(54) Title: METHOD FOR CARRYING OUT OPERATIONS ON PETROLEUM AND GAS FIELDS AND DEEP-SEA PLATFORM FOR REALISING THE SAME

(57) Abstract:
The present invention relates to a method for carrying out operations on petroleum and gas fields, wherein said method involves using a platform which is located underwater when in working position at a depth where it is not subject to storm waves or under the lower surface of an ice shield. The platform is made in the form of a structure which is air- and water-tight on the top and on the sides and which includes an inner volume in which all the equipment, systems and structures are provided. The platform is directed from the surface using a transport complex which moves on the water or the ice shield at the same speed as that of the current or the ice drift in the opposite direction. The platform can also be directed using a ground-based stationary complex interacting with the surface one and comprising communication means with the platform and the external world as well as a set of evacuation and other emergency and rescue means, and using equipment and devices for the remote control of the production process on the platform.
МЕЖДУНАРОДНАЯ ЗАЯВКА, ОПУБЛИКОВАННАЯ В СООТВЕТСТВИИ С ДОГОВОРОМ О ПАТЕНТНОЙ КООПЕРАЦИИ (ПСТ)

(19) ВСЕМИРНАЯ ОРГАНИЗАЦИЯ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
Международное бюро

(43) Дата международной публикации: 7 декабря 1999 (07.12.1999)

(51) Международная патентная классификация: E21B 43/01, B63B 35/44, E02B 17/00

(21) Номер международной заявки: PCT/RU99/00183

(22) Дата международной подачи: 1 июня 1999 (01.06.1999)

(25) Язык подачи: русский

(26) Язык публикации: русский

(72) Изобретатель: Рылов Игорь Игоревич [RU/RU]; 119634 Москва, ул. Кастельвьеса, д. 35, корп. 2, кв. 63 (RU) [RYLOV, Igor Igorevich, Moscow (RU)].

(71) Заявитель: и

(72) Изобретатели: Силёв Сергей Александрович [RU/RU]; 603093 Нижний Новгород, ул. Академика, д. 8, кв. 70 (RU) [VASILIEV, Sergei Alexandrovich, Nizhny Novgorod (RU)].

(72) Красулинна Анна Игоревна [RU/RU]; 125047 Москва, Оружейный пер., д. 5, кв. 38 (RU) [KRASULINA, Anna Igorevna, Moscow (RU)].

(72) Рылов Игорь Игоревич [RU/RU] 119634 Москва, ул. См. Мухино, д. 10, корп. 3, кв. 63 (RU) [RYLOV, Igor Igorevich, Moscow (RU)].

(81) Указанные государства (национально): AL, AM, AT,

(84) Указанные государства (регионально): АРПО патент (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), евразийский патент (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), европейский патент (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), патент ОАПИ (BF, BI, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Опубликована
С отчетом о международном поиске.

(48) Дата публикации настоящего исправленного варианта: 19 апреля 2001

(15) Информация об исправлении:
См. Бюллетень ПСТ № 16/2001 от 19 апреля 2001, Резюме II

В отношении двуххуторных кодов, кодов языков и других сокращений см. Пояснения к кодам и сокращениям, публикуемые в начале каждого очередного выпуска Бюллетеня ПСТ.

(54) Title: METHOD FOR CARRYING OUT OPERATIONS ON PETROLEUM AND GAS FIELDS AND DEEP-SEA PLATFORM FOR REALISING THE SAME

(54) Название изобретения: СПОСОБ ПРОИЗВОДСТВА НЕФТЕПРОМЫСЛОВЫХ РАБОТ И ГЛУБОКОВОДНАЯ ПЛАТФОРМА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА

(57) Abstract: The present invention relates to a method for carrying out operations on petroleum and gas fields, wherein said method involves using a platform which is located underwater when in working position at a depth where it is not subject to storm waves or under the lower surface of an ice shield. The platform is made in the form of a structure which is air- and water-tight on the top and on the sides and which includes an inner volume in which all the equipment, systems and structures are provided. The platform is directed from the surface using a transport complex which moves on the water or the ice shield at the same speed as that of the current or the ice drift in the opposite direction. The platform can also be directed using a ground-based stationary complex interacting with the surface one and comprising communication means with the platform and the external world as well as a set of evacuation and other emergency and rescue means, and using equipment and devices for the remote control of the production process on the platform.

WO 00/73622 A1

CA 02374839 2001-11-20
Способ заключается в том, что производство нефтегазопромысловых работ выполняется с платформы, размещаемой в рабочем положении в толще воды, на глубине, не подверженной влиянию штормовых волн или под нижней поверхностью ледового поля. Платформу выполняют в виде замкнутой водо- и воздухонепроницаемой сверху и с боков конструкции с внутренним объемом, в котором размещено все оборудование, сооружения и конструкции. При этом осуществляется поверхностное сопровождение платформы в виде движущегося по воде или ледовому полю в обратном направлении со скоростью течения или дрейфа льда транспортного комплекса, либо стационарного берегового комплекса, взаимодействующего с поверхностным со средствами связи с платформой и внешним миром, с набором эвакуационных и прочих аварийно-спасательных средств, а также оборудования и приборов для дистанционного управления производственным процессом в платформе.
METHOD FOR CARRYING OUT OPERATIONS ON OIL AND GAS FIELDS AND DEEP-SEA PLATFORMS FOR REALIZING THE SAME

Technical field

The invention relates to methods of performing oil and gas production of works in deep-sea areas with hard hydrometeorological and climatic conditions and to a construction of marine hydraulic engineering structures, in particular, to deep-sea platforms.

Prior art

Known in the art is a relevant method of oil and gas recovery in deep-sea areas of the world ocean with hard hydrometeorological and climatic conditions including performance of such a job from a platform provided with all necessary basic and auxiliary equipment, including energy and life support devices with the respective building structures and constructions (cf. Mirzoev D.A. "Specific features of design and technology for development of the Arctic oil fields", "Hydraulic Engineering", 1994, 1994, No. 3, pp. 24-29).

Also known in the art are devices such as a deep-sea platform including an upper structure, a support part and a foundation, basic and auxiliary equipment required for performing oil and gas recovery, energy and life support with respective building structures and mechanisms (cf. Mirzoev D.A. "Specific features of design and technology for development of the Arctic oil fields", "Hydraulic Engineering", 1994, 1994, No. 3, pp. 24-29).

The disadvantages of the known methods and devices for deep-sea shelf areas of the world ocean with hard hydrometeorological and climatic conditions (including the Arctic shelf areas) is a necessity of withstanding significant static and dynamic loads with a large load arm and, as a consequence, a large volume of building materials used for heavy-duty robust support structures and foundations, high labor consumption for
performing all building and assembly jobs and prospecting. As for buoyant platforms, the demand ceasing the work at a high wind and waves, as well as a danger of tumbling during icing, adverse working conditions for the people, equipment, building structures and mechanisms and, as a result, a high cost of works for building the structures and performing the oil and gas recovery.

Disclosure of the invention

An object of the present invention is to change the conditions of execution of oil and gas recovery allowing one to avoid the affects of the ice, storm and other loads on the offshore oil and gas production platforms and the associated facilities, to substantially reduce the scope of the building and assembly works and engineering prospecting, as well as to reduce the material and labors cost when building the foundations and support structures, to improve the operating conditions of the personnel, equipment, building structures and structural members, to increase safety of the personnel, reliability of the structures and protection of the environment at primary and emergency blowouts of hydrocarbons and in other emergency situations thus considerably reducing the platform cost, labor cost and time needed of its erection, to expand the area of the oil and gas fields serviced by the platform, to increase the platform mobility with a possibility of its transfer both over the oil field area and in other areas, and to considerably expand the range of oil and gas recovery area on the shelf and adjacent zones of the world ocean including the Arctic Zone.

This object is attained by providing a method for carrying out operations on oil and gas field in deep-sea areas of the world ocean with hard climatic and hydrometeorological conditions performed from a platform, provided with all necessary basic and auxiliary equipment including energy and life support systems with respective building structures and facilities. The operations are carried out from a platform, which is located underwater at a depth where it is not subjected to the effect of storm waves or below the undersurface of an ice field. In the process of oil production the platform is supported by a surface complex moving on the water or ice field surface at a speed of the water current or ice drift in an opposite direction, or by a
ground-based stationary complex with communication means with the platform and outside world, as well as a set of evacuation and other life saving equipment, as well equipment and instruments for remote control of the production processes on the platform.

With respect to the platform construction the object of the invention is attained due to the fact that the deep-sea platform including basic and auxiliary equipment required for performing oil and gas production, energy and life support with the respective building structures and facilities is made as a closed construction with positive buoyancy water-tight and gas-tight from above and from all sides with an inner space accommodating all equipment, structures and units with ballast compartments and an open drilling well passing through the bottom of the platform with devices for maintaining the necessary air pressure or respiratory mixture and other working gases in the inner space, the walls of the production of the proposed platform are designed for emergency pressure and temperature: they are three-layer with a load-carrying external shell, an internal shell divided into sections interconnected through dowels, and intermediate space between the shells filled with pads of a strong elastic material filled by fluid or gas under a necessary pressure.

The proposed platform may be furnished with floating air inlets controlled from the platform to be placed in preliminarily prepared in ice lane and stacked in non-working state on the platform deck.

The proposed platform can be furnished with underwater reservoirs secured to it from outside and having a shell made of a strong water-tight and a gas-tight material having high thermal conductivity with an opening in the bottom provided cleaning filter, said reservoirs being previously filled with air or inert gas and communicating through pipe lines with a head of a drilling string. Mounted at the end of the pipeline in inner space of the shell is a burner controlled from the platform, which is fed with oxygen through an additional pipeline.

The proposed platform may be furnished with underwater reservoirs located outside and used for collection of primary or emergency volumes of gas, condensate or oil, said reservoirs being connected the drilling string head through pipelines; the underwater reservoirs have double shells made of a gas-tight, oil-tight and water-tight
material, the external shells being load-carrying and the internal ones being flexible and elastic preliminarily filled with air or water so that an opening is formed in the bottom of reservoirs communicating the inner space of the internal shell with the environment. The crude oil feed pipelines are arranged in the space between the external and internal shells.

The proposed platform may be also furnished with an end sleeve located at the outlet of the drilling well connected to the platform through a flexible gas-tight, oil-tight and water-tight joint and having at its lower end a sliding ring packing preventing pollution of the environment by hydrocarbon crude and the drilling fluid in case of an emergency rise or submergence of the platform, and the upper end with the drilling string head moves freely inside the sleeve, and its length is determined by the difference of the marks of the upper end of a string in its extreme working position before building-up of a next link of the string and the bottom of the emerged platform with a correction for its drift with an the ice field.

In a proposed platform for the period of a well sinking operation the drilling string may be provided with a cylindrical collar encompassing the upper part of the drilling string and secured thereon pressure-tight through the upper end under drilling string head and the lower end overlapping the upper end of the casing pipe entering the open oil mine of the platform with a flange freely passing through the shaft and tightly connected with an axially squeezed sleeve made of a strong elastic material, while the lower end is tightly secured on the thrust flange on the casing pipe.

The supports of the proposed platform can be secured in massive support blocks freely lying on the seabed with their macrorough lower surface.

The proposed platform may also be furnished with a reservoir of a respective volume secured to the platform hull and consisting of elastic water-tight and gas-tight material folded in inactive state and filled/ when necessary, by command from the platform or from the surface complex.

The technical result achieved with the help of this set of features consists in that the oil- and gas-field works in deep-sea shelf areas with hard hydrometeorological and climatic conditions including the Arctic Zone are carried out from a platform arranged in bulk of water, at a depth not subjected to the effect of storm waves or below the
undersurface of an ice field released from the affect of the wave and ice loads, as well as from icing thus removing the uncertainty in the in magnitudes, directions and combined actions on the platform during its erection and operation and minimizes them, and also widens the range of oil and gas production on shelf and other zones of the world ocean are considerably reamed including the Arctic Zone. In so doing the platform is made in the form of a closed structure with an inner space accommodating all equipment, structures and units with energy and life support facilities. In this case the safety of the personnel, equipment and structures when performing oil and gas production is improved, the protection against fire and detonation is provided by blocking their originating; the extent of security of production shops and the environment from emergency outbursts of oil, gas, drill fluid and products of incineration of associated gas is increased, the reliability and stability of the platform under unexpected circumstances is improved; the platform is capable of maneuvering and moving both over the oil field and beyond it.

The brief description of the drawings

The essence of the invention is illustrated by the drawings, in which:

Fig. 1 is a longitudinal section of the platform with positive or controlled buoyancy in the operating (underwater) position;

Fig. 2 is a cross-sectional view of the same platform;

Fig. 3 is a plan view of the platform;

Fig. 4 illustrates the platform with a gas-filled reservoir providing buoyancy lost by the platform (the external reservoirs not shown);

Fig. 5 is a general view of the platform in the operating (underwater) position with a surface complex (the external reservoirs are not shown);

Fig. 6 is a view of the platform after emergency or preventive surfacing;

Fig. 7 illustrates the unit A of Fig. 1, which is an additional device for preventing emergency outburst of hydrocarbons in the upper position - after an assembly of a regular link a drilling string;
Fig. 8 illustrates the unit A of Fig. 1 in the lower position after sinking the well before the operation of the upper link of the drilling string.

The stretching supports of the platform 18 have shown in Figs. 1, 2, 5, 6 are one embodiment of the invention. The supports can be of another type, in particular, telescopic with an adjustment of their length depending on the situation.

The platform may be made without supports if it has controllable buoyancy and a system for dynamic positioning and stabilizing.

The best embodiment of the invention

The proposed method for carrying out the operations on oil and gas fields is realized using a deep-sea buoyant platform 1, which in the operating position is either below the surface of the ice field 2, or under a layer effected by storm waves. The platform is a closed water-tight and air-tight structure whose inner space is used for accommodation of the main drilling compartment 3 and all equipment and structures (not shown), ballast compartments 4, air conditioning and reactivation units and devices for maintaining its necessary pressure in the inner space (not shown in the drawings), underwater vehicles 5 for effecting operative communication with the continent including transportation of the personnel and production cargoes.

The drilling compartment 3 is air-tight, gas-tight, oil-tight and water-tight from above and from all sides. It has an open oil mine 6, extending through the bottom of the platform 7 and filled with nitrogen or another inflammable inert gas of a required concentration with a pressure equal to the water pressure at a level of the floor 8 of the production and living space 9 of the platform 1. For this purpose, the compartment is furnished with a respective facility (not shown), the compartment walls consist of three layers, designed for emergency pressure and temperature and consist of a load-carrying external shell 10, internal shell 11 divided into sections 13 by compensating dowels 12 and intermediate spaces 14 between the shells 10 and 11, which is filled with pads 15 made of a strong elastic material filled with a fluid, for example, water or gas (air) under a design pressure.
The ceiling of 16 of the main drilling compartments 3 has a manhole 17 to be opened after the platform has come to the surface during its emergency or preventive refloating.

At an insignificant positive buoyancy adjusted by ballasting the platform 1 is kept in the working position by supports 18 of an adjustable length secured in the massive support blocks 19 with a rough surface freely laying on the seabed. The maneuvering of the platform over the oil field is carried out by adjusting the length of the supports using onboard movers, if necessary. In case of moving the platform within the oil field area or beyond it, the support blocks 19 are moved together with the platform.

To perform the surface maintenance of the platform and to provide emergency evacuation and preventive works when rising the platform 1 on the surface of an ice field 2 or water, or onshore, when the oil field is near the shore, a surface complex 22 is provided with communication facilities with the underwater platform and with the outside world and a set of equipment and instruments for remote control of the production processes on the platform, as well with emergency evacuation and life saving equipment. On ice or water the complex moves at a speed of drift of ice or a sea current in an opposite reverse direction. When the surface complex is placed and moved on an ice surface it can be mounted on cross-country chassis including amphibian and air-cushion vehicles or can be made as an icebreaker.

The surface complex and the platform can interact with a stationary coastal complex having a necessary set of equipment and communication facilities for controlling the operating processes on the platform.

If necessary, periodic air renewal in the inner space of the platform may be provided using air inlets 23 arranged on the platform hull and floating to the surface in preliminarily made lanes on the ice field 2 by a command from the platform and after performing the air intake returning to their storage place on the hull.

For capture of emergency and primary volumes of oil, condensate or gas when the drilling string enters the oil-and-gas bearing strata the head 25 of the drilling strings 26 is provided with a branch pipe with a valve 27 connected to pressure-tight pipes 28 extending outside the platforms and connected with the buoyant underwater
reservoirs 29, which received the primary or emergency volume of oil, condensate or gas. The ballast compartments 4 may be considered as a spare reservoir for oil and condensate.

The reservoirs 29 are secured either on the platform 1, on which they are arranged symmetrically and filled simultaneously and uniformly for preserving the balance and stability of the platform, or are connected to the platform by flexible connections controlled from the platform or from the surface complex, and secured on support shoes laid on the seabed (not shown in the drawings).

To provide minimum variation of the buoyancy of the platform 1, reservoirs 29 for oil and condensate storage made of a strong and flexible water-tight and oil-tight material or of a rigid water-tight and oil-tight material are used and, when empty, are compressed by the ambient sea water medium.

The reservoirs can be made of both flexible and rigid water-tight and gas-tight material. In the empty state they are filled with air and balanced at the expense of a heavy load in its near-bottom part with buoyancy close to zero. To provide minimum variation of buoyancy, both it's own and the platform itself, when filling the reservoirs, their enclosures 29 consist of two shells 30 and 31. The internal shell 30 is made of a flexible water-tight, gas-tight and oil-tight material.

The bottom of the internal shell 30 has a branch pipe 32 with a valve tightly fixed in the opening of the external shell 31 and communicating with the ambient medium. Gas, oil or condensate is fed via pipes 28 to a gap between the shells 30 and 31 and displace the air for gas or water for oil or condensate in the internal flexible shells 30 while preserving the initial buoyancy of the reservoirs.

If the petroleum or basic gas must be burnt in a «flare» for the period of boring and sinking the well, the gas fed to the platform through the pipelines 33 extending through an external enclosure of the platform enters the underwater reservoir 34 with a single-layer shell made of a fire-resistant strong water-tight and gas-tight material of a high thermal conductivity with an opening in the bottom 35 equipped with a valve. The reservoir is preliminarily filled with air or inert gas. The end of the pipeline 33 entering the reservoir 34 is provided with a burner 36 controlled from the platform or from the surface complex, to which oxygen is supplied from the platform through an
additional pipeline to provide a process of burning. The combustion products acted on by the pressure in the reservoir 34, corresponding to the depth of its submergence respective to depth, automatically discharged into the ambient aqueous medium through an outlet 35 in the reservoir bottom. In order to protect the environment from harmful effects of the products of combustion, the outlet 35 is provided with a cleaning filter. The same reservoirs can be used for removal of exhaust and exit gases of the power installations. To maintain the balance and stability of the platform and a reservoir reserve for the "flares" 34, two or several reservoirs are installed symmetrically to the vertical axis of the platform and extending through its center of mass.

To avoid an uncontrollable blowouts of oil, condensate or gas into the environment, as well as a spill of the drilling fluid or slurry during the emergency surfacing of the platform, it is provided at the shaft outlet with a piece of a tube or a sleeve 37 whose length is determined by the difference of the marks of the head 25 of the string 26 in its extreme operating position (before building-up a next link of the string) and the bottom 7 of the floating platform 1 taking into account its drift with the ice field for the time required for closing all necessary gate valves.

The inner diameter of an end sleeve 37 allows the string 26 with the head 25 to freely move in this sleeve.

A ring packing 38 is installed at the lower end of an end sleeve 37 to prevent a blowout of the hydrocarbon crude and drilling fluid into the ambient aqueous medium. At the bottom 7 of the platform the end sleeve 37 is fastened to the platform with by means of a swiveling seal 39 allowing the string 26 with a sleeve 37 to deflect from the axis of the oil mine 6 in a wide range.

For the case of loss of buoyancy the platform 1 is furnished with a reservoir 40 having a required volume and secured on the hull outside the platform. This reservoir is made of an elastic water-tight and gas-tight material folded in a non-working state and, when necessary, filled with gas by a command from the platform.

As an additional barrier against emergency blowouts of hydrocarbon crude into the space inside the platform, it is provided with a cylindrical collar 41 encompassing the upper link of the drill pipe 26 tightly secured thereon by an upper head 42 under
the head 25 of the drill pipe 26. The lower end 43 of the collars 41 having a diameter of the casing pipe 44 in the extreme upper position overlaps the upper end 45 of the casing pipes and has a flange 46 whose external diameter is close to the inner diameter of the oil mine 6 so that it freely passes through it. Secured to the lower face of the flange 46 is a flexible sleeve compressed along its axis and made of an elastic strong gas-tight and oil-tight material, the cross-section of this sleeve inscribing in the cross section of the tightly secured to the thrust flange 48 of the casing pipes 44.

After the installation of a regular link in the drill pipe 26 and its immersion into the seabed the collar 41 with the sleeve 47 is set in the upper position shown in Fig. 5. As the drill pipe comes down in the process of hole making, the collar 41 together with the upper part of the drill pipe is sink in the lower position shown in Fig. 6 into the open oil mine 6 of the platform. In so doing the sleeve 47 is compressed along its axis.

Then the heads 25 and 42 are removed from the drill pipe and collar 41, a regular link 49 is secured to the upper end of the drill pipe, and the collar 41 with the flexible sleeve 47 are withdrawn from the oil mine 6. In so doing the flexible sleeve straightens itself up, and the heads 42 and 25, the drill pipe, collar 41 and sleeve 47 occupy their initial position (Fig. 5).

In case of an emergency blowout of hydrocarbon crude in the process of hole making, a part of hydrocarbon stream raising in the drill pipe 26 after filling the reservoirs 29 is locked due to the operation of the cutoff gate valve 50 in the branch pipe 27 of the head 25 and the gate valve 51 in the drilling fluid feeding pipeline 52; the part of the flow rising up in the casing pipe 44 enters the space of the collar 41 and, being locked due to the closing of the gate valve 53 in the drilling fluid outlet pipe 54 and then through the seal 55 preventing leakage of the recycling drilling fluid (and slurry), enters the space of the sleeve 47, which in this case is pushed against the walls of the oil mine 6 but is unable to move further. Thus, any output of hydrocarbon crude into the space of the platform and ambient medium is prevented (in addition and as a backup barrier to the installed standard blowout preventer.

In this case the fastening and sealing of the heads 25 and 42, gate valves 50, 51, 53, flanges 43, 48, collar 41, and the walls of oil mine 6 must be calculated for the pressure of emergency blowouts of the hydrocarbon crude.
The control of the production processes is performed from the rooms located outside the drilling compartment 3 with visual observation using video cameras or through windows, or from the surface complex. The operating personnel in the compartment may be present only when transferring components and materials through lock chambers (not shown in the drawings), assembly, preventive maintenance and readjustment. The operators come into this compartment through lock chambers for short-term stay with the use of respiratory apparatus; and for a stay air or a respiratory mixture replaces the inert gas.

The platform 1 is assembled on a coastal assembly base or in a dock, where it is equipped with all necessary equipment and devices with primary consumables, supports 18 connected with the support blocks 19 and other facilities loaded on special accompanying carrier vessels or barges accompanied by ice breakers to the installation site, where the support blocks 9 with anchored stretching supports 8 are unloaded from the carrier vessel (or vessels), lowered under water (or ice) and then the platform installed in the working position by means of ballasting and tensioning the stretching supports 18.

Having completed the drilling job on the well cluster, the platform 1 can be moved from one site to another on an oil field or on another area by replacing the support blocks 19 with the help of floating hoisting devices and adjusting the length of the stretching supports 18.

As a special case, at a shallow depth the platform can be placed on the seabed.

When the surface is free from ice and in calm weather, the platform may be raised to the surface and used for oil and has recovery under normal conditions.
CLAIMS

1. A method for carrying out operations on oil and gas fields in deep-sea areas of the world ocean with heavy hydrometeorological and climatic conditions which are performed from a platform equipped with all necessary main and auxiliary equipment including power supply and life-support facilities with appropriate structures and constructions, characterized in that the works are carried out from a platform located underwater at a depth not subject to storm waves or under the lower surface of an ice field at its movement on water or the ice field at the same speed as that of the current or the drift in the opposite direction by a surface complex or by a stationary coastal complex with communication facilities with the platform and outside world, and a set of evacuation and other emergency life-saving equipment, as well as equipment and devices for remote control of the production processes on the platform.

2. A deep-sea platform including main and auxiliary equipment necessary for performing the operations on oil and gas fields, a power supply and life-support means with appropriate structures and constructions made water-tight and gas-tight from above and from all sides having positive buoyancy, with an inner space accommodating all equipment, structures and constructions with ballast compartments and open oil mine passing through the platform bottom, with devices for controlling a required air pressure or a respiratory mixture and other working gases in the inner space, characterized in that the enclosing structures of the drilling compartment are designed for emergency pressure and temperature and consist of three layers: an outside load-carrying shell, an internal shell divided into an external load-carrying shell and an internal shell subdivided into sections by compensating dowels, and an intermediate space between the shells filled with pads made of a strong elastic material filled with liquid or gas.

3. The deep-sea platform as claimed in claim 2, characterized in that it is provided with air inlets controlled from the platform rising to the surface into a lane preliminarily made in ice and kept on the platform hull in an inoperative state.

4. The deep-sea platform as claimed in claims 2 and 3, characterized in that it is attached to outside underwater reservoirs having a shell made of a strong water-tight and gas-tight material of high thermal conductivity with an opening in the bottom
provided with cleaning filter, said reservoirs being preliminarily filled with air or inert gas and communicating with the head of the drill string via pipelines; installed at the end of the pipeline in the inner space of the shell is a burner controlled from the platform, oxygen being fed to the burner through and additional pipeline.

5. The deep-sea platform as claimed in claims 2-4, characterized in that it is provided with outside underwater reservoirs for collection of primary or emergency volumes of gas, condensate or oil and connected through pipelines to the head of the drill string; each underwater reservoir has two shells: an external load-carrying shell and an internal flexible elastic shell preliminarily filled air, gas or water, the reservoir bottoms having an opening communicating the inner space of the internal shell with the ambient medium, and the pipelines for feeding crude oil being led into the space between the external and internal shells.

6. The deep-sea platform as claimed in claims 2-5, characterized in that it is provided with an end sleeve secured at outlet of the oil mine by a flexible water-tight, gas-tight and oil-tight coupling having a ring packing at its lower end face, the upper end face with the drill string head moving freely inside said sleeve.

7. The deep-sea platform as claimed in claims 2-6, characterized in that for the hole-making period the drill string is equipped with a cylindrical collar encompassing the upper link of the drill string, which is tightly fixed thereon through its upper head under the drill string head, and with its lower end face overlapping the upper end face of the casing pipe put into the open oil mine of the platform by a flange freely passing through the mine and tightly connected with a sleeve compressed along its axis and made of strong elastic material, the lower end face of the flange being secured on the thrust flange on the casing pipe.

8. The deep-sea platform as claimed in claims 2-7, characterized in that it is provided with supports fixed in massive support blocks freely lying on the seabed with their rough lower surface.

9. The deep-sea platform as claimed in claims 2-8, characterized in that it is provided with a reservoir fixed to it from outside, having an appropriate capacity and made of an elastic water-tight and gas-tight material folded in the inoperative state and,
when necessary, filled with gas by a command from the platform or from the surface complex.
Заменяющий лист