position wherein at least a portion of said bead is disposed within said aperture and in inwardly protruding relation within said upper barrel portion and an upper portion disposed above said pivotal mounting means rotatably displaceable from a retracted position adjacent the surface of said upper barrel portion to an exposed position remote therefrom in response to displacement of said bead on said lower portion from its exposed position to its concealed position, and an internally disposed dependent actuating member having its upper end operatively secured to said clip member adjacent said pivotal mounting means and remote from said aperture and its dependent end disposed in overlying relationship with said aperture and in operative engagement with said writing point assembly displacing means, the dependent end of said actuating member being displaceably engageable by said bead on said lower portion of said clip member and having said dependent end displaceable substantially transverse to the longitudinal axis of said upper barrel portion in response to pressure thereon effected by engagement by said bead during displacement of the bead from its exposed position to its concealed position for displacing said writing point assembly displacing means longtudinally of said upper barrel portion to advance said writing point assembly to its extended position against the biasing action of said spring means.

2. In a writing instrument having a lower barrel poris in its advanced position, effectively precludes utiliza- 60 tion and a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position, mechanism for effecting extension and retraction of said writing point assembly comprising spring means disposed in said lower barrel portion for normally biasing said writing point assembly in retracted position relative thereto, an upper barrel portion having an aperture therein and disposed in aligned abutting engagement with said lower barrel portion, writing point assembly displacing means mounted on said writing point the dependent end 246 of the actuating member 244 from 70 assembly longitudinally displaceable in conjunction therewith and disposed adjacent said aperture in said upper barrel portion, a rocking clip assembly, means pivotally mounting said rocking clip assembly intermediate its extremities on said upper barrel portion at a location remote

of, said rocking clip assembly including an externally disposed clip member having an elongate lower portion disposed beneath said pivotal mounting means and provided with an inwardly directed bead on the dependent end thereof manually rotatably displaceable from an exposed position externally adjacent the surface of said upper barrel portion to a concealed position wherein at least a portion of said bead is disposed within said aperture and in inwardly protruding relation within said upper barrel portion and an upper portion disposed above said 10 pivotal mounting means rotatably displaceable from a retracted position adjacent the surface of said upper barrel portion to an exposed position remote therefrom in response to displacement of said bead on said lower portion from its exposed position to its concealed posi- 15 tion, and an internally disposed dependent actuating member having its upper end operatively secured to said clip member adjacent said pivotal mounting means and remote from said aperture and its dependent end disposed in overlying relationship with said aperture and in op- 20 action of said spring means. erative engagement with said writing point assembly displacing means, the dependent end of said actuating member being displaceably engageable by said bead on said lower portion of said clip member and having said dependent end displaceable substantially transverse to the 25 longitudinal axis of said upper barrel portion in response to pressure thereon effected by engagement by said bead during displacement of the bead from its exposed position to its concealed position for displacing said writing point assembly displacing means longitudinally of said upper 30 barrel portion to advance said writing point assembly to its extended position, and retaining means included on said writing point assembly displacing means engageable by the dependent end of said actuating member when said writing point assembly is in its extended position for 35 maintaining said writing point assembly in its extended position against the biasing action of said spring means.

3. The mechanism as set forth in claim 2 wherein rotative displacement of the upper portion of said clip member from its exposed to its retracted position effects a 40 pivotal displacement of said actuating member and disengagement of the dependent end thereof from said retaining means to permit return of said writing point assembly and writing point assembly displacing means mounted thereon, by said biasing spring means, to its 45 retracted position and concomitant displacement of said bead on the lower portion of said clip member to its exposed position externally adjacent the surface of said

upper barrel portion.

4. In a writing instrument having a lower barrel por- 50 tion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position and spring means normally biasing said writing point assembly in retracted position, mechanism for effecting extension of said writing point assembly comprising an 55 upper barrel portion having upper and lower aligned spaced apertures therein and disposed in aligned abutting engagement with said lower barrel portion, writing point assembly displacing means mounted on said writing point assembly longitudinally displaceable in conjunction 60 therewith and disposed adjacent said lower aperture in said upper barrel portion, a rocking clip assembly, means pivotally mounting said rocking clip assembly intermediate its extremities in said upper aperture to permit rotative displacement thereof, said rocking clip assembly in- 65 cluding an externally disposed carrying clip member having an elongate lower portion disposed beneath said pivotal mounting means with a bead on its dependent end manually rotatably displaceable from an exposed position externally adjacent the surface of said upper barrel 70 portion to a concealed position wherein at least a portion of said bead is disposed within said lower aperture and in inwardly protruding relation within said upper barrel portion and an upper portion disposed above said pivotal

retracted position adjacent the surface of said upper barrel portion to an exposed position remote therefrom in response to displacement of said bead on said lower portion from its exposed to its concealed position, and an internally disposed actuating member having its upper end operatively secured to said clip member adjacent said pivotal mounting means and remote from said lower aperture and its dependent end disposed in overlying relationship with said lower aperture and in operational engagement with said writing point assembly displacing means, the dependent end of said actuating member being displaceably engageable by said bead and having said dependent end displaceable inwardly of said upper barrel portion in response to pressure thereon effected by engagement by said bead during displacement of said bead from its exposed to its concealed position for displacing said writing point assembly displacing means longitudinally of said upper barrel portion to advance said writing point assembly to its extended position against the biasing

5. The mechanism as set forth in claim 4 including retaining means on said writing point assembly displacing means engageable by the dependent end of said actuating member when said writing point assembly displacing means is in its extended position and said actuating member is in its displaced position in response to disposition of said bead in its concealed position for maintaining said writing point assembly in its extended position against

the biasing action of said spring means.

6. The mechanism as set forth in claim 5 wherein rotative displacement of the upper portion of said clip member from its exposed to its retracted position effects a pivotal displacement of said actuating member and disengagement of the dependent end thereof from said retaining means to permit return of said writing point assembly and displacing means mounted thereon, by said biasing spring means, to its retracted position and concomitant displacement of said bead on said lower portion of said clip member to its exposed position externally adjacent the surface of said upper barrel portion.

7. The mechanism as set forth in claim 4 wherein said writing point assembly displacing means includes a sleevelike member engageable by the dependent end of said actuating member and suspended from the upper end of

said writing point assembly.

8. In a writing instrument having a lower barrel portion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position and spring means normally biasing said writing point assembly in retracted position, mechanism for effecting extension of said writing point assembly comprising an upper barrel portion having an aperture therein and disposed in aligned abutting engagement with said lower barrel portion, said aperture having a bead receiving portion included therein, writing point assembly displacing means mounted on said writing point assembly longitudinally displaceable in conjunction therewith and disposed adjacent said bead receiving portion of said aperture in said upper barrel portion, a rocking clip assembly, means pivotally mounting said rocking clip assembly intermediate its extremities on said upper barrel portion at a location remote from said bead receiving portion of said aperture to permit rotative displacement thereof, said rocking clip assembly including an externally disposed clip member having an elongate lower portion disposed beneath said pivotal mounting means and provided with an inwardly directed bead on the dependent end thereof manually rotatably displaceable from an exposed position externally adjacent the surface of said upper barrel portion to a concealed position wherein at least a portion of said bead is disposed within said bead receiving portion of said aperture and in inwardly protruding relation within said upper barrel portion and an upper portion disposed above said pivotal mounting means rotatably mounting means rotatably manually displaceable from a 75 displaceable from a retracted position adjacent the surface

12

of said upper barrel portion to an exposed position remote therefrom in response to displacement of said bead on said lower portion from its exposed position to its concealed position and an internally disposed dependent actuating member having its upper end operatively secured to said clip member adjacent said pivotal mounting means and remote from said bead receiving portion of said aperture and its dependent end disposed in overlying relationship with said bead receiving portion of said aperture and in operative engagement with said writing point assembly displacing means, the dependent end of said actuating member being displaceably engageable by said bead on said lower portion of said clip member and having said depndent end displaceable substantially transverse to the longitudinal axis of said upper barrel portion

in response to pressure thereon effected by engagement by said bead during displacement of the bead from its exposed position to its concealed position for displacing said writing point assembly displacing means longitudinally of said upper barrel portion to advance said writing point assembly to its extended position against the biasing action of said spring means.

References Cited in the file of this patent

* * *	UNITED STATI	ES PATENTS
1.518.822	Saadi	Dec. 9, 1924
1,585,843	Fitch	May 25, 1926
1,000,010	FOREIGN F	
1 086 020	France	Aug. 18, 1954

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION

Patent No. 2,881,736

April 14, 1959

Nathan Zepelovitch

It is hereby certified that error appears in the printed specification of the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.

Column 1, line 23, for "botton" read — button —; column 2, line 57, for "assembled" read — assembly —; column 3, line 11, for "a external" read — an external —; line 17, for "barrell" read — barrel —; column 6, line 51, for "on the clip" read — of the clip —; column 7, line 38, for "slopping" read — sloping —; column 8, line 15, for "extenson" read — extension —; line 55, for "longtudinally" read — longitudinally —; column 9, line 75, strike out "manually"; column 11, line 14, for "depndent" read — dependent —.

Signed and sealed this 22nd day of December 1959.

(SEAL)

Attest:

KARL H. AXLINE

Attesting Officer

ROBERT C. WATSON Commissioner of Patents