woO 2009/002831 A2 |1 NI 00 0 OO AT I

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization / | [I

) IO O O RO O

International Bureau

(43) International Publication Date
31 December 2008 (31.12.2008)

(10) International Publication Number

WO 2009/002831 A2

(51) International Patent Classification:
GOG6F 15/16 (2006.01) GOG6F 17/00 (2006.01)
GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2008/067636

(22) International Filing Date: 20 June 2008 (20.06.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/766,985 22 June 2007 (22.06.2007) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: SAGAR, Akash, J.; c/o Microsoft Corpora-
tion, International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). MOROMISATO, George,

P.; c/o Microsoft Corporation, International Patents, One

(81)

Microsoft Way, Redmond, Washington 98052-6399 (US).
CHUNG, Richard, Yiu-Sai; c/o Microsoft Corporation,
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). OZZIE, Raymond, E.;
c/o Microsoft Corporation, International Patents, One
Microsoft Way, Redmond, Washington 98052-6399
(US). OZZIE, Jack, E.; c/o Microsoft Corporation,
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). REED, David, Richard;
c/o Microsoft Corporation, International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).
VERNAL, Michael, Steven; c/o Microsoft Corporation,
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). FEDOROY, Vladimir,
Dmitri; c/o Microsoft Corporation, International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). ANNAMALAI, Muthukaruppan; c/o Microsoft
Corporation, International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

[Continued on next page]

(54) Title: SERVER-ASSISTED AND PEER-TO-PEER SYNCHRONIZATION

SERVER ENDPOINT 110
/STORAGE SERVICE 120 ' /BLOB CACHE SERVICE NOTIFICATION SERVICE |
130 140
"BLOB LOOKUP SERVICE CLOUD STORAGE | KNOWLEDGE STORE
125 SERVICE 135 MODULE 145
| BLOB DOWNLOAD
MODULE 150
DEVICE ENDPOINT A 160
"BLOB DOWNLOAD DEVICE ENDPOINT B
MODULE 162 170
DEVICE ENDPOINT C
180
v
100

(57) Abstract: Systems and methods for synchronizing
data between endpoints using elements of centralized and
decentralized synchronization systems and communica-
tion topologies are disclosed. Such systems and methods
may in some cases synchronize some subset of data with a
centralized endpoint while another subset of data is syn-
chronized in a decentralized fashion directly with other
endpoints. Such systems and methods may include a va-
riety of cooperative functionality to assist in the synchro-
nization of data between endpoints.

WO 2009/002831 A2

AQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO,CR, CU, CZ,DE, DK, DM, DO, DZ, EC, EE,
EG, ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, M, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report

WO 2009/002831 PCT/US2008/067636

SERVER-ASSISTED AND PEER-TO-PEER SYNCHRONIZATION

BACKGROUND

[0001] Data may be synchronized between different endpoints, such between
different computing devices, in a wide variety of ways and using a wide array of
connection topologies. For example, some systems or techniques may rely on endpoints
to synchronize with a single (or multiple) centralized endpoints, such as computing
servers. In other systems or techniques, endpoints might communicate directly with each
other in a variety of ways, including in one or more decentralized or peer-to-peer
topologies.

[0002] Different arrangements of endpoints and different communications
topologies may each have their own advantages and disadvantages. As just one example,
a system in which endpoints synchronize data directly with each other, perhaps without
the use of a centralized or “server” endpoint, may have a variety of advantages. For
example, in such a system endpoints might be able to communicate and synchronize
data with other endpoints that are physically or logically “close” without being required to
first (or perhaps to ever) synchronize data with a central server that might be located
farther away than the synchronizing endpoints. As another example, if endpoints can
communicate with a variety of other endpoints, a single point of failure - as might exist if
a centralized server endpoint is required - may be eliminated. As another example, in
some implementations at least a peer-to-peer synchronization system may be easier to
set up or configure, if, for example, such set up doesn’t require configuring one or more
servers that have particular requirements such as always needing to be available to
service requests from other endpoints or being able to scale to provide additional
capacity.

[0003] However, decentralized systems may also have disadvantages, including at
least some disadvantages that may in some cases be corrected or provided for in a
topology that uses one or more centralized endpoints. For example, peer-to-peer
endpoints may not always be available or able to synchronize data (in contrast to at least

some “server” endpoints, which might be configured to be “always available”), and the

WO 2009/002831 PCT/US2008/067636

lack of an available endpoint may mean sometimes that data may not be synchronized
until or unless a particular endpoint is available. Another potential disadvantage may
relate to determining how to efficiently synchronize data, particularly large amounts of
data, between a set of endpoints connected in, perhaps, an arbitrary topology. In at least
some cases, determining which endpoints should synchronize with which other
endpoints, what data should be synchronized, and so on, is not a trivial problem, and
solutions may be computationally intensive to find, may be sub-optimal (which may lead
in turn to problems such as transferring more data than is necessary), and so on. Another
potential disadvantage of decentralized systems is that information about the system of
endpoints - such as characteristics of the endpoints, a holistic view of the data
communicated by particular or all endpoints, and so on - may be more difficult to gather
when no one endpoint, or a subset of endpoints, necessarily synchronizes or has access
to all or at least a significant amount of the synchronized data. Yet another potential
disadvantage may be related to applying security policies or other security-related
functionality without necessarily being able to fully trust any particular peer machine; at
least some of such security issues may in some implementations be ameliorated with the

existence of one or more centralized and perhaps trusted endpoints.

SUMMARY

[0004] The following presents a simplified summary of the disclosure in order to
provide a basic understanding to the reader. This summary is not an extensive overview
of the disclosure and does not identify key or critical elements of the invention or
delineate the scope of the invention. Its sole purpose is to present some concepts
disclosed herein in a simplified form as a prelude to the more detailed description that is
presented later.

[0005] Described herein are various techniques and technologies directed toward
synchronizing data between endpoints using elements of centralized and decentralized
synchronization systems and communications topologies. In at least some
implementations, some subset of synchronized data may be communicated to a

centralized endpoint, while another subset of the synchronized data may be

WO 2009/002831 PCT/US2008/067636

communicated in a decentralized or peer-to-peer fashion directly with other endpoints.
In addition, in some implementations, a variety of cooperative and potentially beneficial
functionality may be implemented on particular endpoints - including on centralized

endpoints - to assist in the synchronization of data between endpoints.

DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 illustrates an exemplary system in which data may be synchronized
and shared in both centralized and peer-to-peer topologies.

[0007] FIG. 2 illustrates an exemplary generalized operational flow including
various operations that may be performed by an endpoint, including a device endpoint,
when changing data that is synchronized and making such a change available to other
endpoints.

[0008] FIG. 3 illustrates an exemplary generalized operational flow including
various operations that may be performed by an endpoint, including a device endpoint,
when synchronizing data from another endpoint.

[0009] FIG. 4 illustrates an exemplary generalized operational flow including
various operations that may be performed to retrieve or download a blob.

[0010] FIG. 5 illustrates an exemplary generalized operational flow including
various operations that may be performed when maintaining and providing metadata.
[0011] FIG. 6 illustrates an exemplary generalized operational flow including
various operations that may be performed when storing and providing locations and
locators associated with blobs referenced by metadata.

[0012] FIG. 7 illustrates an exemplary generalized operational flow including
various operations that may be performed when storing blobs in a cache and providing
blobs from a cache.

[0013] FIG. 8 illustrates an exemplary generalized operational flow including
various operations that may be performed when storing blobs in cloud storage and

providing blobs from cloud storage.

WO 2009/002831 PCT/US2008/067636

[0014] FIG. 9 illustrates an exemplary generalized operational flow including
various operations that may be performed when retrieving a blob without the use of full
metadata or at least some of the functionality provided by an exemplary server endpoint.
[0015] FIG. 10 illustrates an exemplary computing environment in which the

various technologies described herein may be implemented.

DETAILED DESCRIPTION

[0016] Described herein are various techniques and technologies directed toward
synchronizing data between endpoints using elements of centralized and decentralized
synchronization systems and communications topologies. More particularly, in at least
some implementations, some subset of synchronized data may be communicated to a
centralized endpoint, while another subset of the synchronized data may be
communicated in a decentralized or peer-to-peer fashion directly with other endpoints.
In addition, in some implementations, a variety of cooperative and potentially beneficial
functionality may be implemented on particular endpoints - including on centralized
endpoints - to assist in the synchronization of data between endpoints.

[0017] Turning now to FIG. 1, shown therein is an exemplary system 100 in which
data may be synchronized and shared in both centralized and peer-to-peer topologies.
The exemplary system 100 contains server endpoint 110, device endpoint A 160, device
endpoint B 170, and device endpoint C 180. The exemplary server endpoint 110 is shown
as containing storage service 120, blob lookup service 125, blob cache service 130, cloud
storage service 135, notification service 140, knowledge store module 145, and blob
download module 150. The exemplary device endpoint A 160 is shown as containing
blob download module 162. This description of FIG. T may be made with reference to
other figures. However, it should be understood that the elements described with
reference to FIG. 1 are not intended to be limited to being used with the elements
described with reference to other figures. In addition, while the exemplary diagram in
FIG. 1 indicates particular elements, in some implementations not all of these elements

may exist, and in some implementations additional elements may exist.

WO 2009/002831 PCT/US2008/067636

[0018] Generally and in at least some implementations, data may be synchronized
between any two, or more, endpoints. For example and without limitation, as illustrated
in FIG. 1, data might be synchronized between the device endpoint A 160 and the server
endpoint 110. The same or other data might then be synchronized between the server
endpoint and the device endpoint B 170. The device endpoint B might then in turn in
some cases synchronize data with device endpoint C 180. In some implementations,
particular endpoints may only synchronize with particular other endpoints, while in other
implementations endpoints may synchronize with a wide variety of endpoints, including
in some implementations with all other endpoints.

[0019] While a wide variety of synchronization techniques exist and may be used,
in at least some implementations at least some data may be synchronized between
endpoints using a technique such as Simple Sharing Extensions (SSE). SSE may be
generally described as encompassing data formats and processes for sharing and
synchronizing data between endpoints using the addition of (relatively) simple data to a
feed document, such as an RSS (“Really Simple Syndication” or “Rich Site Summary”) or
Atom document. In some cases, a feed that includes SSE information may be referred to
as an “SSE feed.”

[0020] With such implementations, or with at least some other implementations,
endpoints may make data available to other endpoints for synchronization by providing a
feed document that includes both SSE information and at least a portion of the
synchronized data. The endpoint to which the information is being synchronized might
obtain the feed document and interpret its contents using, among other techniques, SSE
processes for merging information from feeds with information in one or more data
stores. As part of this process, the endpoint to which the information is synchronized
may generally update its own copy or version of the synchronized data, and thereby
complete the synchronization of data from the first endpoint to the second endpoint. As
just one specific example, the device endpoint A 160 might make an RSS feed that
includes SSE information available to the server endpoint 110 so that information
maintained or accessed by the device endpoint A can be synchronized to the server

endpoint. The server endpoint might obtain the feed and merge the contents of the feed

WO 2009/002831 PCT/US2008/067636

- possibly using an “SSE merge” - with data maintained by the server endpoint. After such
a merge, at least some of the data provided by the device endpoint A may have been
incorporated into data maintained by the server endpoint. Furthermore, additional
changes to data made on the device endpoint A may also be synchronized to the server
endpoint in a similar fashion: the additional change may be made on the device endpoint
A, the device endpoint A may update its provided feed to include the additional change,
and then the server endpoint may process the updated feed and incorporate the
additional change.

[0021] The previous explanation describes how data and changes may be
synchronized in one direction: from a first endpoint to a second endpoint. A variety of
synchronization techniques, including SSE, also make it possible for changes to be
synchronized in the “other direction” - that is, from the second endpoint in this example
to the first endpoint. For example, when SSE is used as in the previous example with the
device endpoint A 160 and the server endpoint 110, the server endpoint might also make
available its own SSE feed that (initially at least) includes the same information provided
by the device endpoint A. Then, when some of the information encompassed by the feed
is updated on the server endpoint, the server endpoint may in turn update its own feed to
include both the change or updated data and corresponding updates to the SSE
information in the feed. Another endpoint that synchronizes this information from the
server endpoint, including the device endpoint A, may then obtain the feed and merge
the changes (perhaps performing the same or similar merge processing as is executed by
the server endpoint to incorporate changes from the device endpoint A). In summary,
with some synchronization techniques two endpoints may synchronize the same data
with each other - so that either endpoint may make changes to the data, for example - by
each making the data available and by each updating their own local data when the data
provided by the other endpoint changes.

[0022] Furthermore, multiple endpoints may be able to synchronize with a single
(or multiple) endpoints using techniques such as those described by at least some
synchronization techniques, including SSE. For example, the device endpoint B 170 might

synchronize the same (or some other) data that is synchronized between the device

WO 2009/002831 PCT/US2008/067636

endpoint A 160 and the server endpoint 110. When SSE feeds are used, the device
endpoint might synchronize the same data by retrieving a feed provided by the server
endpoint - including in some cases the same feed that is retrieved by the device endpoint
A - and incorporating the data or changes represented by the feed. The device endpoint B
might also make a feed available to the server endpoint so that the server endpoint can
include changes made to the data by the device endpoint B.

[0023] While in some cases data may be synchronized between devices through
another endpoint - as in, for example, the previous exemplary description where changes
made by the device endpoint A 160 might have been synchronized to the device endpoint
B 170 through the server endpoint 110 - other synchronization topologies may also be
available in at least some cases, and when using at least particular synchronization
techniques. For example, in some cases, a synchronization technique or protocol,
including SSE, may provide the ability to synchronize through both a centralized server -
like perhaps the server endpoint 110 - and directly with other endpoints. For example,
the device endpoint A might in some implementations be able to synchronize data to the
device endpoint B either by synchronizing through the server endpoint 110 or by
synchronizing directly with the device endpoint B (as shown by the dashed line in FIG. 1
between the device endpoint A and the device endpoint B). In the same or other
implementations, the device endpoint B might synchronize data directly with the device
endpoint C 180. For example, such direct synchronizations might be implemented
between the device endpoint A and the device endpoint B, or between the device
endpoint B and the device endpoint C, by the exchange of SSE feed documents and the
merging of the data comprised in the exchanged feeds. Furthermore, in some
implementations the existence of a server endpoint may not even be required. For
example, in some implementations metadata and blob data may in some cases be
communicated directly between device endpoints that know of the location of other
device endpoints without the intervention of or assistance provided by one or more
server endpoints.

[0024] In at least some implementations, a wide variety of types of data may be

synchronized between endpoints. For example, two endpoints might synchronize text

WO 2009/002831 PCT/US2008/067636

information comprising a wide variety of information; might synchronize “binary”
information such as audio or video files, or compiled executable code; or might
synchronize any other type or format of data.

[0025] Data that is synchronized may be represented in a wide variety of ways. In
some implementations, such data may be included in the information that is
synchronized between endpoints, including information synchronized through the use of
steps as described previously. For example, in implementations that use SSE, such data
may be included in SSE feeds that are exchanged between endpoints. However, in the
same or other implementations, the information communicated between endpoints may
not include all of the data that may be ultimately synchronized or communicated between
endpoints. In some of such cases, the information communicated between endpoints may
instead or also include references to other data to be synchronized. Such references may
be provided in a variety of ways, such as perhaps through the use of “enclosure” elements
in RSS or Atom feeds that include URLs that reference resources. The data identified by
the references may then be accessed or stored using a variety of means.

[0026] As used herein, the term “metadata” may be interpreted to refer to
information communicated between endpoints that identifies (and may, in some
implementations, include) the data that is synchronized or communicated. For example,
in some implementations metadata may be embodied by a document or feed that
includes an “item” for each piece of synchronized data. Each item, in turn and in some
exemplary implementations, might include a “sync data” portion and an “item data”
portion. In such cases, the sync data may be associated with information about the
synchronization of the particular item while the item data may be associated with the
information to be synchronized. For example, the sync data might include information
such a version number associated with the item and a history of how or when the item
was updated, while the item data might include the item itself, or at least information
associated with the item.

[0027] In some cases all of the item data may be included in the metadata, while
in other cases the metadata may not include all of the item data and may instead include

one or more references to item data. Using references may enable the metadata to

WO 2009/002831 PCT/US2008/067636

remain (relatively) small, especially in cases where there are large amounts of item data.
For example, rather than including all of a large audio or video file in the item data
portion of the metadata itself, an item data element might instead include some type of
reference or identifier that refers to, identifies, or otherwise assists in the retrieval of the
large audio or video file. Such information or data, such as might be referenced by the
metadata, may be stored or accessed separately from the metadata and may in some
cases be referred to as a “blob” of data or simply as a “blob” or “enclosure.” (In some
cases it may also be possible for at least portions of the sync data to not be included in
the metadata and to instead be referenced from the metadata.)

[0028] In implementations that use SSE, metadata may in some cases be
embodied by an SSE feed. For example, an RSS feed that includes SSE information might
be embodied as an XML document that includes common RSS XML elements, such as
“item” elements for each piece of data. Each “item” element might in turn include sync
data - which might be embodied by an XML element named “sync”, in at least some
implementations - and item data - which might be embodied by an XML element named
“item”, in at least some implementations, and might include information about the item,
or the item itself.

[0029] Generally, the item data or item data element may include any type of
data. In a simple case with an RSS document, item data might include standard RSS
elements like “title” and “description”. In the same or other cases item data might include,
for example, contact information perhaps encoded using a format like hCard, or other
data. In yet other, or the same, implementations, item data might include one or more
references to information located elsewhere, including information that is not included in
the metadata or RSS feed. When the metadata uses RSS, such references might be
embodied using an element like the RSS “enclosure” element.

[0030] It should be noted that in at least some cases the metadata may include all
of the information that is synchronized. That is, metadata synchronized between
endpoints may not always reference or identify other information. If, for example, the

metadata includes, say, all of the information associated with a contact, the synchronized

WO 2009/002831 PCT/US2008/067636
10

data - including a feed or document - that includes the contact information may still
generally be referred to as metadata.

[0031] While many synchronization techniques transfer both information about
the data to be transferred (that is, metadata) and the information itself - including blobs
of data referenced by the metadata - together at the same time, or using the same
endpoints, there may be some benefits in treating metadata and blobs separately, as is
done by least some of the techniques described herein. In at least some implementations,
for example, the amount of metadata may not be as large as the amount of referenced or
blob data, and so it may be advantageous to communicate the metadata in one way and
between particular endpoints, while communicating blob data in another way and
perhaps between a different set of endpoints. In one such arrangement, metadata might
be communicated to and through the use of the server endpoint 110, while blob data
may be communicated in at least some cases directly between device endpoints.
Furthermore, while some or all of the metadata may be transferred between all endpoints
that synchronize data, blob data may not necessarily be communicated between every
endpoint. For example, a blob might only be communicated between endpoints when, for
example, that blob is specifically requested or required.

[0032] Furthermore, in some implementations one or more alternate
representations of blob data may be generated and communicated between endpoints
depending on a variety of characteristics. For example, an endpoint that is only
connected to one or more other endpoints using a communication mechanism that
communicates information relatively slowly might desire or retrieve blobs that are in
some cases smaller than the blobs that might be retrieved by at least some other
endpoints. In one specific example, a mobile phone connected using a relatively low-
bandwidth data network might obtain an image or video file that has been transcoded or
converted so that the image or video is represented in a smaller amount of space
(perhaps by reducing the size of the image, by using more aggressive compression
settings, and the like). Other kinds of alternate representations may also be possible or

supported by at least some implementations. For example, some endpoints might

WO 2009/002831 PCT/US2008/067636
11

retrieve, say, a clip of an audio or video file rather than the entire audio or video file, and
SO on.

[0033] In at least some of such implementations, one or more particular
endpoints may have the capability of generating or providing particular alternate
representations. For example, in some implementations an “alternate representation
service” or “transcoding service” might exist on a server endpoint 110 (not shown in FIG.
1) and might participate in the generation of at least some alternate representations of
blobs stored on the server endpoint or on other endpoints. In the same or other
implementations at least some particular other endpoints, such as one or more device
endpoints, might also or instead have the capability of providing alternate
representations of blobs. Additional modules, services, and processes related to the
generation and providing of alternate representations are also as described further
elsewhere herein.

[0034] An exemplary implementation of a server endpoint might include a variety
of functionality, including one or more of the services and modules illustrated in FIG. 1 as
being a part of the exemplary server endpoint 110. As has been previously stated, not all
server endpoints may include all of the illustrated modules and services, while other
server endpoints may include additional modules and services. Furthermore, while some
of the modules and services may be described as communicating with each other in
specific ways, in general many modules and services may communicate with other
modules or services, including with modules and services located on the server endpoint
as well as on other endpoints and including with modules and services where such
communication is not specifically described. For example, the knowledge store module
145 may be described as being used with, say, the blob cache service 130 in one or more
specific ways, but such description does not limit the knowledge store module to only
communicating with the blob cache service or with other modules or services where the
communication is specifically described; the knowledge store module may in at least
some implementations also communicate with a variety of other modules or services.
Furthermore, although not shown in FIG. 1, in some implementations more than a single

server endpoint may exist. In at least some of such implementations, at least some server

WO 2009/002831 PCT/US2008/067636
12

endpoints may communicate with other server endpoints and participate in the
synchronization of data between different endpoints. Each of such multiple server
endpoints may include only some or perhaps all of the exemplary services and modules
illustrated in FIG. 1 as being part of the exemplary server endpoint 110.

[0035] An exemplary storage service 120 may generally store metadata and
provide the ability for other endpoints to synchronize metadata with the server endpoint
110. An exemplary device endpoint A 160 might, for example, make a local change and
update metadata it maintains so that the metadata includes the change, and then
communicate the updated metadata to the storage service. The storage service might
then merge the changes in the metadata communicated from the device endpoint A with
some representation of the same metadata that is managed by the storage service. The
storage service might then make its own merged or updated metadata available to other
endpoints (which might in turn enable other endpoints to retrieve the metadata provided
by the storage service and then incorporate the change made originally by the device
endpoint A). A storage service may store and provide multiple separate pieces of
metadata, such as multiple SSE feeds in at least some implementations, and each piece of
metadata may identify different (or the same) sets of data. At least some of the
operations that might be performed by an exemplary storage service 120 may be
described in more detail below, with reference especially to FIG. 5.

[0036] In some implementations, including those that use SSE, a storage service
may accept (or retrieve, or obtain in some fashion) SSE feeds made available by other
endpoints. The storage service may then merge the changes in the obtained feeds with a
local representation of the feed that the storage service may store or access in a variety
of ways, including as a file itself, as records in a database, and so on. The storage service
may then make an updated feed that is the result of the merge operation available to at
least some endpoints, also in a variety of ways including as a file accessible by other
endpoints - perhaps using a web or file server, by proactively communicating the
updated feed to other endpoints, and so on.

[0037] In some implementations, an exemplary blob lookup service 125 may

accept some data that identifies a blob, such as a blob identifier, and provide one or

WO 2009/002831 PCT/US2008/067636
13

more “locators” that an endpoint might then use to obtain or retrieve the blob. For
example, in implementations including those where metadata and blobs may be
communicated or synchronized differently or separately, one or more endpoints may
provide, to a blob lookup service, information including the location or locations where a
particular blob may be retrieved. In some implementations, such locations might include
device endpoints, a blob cache service 130, or a cloud storage service 135. The blob
lookup service might then at some later time provide another endpoint that wants to
obtain the blob with one or more of these locations. At least some operations that might
be performed by an exemplary blob lookup service may be described in more detail
below, with reference especially to FIG. 4 and FIG. 6.

[0038] A blob identifier may generally be some piece of data that identifies a
blob. In some implementations, a blob identifier might be used by a variety of device and
server functionality to particularly identify a blob without requiring that the blob itself be
communicated. So, for example, a storage service and other endpoints might use a blob
identifier in metadata, a blob lookup service might store and provide locations using a
blob identifier, a blob cache service or cloud storage service might store blobs that are
indexed or may be retrieved using an associated blob identifier, and so on. In some
implementations, a single blob identifier may be used by a variety of modules or
functionality to identify a blob, while in the same or other implementations multiple and
perhaps different blob identifiers may be used - perhaps by different modules or
functionality - to identify a particular single blob.

[0039] A blob identifier might be implemented in a variety of ways and take a
variety of forms. In at least one implementation, a blob identifier might just be a string or
set of alphanumeric or other characters, such as something like “ABC123”, “ABCDEFGH”,
“123456”, and so on. In another implementation, a blob identifier might take the form of,
for example, a uniform resource locator (URL) or uniform resource identifier (URI), such
as perhaps “http://www.els.live.com/ABC123", “http://www.els.live.com/ABCDEFGH”,
“http://www.els.live.com/123456”, and so on. In such an example, the string following
the “http://www.els.live.com/” portion of the identifier may actually identify the blob. In

some cases, the “http://www.els.live.com/” portion of the identifier may be used for a

WO 2009/002831 PCT/US2008/067636
14

variety of other purposes, including, perhaps, to make the blob identifier appear more
like an identifier with which a user might be familiar, or even to actually locate the blob in
at least some particular cases, including in an exemplary implementation described below
with reference especially to FIG. 9.

[0040] An exemplary blob cache service 130 may provide a storage location for
transient blobs or files. Such a location may in some cases aid in the transfer of blobs
between endpoints. For example, suppose the device endpoint A 160 synchronizes
metadata with the server endpoint 110, and such metadata identifies a blob that is
available from the device endpoint A. Also suppose that the blob is not communicated to
the server endpoint - instead, it remains, available for retrieval, on the device endpoint A.
Suppose then that the device endpoint A goes offline or becomes unavailable to one or
both of the server endpoint and the device endpoint B 170. Now, if the device endpoint B
synchronizes the metadata from the server endpoint and determines that it wants to
retrieve the blob from the device endpoint A, it may not be able to do so, because the
device endpoint A - which may have the only copy of the blob - is not online or available.
Such a problem may be resolved through a variety of means, including through the use of
a blob cache service. In one such implementation, the blob associated with the metadata
provided by the device endpoint A may be stored in the blob cache service before the
device endpoint A becomes unavailable, and then the device endpoint B may retrieve the
blob from the blob cache service instead of from the device endpoint A.

[0041] As a cache, an exemplary blob cache service may store blobs as transient
data. That is, in contrast perhaps to the cloud storage service 135 described below, blobs
stored by the blob cache service may only be stored for a limited period of time and
might be removed at a variety of times controlled in some cases by the blob cache service
itself, or by some other module or service. For example, in some implementations, a blob
cache service might use one or more caching algorithms to determine when to delete
blobs or replace currently stored blobs with new blobs. For example, in at least one
implementation, a blob cache service might first fill up or occupy its available storage
space and then, when a new blob is to be stored, might use an algorithm such as a “least

recently used” (or LRU) algorithm to find and delete one or more blobs that have not been

WO 2009/002831 PCT/US2008/067636
15

used recently and so make space available for new blob data. In some cases at least,
implementing functionality associated with a blob cache service may require fewer
monetary, operational, or other resources than implementing functionality associated
with a persistent store, including perhaps the cloud storage service 135 described below.
For example, because information associated with a blob cache service may not be
guaranteed to be stored reliably or indefinitely, a blob cache service may not require the
same level or types of redundant data storage functionality that might be required by a
store designed to hold at least some other non-transient data.

[0042] At least some operations that might be performed by an exemplary blob
cache service 130 may be described in more detail below, with reference especially to
FIG. 7.

[0043] An exemplary cloud storage service 135 may provide storage “in the
cloud” for generally non-transient data. That is, while it may operate in some ways like a
blob cache service - in that it may store blobs, for example - a cloud storage service may
be viewed by users and endpoints as, for example, “always on” or “always accessible” and
as providing “reliable” storage. Endpoints may store blob data using a cloud storage
service in a variety of cases, including in some cases in lieu of storing blob data on, say, a
device endpoint. At least some operations that might be performed by an exemplary
cloud storage service may be described in more detail below, with reference especially to
FIG. 8.

[0044] In some implementations, one or more additional services or modules that
provide storage for blob data and operate differently than a blob cache service 130 or a
cloud storage service 135 may be a part of an exemplary server endpoint 110. For
example, in one implementation such a different blob data storage service might provide
storage that is relatively more persistent than that provided by a blob cache service but
relatively less persistent than that provided by a cloud storage service (at least as these
exemplary services have been introduced above). Such a service might do so by
determining when to store a blob using, for example, knowledge of the other endpoints
on which the blob might be stored or from which the blob might be available. For

example, such a blob data storage service might not store a blob if some knowledge

WO 2009/002831 PCT/US2008/067636
16

indicates that the blob is already stored on some number of other endpoints that are
known to be relatively highly available. In one specific example, then, if knowledge that is
accessible to the blob data storage service indicates that a particular blob is stored on,
say, four other endpoints that are typically on and connected to the network most or all
of the time, then an exemplary blob data storage service might be able to not store the
blob because a requesting endpoint would likely be able to retrieve the blob from at least
one of the four other endpoints. It should also be noted that in at least some
implementations, such different mechanisms do not necessarily need to be implemented
in some new type of blob data storage service - instead, such mechanisms might be a
part of or included in a blob cache service or cloud storage service.

[0045] An endpoint that synchronizes particular metadata generally may want to
know when such metadata has been updated on one or more other endpoints, so that,
for example, the endpoint can update its own copy of the metadata, as well as possibly
retrieve any desired blob data. In one, sometimes inefficient, implementation, an
endpoint might “poll” or periodically check one or more other available pieces of
metadata - perhaps including those provided by a server endpoint 110 - and determine
that there are changes to synchronize when the other metadata has changed.
Alternatively, an endpoint might make use of the functionality provided by an exemplary
notification service 140. A notification service might provide the ability for endpoints to
register or indicate an interest in particular metadata, and then might provide
notifications to interested or registered endpoints when particular metadata changes. As
a result, an endpoint may be able to avoid polling for changes, or at least may poll less
often, and still be able to take some action when metadata changes. Notifications may be
implemented in a variety of ways, including through the use of point-to-point or
broadcast functionality provided by a variety of networking or other communication
mechanisms. In the same or other implementations, an exemplary notification module
might also provide notifications about other events besides changes to metadata. For
example, in some implementations a notification module might periodically provide
endpoints notifications that include information about updated or changed locators (such

locators might be managed by an exemplary blob lookup service). Using updated locators

WO 2009/002831 PCT/US2008/067636
17

when retrieving blobs may enable an endpoint to change how it retrieves blobs and so
perhaps retrieve blobs more efficiently, adapt to changing network or other conditions,
and so on.

[0046] An exemplary knowledge store module 145 may provide a store for and
access to “knowledge” that may be gained through the interactions or functionality
provided by the server endpoint 110. Such knowledge may then be used in some cases
for a variety of purposes, including to control or optimize the synchronization of data.
While more examples of how knowledge may be gathered and used may be described
elsewhere herein, in some cases knowledge may generally relate to data such as
characteristics associated with endpoints that communicate with the server endpoint or
that communicate with other endpoints. Characteristics stored or used by the knowledge
store module may generally be referred to as “knowledge characteristics.” For example,
some exemplary knowledge characteristics may include information about the manner in
which a device endpoint commonly connects to the server endpoint, like the speed of the
connection, the available bandwidth of the connection, any costs associated with the
connection, and so on. For example, a connection might be over a high-speed data
network or over a relatively slow mobile phone network, a connection might have free
bandwidth at particular times of the day but be in use at other times of the day, and so
on. Knowledge characteristics might also include other information about endpoints,
including information about when the endpoint is commonly online or available - the
device might be a laptop or a mobile phone and might be intermittently connected, might
be an “always-on” desktop computer that is “always” connected, or so on. As another
example, a knowledge module might store information arising from the interaction of
endpoints with the server endpoint, such as how often particular blobs are requested,
from which endpoints blobs are requested, and so on. Regardless of how or where the
knowledge is obtained, it may then be provided and used by the server endpoint, or
possibly by other endpoints, in a variety of ways, including as part of controlling or
optimizing how data is synchronized.

[0047] In yet another example, knowledge - such as the connection

characteristics or other characteristics of a device, or other knowledge - may be used to

WO 2009/002831 PCT/US2008/067636
18

determine whether to identify or provide one or more alternate representations of a
requested blob. For example and as introduced previously, an alternate representation
might comprise, say, a smaller transcoded version of an otherwise large image when the
image is requested by an endpoint connected using a slow connection mechanism or
when the blob will be stored on an endpoint that has relatively more limited storage
space. In the same or another example, the knowledge may include whether particular
endpoints have particular alternate representations of a particular blob, and/or whether
particular endpoints have the capability of generating or providing a blob represented
using a particular alternate representation (perhaps by generating the alternate
representation on the particular endpoint, by retrieving an alternate version from some
other endpoint, and so on).

[0048] Finally, an exemplary blob download module, such as the blob download
module 150 that is a part of the server endpoint 110 or the blob download module 162
that is a part of the device endpoint A 160, may in some cases download or retrieve blobs
from a variety of other locations, including other endpoints. Generally, a blob download
module may use one or more blob retrieval mechanisms to retrieve some portion of a
blob, or an entire blob, where a “blob retrieval mechanism” may specify, for example, one
or more ways in which a blob may be located and/or one or more ways in which a blob
may be retrieved. One, perhaps relatively simple, blob download module may only be
able to retrieve blobs using, for example, a single blob retrieval mechanism that uses a
protocol such as HTTP, FTP, or a one of a variety of other file sharing protocols. Another
blob download module might be able to retrieve a file using any of such blob retrieval
mechanisms, as well as other blob retrieval mechanisms. For example, some blob
download modules might be able to use mechanisms that may retrieve pieces of the
same blob from a variety of endpoints, “at the same time,” such as mechanisms described
by a protocol like the BitTorrent protocol. The same or other blob download modules may
also use other functionality to more efficiently retrieve blobs, such as, for example,
“differential compression,” where only the parts of a blob that have changed are
communicated so that the entire blob does not need to be communicated every time even

a small part of the blob changes. Some blob download modules may in some cases locate

WO 2009/002831 PCT/US2008/067636
19

a blob using a blob lookup service that may in some implementations be the same as or
similar to the exemplary blob lookup service 125 introduced previously, while in the
same or other implementations blob download modules may locate or retrieve a blob
without the use of blob lookup functionality or the use of a blob lookup service.

[0049] Furthermore, in some cases a blob download module may use a
“pluggable” architecture to organize the blob retrieval mechanisms (or “drivers” in this
context) used by the blob download module. For example, one blob retrieval mechanism
or driver may enable the retrieval of blobs from an exemplary blob cache service, another
driver may use a blob lookup service to retrieve a set of endpoints that may be able to
provide the blob and then retrieve the blob from one or more of such endpoints
(including through the use of BitTorrent-like mechanisms in some cases with more than
one endpoint), yet another driver might not use a blob lookup service and might identify
one or more endpoints from which to retrieve the blob using one or more of a variety of
other mechanisms, and so on. A pluggable architecture may also enable additional blob
retrieval mechanisms to be added at a variety of times, including after a blob download
module has been deployed or already used, without necessarily changing the overall
organization or implementation of the blob download module or the endpoint that
includes the blob download module. Such functionality may enable the later addition of
new blob retrieval mechanisms without changing the core blob download module or the
endpoint itself.

[0050] It should be noted that each endpoint in this example might represent any
number of general-purpose or dedicated computers, including desktop computers,
server computers, laptop computers, workstation computers, mobile or cellular
telephones, personal digital assistants (PDAs), and the like. Furthermore, while particular
exemplary endpoints may be described as being “device” or “server” endpoints, such
designations do not necessarily limit the nature of the computing hardware or type of
endpoint. A server endpoint or device endpoint may in at least some implementations be
implemented on any type of computing hardware, including desktop computers, server
computers, laptop computers, workstation computers, mobile or cellular telephones,

PDAs, and so on. Generally, whether an endpoint is considered a device endpoint or a

WO 2009/002831 PCT/US2008/067636
20

server endpoint may be determined, among other characteristics, by the functionality
provided by the endpoint rather than by, for example, the nature of the computing
hardware on which the endpoint is implemented. For example, an endpoint that provides
server functionality using one, or more, of the services and modules described previously
as being associated with an exemplary server endpoint 110 might be considered to be a
server endpoint, even if the endpoint is implemented on, say, a laptop computer. It
should also be noted that an endpoint may provide server functionality at particular times
- and so might be considered a server endpoint - while operating as a device endpoint or
other type of endpoint at the same or other times. Also, in some implementations, a
particular or single computing device may host or include multiple endpoints. In these or
other implementations, the communication of information between endpoints may in at
least come cases comprise only communication between executable code that runs on
the particular single computing device.

[0051] Endpoints and even modules and services within an endpoint may be
connected using a variety of networking or other connection means. Such
communications means may include any means by which data may be transmitted,
including any type of network - such as an Ethernet, Wi-Fi, or mobile telephone or data
network - and in at least some cases any other kind of transfer, including the transfer of
physical media, like a compact disc (CD) or flash memory drive.

[0052] Turning now to FIG. 2, shown therein is an exemplary generalized
operational flow 200 including various operations that may be performed by an endpoint,
including a device endpoint, when changing data that is synchronized and making such a
change available to other endpoints. The following description of FIG. 2 may be made
with reference to other figures. However, it should be understood that the operational
flow described with reference to FIG. 2 is not intended to be limited to being used with
the elements described with reference to these other figures. In addition, while the
exemplary operational flow of FIG. 2 indicates a particular order of execution, in one or
more alternative embodiments the operations may be ordered differently. Furthermore,
while the exemplary operational flow contains multiple steps, it should be recognized

that in some implementations at least some of these operations may be combined or

WO 2009/002831 PCT/US2008/067636
21

executed contemporaneously, and in the same or other implementations, some steps
may nhot be executed.

[0053] In an exemplary implementation of operation 210, a change is made to
local data on an endpoint, such as perhaps the device endpoint A 160 that was previously
introduced with reference to FIG. 1. For example, a user might use an application to
create new data or to modify or delete existing data. The modified data might include
onhe or more of a wide variety of types of data, such as, for example, and without
limitation, contacts, calendar items, audio clips, video clips, word processing or
spreadsheet files, other files, and so on.

[0054] Such a change might then result in one or more changes to metadata or
blob data that is synchronized between endpoints. For example, suppose a user creates a
new video file using, say, a video editing application, and that the new file is part of data
that is synchronized with at least one other endpoint. As part of operation 210, or as part
of another operation, metadata maintained by the endpoint on which the change was
made might be updated so that the metadata includes an item associated with the new
video file. Such a new item might include, in at least some implementations, data relevant
to the synchronization of the item (such as perhaps version information or data about
when the item was created or, later, updated) as well as information about the item itself,
such as, perhaps, a name for the video, a text description of the video, and a reference
that identifies the actual video data or content (if the video data or content is not
included in the metadata feed itself). When an existing item is modified, the metadata
and possibly blob data may be similarly updated. If an existing item is deleted, the
metadata may be modified so that, for example, the item is marked as being deleted, and
any associated blob data may be deleted (or may be kept available, in at least some
implementations).

[0055] In an exemplary implementation of operation 215, the metadata that was
updated as part of operation 210 may be communicated to a server endpoint, such as,
perhaps, a server endpoint that is in at least some way like the exemplary server endpoint
110 described previously with reference to FIG. 1. Such communication may be

implemented in a wide variety of ways depending on, for example, how the metadata is

WO 2009/002831 PCT/US2008/067636
22

represented and the networking or other communication functionality available to the
endpoint that has made the change or that is available to the receiving endpoint. For
example, in an implementation where the metadata is embodied in an XML document, the
metadata may be communicated to the server endpoint using, perhaps, an HTTP POST
request that contains the XML document and that is submitted to an HTTP server running
on or associated with the server endpoint. In another implementation, the endpoint that
has made the change might make the updated metadata available at a particular location,
say, on a network share or through an HTTP server associated with the endpoint itself,
and the server endpoint may retrieve the metadata from that location.

[0056] In at least some implementations, blob data associated with the metadata
change may not be communicated to the server endpoint. Instead, the blob data may be,
for example and without limitation, retained (at least for some period of time) on the
endpoint where the change was made. For example, when the blob data comprises video
data that was created on the endpoint, the video data may reside only on the endpoint
after an implementation of operation 215 has completed. In some cases, such blob data
may be retrieved or obtained by another endpoint at some later point in time.

[0057] In some implementations, a blob lookup service may be updated as part of
an implementation of operation 215 so that the blob lookup service includes location
information for the blob data associated with the metadata change. Another endpoint
might then use the blob lookup service as part of retrieving the blob data from the
endpoint. In the same or other implementations a blob lookup service may be updated
when another endpoint merges or processes the metadata communicated to another
endpoint. Such an operation might be implemented, in some examples at least, by an
operation like the operation 525 described below with reference to FIG. 5.

[0058] Finally, while in some implementations of operation 215 the updated
metadata may be communicated to a server endpoint, in the same or other
implementations, the updated metadata may instead, or also, be communicated to one or
more other endpoints, including other server endpoints or other device endpoints, such
as the device endpoint B 170 and/or the device endpoint C 180, both described

previously with reference to FIG. 1. For example, in an implementation where the

WO 2009/002831 PCT/US2008/067636
23

metadata includes or uses SSE information, and so metadata may be communicated and
synchronized between arbitrary (and sometimes non-server) endpoints, at least some
implementations of operation 215 may communicate the updated metadata to a variety
of other endpoints.

[0059] In an exemplary implementation of operation 220, the endpoint on which
the change was made may subscribe or register to be notified of future updates to the
metadata that was previously communicated to the server (or other) endpoint. After such
a subscription or registration, the endpoint may then in at least some cases receive
notifications (embodied or implemented in a variety of ways) when the metadata changes
oh some other endpoint, such as on the server endpoint to which the updated metadata
was previously communicated. As described previously, this may enable the endpoint to
be aware of other changes to data with which it is concerned without requiring that the
endpoint actively poll or check for changes to the data.

[0060] While a subscription or registration may be made in some cases as part of
executing operation 220, the same (or a different) subscription or registration may be
made at another time, or may not be made at all.

[0061] In an exemplary implementation of operation 225, the endpoint may
respond to a request for the blob associated with the metadata change by, for example,
providing the blob to the requestor. That is, for example, at some point in time after the
metadata change that refers to or is associated with the blob is received or processed by
ohe or more other endpoints, one or more of those other endpoints (or another endpoint)
may determine that they need or desire the data comprised by the blob. In some
implementations, including those where the blob data is not communicated as part of the
metadata, such other endpoints may then retrieve the blob by requesting it from another
endpoint on which the blob exists. The way in which the blob is requested, as well as the
manner in which the blob is provided to the requestor, may be implemented in a wide
variety of manners including some of those previously introduced with reference to, for
example, a blob lookup service and a blob download module, as well as those described

in more detail below.

WO 2009/002831 PCT/US2008/067636
24

[0062] Turning now to FIG. 3, shown therein is an exemplary generalized
operational flow 300 including various operations that may be performed by an endpoint,
including a device endpoint, when synchronizing data from another endpoint. The
following description of FIG. 3 may be made with reference to other figures. However, it
should be understood that the operational flow described with reference to FIG. 3 is not
intended to be limited to being used with the elements described with reference to these
other figures. In addition, while the exemplary operational flow of FIG. 3 indicates a
particular order of execution, in one or more alternative embodiments the operations
may be ordered differently. Furthermore, while the exemplary operational flow contains
multiple steps, it should be recognized that in some implementations at least some of
these operations may be combined or executed contemporaneously, and in the same or
other implementations, some steps may not be executed.

[0063] In an exemplary implementation of operation 310, an endpoint may
determine that metadata in which the endpoint has some interest has changed. For
example, the endpoint may have previously updated the same metadata and registered to
be notified of future changes, perhaps in a manner like that described previously with
reference to FIG. 2. In this case, or in other cases, such an endpoint may receive a
notification from some other endpoint, including from a server endpoint that maintains a
copy of the metadata. In another implementation, an endpoint may periodically poll some
location and determine through the act of polling that the metadata at that location has
changed. In yet other implementations, this operation may not be performed - in such an
implementation, an endpoint might, for example, periodically execute at least some of
the other operations in the exemplary operational flow 300 - such as obtaining metadata
and merging metadata - regardless of whether the metadata has changed. (The
description associated with this operational flow may in some cases assume that a
change exists in the metadata in question - in the case where no change actually exists, a
variety of the operations may be executed differently or perhaps may not be executed at
all).

[0064] In at least some implementations of operation 315, the endpoint may

obtain the metadata that may contain a change through a variety of means. For example,

WO 2009/002831 PCT/US2008/067636
25

an endpoint, including perhaps a device endpoint like the device endpoint A 160
described previously with reference to FIG. 1, might initiate an HTTP GET request to a
web server that is part of or associated with a server endpoint, such as perhaps the server
endpoint 110 also described previously with reference to FIG. 1, and receive in response
metadata that includes one or more changes. In other implementations, the metadata
may be proactively communicated by another endpoint, or may be obtained in a variety of
other ways. In some implementations, the obtained metadata may include all items that
may be represented by the particular piece of metadata, while in the same or other
implementations, in at least some cases, the metadata may only include a subset of the
items, including, for example, only the items that have changed.

[0065] In an exemplary implementation of operation 320, the obtained metadata
may be merged with a copy of the metadata maintained locally. Such a merge operation
may incorporate the changes embodied in the obtained metadata into another copy of
the metadata that may be maintained or modified by the endpoint that executes the
operational flow 300. Such a local copy of the metadata, or local metadata store, may be
maintained in a variety of ways, including (at least in some implementations) as rows or
records in a database, as a copy of an XML feed (or other) document that might exist in
one or more files in a file system, and so on.

[0066] In implementations where the metadata includes SSE information, such a
merge operation may be implemented using an SSE merge. In a simplified description of
one way of implementing an SSE merge, a process specified by SSE may be followed that
compares “foreign” items - those that are embodied by the obtained metadata in this
example - with “local” items that are maintained locally or associated with the endpoint
merging the metadata. New foreign items that don’t exist in the local metadata store may
generally be incorporated into the local metadata store, thereby creating a new local
item. Where a foreign item corresponds to a local item - perhaps because both items
have the same SSE identifier - a merge process may choose a “winning item” and “losing
item” using one or more means, such as by choosing the winning item to be the item that
has been updated more recently. Finally, when the local item is not the winning item, the

local item may be updated so that it incorporates the data embodied by the winning item.

WO 2009/002831 PCT/US2008/067636
26

[0067] In at least some implementations of operation 325, it may be determined
whether the endpoint that is synchronizing information and that has obtained the
metadata also requires or desires one or more blobs referenced or identified by the
metadata. For example, in implementations where the metadata doesn’t include at least
some information associated with the metadata, and instead might, for example, include
one or more references to blobs of data stored elsewhere, this operation may determine
that one or more of those blobs are desired or required. Such might be the case, in just
one example, when at least part of the objective of the operational flow 300 is to
synchronize both metadata and associated blob data to the endpoint that is executing
the operational flow 300. If a blob is needed, the exemplary operational flow may
proceed to operation 330. If no blobs are needed, the exemplary operational flow may
end.

[0068] In an exemplary implementation of operation 330, one or more blobs that
are identified or referenced by the obtained metadata may be retrieved. The blob or blobs
to retrieve may be identified in a variety of ways. For example, in some cases any blobs
associated with changed metadata items may be retrieved. In other implementations, only
a subset of the changed blobs may be retrieved - perhaps only blobs that are under a
specific size might be retrieved, or some other criteria might be used to filter or
determine the blob or blobs to retrieve. In some implementations, a single metadata item
may identify a single blob, while in the same or other implementations, a single metadata
item may identify multiple blobs. Each identified blob may then be retrieved in one or
more different ways. In some implementations, one or more alternate representations of
identified blob(s) may be retrieved, such as transcoded versions of particular files (such
as image, video, or audio files), and so on. Finally, in some implementations, a blob may
be retrieved using operations that are the same as or similar to the operations described
below with reference to FIG. 4. In other implementations, a blob may be retrieved in one
or more different ways.

[0069] Turning now to FIG. 4, shown therein is an exemplary generalized
operational flow 400 including various operations that may be performed to retrieve or

download a blob. The following description of FIG. 4 may be made with reference to other

WO 2009/002831 PCT/US2008/067636
27

figures. However, it should be understood that the operational flow described with
reference to FIG. 4 is not intended to be limited to being used with the elements
described with reference to these other figures. In addition, while the exemplary
operational flow of FIG. 4 indicates a particular order of execution, in one or more
alternative embodiments the operations may be ordered differently. Furthermore, while
the exemplary operational flow contains multiple steps, it should be recognized that in
some implementations at least some of these operations may be combined or executed
contemporaneously, and in the same or other implementations, some steps may not be
executed.

[0070] In an exemplary implementation of operation 410, it may be determined if
a blob lookup service (or BLS) will be used as part of retrieving the blob. For example, this
determination may be made, at least in part, because in some implementations an
endpoint may attempt to retrieve the blob first without using (or by using) a blob lookup
service. In such an implementation, a blob lookup service might, for example, only be
used after an initial attempt to retrieve the blob without using the blob lookup service is
made. If such an initial attempt fails, then a blob lookup service might be used. In
another implementation, a blob lookup service may not be available, or the determination
may be made in a variety of other ways. If a blob lookup service is used, the operational
flow 400 may proceed to operation 415. If a blob lookup service is not used, the
operational flow may proceed to operation 435.

[0071] If a blob lookup service is used, the operational flow 400 may proceed to
operation 415, where, in an exemplary implementation, an endpoint may ask or query a
blob lookup service for one or more locators associated with the desired blob. Such a
query may be communicated to a blob lookup service using a variety of communication
mechanisms or means. In some implementations, additional information may also be
included in the request. For example, in some implementations, an endpoint may also
request that a particular blob be provided in one or more alternate representations. For
example, a mobile phone might request a representation of a blob that occupies a
relatively smaller amount of space (so that it is easier to transfer over a potentially slow

network connection, is easier to store on a device with limited storage space, and so on).

WO 2009/002831 PCT/US2008/067636
28

[0072] In response to such a request, the blob lookup service may provide one or
more “locators,” where a locator may generally comprise an identification of an endpoint
that may be able to provide at least a portion of the blob. For example, in one
implementation a blob lookup service might provide one or more locators that each in
turn comprise a domain name or IP address that identifies one or more endpoints that
the blob lookup service has determined may be able to provide at least a portion of the
requested blob.

[0073] In at least some of such implementations (although not necessarily in all
implementations), as well as in other implementations, the one or more locators provided
by a blob lookup service might also include other information. For example, in some
cases a locator might include information that might be used, at least in part, to
determine the manner in which the endpoint identified by the locator should be
contacted or the manner in which the blob should be retrieved. For example, a locator
might include some indication of supported protocols that might be used, such as some
kind of peer-to-peer or distributed data transfer mechanism, HTTP, FTP, and so on. In
the same or other cases, the one or more locators might include some indication of
preference or order that might identify a particular locator or locators as being preferred
- such preferred locators might be used first and before other locators are used, for
example.

[0074] In the same or other implementations, only portions or parts of a
particular blob may be available from a particular endpoint. For example, the first 50% of
a particular blob may be accessible using a particular endpoint while the last 50% of the
same blob may be accessible using another endpoint. In such implementations, a locator
may in some cases include information that indicates what portions of a blob may be
provided by the particular endpoint associated with the locator.

[0075] In the same or yet other implementations, a locator may include
information derived or provided by some type of knowledge, such as knowledge made
available by an exemplary knowledge store module 145, described previously with
reference to FIG. 1. Such knowledge may, for example, enable the blob lookup service

that provides one or more locators to indicate a preference for the use of particular

WO 2009/002831 PCT/US2008/067636
29

locators (because perhaps those locators identify endpoints that have faster connections,
are physically or logically closer to the endpoint requesting the locators, and so on), or
may enable the blob lookup service to modify or change the locators it provides in a
variety of other ways.

[0076] It should also be noted that while a locator may contain additional
information, including as described previously, in some of the same cases or
implementations a provided locator may not include any additional information. In such
cases, and in other cases, other operations - including those not shown - may determine
how to retrieve the blob through other means such as by a negotiation process with the
endpoint identified in a locator to determine a communication or transfer protocol to use,
and so on.

[0077] In at least some implementations of operation 420, it may be determined
whether the provided locator(s) can be used to retrieve the blob. For example, the
endpoint identified in a locator may be queried or a request may be sent to retrieve the
blob, to initiate blob retrieval, the check the status or availability of the blob, and so on. If
a determination can be made that the blob cannot be retrieved - perhaps the locator
identifies an endpoint that is offline, for example, or the blob cannot be retrieved for
some other reason - then in at least some implementations the operational flow 400 may
proceed to operation 430. If one or more of the locators can be used to retrieve the blob,
the operational flow may proceed to operation 425.

[0078] In an exemplary implementation of operation 425, the locator(s) may be
used to retrieve the blob. This operation may be implemented in a wide variety of
manners depending on a variety of characteristics including, but not limited to, the
information provided in the locator(s), the supported or available communication or file
transfer protocols, and so on. In some implementations, retrieving the blob may be
implemented, at least in part, through the use of a blob download module that might be
similar to or the same as the blob download module 150 and the blob download module
162 described previously with reference to FIG. 1.

[0079] For example, in an implementation that uses an exemplary blob download

module, the endpoint might provide the locator(s) to the blob download module, and the

WO 2009/002831 PCT/US2008/067636
30

blob download module might then evaluate the information in the locator(s) and use the
information to determine one or more ways to retrieve or download the requested blob.
In a relatively simple case, an endpoint or blob download module might simply use a
single locator to locate another endpoint that has the blob, send some type of network
communication - such as perhaps an HTTP GET or file system file retrieval request - to
the identified other endpoint, and receive the requested blob in response. In such an
implementation, and in other implementations, if such a request does not succeed or is
determined to be less preferable for some reason (perhaps the connection is slow, for
example), one or more other locators may also or instead be used.

[0080] In another implementation, an endpoint or blob download service might
use multiple locators to initiate multiple requests to different endpoints, including
perhaps separate requests for different (or the same) portions of a single blob. In some
cases obtaining different portions of the same blob from multiple endpoints may enable
the retrieval of the blob to be completed more quickly, or with less impact on any
particular single endpoint, or may have other advantages.

[0081] In at least some blob retrieval implementations or operations, one or more
techniques may be used to minimize the amount of data to be transferred or to otherwise
further optimize the retrieval of the blob. For example, some implementations may use
data compression - such as ZIP, or other compression techniques - to retrieve less data.
In the same or other implementations, only portions of the blob that have changed from
a copy of the blob that might already exist on the requesting endpoint may be requested
or communicated from or one or more other endpoints. Such “differential compression”
may enable only small amounts of data to be communicated even when the blob in which
the changed data exists is relatively large.

[0082] In some implementations, the endpoint may inform another service or
endpoint about the status of the blob retrieval or download. For example, an endpoint
might inform a blob lookup service that it has retrieved some or all of a particular blob.
Using such information, the blob lookup service may be able to provide a locator that
identifies the endpoint as part of servicing some other request for the same blob. In

some cases an endpoint that provides this information may do so only when the blob is

WO 2009/002831 PCT/US2008/067636
31

completely retrieved, while in other cases or implementations the endpoint may
periodically provide information as the blob is retrieved, so that, for example, a blob
lookup service is updated when 25% of the blob has been retrieved, when 50% of the blob
has been retrieved, and so on. In the same or other implementations, the information
communicated to another endpoint might include an identification of which portions of
the blob have been retrieved - say, that the first 50% of a blob has been retrieved, that
the first 10% and the last 10% of the blob has been retrieved, or so on - and such
identification may in turn be useful to enable other endpoints to retrieve portions of the
same blob from different endpoints.

[0083] If the retrieval of the blob fails during the execution of operation 425, in
some cases the operational flow may end. In other implementations, a retrieval failure
may be interpreted similarly to or in the same way as a failure of the previously described
operation 420. In such an implementation, if the blob retrieval fails during operation 425,
the operational flow may proceed to operation 430 (such a path is illustrated in FIG. 4
using a dashed line).

[0084] If the blob cannot be retrieved for one or more of a variety of reasons, the
operational flow 400 may in some cases proceed to operation 430. Such reasons for
executing operation 430 may include those described above, such as when the endpoints
identified by the blob lookup service cannot provide the blob, perhaps because they are
not online or available. In an exemplary implementation of operation 430, the endpoint
may request that a blob cache service retrieve and cache a copy of the requested blob. In
some implementations, such a blob cache service may be accessed more reliably than at
least some other endpoints, and so may serve as a useful interim or transient location for
a blob that an endpoint that wants to retrieve the blob can use instead of some other
(perhaps unavailable) endpoint.

[0085] In some of such implementations, the blob cache service may accept the
request and retrieve the blob itself when possible. For example, the blob cache service
may wait until an originally identified endpoint is available and may then retrieve the blob
from the original endpoint (or may instruct the endpoint to upload the blob). Some

exemplary blob cache service implementations and operations that might be performed

WO 2009/002831 PCT/US2008/067636
32

by a blob cache service are described elsewhere herein, especially with reference to FIG. 1
and FIG. 7.

[0086] In some implementations, an endpoint that requests that a blob be stored
by a blob cache service may later again execute operation 415 and query the blob lookup
service for locators that may be used to retrieve the blob. For example, the endpoint
might receive a notification (perhaps from something like the notification service 140
described previously with reference to FIG. 1) that the blob cache service can provide the
desired blob. If the blob cache service has stored the blob, it may have already informed
the blob lookup service that it has the blob, and so the blob lookup service may provide
the requesting endpoint a locator that identifies the blob as being available using the
blob cache service. Ultimately, the original endpoint may retrieve the blob from the blob
cache service.

[0087] In other implementations, other endpoints, including other more reliable
or available endpoints - like perhaps a cloud storage service like that described
previously with reference to FIG. 1 - may be used instead of a blob cache service as a
location from where the endpoint may retrieve the blob.

[0088] If a blob lookup service has been determined to not be used, for example,
as part of operation 410, then the operational flow 400 may proceed to operation 435,
where the blob may be retrieved using a variety of other mechanisms that may not use a
blob lookup service. For example, in some implementations one or more endpoints may
attempt to retrieve a blob using some store that might not be associated with or known
to a blob lookup service. In such a case, or in other cases, the blob may be retrieved
using any of a variety of mechanisms, including those described previously, such as
HTTP, FTP, peer-to-peer “BitTorrent’-style communications, or other mechanisms. In
addition, functionality made available elsewhere - like functionality provided by a blob
cache service or other server functionality - may also be used in at least some
implementations that do not use a blob lookup service.

[0089] It should be noted that in some implementations other methods for
retrieving blobs may be used instead of or in addition to the exemplary operational flow

described previously and with reference to FIG. 4. At least some of these other methods

WO 2009/002831 PCT/US2008/067636
33

may also execute one or more of the exemplary operations described with reference to
FIG. 4 or may use one or more other modules or services including modules and services
described with reference to, for example, FIG. 1. At least some of these other methods
may also execute other instructions or use other modules and services. As just one
example, an endpoint might request that a blob download module - perhaps like the blob
download module 150 or blob download module 162 described previously with reference
to FIG. 1 - obtain a particular blob. In some implementations, the blob download module
might have one or more pluggable “drivers” that each may locate and/or obtain the
requested blob perhaps in different ways. For example, one driver might use a blob
lookup service to obtain a set of locators and then use a single locator to retrieve the
blob, another driver might also use a blob lookup service and might use multiple locators
- perhaps in parallel, or with a BitTorrent or other similar type of mechanism - to retrieve
the blob, yet another driver might not use a blob lookup service and might locate and
retrieve the blob in a variety of other ways, and so on. In at least some of such
implementations, the blob download module might determine the driver to use in a
variety of ways. For example, the blob download module might query each driver for an
estimate of how long the driver might take to retrieve the blob and each driver might
then return an estimated time or perhaps some value that indicates that the driver cannot
retrieve the blob. Using such returned data, the blob download module might pick one
(or more) drivers and instruct the chosen driver(s) to actually retrieve the blob.

[0090] Turning now to FIG. 5, shown therein is an exemplary generalized
operational flow 500 including various operations that may be performed when
maintaining and providing metadata. The following description of FIG. 5 may be made
with reference to other figures. However, it should be understood that the operational
flow described with reference to FIG. 5 is not intended to be limited to being used with
the elements described with reference to these other figures. In addition, while the
exemplary operational flow of FIG. 5 indicates a particular order of execution, in one or
more alternative embodiments the operations may be ordered differently. Furthermore,
while the exemplary operational flow contains multiple steps, it should be recognized

that in some implementations at least some of these operations may be combined or

WO 2009/002831 PCT/US2008/067636
34

executed contemporaneously, and in the same or other implementations, some steps
may nhot be executed.

[0091] In an exemplary implementation of operation 510 an endpoint, such as a
server endpoint 110 described previously with reference to FIG. 1, may obtain metadata
from another endpoint. For example, the endpoint that obtains the metadata may in
some implementations be the server endpoint that receives metadata with changes
communicated by other endpoints, as was previously described, for example, with
reference to operation 215 of FIG. 2. Furthermore, in some implementations, at least
some of the operations described herein with reference to the operational flow 400 may
be implemented by an exemplary storage service 120, also as described previously with
reference to FIG. 1. (While some of this description may refer to the endpoint that
receives the metadata in the operational flow 400 as a “server endpoint,” it should be
understood that the endpoint receiving the metadata does not necessarily need to be a
server endpoint, does not necessarily need to have at least some or all of the functionality
described elsewhere as possibly associated with a server endpoint, and so on).

[0092] Metadata may be obtained using any of a variety of communication
mechanisms suitable for communicating metadata. For example, in some
implementations an HTTP server associated with the receiving or obtaining endpoint may
accept HTTP POST requests that contain metadata at a certain URL. In the same or other
implementations, another endpoint might communicate the metadata using another
protocol, like FTP or one or more file sharing protocols, email, and so on. In some
implementations, a receiving endpoint may proactively retrieve the metadata rather than
rely on another endpoint to submit the metadata. For example, the obtaining endpoint
might initiate an HTTP GET request to some other endpoint and be supplied with the
metadata in a response.

[0093] In at least some implementations of operation 515, the obtained metadata
may be merged with a copy of the metadata maintained by the server endpoint. Such a
merge operation may result in the incorporation of the changes embodied in the obtained
metadata into another copy of the metadata that may be maintained and modified by the

endpoint that executes the operational flow 500. Such a local copy of the metadata may

WO 2009/002831 PCT/US2008/067636
35

be maintained in a variety of ways, including (in at least some implementations) as rows
or records in a database, as a copy of an XML feed (or other) document, and so on. In
implementations that use metadata that includes SSE information, the obtained metadata
may be merged with the local metadata using SSE merge techniques. In some
implementations such SSE merge techniques may be the same as or similar to the SSE
merge techniques described previously with reference to, especially, operation 320 of
FIG. 3.

[0094] In an exemplary implementation of operation 520, one or more endpoints
that have previously registered or subscribed to be notified when the metadata in
guestion changes may be notified using one or more notification means. (After receiving
such a notification, an endpoint might in some implementations initiate the execution of
operations to obtain the newly updated metadata from the server endpoint and merge
the changes in the newly updated metadata with that endpoint’s own local metadata
store. Such operations might include, perhaps, at least some of those described
previously with reference to FIG. 3.) In at least some other implementations, including
those that do not provide notifications, no subscribers may be notified.

[0095] In some implementations of operation 525, a blob lookup service may by
updated with location information for a blob or blobs identified by the obtained
metadata, so that endpoints that obtain or use the metadata may be able to retrieve
blobs referenced by or associated with the metadata. That is, for example, suppose the
obtained metadata comprises a new item that references a new blob. It may be that when
the operational flow 500 is executed that the referenced blob exists only on the endpoint
that generated and communicated the updated metadata to the server endpoint. In order
for any endpoint - including the server endpoint or other device endpoints - to be able to
retrieve the blob, the (initial) location of the blob may be stored by a blob lookup service,
including a blob lookup service like the blob lookup services described elsewhere herein.
[0096] Finally, in an exemplary implementation of operation 530, the updated
metadata created as part of the merging operation 515 may be communicated to one or
more endpoints. For example, another endpoint that synchronizes the data represented

by the metadata may submit a request to the server endpoint for updated metadata. Such

WO 2009/002831 PCT/US2008/067636
36

a request might be submitted after the other endpoint receives a notification that the
metadata has changed, when the other endpoint polls the server endpoint and discovers
that the metadata has changed, and so on. The server endpoint may provide the
metadata to the other endpoint in a variety of ways, including those described previously
and elsewhere herein, such as through the use of HTTP GET or POST requests and
responses, file sharing protocols, FTP, email, some other communication mechanism or
mechanisms, and so on.

[0097] Turning now to FIG. 6, shown therein is an exemplary generalized
operational flow 600 including various operations that may be performed when storing
and providing locations and locators associated with blobs referenced by metadata. The
following description of FIG. 6 may be made with reference to other figures. However, it
should be understood that the operational flow described with reference to FIG. 6 is not
intended to be limited to being used with the elements described with reference to these
other figures. In addition, while the exemplary operational flow of FIG. 6 indicates a
particular order of execution, in one or more alternative embodiments the operations
may be ordered differently. Furthermore, while the exemplary operational flow contains
multiple steps, it should be recognized that in some implementations at least some of
these operations may be combined or executed contemporaneously, and in the same or
other implementations, some steps may not be executed.

[0098] In an exemplary implementation of operation 610, an endpoint may accept
one or more locations associated with a particular blob. In general, the locations may
specify an endpoint where at least part of a particular blob may be retrieved. In at least
some implementations, the blob or blobs may be identified using one or more blob
identifiers. An endpoint that accepts one or more locations might include at least some
server endpoints, such as the exemplary server endpoint 110 described previously with
reference to FIG. 1. Furthermore, at least some of the operations associated with the
operational flow 600 may be implemented in at least some implementations by a blob
lookup service, such as the exemplary blob lookup service 125 also described previously
with reference to FIG. 1. While some of the operations of the operational flow 600 may be

described herein as associated with an exemplary server endpoint or exemplary blob

WO 2009/002831 PCT/US2008/067636
37

lookup service, it should be understood that the operations do not necessarily need to be
implemented or executed by a server endpoint or blob lookup service and may instead be
implemented or executed by one or more of a variety of endpoints, or modules or
services included in those endpoints.

[0099] The one or more blob locations may be accepted or retrieved from a
variety of other endpoints and processes. For example, when a server endpoint or storage
service processes metadata from another endpoint, it may provide this operation with
ohe or more locations associated with one or more blobs identified by the metadata it
has received (such an action might be associated with, for example, the operation 525
previously described with reference to FIG. 5). In another example, when an endpoint
obtains some or all of a blob from one or more other endpoints, perhaps as part of
synchronizing the metadata and blobs associated with the metadata, including through
the use of operations described previously with reference to FIG. 4, that endpoint might
also update a blob lookup service with its location so that other endpoints may be able to
retrieve some or all of the blob from the endpoint that has now also obtained the blob (in
addition to receiving it from the endpoint where it was initially created, say).

[00100] In addition to a location of the endpoint that now has at least a part of the
blob, the endpoint that updates the blob lookup service might also provide other
information to the blob lookup service. Such other information might include, for
example, an identification of the part (or parts) of the blob available at the particular
endpoint (or an indication that the entire blob is available), some indication that the
particular endpoint may be able to provide one or more alternate representations of the
blob, and so on.

[00101] In at least some implementations of operation 615, the accepted location
(and possibly other accepted data), may be stored by the blob lookup service using one
or more of a variety of means or mechanismes, including as rows or records in a database,
and so on.

[00102] In an exemplary implementation of operation 620, the blob lookup service
may receive a request for locators associated with one or more blobs. Such requests may

be sent or communicated from a variety of endpoints, modules, or services. For example,

WO 2009/002831 PCT/US2008/067636
38

a device endpoint might submit a request for a locator for a particular blob so that the
device endpoint may be able to synchronize a blob identified by particular metadata. (The
device endpoint may then use any returned locators to actually retrieve the blob.) In
another example, a blob cache service or cloud storage service might request locators so
that the blob cache service or cloud storage service may be able to retrieve one or more
blobs.

[00103] In some implementations of operation 625, the blob lookup service may
identify one or more locators associated with the particular requested blob. In some
implementations this operation may be executed, at least in part, by looking up a
particular blob (perhaps using a blob identifier associated with the blob), and identifying
a locator for every endpoint that is registered as being able to provide the requested
blob. For example, if three endpoints have previously registered as having a requested
blob, then this operation might identify three locators, one for each of the three
endpoints.

[00104] In some implementations, the identified locators may also include
additional information aside from just a means for identifying an endpoint associated
with the blob. For example, some locators may include information about which parts or
portions of the blob may be retrieved from the particular endpoint, the same or other
locators may include information about one or more communication protocols that may
be used with the particular endpoint to retrieve the blob, and so on.

[00105] While in some implementations a blob lookup service may simply, for
example, identify a locator for each and every endpoint that may provide a particular
blob, in other implementations the process of identifying locators may, for example, use
additional information or knowledge. For example, a blob lookup service might use a
variety of knowledge about the metadata, about the server endpoint(s) and device
endpoint(s), and so on, to filter, prioritize, or otherwise identify (perhaps the most
suitable) locators. In some implementations, such knowledge may be provided, at least in
part, by a knowledge store such as the exemplary knowledge store module 145 described

previously with reference to FIG. 1.

WO 2009/002831 PCT/US2008/067636
39

[00106] For example, suppose that multiple endpoints have previously registered
as being able to provide portions of a particular blob. Further suppose that a knowledge
store has knowledge that one of the providing endpoints is implemented by a
workstation-class desktop computer that is often connected to a network using a high-
speed and high-bandwidth network connection; that another of the providing endpoints
is a laptop computer that connects using a variety of networks with differing connection
characteristics; and that a third providing endpoint is a mobile phone that is often turned
on and connected to a network but that uses a relatively slow connection where data
transmission is associated with per-unit monetary charges. In such an example, at least
some implementations of operation 625 may use this knowledge, as well as possibly
other knowledge, to filter or prioritize the identified locator or locators. For example, in
one implementation locators for all three endpoints might be identified, but they may
include or be communicated with priority information that indicates that the desktop
computer should be used first, the laptop computer should be used next, and that the
mobile phone should only be used as a last resort. In another example, the identified
locators might not even include particular endpoints, such as the mobile phone in this
example - instead, only locators for the desktop and laptop computers may be identified.
[00107] Other information or criteria may also be used to identify one or more
locators, and even possibly to determine if any locators at all should be returned. For
example, suppose that the metadata includes an item that references a blob that has
been determined to be dangerous, not appropriate, or for some reason undesirable - for
example, the blob might contain executable code that contains a virus, might contain
video data with objectionable content, and so on. In such a case, an implementation of
operation 625 might identify no locators for the particular blob, even if one or more
endpoints have registered to be able to provide the blob in question. In such a way, the
blob lookup service may be used to filter or control the content that may be transmitted
when synchronizing or communicating data. Such control may be difficult or impossible
to implement in, for example, a decentralized or peer-to-peer synchronization system
where endpoints may exchange data with potentially no involvement by a centralized

endpoint.

WO 2009/002831 PCT/US2008/067636
40

[00108] Finally, in an exemplary implementation of operation 630, the locator or
locators identified, for example, in operation 625, may be communicated or provided to
one or more endpoints, including an endpoint that made the request received as part of
operation 620.

[00109] Turning now to FIG. 7, shown therein is an exemplary generalized
operational flow 700 including various operations that may be performed when storing
blobs in a cache and providing blobs from a cache. The following description of FIG. 7
may be made with reference to other figures. However, it should be understood that the
operational flow described with reference to FIG. 7 is not intended to be limited to being
used with the elements described with reference to these other figures. In addition, while
the exemplary operational flow of FIG. 7 indicates a particular order of execution, in one
or more alternative embodiments the operations may be ordered differently.
Furthermore, while the exemplary operational flow contains multiple steps, it should be
recognized that in some implementations at least some of these operations may be
combined or executed contemporaneously, and in the same or other implementations,
some steps may not be executed.

[00110] In an exemplary implementation of operation 710, an endpoint may accept
or receive a request to store or cache a particular blob. An endpoint that receives such a
request might include at least some server endpoints, such as the exemplary server
endpoint 110 described previously with reference to FIG. 1. Furthermore, at least some of
the operations associated with the operational flow 700 may be implemented in at least
some implementations by a blob cache service, such as the exemplary blob cache service
130 also described previously with reference to FIG. 1. While some of the operations of
the operational flow 700 may be described herein as associated with an exemplary server
endpoint or exemplary blob cache service, it should be understood that the operations do
not necessarily need to be implemented or executed by a server endpoint or blob cache
service and may instead be implemented or executed by one or more of a variety of
endpoints, or modules or services included in those endpoints.

[00111] A request to cache a particular blob might be received from a variety of

endpoints, including both server endpoints and device endpoints. For example, a device

WO 2009/002831 PCT/US2008/067636
41

endpoint might submit a request to cache a blob when, in one example, it is unable to
obtain that blob itself from another endpoint (as might be the case for example and as
described previously, when two device endpoints are not online at the same time). In
another example, a storage service or other service or module might submit a request to
cache a particular blob for one or more of a variety of reasons. For example, perhaps
using knowledge maintained by a knowledge store like the knowledge store module 145
described previously with reference to FIG. 1, a storage service might have knowledge
that a particular endpoint is often unavailable. In such a case, and possibly in other cases,
when such an endpoint provides metadata associated with new or changed blobs, the
storage service might proactively - even before another endpoint requests the blob -
request that the particular blob or blobs be cached. Such an implementation might make
it unnecessary for a device endpoint that wants to retrieve such a blob to make a request
to cache the blob itself.

[00112] In some implementations of operation 715, the blob cache service may
retrieve the requested blob. Retrieving a blob may be implemented in a variety of ways. In
some implementations, the blob cache service may execute one or more operations that
are the same as or similar to those described previously with reference to FIG. 4. Such
operations might, for example, use a blob lookup service to identify one or more
locations at which the blob is available and might retrieve the blob from such locations.
[00113] In the same or other implementations, endpoints may periodically
communicate with the blob cache service, or may receive notifications that a
communication with the blob cache service is necessary, and may provide or upload
blobs that the blob cache service requests. For example, a device endpoint might receive
a communication or notification that a particular blob available on the device endpoint is
desired by the blob cache service, and so might make the blob available for retrieval by
the blob cache service as part of operation 715, or might proactively upload or provide
the blob to the blob cache service as part of another implementation of operation 715.
[00114] The blob cache service may in some implementations use knowledge
about the synchronization system, metadata, endpoints, and so on - including knowledge

maintained by a knowledge store such as the exemplary knowledge store 145 described

WO 2009/002831 PCT/US2008/067636
42

previously with reference to FIG. 1 - to more efficiently retrieve blobs that are to be
cached. In just one example, a blob cache service might not immediately attempt to
cache a blob requested by some other endpoint. Instead, the blob cache service might
wait until, say, there is free bandwidth available to the one or more endpoints that may
provide the blob, or until there is relatively cheap bandwidth available, or until endpoints
that have sufficient computing power to service the request are available, and so on.
[00115] In an implementation of operation 720, the retrieved blob may be stored
using any of a variety of storage mechanisms or means. In some implementations, blobs
may be stored in a database, may be stored as files in a file system, or may be stored in
some other manner. In at least some implementations, a blob cache service may use a
variety of caching techniques to determine, for example, how long a particular blob
should be stored. For example, one implementation of a blob cache service might store
blobs until its available storage space is full, and might then use one or more algorithms
- including LRU algorithms - to determine which blobs to delete so that space is available
for additional blobs. In some implementations, blobs that have been retrieved or
accessed recently might be kept while blobs that have not been retrieved recently may be
deleted. In the same or other implementations blobs may be associated with a reference
count that defines how many endpoints may want to retrieve the blob and a blob may be
deleted in some cases when the specified number of endpoints have retrieved the blob. In
the same or yet other implementations a variety of other techniques and algorithms may
be used to manage the storage associated with the blob cache service.

[00116] In at least some implementations, the blob cache service may update an
exemplary blob lookup service with a location associated with the blob cache service
when the blob cache service has stored at least a portion of a particular blob and can
provide the stored portion of the blob to other endpoints. Using such a location, a blob
lookup service may be able to provide a locator that is associated with the blob cache
service to an endpoint, and such an endpoint may be able to thereby retrieve a blob from
the blob cache service. In some implementations, endpoints may also be able to retrieve

blobs from the blob cache service without the use of a blob lookup service.

WO 2009/002831 PCT/US2008/067636
43

[00117] In an exemplary implementation of operation 725, at some point after a
particular blob or blobs are cached, the blob cache service may receive a request from
ohe or more endpoints for all or a portion of a cached blob and may, in an exemplary
implementation of operation 730, provide the requested blob (or portion of the blob) to
the requestor. Requests and responses associated with cached blobs may be
implemented in a wide variety of manners, using a wide variety of communication
mechanisms, and so on, including mechanisms described elsewhere herein such as HTTP
transfers, FTP transfers, BitTorrent-style transfers, and so on.

[00118] Turning now to FIG. 8, shown therein is an exemplary generalized
operational flow 800 including various operations that may be performed when storing
blobs in cloud storage and providing blobs from cloud storage. The following description
of FIG. 8 may be made with reference to other figures. However, it should be understood
that the operational flow described with reference to FIG. 8 is not intended to be limited
to being used with the elements described with reference to these other figures. In
addition, while the exemplary operational flow of FIG. 8 indicates a particular order of
execution, in one or more alternative embodiments the operations may be ordered
differently. Furthermore, while the exemplary operational flow contains multiple steps, it
should be recognized that in some implementations at least some of these operations
may be combined or executed contemporaneously, and in the same or other
implementations, some steps may not be executed.

[00119] In an exemplary implementation of operation 810, an endpoint may accept
or receive a request to store some or all of a particular blob “in the cloud” or in cloud
storage. The endpoint or module or service that accepts this request may be
implemented in some cases by a server endpoint, perhaps like the server endpoint 110,
and at least some of the operations associated with the operational flow 800 may be
implemented or provided by an exemplary cloud storage module 135, both of which were
previously described with reference to FIG. 1. While some of the operations of the
operational flow 800 may be described herein as associated with an exemplary server
endpoint or exemplary cloud storage service, it should be understood that the operations

do not necessarily need to be implemented or executed by a server endpoint or cloud

WO 2009/002831 PCT/US2008/067636
44

storage service and may indeed be implemented or executed by one or more of a variety
of endpoints, or modules or services included in those endpoints.

[00120] While many of the operations in the operational flow 800 might appear
similar to those described in the blob cache service operational flow 700, a cloud storage
service may be used differently than a blob cache service. For example, in contrast to the
transient storage provided by a blob cache service, a cloud storage service might provide
non-transient or “reliable” storage for blobs (and perhaps other data) by, for example,
not deleting stored blobs unless specifically directed by, for example, a user; by
maintaining multiple copies of stored data, perhaps on separate disk drives or other
storage mechanisms; and so on.

[00121] In at least some implementations of operation 815, the cloud storage
service may retrieve or be provided with blob data, including in some cases with a portion
of or the entirety of the blob associated with the request that may have been received in
operation 810. The cloud storage service might retrieve the blob in a variety of ways,
including in some cases by using a blob lookup service, blob download module, or
possibly some of the operations described previously, for example, with reference to FIG.
4. In other implementations the cloud storage service might retrieve or be provided with
the blob using any of a variety of other communication or file transfer mechanisms. In at
least some implementations, knowledge of the communication system, metadata, blobs,
and so on - perhaps including knowledge associated with an exemplary knowledge store,
such as the knowledge store module 145 described previously with reference to FIG. 1 -
may be used to more efficiently obtain the requested blob, perhaps in similar ways to
those already described with reference to the blob cache service, or in other ways.
[00122] In an exemplary implementation of operation 820, the retrieved or
provided blob may be stored by the cloud storage service in a variety of ways. For
example, as introduced previously, a cloud storage service might store data, including
blobs, using multiple redundant stores. In addition, the cloud storage service may in
some cases update or provide information to an exemplary blob lookup service when it
has stored the blob, so that the blob lookup service may in some implementations

provide locators to other endpoints that reference or identify the cloud storage service,

WO 2009/002831 PCT/US2008/067636
45

after which the other endpoints may in some cases retrieve blobs from the cloud storage
service.

[00123] At some point in time, a cloud storage service may receive a request to
provide a stored blob, or a portion of a stored blob, in at least some implementations of
operation 825. In response to such a request, the cloud storage service may then provide
the requested blob data in an exemplary implementation of operation 830, possibly
through the use of a variety of communication or transfer mechanisms, including those
described elsewhere herein.

[00124] Turning now to FIG. 9, shown therein is an exemplary generalized
operational flow 900 including various operations that may be performed when retrieving
a blob without the use of full metadata or at least some of the functionality provided by
an exemplary server endpoint. The following description of FIG. 9 may be made with
reference to other figures. However, it should be understood that the operational flow
described with reference to FIG. 9 is not intended to be limited to being used with the
elements described with reference to these other figures. In addition, while the exemplary
operational flow of FIG. 9 indicates a particular order of execution, in one or more
alternative embodiments the operations may be ordered differently. Furthermore, while
the exemplary operational flow contains multiple steps, it should be recognized that in
some implementations at least some of these operations may be combined or executed
contemporaneously, and in the same or other implementations, some steps may not be
executed.

[00125] While much of the description herein describes the retrieval of blob data
with the use of metadata, in at least some implementations the use of a full set of
metadata may not always be necessary when retrieving blobs. Instead, in some cases only
a minimal amount of data - such as just a blob identifier - may be needed to take
advantage of various pieces of endpoint functionality including, for example, a blob
lookup service and possibly various endpoints that can provide all or part of a blob. In
some environments using such functionality may enable an endpoint to more quickly,

more cheaply, or in some regard more effectively retrieve a blob.

WO 2009/002831 PCT/US2008/067636
46

[00126] In an exemplary implementation of operation 910, an endpoint may obtain
a blob identifier through some means. In some of the previously described
implementations, blob identifiers are included in metadata that may be synchronized
between different endpoints. Such synchronized metadata provides at least one
mechanism by which an endpoint might obtain a blob identifier. However, in a variety of
the same or other implementations, including those implementations that do not
synchronize metadata or the like, a blob identifier might be provided in a variety of other
ways. For example, a user might send an email or instant message to another user that
contains a blob identifier that in turn identifies a blob, such as perhaps an audio or video
clip, a word processing document or spreadsheet, some other file, and so on.

[00127] In at least some implementations of operation 915, it may be determined
whether a blob lookup service should be used to retrieve the blob. For example, some
endpoints may not have access to or even know about a blob lookup service. In such a
case, and in other cases - including when a blob lookup service is available but is not
used - the determination may be made to not use a blob lookup service, and the
operational flow 900 may proceed to operation 930. If the blob is to be retrieved using a
blob lookup service, the operational flow 900 may proceed to operation 920.

[00128] As one example of an environment in which a blob lookup service might or
might not be used, consider the example of a web browser. Many web browsers include
executable code that enables the download or retrieval of resources using protocols such
as HTTP. With such a web browser, an HTTP request may be made to a single server - or
at least a single URL - and a response may be received from a single server. However in
some cases - for example, when retrieving a blob that may be large - it may be more
effective and quicker to download the blob using one or more other mechanisms,
including mechanisms, like BitTorrent or BitTorrent-like transfer implementations, where
different pieces of a particular blob are retrieved from or supplied by multiple different
endpoints.

[00129] However, while such mechanisms for downloading files or blobs may be
desirable, web browsers may not natively include functionality to enable downloads of

this, or other, types. In some cases it may be possible to add functionality to a web

WO 2009/002831 PCT/US2008/067636
47

browser, or some other application, that adds this capability by, for example, enabling
the web browser or application to support the use of a blob lookup service (and also
possibly a blob download module, as described in more detail below). For example, a web
browser might support “plug-ins” or other code added by users. One such plug-in might
implement support for a blob lookup service and, when installed, might enable a web
browser to use a blob lookup service (and so to proceed to operation 920, instead of
proceeding to operation 930).

[00130] In an exemplary implementation of operation 920, the endpoint retrieving
the blob may query or ask a blob lookup service for one or more locators associated with
the desired blob, perhaps by providing the blob lookup service with some data, like a
blob identifier, that identifies the desired blob. Such an operation may be implemented in
at least some implementations in a manner that is similar to or the same as the manner
in which, for example, the operation 415, described previously with reference to FIG. 4,
was implemented.

[00131] Then, in an exemplary implementation of operation 925, one or more of
the obtained locators and in some cases a blob download module may be used to actually
retrieve the blob. Such an operation may be implemented in at least some
implementations in a manner that is similar to or the same as the manner in which, for
example, the operation 425, described previously with reference to FIG. 4, was
implemented.

[00132] In some implementations, the endpoint might take additional actions if the
blob cannot be downloaded or a retrieval of the blob fails. For example, if the blob
lookup service does not supply any locators, or only supplies locators that cannot be
used to actually retrieve the blob (because of network conditions, because the endpoints
identified by the locators are not available, and so on), the endpoint retrieving the blob
might, for example, request that a blob cache service store the blob and then attempt to
later retrieve the blob from the blob cache service. Such a mechanism was described
previously with reference to, for example, FIG. 4, and is not illustrated in FIG. 9.

[00133] If the endpoint successfully retrieves the blob, it may update the blob

lookup service with additional information so that the blob lookup service may in some

WO 2009/002831 PCT/US2008/067636
48

cases identify the endpoint as a source for the blob when other endpoints request the
same blob. With such an implementation, it may be possible, for example, for one user in
an office, say, to download or retrieve a large file or blob, and have other users, say, in
the same office, retrieve the blob from the first user rather than from some other
endpoint that might be located elsewhere on one or more other networks. In such an
example, after the first user retrieves the blob, an endpoint associated with the first user
might have provided a blob lookup service with information that identifies the endpoint.
When a second or later user requests the same blob from the blob lookup service, the
blob lookup service may provide a locator that identifies the first user’s endpoint. In
some implementations, the blob lookup service might provide such a locator by using
knowledge - including knowledge maintained and provided by a knowledge store - that
the first user’s endpoint is perhaps geographically closer than the original endpoint, is
connected to the second endpoint using a faster network connection than the original
endpoint, and so on.

[00134] If the blob lookup service is not used, the operational flow 900 may
proceed to operation 930. In an exemplary implementation of operation 930, the blob
may be retrieved using one or more file transfer or blob retrieval mechanisms that do not
directly (but may in some implementations, indirectly) use a blob lookup service or blob
download module. Such mechanisms might include HTTP, FTP, file sharing or transfer
protocols, and so on. For example, where the blob identifier is something like

“http:/ /www.els.live.com/ABC123”, the endpoint may simply initiate an HTTP request to
the URL embodied by the blob identifier. In some implementations, the server endpoint
or HTTP server that responds to the request for the blob might then be configured to use
URLs of this particular form by extracting an identifier (such as “ABC123”) and using the
identifier to locate the requested blob, and then finally to return the blob in an HTTP
response. (In some cases a server endpoint itself might locate the blob by using
operations that are the same as or similar to, for example, the blob retrieval operations
previously described with reference to FIG. 4. In the same or other implementations, a
server endpoint might only return blobs that exist in a specific storage location, such as a

blob cache service or a cloud storage service.)

WO 2009/002831 PCT/US2008/067636
49

Example Computing Environment

[00135] Turning now to FIG. 10, this figure and the related description are
intended to provide a brief and general description of an exemplary computing
environment in which the various technologies described herein may be implemented.
Although not required, the technologies are described herein, at least in part, in the
general context of computer-executable instructions, such as program modules that are
executed by a controller, processor, personal computer, or other computing device, such
as the computing device 1000 illustrated in FIG. 10.

[00136] Generally, program modules include routines, programs, objects,
components, user interfaces, data structures, and so on, that perform particular tasks,
display particular information, or implement particular abstract data types. Operations
performed by the program modules have been described previously with the aid of one or
more block diagrams and operational flowcharts.

[00137] Those skilled in the art can implement the description, block diagrams,
and operational flows in the form of computer-executable instructions, which may be
embodied in one or more forms of computer-readable media. As used herein, computer-
readable media may be any media that can store or embody information that is encoded
in a form that can be accessed and understood by a computer. Typical forms of
computer-readable media include, without limitation, both volatile and nonvolatile
memory, data storage devices, including removable and/or non-removable media, and
communications media.

[00138] Communication media embodies computer-readable information in a
modulated data signal, such as a carrier wave or other transport mechanism, and
includes any information delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and not limitation, communications
media includes wired media such as a wired network or direct-wired connection, and

wireless media such as acoustic, RF, infrared and other wireless media.

WO 2009/002831 PCT/US2008/067636
50

[00139] The computing device 1000 illustrated in FIG. 10, in its most basic
configuration, includes at least one processing unit 1002 and memory 1004. In some
implementations, the computing device 1000 may implement at least part of, for
example, one of the endpoints described previously with reference to FIG. 1, such as the
server endpoint 110, the device endpoint A 160, the device endpoint B 170, and so on. In
some implementations, the processing unit 1002 may be a general purpose central
processing unit (CPU), as exists, for example, on a variety of computers, including
desktop and laptop computers. Depending on the exact configuration and type of
computing device, the memory 1004 may be volatile (such as RAM), non-volatile (such as
ROM, flash memory, etc.), or some combination of the two. This most basic configuration
is illustrated in FIG. 10 by dashed line 1006. Additionally, the computing device 1000
may also have additional features and functionality. For example, the computing device
1000 may also include additional storage (removable and/or non-removable) including,
but not limited to, magnetic or optical disks or tape. Such additional storage is illustrated
in FIG. 10 by the removable storage 1008 and the non-removable storage 1010.

[00140] The computing device 1000 may also contain one or more
communications connection(s) 1012 that allow the computing device 1000 to
communicate with other devices and services. For example, the computing device might
have one or more connections to a variety of communication means or computing
devices, including, for example, connections to or between endpoints as described
previously with reference to FIG. 1. The computing device 1000 may also have one or
more input device(s) 1014 such as an image input devices like cameras or scanners,
keyboards, mice, pens, voice input devices including microphone arrays, touch input
devices, and so on. One or more output device(s) 1016 such as a display, speakers,
printer, and so on, may also be included in the computing device 1000.

[00141] Those skilled in the art will appreciate that the technologies described
herein may be practiced with computing devices other than the computing device 1000
illustrated in FIG. 10. For example, and without limitation, the technologies described
herein may likewise be practiced in hand-held devices including mobile telephones and

PDAs, multiprocessor systems, microprocessor-based or programmable consumer

WO 2009/002831 PCT/US2008/067636
51

electronics, network PCs, minicomputers, mainframe computers, and the like. Each of
these computing devices may be described, at some level of detail, by the system of FIG.
10, or may be described differently.

[00142] The technologies described herein may also be implemented in distributed
computing environments where operations are performed by remote processing devices
that are linked through a communications network. In a distributed computing
environment, program modules may be located in both local and remote devices.
[00143] While described herein as being implemented in software, it will further be
appreciated that the technologies described herein may alternatively be implemented all
or in part as hardware, firmware, or various combinations of software, hardware, and/or
firmware.

[00144] Although some particular implementations of methods and systems have
been illustrated in the accompanying drawings and described in the foregoing text, it will
be understood that the methods and systems shown and described are not limited to the
particular implementations described, but are capable of humerous rearrangements,
modifications and substitutions without departing from the spirit set forth and defined by

the following claims.

WO 2009/002831 PCT/US2008/067636
52

CLAIMS
1. A method, comprising:

obtaining metadata from a server endpoint wherein the metadata identifies a blob
and the blob is not included in the metadata;

merging the metadata with local metadata;

asking a blob lookup service for a set that comprises at least one locator
associated with the blob; and

on a first endpoint, retrieving a portion of the blob from a second endpoint that is

identified by a particular locator in the set of at least one locator.

2. The method of claim 1, further comprising:
requesting that a blob cache service store at least a second portion of the blob

when the portion of the blob cannot initially be retrieved.

3. The method of claim 1 wherein the retrieving the portion of the blob further
comprises:
retrieving a second portion of the blob that is different from the portion of the

blob from a third endpoint that is different from the second endpoint.

4. The method of claim 1 wherein the retrieving is implemented by a blob download
module that uses a first blob retrieval mechanism to retrieve the portion of the blob and

the blob download module has a capability of using a second blob retrieval mechanism

WO 2009/002831 PCT/US2008/067636
53

that is different from the first blob retrieval mechanism to retrieve at least one of a

second portion of the blob and a portion of a second blob.

5. The method of claim 1, further comprising:
informing the blob lookup service after the portion of the blob has been retrieved

that the portion of the blob may be retrieved from the first endpoint.

6. The method of claim 1, further comprising:
providing the portion of the blob to a third endpoint in response to a request

from the third endpoint for the portion of the blob.

7. The method of claim 1, further comprising:
receiving a notification on the first endpoint that the metadata has been updated
on the server endpoint and wherein the notification initiates the obtaining, the merging,

the asking, and the retrieving operations.

WO 2009/002831 PCT/US2008/067636
54

8. The method of claim 1, further comprising:

performing a local change to data associated with the local metadata;

updating the local metadata to form updated local metadata and updating a
second portion of the blob on the first endpoint so that the updated local metadata and
the second portion of the blob include the local change; and

communicating the updated local metadata to the server endpoint.

9. A method, comprising:

on a server endpoint, obtaining metadata from a first endpoint wherein the
metadata identifies a blob and the blob is not included in the metadata;

merging the metadata with server metadata that is maintained by the server
endpoint; and

updating a blob lookup service with a location that identifies the first endpoint.

10. The method of claim 9, further comprising:
communicating the server metadata to a second endpoint that is different from

the first endpoint.

WO 2009/002831 PCT/US2008/067636
55

11. The method of claim 9, further comprising:

receiving a request from a requestor for a locator that identifies from where a
portion of the blob may be retrieved;

identifying the locator using the blob lookup service; and

communicating the locator to the requestor.

12. The method of claim 11 wherein the locator is identified by the blob lookup
service using first knowledge characteristics associated with the first endpoint, and a
second locator that is associated with a second endpoint and that identifies from where a
second portion of the blob may be retrieved is not identified because second knowledge
characteristics associated with the second endpoint are less preferable than the first

knowledge characteristics.

WO 2009/002831 PCT/US2008/067636
56

13. The method of claim 9, further comprising:

accepting a second location that identifies a second endpoint wherein the second
endpoint stores a second portion of the blob and the second portion of the blob may be
retrieved from the second endpoint;

receiving a request for at least one locator that identifies from where the blob may
be retrieved;

identifying a first locator associated with the location and a second locator
associated with the second location; and

communicating the first locator and the second locator in response to the request.

14. The method of claim 9, further comprising:
accepting a request to cache a portion of the blob;
retrieving the portion of the blob;
storing the portion of the blob in a blob cache; and

updating the blob lookup service with a second location that identifies the blob

cache.

15. The method of claim 14 wherein a providing endpoint is identified using
knowledge characteristics associated with the providing endpoint and the portion of the

blob is retrieved from the providing endpoint.

WO 2009/002831 PCT/US2008/067636
57

16. The method of claim 9, further comprising:

accepting a request to store a portion of the blob in a non-transient cloud storage
data store;

retrieving the portion of the blob; and

storing the portion of the blob in the cloud storage data store.

17. The method of claim 9, further comprising:
notifying a subscribing endpoint that the server metadata has been modified,
after the merging; and

communicating the server metadata to the subscribing endpoint.

18. The method of claim 14 wherein the retrieving is implemented by a blob
download module that uses a first blob retrieval mechanism to retrieve the portion of the
blob and the blob download module has a capability of using a second blob retrieval
mechanism that is different from the first blob retrieval mechanism to retrieve at least

one of a second portion of the blob and a portion of a second blob.

19. The method of claim 14, further comprising:
communicating the portion of the blob from the blob cache to a second endpoint

that is different from the first endpoint.

WO 2009/002831 PCT/US2008/067636
58

20. A system, comprising:

a blob lookup service;

a storage service configured to:

obtain metadata from a first endpoint wherein the metadata identifies a

blob and the blob is not included in the metadata;

merge the metadata with server metadata that is maintained by the

storage service; and

update the blob lookup service with a location that identifies the first

endpoint; and

a blob cache service configured to:

accept a request to cache a portion of the blob;

retrieve the portion of the blob from the first endpoint;

store the portion of the blob using storage associated with the blob cache

service; and

update the blob lookup service with a second location that identifies the

blob cache service.

WO 2009/002831 PCT/US2008/067636

1/10
SERVER ENDPOINT 11
STORAGE SERVICE 12 BLOB CACHE SERVICE NOTIFICATION SERVICE
130 140
BLOB LOOKUP SERVICE CLOUD STORAGE KNOWLEDGE STORE
125 SERVICE 135 MODULE 145

BLOB DOWNLOAD
MODULE 150

DEVICE ENDPOINT A 160

DEVICE ENDPOINT B
170

BLOB DOWNLOAD
MODULE 162

DEVICE ENDPOINT C
180

100~

FIG. 1

WO 2009/002831

2/10

v

21 01
PERFORM LOCAL CHANGE

v

COMMUNICATE METADATA
TO SERVER ENDPOINT

v

SUBSCRIBE TO
NOTIFICATIONS FOR
COMMUNICATED METADATA

215

220

y

PROVIDE BLOB TO
REQUESTOR

225

END

200

FIG. 2

PCT/US2008/067636

WO 2009/002831 PCT/US2008/067636

3/10

#

DETERMINE THAT
METADATA HAS CHANGED

¢

315
1 OBTAIN METADATA

#

320
1 MERGE METADATA WITH
LOCAL METADATA STORE

310

325

BLOB(S) NEEDED?

330

RETRIEVE BLOB(S)

300~

FIG. 3

WO 2009/002831

4/10
410
USE BLOB
LOOKUP SERVICE?
YES

PCT/US2008/067636

No

415
ASK BLOB LOOKUP SERVICE
FOR LOCATOR(S)
420
REQUEST THAT BLOB
CAN RETRIEVE BLOB? CACHE SERVICE STORE
BLOB
|
|
425 OBTAIN BLOB USING BLOB |
DOWNLOAD MODULE AND |~
LOCATOR(S)
\J
435
LOCATE AND OBTAIN BLOB
END
400~

FIG. 4

WO 2009/002831 PCT/US2008/067636

5/10

v

OBTAIN METADATA

v

515
7 MERGE METADATA WITH
SERVER METADATA STORE

v

520
1 NOTIFY SUBSCRIBERS OF
METADATA CHANGE

v

5257 UPDATE BLS wWITH
LOCATIONS OF BLOB(S)
IDENTIFIED BY METADATA

510

y

COMMUNICATE METADATA
TO OTHER ENDPOINT

-

END

530

500

FIG. 5

WO 2009/002831

6/10

'

ACCEPT BLOB LOCATION(S)

'

STORE BLOB LOCATION

610

615

y

RECEIVE REQUEST FOR
LOCATOR(S) FOR A
PARTICULAR BLOB

'

IDENTIFY LOCATOR(S) FOR
REQUESTED BLOB

'

COMMUNICATE LOCATOR(S)
FOR REQUESTED BLOB

620

625

630

END

600{(

FIG. 6

PCT/US2008/067636

WO 2009/002831

7/10

v

710
ACCEPT REQUEST TO

CACHE BLOB

'

715
RETRIEVE BLOB

'

720
STORE BLOB

y

725
RECEIVE REQUEST FOR

CACHED BLOB

'

730

PROVIDE CACHED BLOB TO

REQUESTOR

END

700{(

FIG. 7

PCT/US2008/067636

WO 2009/002831

8/10

#

81 01 ACCEPT REQUEST TO
STORE BLOB IN CLOUD
STORAGE

¢

815
1 RETRIEVE BLOB

#

STORE BLOB IN CLOUD
STORAGE

820

y

RECEIVE REQUEST FOR
STORED BLOB

¢

PROVIDE STORED BLOB TO
REQUESTOR

825

830

END

800{(

FIG. 8

PCT/US2008/067636

WO 2009/002831 PCT/US2008/067636

9/10

v

OBTAIN BLOB IDENTIFIER

v

USE BLOB
LOOKUP SERVICE?

910

915

920 930
ASK BLOB LOOKUP SERVICE

FOR LOCATOR(S)

v

OBTAIN BLOB USING BLOB
DOWNLOAD MODULE AND
LOCATOR(S)

.
e

-~

900((

LOCATE AND OBTAIN BLOB

925—

FIG. 9

WO 2009/002831 PCT/US2008/067636

10/10

REMOVABLE STORAGE
- _1 9 06 1008

/

NON-REMOVABLE STORAGE
SYSTEM MEMORY\ 1010
1004

OUTPUT DEVICE(S)

PROCESSING 1016

VOLATILE UNIT

1002

INPUT DEVICE(S)

NON-VOLATILE 1014
/

COMMUNICATION
CONNECTION(S) 1012

FIG. 10

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

