This invention relates to retractable point writing instruments and particularly to improved mechanisms for effecting extension and retraction of the writing points of ballpoint type writing instruments. This is a continuation-in-part of my now pending application Serial No. 706,162 filed December 30, 1957, now abandoned.

Conventional writing instruments of the ballpoint type generally include, in addition to the usual carrying clip, a socket member extending from one end of the barrel that is manually displaceable to effect extension of a retracted writing point from the other end thereof together with associated means, of varying character, to effect retraction of the point usually by action of a biasing spring, in response to a manipulative act of the user. In such type construction, the hazard is always present that the user will forget to retract the writing point after use and will insert the pen, with the writing point extended, into a pocket, handbag or other receptacle. Disposition of the pen in a pocket or other receptacle with the writing point in its extended position is extremely likely to result in soiling due to a capillary flow of ink from the point to any surface that it may engage as well as in possible clogging of the point by contact with foreign matter, such as dirt, lint etc.

This invention may be briefly described as an improved mechanism for effecting the extension and retraction of the writing points of writing instruments preferably of the ballpoint type including a rocking clip assembly arranged so that pivotal displacement of the carrying clip in one direction effects an extension of the writing point from its retracted position and positioning of the carrying clip so as to preclude its utilization for carrying purposes as long as the writing point is in its extended position together with associated means for effecting retraction of the point and concomitant exposure of the clip member to render the same available for carrying purposes.

Among the advantages attendant the present invention is the permitted elimination of the conventional button mechanism, a permitted wide range of writing instrument styling, a simple positive acting mechanism, effectuated entirely through manipulation of the carrying clip, preclusion of utilization of the clip member when the writing point is in its exposed position and a pen structure having a minimal number of component elements of a character that permits appreciable economics in component expense and assembly costs.

The object of this invention is the provision of improved mechanisms for effecting the extension and retraction of a writing point in a retractable point writing instrument.

Another object of the invention is the provision of a rocking clip mechanism for effecting the extension and retraction of a writing point which includes a disposable carrying clip member arranged so as to preclude its use for carrying purposes when the writing point is in an extended position.

Still another object of this invention is the provision of a rocking clip assembly for retractable point writing instruments whereby displacement of the carrying clip member is utilized to effect advance and retraction of the writing point together with a disposition of the clip member so as to prevent its use for carrying purposes whenever the writing point is in extended position.

Other objects and advantages of this invention will be pointed out in the following disclosure and drawings which illustrate, by way of example, the principles of this invention, together with the presently preferred embodiments thereof incorporating those principles.

Referring to the drawings,

Fig. 1 is a vertical sectional view of one embodiment of a writing instrument of the ballpoint type incorporating the principles of this invention and showing the disposition of the component parts thereof when the point is disposed in its retracted position;

Fig. 2 is a view similar to that of Fig. 1 showing the disposition of the component parts thereof when the writing point is disposed in its extended position;

Fig. 3 is a vertical sectional view of a portion of another embodiment of a ballpoint writing instrument incorporating the principles of this invention and showing the disposition of the component parts thereof when the writing point is disposed in retracted position;

Fig. 4 is a view similar to that of Fig. 3 and showing the disposition of the component parts thereof when the writing point is disposed in an extended position;

Fig. 5 is a vertical sectional view of the presently preferred embodiment of the invention as incorporated in a ballpoint writing instrument and is illustrative of the disposition of the component parts thereof when the writing point is disposed in retracted position;

Fig. 6 is a view similar to that of Fig. 5 but showing the disposition of the component parts when the writing point is disposed in its extended position;

Fig. 7 is a sectional view taken on the line 7—7 of Figure 6;

Fig. 8 is a sectional view taken on the line 8—8 of Figure 7;

Fig. 9 is a sectional view taken on the line 9—9 of Figure 6.

Referring to the embodiment illustrated in Figs. 1 and 2, there is shown a writing instrument of the ballpoint type conventionally including a lower barrel portion or member 10 having a plurality of bores 12, 14 and 16 therewithin of successively decreasing diameter. Longitudinally disposed within the lower barrel portion 10 and sized to be slidably contained within the intermediate bore 14 is an elongate writing point assembly such as a conventional ballpoint cartridge member 18. The ballpoint cartridge member 18 is provided with a dependent writing tip portion 20 of reduced diameter and sized to be slidably disposed within the terminal bore 16 and having the ball writing point 22 mounted, in the conventional manner, on the dependent end thereof. The writing point assembly 18 is normally biased so that the barrel writing point 22 is disposed in a retracted position relative to the bore 16 by a biasing spring 24. The biasing spring 24 is disposed within the bore 12 and preferably has one end thereof disposed in abutting relation with a lug member 26 extending outwardly from the surface of the cartridge member 18 and the other end thereof disposed in abutting relation with the horizontally
disposed shoulder 25 formed by the junction of the bores 12 and 14. Adapted to be secured to the upper end of the lower barrel portion 10 in any suitable manner is an upper barrel portion or member 30 having a guide sleeve or coupler 32 firmly secured in the lower end thereof. The guide sleeve or coupler 32 includes a lower bore 34 sized to slidably contain the cartridge member 18 and an enlarged upper bore 36. A convenient and preferred way of operatively securing the upper and lower barrel portion together is to provide an external thread on the depending portion of the guide member 32 that extends outwardly beyond the dependent end of the upper barrel portion and a complementary internal thread engageable therewith on the upper end of the lower barrel member 10.

The upper barrel portion 30 in this embodiment is provided with a vertically disposed elongate slot 38 of a width sufficient to closely accommodate a rocking clip assembly, generally designated 40. The rocking clip assembly 40 may be of the illustrated unitary construction or may be formed by a plurality of suitably shaped individual elements suitably secured together to provide a structure that is similar in its operating characteristics to that specifically illustrated in the drawings.

In the illustrated embodiment the rocking clip assembly 40 includes a dependent carrying clip portion or member 42 having the usual inwardly directed head 44 on the dependent end thereof. The upper end of the dependent clip portion 42 engages with the upper end of a dependent springlike actuating member 46 which is, as will be described later, normally biased into the position illustrated in Fig. 1 closing the major portion of the slot 38. The lower end of the springlike actuating member 46 is provided with an extending dependent flange portion 48 disposed within the upper barrel portion 30 so as to prevent its displacement externally of the upper barrel portion 30 beyond the position thereof illustrated in Fig. 1. The upper end of the rocking clip assembly 40 is shaped so that when the writing point 22 is retracted, as illustrated in Fig. 1, the dependent springlike actuating member 46 is biased into closing engagement with the slot 38 and the actuating arm portion 50 is disposed in its retracted position with the outer surface thereof disposed substantially flush with the outer surface of the upper barrel portion 30; and so that when the writing point 22 is in advanced position the actuating arm portion 50 is in its extended position and is disposed externally of the surface of the upper barrel portion 30 and the remainder of the slot 38 is closed by the disposition of the carrying clip member 42 in a concealed position therein, as illustrated in Fig. 2.

The sleeve member 56 is provided with a bore 58 to guide and slideably contain the upper end of an actuating rod member 60. Mounted on the lower end of the rod member 60 is a cam means such as an actuating button 62 generally designated 62. The actuating button 62 is provided with a retaining means in the form of a circularly shaped horizontally disposed upper surface 64 immediately surrounding the rod member 60 and sized to permit an abutting engagement with the dependent end of the extending flange 48 on the springlike member 46. Immediately adjacent the surface 64 and surrounding the same is a downwardly inclined surface 66 of an extent sufficient to result in a loose slideable engagement of the inner walls of the upper barrel portion 30 by the peripheral portions thereof. Dependent from the underside of the actuating button member 62, as described above, is an integral sleeve portion 68 having an outside diameter sized to be contained in the bore 36 of the guide member 32 and an inside diameter sized to contain the upper end of the cartridge member 18.

When the writing point 22 is disposed in retracted position the component elements of the assembly are positioned as illustrated in Fig. 1. As illustrated forthwith, it will be seen that the carrying clip member 42 is disposed externally of the surface of the upper barrel portion 30 and that the slot 38 is closed by the springlike actuating member 46. The cartridge member 18 forming the writing point assembly is biased upwardly, or in retracted position, by the action of the biasing spring 34. The upward biasing of the cartridge member 38 results in the actuating button 62 being positioned so that the lower portion of the inclined surface 66 thereof is disposed adjacent to the dependent end of the extending flange portion 48 of the springlike member 46. The upward displacement of the cartridge member 18, actuating button 62 and actuating rod member 60 may be limited by engagement of the shoulder 70 with the sleeve 56. With the parts so positioned, a manually effected inward displacement of the clip member 42 to its concealed position results in the head portion 44 thereof displacing the lower end of the springlike actuating member 46 inwardly towards the center of the upper barrel portion 30. The inward displacement of the lower end of the springlike actuating member 46 results in a downward displacement of the actuating button 62 by engagement of the inclined surface 66 thereof by dependent flanged end 48 of the springlike actuating member 46. As illustrated in Fig. 2. When the limit of downward displacement is reached, the various component elements will positioned as in Fig. 2, wherein the carrying clip member 42 is positioned to close the slot 38, the springlike actuating member 46 has its lower end disposed in engagement with the horizontal surface 64 and the actuating arm portion 50 of the rocking clip assembly is in its extended or exposed position with the outer surface thereof being positioned above the surface of the barrel member 30.

Retraction of the point from its extended position, as illustrated in Fig. 2, is readily effected by a manual inward displacement of the now exposed portion of the actuating arm 50. Such inward displacement thereof will result in a rotative displacement of the rocking clip assembly 40 about the pivot point 54 with the resulting disengagement of the dependent end of the actuating member 46 from the horizontally disposed retaining surface 64.

The disengagement of the actuating member 46 from the horizontally disposed retaining surface 64 permits the biasing spring 24 to upwardly displace the writing point assembly 18 and the actuating button 62 mounted thereon. The upward displacement of the button 62 results in an outward displacement of the actuating member 46 to a position as illustrated in Fig. 1 with its concomitant exposure with the clip member 42.

The disposition of the component elements as illustrated in Figs. 1 and 2 clearly shows that when the writing point 22 is in its extended position, the carrying clip
member 42 is disposed in its concealed position substantially flush with the outer surface of the barrel 30 and that the bead 44 on the dependent end thereof is completely or almost completely concealed. Such disposition, apart from adding greatly to the appearance of the unit, precludes utilization of the clip member 42 for carrying purposes as long as the writing point 22 is in its extended position.

Figures 3 and 4 illustrate another embodiment incorporating the principles of the invention. For purposes of convenience, only the upper barrel portion thereof is shown, it being understood that such is intended to be utilized in conjunction with a lower barrel portion of the character heretofore described in detail in conjunction with the embodiment illustrated in Figures 1 and 2. The embodiment illustrated in Figures 3 and 4 is essentially similar to that illustrated in Figures 1 and 2 and described heretofore with the points of difference lying primarily in the necessary adaptation to permit utilization of an elongate writing point assembly such as a cartridge member 100 of sufficient length to extend substantially the full length of the assembled writing instrument. As shown in the drawings, there is provided a coupler or guide member 102 mounted in the lower end of the upper barrel portion 30 having a longitudinally disposed bore 104 therein sized to slideably contain an elongate writing point assembly such as the aforementioned elongate ballpoint cartridge member 100. In this embodiment, the sleeve member 56 mounted in the upper end of the upper barrel portion 30 is also provided with an enlarged bore 106 of a diameter to slideably contain the upper end of the ballpoint cartridge member 100. Mounted on the cartridge member 100 for conjoint displacement therewith by the action of the disposition of lugs 108 within a suitable recess 109 is a cam means such as the actuating sleeve 108. The actuating sleeve 108 is provided with a vertically disposed slotted portion 110 of sufficient width to contain the dependent end 48 of the springlike actuating member 46 and has a sloping cam surface 112 included therewithin. The sloping surface 112 upwardly terminates in a horizontally disposed retaining surface 114 or shoulder disposed adjacent the surface of the cartridge member 100.

The operation of this embodiment is essentially similar to that described earlier in conjunction with the embodiment illustrated in Figures 1 and 2. With the component elements positioned as illustrated in Fig. 3, the cartridge member 100 is biased in retracted position by the action of the biasing spring disposed within the lower barrel portion as described earlier in conjunction with the embodiments of Figs. 1 and 2. With the parts so positioned a manually effected inward displacement of the exposed clip member 42 to its concealed position results in the dependent bead portion 44 thereof displacing the lower end 48 of the springlike actuating member 46 inwardly toward the center of the upper barrel portion 30. The inward displacement of the lower end 48 of the springlike actuating member 46 results in a downward displacement of the actuating sleeve 108 by engagement of the inclined surface 112 thereof by the dependent flanged end 48 of said actuating member. The so effected downward displacement of the actuating sleeve 108 will effect a conjoint downward displacement of the ballpoint cartridge member 100 until the dependent end 48 of the actuating member 46 engages the horizontally disposed surface 114. When such limit of displacement is reached, the component elements will be disposed as illustrated in Fig. 4 with the clip member 42 positioned in its concealed position, the outer surface thereof being positioned above the surface of the upper barrel portion 30.

Retraction of the writing point assembly 18 from its extended position, as illustrated in Fig. 4, is readily effected by a manual inward displacement of the now extended portion of the actuating arm 50. Such inward displacement thereof will result in a rotative displacement of the rocking clip assembly 40 about the pivot point 54 with a resulting disengagement of the dependent end 48 of the actuating member 46 from the horizontally disposed surface 114. The disengagement of the dependent end 48 of the actuating member 46 from the horizontally disposed surface 114 permits the biasing spring to effect a conjoint upward displacement of the cartridge member 100 and the actuating sleeve 108 mounted therewith. The upward displacement of the actuating sleeve 108 results in an outward displacement of the spring member 46 to the position illustrated in Fig. 3 with its concomitant exposure of the clip member 42 to permit utilization thereof for carrying purposes.

Figures 5 to 9 illustrate the constructional details of the presently preferred embodiment incorporating the principles of the invention and which is adapted for simple and inexpensive commercial manufacture. As illustrated, there is provided a lower barrel portion 200 having a plurality of bores 202, 204 and 206 wherein of successively decreasing diameter. Longitudinally disposed therewithin is a displaceable writing point assembly 208 such as a conventionally sized ballpoint cartridge member having a ball writing type 210 at the dependent end thereof. The writing point assembly 208 is normally biased in retracted position relative to the lower barrel portion 200 by the biasing spring 212 disposed intermediate the lugs 214 and the shoulder 216. Adapated to be secured to the lower barrel portion 200 by the coupler member 218 is an upper barrel portion 220. The coupler member 218 is provided with an axially disposed bore 222 sized to slideably contain the cartridge 208 and a threaded extending sleeve 224 sized to engage a complementary internal thread on the upper extremity of the lower barrel portion 200.

The upper barrel portion is provided with aligned upper and lower apertures 226 and 228 respectively. Disposed within the upper aperture 226 and pivotally mounted on the lower defining edge thereof intermediate its extremities is a rocking clip assembly generally designated 230. The rocking clip assembly includes an externally disposed dependent clip member 232 having an inwardly directed bead 234 at the dependent end thereof and positioned to be displaceable into and be received by the lower aperture 228. The upper portion on the clip member includes a generally U-shaped clamping section 236 disposed substantially perpendicular to the clip member 232 and sized to be contained within the upper aperture 226 and to extend inwardly into the interior of the upper barrel portion 220. The exposed surface 238 of the clip member 232 disposed above the lower edge 240 of the upper aperture 226 may be provided with a retaining flange 242 to limit displacement thereof relative to the surface of the upper barrel portion 220.

Also included in the rocking clip assembly is an internally disposed dependent springlike actuating member 244 sized so that the dependent end 246 thereof covers the lower aperture 228. The upper end of the actuating member 244 is provided with a U-shaped mating portion 248 sized to be secured, as by a press fit, intermediate the extending arms of the U-shaped clamping section 236 of the clip member 232, as illustrated in Figure 9. In order to facilitate assembly and to prevent undue friction therebetween of the abutting surfaces of the clamping section 236 and mating member 244, the recesses are preferably provided with matching beads and bearing mating surfaces, as indicated at 250 in Figure 9.

Mounted on the upper end of the writing point assembly 208 and longitudinally displaceable in conjunc-
The cam means assembly includes a cam member 254 preferably in the form of a button or sleeve member supported at a predetermined location relative to the lower aperture, when the writing point 210 is retracted, by a U-shaped strap member 256. As best shown in Figure 8, the strap member 256 is supported by the upper end of the cartridge member 208 and in turn supports the sleeve member 254 by diametrically opposed engagement with the undersurface thereof, as at 258.

The cam sleeve member 254 is provided with a horizontally disposed retaining surface 260 surrounding the axially disposed cartridge containing bore thereof and a surrounding downwardly inclined surface 262 of a radial extent sufficient to result in a reliable engagement with the walls of the upper barrel portion 220.

When the writing point 210 is disposed in retracted position the component elements are positioned as illustrated in Figure 5. As there set forth, the dependent end of the actuating member 244 is disposed in covering relation against the lower aperture 228 and in abutting limiting relation with the dependent portion of the inclined cam surface 262. Such disposition of the actuating member 244 results in position of the clip member 232 in its exposed position remote from the surface of the upper barrel portion 230.

With the parts so positioned, a manually effected inward displacement of the bead portion of the clip member 232 to its concealed position results in said bead 234 entering the aperture 228 and displacing the lower end 246 of the actuating member 244 inwardly toward the center of the upper barrel portion 220. Because of the pivotal mounting of the rocking clip assembly as described above, the surface 238 disposed on the upper end of the clip member 232 is simultaneously advanced to its exposed or extended position. The inward displacement of the lower end 246 of the actuating member 244 results from its engagement with the sloping surface 262 on the cam means sleeve 254, in a downward displacement of the sleeve 254 and a concomitant downward displacement of the writing point assembly 208 towards its exposed or extended position. Such downward displacement of the writing point assembly 208 and cam sleeve 254 will continue until the dependent end 246 of the actuating member 244 engages the horizontally retaining surface 260. When so displaced, further downward displacement will not take place and the wiring point assembly 208 will be maintained in its extended position.

When the writing point is disposed in its extended position, the component elements will be positioned as illustrated in Figure 6. The action of the biasing spring 212 against such downward displacement results in a compressive engagement between said horizontally disposed surface 260 and the dependent end 246 of the actuating member 244 which serves to maintain the clip member 232 in its concealed position wherein the bead 234 is disposed, entirely or in part, within the aperture 228. Such disposition of the bead member 232, when the writing point assembly 208 is in its advanced position, effectively precludes utilization of the rocking clip 232 for carrying purposes.

Retraction of the writing point assembly 208 from its extended position, as illustrated in Figure 6, is readily effected by a manual inward displacement of the portion of the rocking clip assembly disposed above the pivotal mounting thereof. Such inward displacement, as by manual pressure applied to the surface 238, results in a rocking displacement of the rocking clip assembly about its pivotal mounting with the resulting disengagement of the dependent end 246 of the actuating member 244 from the horizontally disposed retaining surface 260. The disengagement of the actuating spring member as described above permits the biasing spring 212 to upwardly displace the writing point assembly 208 and the cam sleeve 254 mounted thereon. The upward displacement of the cam sleeve 254 results in an outward displacement of the dependent end 246 of the actuating member 244 to the position illustrated in Figure 5 with a concomitant displacement of the carrying clip 232 from its concealed to its exposed position remote from the surface of the upper barrel portion 220. When so disposed in its exposed position, the carrying clip member 232 is available for carrying purposes.

Having thus described my invention, I claim:

1. In a writing instrument having a lower barrel portion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position, said writing point assembly comprising a biasing spring means, and a cam means assembly generally designated 252, the cam means assembly including a cam member 254 preferably in the form of a button or sleeve member supported at a predetermined location relative to the lower aperture, when the writing point 210 is retracted, by a U-shaped strap member 256. As best shown in Figure 8, the strap member 256 is supported by the upper end of the cartridge member 208 and in turn supports the sleeve member 254 by diametrically opposed engagement with the undersurface thereof, as at 258.

2. In a writing instrument having a lower barrel portion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position, said writing point assembly comprising a biasing spring means, and a cam means assembly generally designated 252, the cam means assembly including a cam member 254 preferably in the form of a button or sleeve member supported at a predetermined location relative to the lower aperture, when the writing point 210 is retracted, by a U-shaped strap member 256. As best shown in Figure 8, the strap member 256 is supported by the upper end of the cartridge member 208 and in turn supports the sleeve member 254 by diametrically opposed engagement with the undersurface thereof, as at 258.

3. In a writing instrument having a lower barrel portion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position, said writing point assembly comprising a biasing spring means, and a cam means assembly generally designated 252, the cam means assembly including a cam member 254 preferably in the form of a button or sleeve member supported at a predetermined location relative to the lower aperture, when the writing point 210 is retracted, by a U-shaped strap member 256. As best shown in Figure 8, the strap member 256 is supported by the upper end of the cartridge member 208 and in turn supports the sleeve member 254 by diametrically opposed engagement with the undersurface thereof, as at 258.

4. In a writing instrument having a lower barrel portion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position, said writing point assembly comprising a biasing spring means, and a cam means assembly generally designated 252, the cam means assembly including a cam member 254 preferably in the form of a button or sleeve member supported at a predetermined location relative to the lower aperture, when the writing point 210 is retracted, by a U-shaped strap member 256. As best shown in Figure 8, the strap member 256 is supported by the upper end of the cartridge member 208 and in turn supports the sleeve member 254 by diametrically opposed engagement with the undersurface thereof, as at 258.

5. In a writing instrument having a lower barrel portion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position, said writing point assembly comprising a biasing spring means, and a cam means assembly generally designated 252, the cam means assembly including a cam member 254 preferably in the form of a button or sleeve member supported at a predetermined location relative to the lower aperture, when the writing point 210 is retracted, by a U-shaped strap member 256. As best shown in Figure 8, the strap member 256 is supported by the upper end of the cartridge member 208 and in turn supports the sleeve member 254 by diametrically opposed engagement with the undersurface thereof, as at 258.

6. In a writing instrument having a lower barrel portion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position, said writing point assembly comprising a biasing spring means, and a cam means assembly generally designated 252, the cam means assembly including a cam member 254 preferably in the form of a button or sleeve member supported at a predetermined location relative to the lower aperture, when the writing point 210 is retracted, by a U-shaped strap member 256. As best shown in Figure 8, the strap member 256 is supported by the upper end of the cartridge member 208 and in turn supports the sleeve member 254 by diametrically opposed engagement with the undersurface thereof, as at 258.

7. In a writing instrument having a lower barrel portion, a writing point assembly longitudinally displaceable therein intermediate an extended and a retracted position, said writing point assembly comprising a biasing spring means, and a cam means assembly generally designated 252, the cam means assembly including a cam member 254 preferably in the form of a button or sleeve member supported at a predetermined location relative to the lower aperture, when the writing point 210 is retracted, by a U-shaped strap member 256. As best shown in Figure 8, the strap member 256 is supported by the upper end of the cartridge member 208 and in turn supports the sleeve member 254 by diametrically opposed engagement with the undersurface thereof, as at 258.
of said rocking clip assembly including an externally disposed clip member having an elongate lower portion disposed beneath said pivotal mounting means and provided with an inwardly directed bead on the dependent end thereof manually rotatably displaceable from an exposed position externally adjacent the surface of said upper barrel portion to a concealed position wherein at least a portion of said bead is disposed within said aperture and in inwardly protruding relation within said upper barrel portion and an upper portion disposed above said pivotal mounting means rotatably displaceable from a retracted position adjacent the surface of said upper barrel portion to an exposed position remote therefrom in response to displacement of said bead on said lower portion from its exposed position to its concealed position, and an internally disposed dependent actuating member having its upper end operatively secured to said clip member adjacent said pivotal mounting means and remote from said aperture and its dependent end disposed in overlying relationship with said aperture and in operative engagement with said pivotal mounting means displaceably engageable by said bead on said lower portion of said clip member and having said dependent end displaceable substantially transverse to the longitudinal axis of said upper barrel portion in response to pressure thereon effectuated by engagement of said bead during displacement of the bead from its exposed position to its concealed position for displacing said writing point assembly displacing means longitudinally of said upper barrel portion to advance said writing point assembly to its extended position against the biasing action of said spring means.

5. The mechanism as set forth in claim 4 including retaining means on said writing point assembly displacing means engageable by the dependent end of the actuating member when said writing point assembly displacing means is in its extended position and said actuating member is in its displaced position in response to disposition of said bead in its concealed position for maintaining said writing point assembly in its extended position against the biasing action of said spring means.

6. The mechanism as set forth in claim 5 wherein rotative displacement of the upper portion of said clip member from its exposed to its retracted position effects a pivotal displacement of said actuating member and displacement of the dependent end thereof from said retaining means to permit return of said writing point assembly displacing means mounted thereon, by said biasing spring means, to its retracted position and concomitant displacement of said bead on the lower portion of said clip member to its exposed position externally adjacent the surface of said upper barrel portion.

7. A writing instrument having a lower barrel portion, a rocking clip assembly including an externally disposed clip member having an elongate lower portion disposed beneath said pivotal mounting means and provided with an inwardly directed bead on the dependent end thereof manually rotatably displaceable from an exposed position externally adjacent the surface of said upper barrel portion to a concealed position wherein at least a portion of said bead is disposed within said aperture and in inwardly protruding relation within said upper barrel portion and an upper portion disposed above said pivotal mounting means rotatably manually displaceable from a retracted position adjacent the surface of said upper barrel portion to an exposed position remote therefrom in response to displacement of said bead on said lower portion from its exposed position to its concealed position, and said internally disposed dependent actuating member having its upper end operatively secured to said clip member adjacent said pivotal mounting means and remote from said aperture and its dependent end disposed in overlying relationship with said aperture and in operative engagement with said writing point assembly displacing means, the dependent end of said actuating member being displaceably engageable by said bead and having said dependent end displaceable inwardly of said upper barrel portion in response to pressure thereon effectuated by engagement of said bead during displacement of said bead from its exposed to its concealed position for displacing said writing point assembly displacing means longitudinally of said upper barrel portion to advance said writing point assembly to its extended position against the biasing action of said spring means.
of said upper barrel portion to an exposed position remote therefrom in response to displacement of said bead on said lower portion from its exposed position to its concealed position and an internally disposed dependent actuating member having its upper end operatively secured to said clip member adjacent said pivotal mounting means and remote from said bead receiving portion of said aperture and its dependent end disposed in overlying relationship with said bead receiving portion of said aperture and in operative engagement with said writing point assembly displacing means, the dependent end of said actuating member being displaceably engageable by said bead on said lower portion of said clip member and having said dependent end displaceable substantially transverse to the longitudinal axis of said upper barrel portion.

12

In response to pressure thereon effected by engagement by said bead during displacement of the bead from its exposed position to its concealed position for displacing said writing point assembly displacing means longitudinally of said upper barrel portion to advance said writing point assembly to its extended position against the biasing action of said spring means.

References Cited in the file of this patent

UNITED STATES PATENTS
1,518,822 Saadi ---------------- Dec. 9, 1924
1,585,843 Fitch ----------------- May 25, 1926

FOREIGN PATENTS
1,086,929 France --------------- Aug. 18, 1954
UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 2,881,736

Nathan Zepelovitch

It is hereby certified that error appears in the printed specification of the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.

Column 1, line 23, for "botton" read -- button --; column 2, line 57, for "assembled" read -- assembly --; column 3, line 11, for "a external" read -- an external --; line 17, for "barrell" read -- barrel --; column 6, line 51, for "on the clip" read -- on the clip --; column 7, line 38, for "slopping" read -- sloping --; column 8, line 15, for "extension" read -- extension --; line 55, for "longitudinally" read -- longitudinally --; column 9, line 75, strike out "manually"; column 11, line 14, for "dependant" read -- dependent --.

Signed and sealed this 22nd day of December 1959.

(SEAL)

Attest:

KARL H. AXLINE
Attesting Officer

ROBERT C. WATSON
Commissioner of Patents