Title: TETRAHYDRONAPHTHALENYLAMIDES, A PROCESS FOR THEIR PRODUCTION AND THEIR USE AS ANTI-INFLAMMATORY AGENTS

Abstract: The present invention relates to the compounds of formula (I), processes for their production and their use as anti-inflammatory agents.
Tetrahydronaphthalenylamides, a Process for their Production and their Use as Anti-inflammatory Agents

The present invention relates to compounds of formula I, a process for their production and their use as anti-inflammatory agents.

From the prior art of DE 100 38 639 and WO 02/10143, anti-inflammatory agents of the following general formula are known, in which the Ar radical comprises phthalides, thiophthalides, benzoxazinones or phthalizinones. In the experiment, these compounds show dissociations of action between anti-inflammatory and undesirable metabolic actions and are superior to the previously described nonsteroidal glucocorticoids or exhibit at least just as good an action. Nevertheless these compounds possess a linear structure as also the compounds disclosed in WO2006/108699, and WO2007/000334 whereas the compounds disclosed in the following publications do have a bicyclic ring moiety: WO2005/034939, WO2006/100100, WO2006/108712, .

However, the selectivity of the compounds of the prior art towards the glucocorticoid receptor (GR) compared to the other steroid receptors still requires improvement. Also dissociation between wanted anti inflammatory effects and unwanted metabolic side effects requires improvement.

It was therefore the object of this invention to make compounds available whose selectivity towards the glucocorticoid receptor (GR) is improved compared to the other steroid receptors and which show a better dissociation regarding potential side effects or at least the same level of effect.

This object is achieved by the compounds according to the claims.

This invention therefore relates to a compound of general formula I
in which

\[
\begin{align*}
X & \text{ is N or C-R}^4 \\
Y & \text{ is N or C-R}^4 \\
R^1, R^2, R^3 & \text{ independently of one another, are selected from the group consisting of hydrogen, halogen, cyano, nitro, hydroxy, or (CrC}_5\text{-alkyl, (CrC}_5\text{-halo-alkyl, (C}_r\text{C}_5\text{-alkoxy, (C}_r\text{C}_5\text{-halo-alkoxy and COOR}^9, and in which two vicinal substituents together may form a group that is selected from the groups}
\end{align*}
\]

\[
\begin{align*}
\cdot & \text{-O-(CH}_2\text{)}_{p}\text{-O-, -O-(CH}_2\text{)}_{p^-}\text{-CH}_2\text{-, -O-CH=CH-, -(CH}_2\text{)}_{p+2^-}, \cdot & \text{-NH-(CH}_2\text{)}_{p+}i^-; \\
& \cdot \text{-N(CrC}_3\text{-alkyl)-(CH}_2\text{)}_{p+i^-}, \text{ and -NH-N=CH-},
\end{align*}
\]

in which \(p = 1 \) or 2, and in which \(R^9 \) means hydrogen or CrC \(_4\)-alkyl

\[
R^4 \text{ is selected from the group consisting of hydrogen, (CrC}_5\text{-alkyl, or (Cr CsJ-halo-alkyl, and should two R}^4 \text{ moieties be present in one molecule}
\]

these have independent meanings,

\[
R^5 \text{ means a phenyl, pyridinyl or pyrimidinyl residue which may have 1-3 substituents independently selected from the group consisting of halogen, cyano, nitro hydroxy, or (CrC}_5\text{-alkyl, (CrC}_5\text{-halo-alkyl, (d-C}_5\text{-alkoxy, (C}_r\text{C}_5\text{-halo-alkoxy and COOR}^9, in which R}^9 \text{ has the above identified meaning, and in which two vicinal substituents together may form a group that is selected from the groups}
\]

-O-(CH₂)p-O-, -O-(CH₂)p-CH₂-, -0-CH=CH-, -(CH₂)₂p⁺²-, -NH-(CH₂)p+r-, -N(C₁-C₃-BlKiYl)-(CH₂)P₊₁-, and -NH=N=CH-,

R⁶ is selected from the group consisting of hydrogen or (CrC₅)-alkyl or (C₇ C₅)-halo-alkyl

5 \(R^7, R^8 \) independently of one another, are selected from the group consisting of hydrogen or (CrC₅)-alkyl, (CrC⁺-halo-alkyl

or in which \(R^6 \) and \(R^7 \) together or \(R^6 \) and \(R^8 \) together or \(R^7 \) and \(R^8 \) together may form a C₃-Cs cycloalkyl ring.

If \(R^5 \) is a pyrimidinyl or a pyridinyl group this group may be bound by any position to the pyrrole, imidazole, triazole or pyrazole ring.

Unless otherwise notified the term "alkyl" refers to a straight or branched chain. For example, the term propyl comprises "-propyl and "so-propyl, the term butyl comprises "-butyl, "so-butyl and tert-butyl.

15 Unless otherwise notified the term "haloalkyl" refers to straight or branched alkyl chains in which at least one hydrogen is substituted by a halogen atom, preferably by a fluoro atom. For example, the term halopropyl comprises perfluoro-"-propyl and perfluoro"so-propyl, as well as 1-chloropropyl, 1-bromopropyl, the term haloethyl comprises 1-fluoroethyl, 2,2,2-trifluoroethyl, 1-chloroethyl and 2-chloroethyl.

Unless otherwise notified the term "alkoxy" refers to straight or branched chains. For example, the term propoxy comprises "-propoxy and "so-propoxy, the term butoxy comprises "-butoxy, "so-butoxy and tert-butoxy.

Unless otherwise notified the term haloalkoxy refers to straight or branched alkoxy chains in which at least one hydrogen is substituted by a halogen atom. For example, the term halopropoxy comprises PeIHuOrO⁻PrOpOXY and perfluoro"so-prophoxy, as well as 1-chloropropoxy, 1-bromopropoxy, the term haloethoxy comprises 1-fluoroethoxy, 2,2,2-trifluoroethoxy, 1-chloroethoxy and 2-chloroethoxy. Substitution by one halogen atom is preferred.
Compounds of general formula I, in which at least one of the groups R₁-R₃ is selected from the group consisting of fluoro, chloro, hydroxy, Ci-C₃-alkyl, Cr-C₃-alkoxy, or in which two of the groups R₁-R₃ together form a group -O-CH₂-O- or -CH₂-C₂H₂-O- are a preferred subject of the invention.

Preferred groups R⁴ are hydrogen and CrC₃-alkyl.

Preferred groups R⁵ are phenyl, fluorophenyl, fluoropyridinyl, methylphenyl, dimethylphenyl, difluorophenyl. Especially preferred are the groups R⁵ as disclosed in the examples.

Preferred groups R⁶ are hydrogen, fluoro, chloro, Ci-C₃-alkyl, C-C₃-alkoxy, especially preferred are hydrogen and CrC₃-alkyl.

Preferred groups R⁷ and R⁸ are hydrogen and the other is methyl or ethyl or in which both of R⁷ and R⁸ are methyl or ethyl. One especially preferred embodiment are the compounds disclosed in the examples and the group of compounds built by the subcombination of all residues as disclosed in the compounds of the examples.

One aspect of the invention are the following compounds of formula I

5-Amino-1-(4-fluorophenyl)-N-{[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1H-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)-N-{[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1H-pyrazole-4-carboxamide,

5-Amino-1-(2,4-difluorophenyl)-N-{[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1H-pyrazole-4-carboxamide

5-Amino-1-(2,4-difluorophenyl)-N-{[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1H-pyrazole-4-carboxamide

5-Amino-tβJ-difluoro-I,2,3,4-tetrahydro-2,5-dihydroxy^-ethyl^-(trifluoromethyl)naphthaleni-yl]-1-(4-fluorophenyl)-1H-imidazole-4-carboxamide,
5-Amino-1-(6-fluoropyridin-3-yl)-N-[(c/s)-6-fluoro-2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(6-fluoropyridin-3-yl)-N-[(c/s)-6-fluoro-2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)-N-[(y,<;2c ,4/?)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrrole-4-carboxamide,

5-Amino-1-(6-fluoropyridin-3-yl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrrole-4-carboxamide,

5-Amino-1-(6-fluoropyridin-3-yl)-N-[(y,<;2c ,4/?)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrrole-4-carboxamide,

5-Amino-1-(6-fluoropyridin-3-yl)-N-[(y,<;2c ,4/?)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrrole-4-carboxamide,

5-Amino-1-(2-fluoropyridin-4-yl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1H-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-3,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrazole-4-carboxamide,

5-Amino-1 -(2,4-difluorophenyl)- N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-3,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrrole-4-carboxamide,
5-Amino-1-(4-fluorophenyl)-N\-\([(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-imidazole-4-carboxamide,

5-5-Amino-1-(4-fluorophenyl)-N\-\([(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-imidazole-4-carboxamide and

5-Amino-[67-difluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalen-i-yl]-1 -(4-fluorophenyl)-1 H,2,3-triazole-4-carboxamide.

Another aspect of the invention are the following compounds of formula I

5-Amino-1-(4-fluorophenyl)-N\-\([(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)-N\-\([(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(2,4-difluorophenyl)-N\-\([(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(2,4-difluorophenyl)-N\-\([(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide and

5-Amino-[6,7-difluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalen-i-yl]-1 -(4-fluorophenyl)-1/-/-imidazole-4-carboxamide.

Another aspect of the invention are the following compounds of formula I

5-Amino-1-(4-fluorophenyl)-N\-\([(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)-N\-\([(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(2,4-difluorophenyl)-N\-\([(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrazole-4-carboxamide
5-Amino-1-(2,4-difluorophenyl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

δ-Amino-I β.Z-difluoro-I ,2,3,4-tetrahydro-2,5-dihydroxy^-ethyl^- (trifluoromethyl)naphthalene-1-yl]-1 -(4-fluorophenyl)-1 H-imidazole-4-carboxamide,

5-Amino-1-(6-fluoropyridin-3-yl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(6-fluoropyridin-3-yl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)-N-/(1a,2a, 4/)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(6-fluoropyridin-3-yl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrrole-4-carboxamide,

5-Amino-1-(6-fluoropyridin-3-yl)-N-[(7c2α;4/?)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrrole-4-carboxamide,

5-Amino-1-(6-fluoropyridin-3-yl)-N-[(yα,2cα,4J)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1 -yl]-1/-/-pyrrole-4-carboxamide,

5-Amino-1-(2-fluoropyridin-4-yl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-3,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,

5-Amino-1-(2,4-difluorophenyl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide,
5-Amino-1-(4-fluorophenyl)- \mathcal{N}-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-3,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1--pyrrole-4-carboxamide,

5-Amino-βZ-difluoro-1,2,3,4-tetrahydro-2,5-dihydroxy$^\wedge$-ethyl$^\wedge$-(trifluoromethyl)naphthalen-i -yl]-1-(4-fluorophenyl)-1 H-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)- \mathcal{N}-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1--imidazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)- \mathcal{N}-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1-phenyl-1,2,3-triazole-4-carboxamide.

Another aspect of the invention are the following compounds of formula I

5-Amino-1-(4-fluorophenyl)- \mathcal{N}-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1--pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)- \mathcal{N}-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1--pyrazole-4-carboxamide,

5-Amino-1-(2,4-difluorophenyl)- \mathcal{N}-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1--pyrazole-4-carboxamide,

5-Amino-1-(2,4-difluorophenyl)- \mathcal{N}-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1 H-pyrazole-4-carboxamide and

S-Amino-fej-difluoro-1,2,3,4-tetrahydro-2,5-dihydroxy$^\wedge$-ethyl$^\wedge$-(trifluoromethyl)naphthalen-i -yl]-1-(4-fluorophenyl)-1--imidazole-4-carboxamide.
Yet a further aspect of the invention are the following compounds of formula I:

5-Amino-1-(4-fluorophenyl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1-/-pyrazole-4-carboxamide,

5-Amino-1-(4-fluorophenyl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1-/-pyrazole-4-carboxamide,

5-Amino-1-(2,4-difluorophenyl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1-/-/H-pyrazole-4-carboxamide and

5-Amino-[6,7-difluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalen-1-yl]-1-(4-fluorophenyl)-1 H-imidazole-4-carboxamide.

An aspect of the invention are compounds of formula I wherein the residues have the meaning of the residues as disclosed in the examples and all subcombinations thereof.

A preferred aspect of the invention are the compounds according to the examples.

In addition, the invention relates to the use of the compounds of general formula I for the production of pharmaceutical agents as well as their use for the production of pharmaceutical agents for treating inflammatory diseases.

The CrC₅-alkyl groups can be straight-chain or branched and stand for a methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, tert-butyl or n-pentyl group, or a 2,2-dimethylpropyl, 2-methylbutyl or 3-methylbutyl group. A methyl or ethyl group is preferred. They can optionally be substituted by 1-3 hydroxy, 1-3 CrC₅-alkoxy and/or 1-3 COOR⁶ groups. Preferred are hydroxy groups.
The C-i-C₅-alkoxy groups can be straight-chain or branched and stand for a methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, tert-butoxy or n-pentoxy, 2,2-dimethylprooxy, 2-methylbutoxy or 3-methylbutoxy group. A methoxy or ethoxy group is preferred.

The designation halogen atom or halogen means a fluorine, chlorine, bromine or iodine atom. Preferred is a fluorine, chlorine or bromine atom. More preferred is a fluorine or chlorine atom. Most preferred is a fluorine atom.

Due to the presence of asymmetry centers, the compounds according to the invention of the general formula (I) occur as stereoisomers. All possible enantiomers, and if several asymmetric centres are present all possible diastereomers (e.g.: RR, RS, SR, SS), both in enantiomerically pure form and also as racemates, both as pure diastereomers and also as diastereomer mixtures, are objects of the present invention.

Prodrugs are defined as compounds that are cleaved into the compounds that are claimed by metabolism in the organism or by contact with the organism. The prodrugs are subject to at least one biotransformatory step until the claimed compounds are released, which then exert their pharmacological effect. Prodrugs of the presently claimed compounds are also an aspect of the invention. Examples of prodrugs are esters and amides built wherever chemically possible due to the individual residues at a specific compound of formula (I) as claimed.

The compounds according to the invention can also be present in the form of salts with physiologically compatible anions, for example in the form of hydrochlorides, sulfates, nitrates, phosphates, pivalates, maleates, fumarates, tartrates, benzoates, mesylates, citrates or succinates.

An amino tetrahydronaphthaline of general formula (II), in which, R¹, R², R³, R⁶, R⁷ and R⁸ have the meanings that are indicated for formula (I), is coupled with an acid of the general formula (III), in which under X, Y, R⁴ and R⁵ have the meaning that is
indicated for formula (I), under usage of amide coupling reagents known to the expert like HATU (2-(1H-7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uroniumhexafluorophosphate Methanminium), TBTU (O-(Benzotriazol-1-yl)-N, N', N', N'-tetramethylyuronium tetrafluoroborate) or HBTU (2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate Isomer I or 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylguanidinium hexafluorophosphate Isomer II, or others from e.g. Larry Yet; "Peptide Coupling Reagents: Names, Acronyms and References"; Albany Molecular Research, Inc., Technical Reports, vol., 4, No. 1, pp. 1999; pp. 1-7) or via formation of the acid chloride to compounds of the general formula (I) according to the invention.

If the compounds according to the invention are present as racemic mixtures, they can be separated into pure, optically active forms according to the methods of racemate separation that are familiar to one skilled in the art. For example, the racemic mixtures can be separated by chromatography on an even optically active carrier material (CHIRALPAK AD®) into the pure isomers. It is also possible to esterify the free hydroxy group in a racemic compound of general formula I with an optically active acid and to separate the diastereoisomeric esters that are obtained by fractionated crystallization or by chromatography, and to saponify the separated esters in each case to the optically pure isomers. As an optically active acid, for example, mandelic acid, camphorsulfonic acid or tartaric acid can be used.

The binding of the substances to the glucocorticoid receptor (GR) and other steroid hormone receptors (mineral corticoid receptor (MR), progesterone receptor (PR) and androgen receptor (AR)) is examined with the aid of recombinantly...
produced receptors. Cytosol preparations of Sf9 cells, which had been infected with recombinant baculoviruses, which code for the GR, are used for the binding studies. In comparison to reference substance $[^3]$H]-dexamethasone, the substances show a high to very high affinity to GR. Example 3 thus shows, e.g., the following profile:

\[
\text{IC}_{50} (GR) = 6 \ \text{nmol}; \ \text{IC}_{50} (MR), \ \text{IC}_{50} (PR), \ \text{IC}_{50} (AR), \ \text{IC}_{50} (ER) > 1 \ \mu\text{mol.}
\]

As an essential, molecular mechanism for the anti-inflammatory action of glucocorticoids, the GR-mediated inhibition of the transcription of cytokines, adhesion molecules, enzymes and other pro-inflammatory factors is considered. This inhibition is produced by an interaction of the GR with other transcription factors, e.g., AP-1 and NF-kappa-B (for a survey, see Cato, A. C. B., and Wade, E., BioEssays 18, 371-378, 1996).

The compounds of general formula I according to the invention inhibit the secretion of cytokine IL-8 into the human monocyte cell line THP-1 that is triggered by lipopolysaccharide (LPS). The concentration of the cytokines was determined in the supernatant by means of commercially available ELISA kits. The compound of Example 3 showed an inhibition IC$_{50}$(IL8) = 7.1 nmol (96 % eff. relative to dexamethasone).

The anti-inflammatory action of the compounds of general formula I was tested in the animal experiment by tests in the croton oil-induced inflammation in rats and mice (J. Exp. Med. (1995), 182, 99-108). To this end, croton oil in ethanolic solution was applied topically to the animals' ears. The test substances were also applied topically or systemically at the same time or two hours before the croton oil. After 16-24 hours, the ear weight was measured as a yardstick for inflammatory edema, the peroxidase activity as a yardstick for the invasions of granulocytes, and the elastase activity as a yardstick for the invasion of neutrophilic granulocytes. In this test, the compounds of general formula I inhibit the three above-mentioned inflammation parameters both after topical administration and after systemic administration.

One of the most frequent undesirable actions of a glucocorticoid therapy is the so-called "steroid diabetes" [cf., Hatz, H. J., Glucocorticoiden: Immunologische Grundlagen, Pharmakologie und Therapierichtlinien [Glucocorticoids: Immunological
Bases, Pharmacology and Therapy Guidelines], Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1998]. The reason for this is the stimulation of gluconeogenesis in the liver by induction of the enzymes responsible in this respect and by free amino acids, which are produced from the degradation of proteins (catabolic action of glucocorticoids). A key enzyme of the catabolic metabolism in the liver is tyrosinamino transferase (TAT). The activity of this enzyme can be determined from liver homogenates by photometry and represents a good measurement of the undesirable metabolic actions of glucocorticoids. To measure the TAT induction, the animals are sacrificed 8 hours after the test substances are administered, the livers are removed, and the TAT activity is measured in the homogenate. In this test, at doses in which they have an anti-inflammatory action, the compounds of general formula I induce little or no tyrosinamino transferase.

Because of their anti-inflammatory and, in addition, anti-allergic, immunosuppressive and antiproliferative action, the compounds of general formula I according to the invention can be used as medications for treatment or prophylaxis of the following pathologic conditions in mammals and humans: In this case, the term "DISEASE" stands for the following indications:

(i) Lung diseases, which coincide with inflammatory, allergic and/or proliferative processes:

- Chronic, obstructive lung diseases of any origin, primarily bronchial asthma
- Bronchitis of different origins
- Adult respiratory distress syndrome (ARDS), acute respiratory distress syndrome
- Bronchiectases
- All forms of restrictive lung diseases, primarily allergic alveolitis,
- All forms of pulmonary edema, primarily toxic pulmonary edema; e.g., radiogenic pneumonitis
- Sarcoidoses and granulomatoses, especially Boeck's disease

(ii) Rheumatic diseases/autoimmune diseases/joint diseases, which coincide with inflammatory, allergic and/or proliferative processes:
- All forms of rheumatic diseases, especially rheumatoid arthritis, acute rheumatic fever, polymyalgia rheumatica, Behçet's disease
- Reactive arthritis
- Inflammatory soft-tissue diseases of other origins
- Arthritic symptoms in the case of degenerative joint diseases (arthroses)
- Traumatic arthritides
- Vitiligo
- Collagenoses of any origin, e.g., systemic lupus erythematoses, scleroderma, polymyositis, dermatomyositis, Sjogren's syndrome, Still's syndrome, Felty's syndrome
- Sarcoidoses and granulomatoses
- Soft-tissue rheumatism

(iii) Allergies or pseudoallele diseases, which coincide with inflammatory and/or proliferative processes:
 - All forms of allergic reactions, e.g., Quincke's edema, hay fever, insect bites, allergic reactions to pharmaceutical agents, blood derivatives, contrast media, etc., anaphylactic shock, urticaria, allergic and irritative contact dermatitis, allergic vascular diseases
 - Allergic vasculitis

(iv) Vascular inflammations (vasculitides)
- Panarteritis nodosa, temporal arteritis, erythema nodosum
- Polyarteris nodosa
- Wegner's granulomatosis
- Giant-cell arteritis

(v) Dermatological diseases, which coincide with inflammatory, allergic and/or proliferative processes:
- Atopic dermatitis (primarily in children)
- All forms of eczema, such as, e.g., atopic eczema (primarily in children)
- Rashes of any origin or dermatoses
- Psoriasis and parapsoriasis groups
- Pityriasis rubra pilaris
- Erythematous diseases, triggered by different noxae, e.g., radiation, chemicals, burns, etc.
- Bullous dermatoses, such as, e.g., autoimmune pemphigus vulgaris, bullous pemphigoid
- Diseases of the lichenoid group,
- Pruritis (e.g., of allergic origin)
- Seborrheal eczema
- Rosacea group
- Erythema exudativum multiforme
- Balanitis
- Vulvitis
- Manifestation of vascular diseases
- Hair loss such as alopecia areata
- Cutaneous lymphoma

(vi) Kidney diseases, which coincide with inflammatory, allergic and/or proliferative processes:
- Nephrotic syndrome
- All nephritides, e.g., glomerulonephritis

(vii) Liver diseases, which coincide with inflammatory, allergic and/or proliferative processes:
- Acute liver cell decomposition
- Acute hepatitis of different origins, e.g., viral, toxic, pharmaceutical agent-induced
 - Chronic aggressive hepatitis and/or chronic intermittent hepatitis

(viii) Gastrointestinal diseases, which coincide with inflammatory, allergic and/or proliferative processes:
- Regional enteritis (Crohn's disease)
- Colitis ulcerosa
- Gastritis
- Reflux esophagitis
- Ulcerative colitis of other origins, e.g., native sprue

(ix) Proctologic diseases, which coincide with inflammatory, allergic and/or proliferative processes:
- Anal eczema
- Fissures
- Hemorrhoids
- Idiopathic proctitis

(x) Eye diseases, which coincide with inflammatory, allergic and/or proliferative processes:
- Allergic keratitis, uveitis, iritis
- Conjunctivitis
- Blepharitis
- Optic neuritis
- Chorioiditis
- Sympathetic ophthalmia

(xi) Diseases of the ear-nose-throat area, which coincide with inflammatory, allergic and/or proliferative processes:
- Allergic rhinitis, hay fever
- Otitis externa, e.g., caused by contact dermatitis, infection, etc.
- Otitis media

(xii) Neurological diseases, which coincide with inflammatory, allergic and/or proliferative processes:
- Cerebral edema, primarily tumor-induced cerebral edema
- Multiple sclerosis
- Acute encephalomyelitis
- Meningitis
- Various forms of convulsions, e.g., infantile nodding spasms
- Acute spinal cord injury
- Stroke

(xiii) Blood diseases, which coincide with inflammatory, allergic and/or proliferative processes, such as, e.g.: M. Hodgkin's or Non-Hodgkin's lymphomas, thrombocythemias, erythrocytoses
- Acquired hemolytic anemia
- Idiopathic thrombocytopenia
(xiv) Tumor diseases, which coincide with inflammatory, allergic and/or proliferative processes, such as, e.g.: carcinomas or sarcomas
- Acute lymphatic leukemia
- Malignant lymphoma
- Lymphogranulomatoses
- Lymphosarcoma
- Extensive metastases, mainly in breast, bronchial and prostate cancers

(xv) Endocrine diseases, which coincide with inflammatory, allergic and/or proliferative processes, such as, e.g.:
- Endocrine orbitopathy
- Thyreotoxic crisis
- De Quervain's thyroiditis
- Hashimoto's thyroiditis
- Basedow's disease
- Granulomatous thyroiditis
- Lymphadenoid goiter

(xvi) Organ and tissue transplants, graft-versus-host disease

(xvii) Severe shock conditions, e.g., anaphylactic shock, systemic inflammatory response syndrome (SIRS)

(xviii) Substitution therapy in:
- Innate primary suprarenal insufficiency, e.g., congenital adrenogenital syndrome
- Acquired primary suprarenal insufficiency, e.g., Addison's disease, autoimmune adrenalitis, meta-infective tumors, metastases, etc.
- Innate secondary suprarenal insufficiency, e.g., congenital hypopituitarism
- Acquired secondary suprarenal insufficiency, e.g., meta-infective tumors, etc.

(xix) Emesis, which coincide with inflammatory, allergic and/or proliferative processes:
e.g., in combination with a 5-HT3 antagonist in cytostatic-agent-induced vomiting

(xx) Pains of inflammatory origins, e.g., lumbago

(xxi) Other different stages of disease including diabetes type I (insulin-dependent diabetes), osteoarthritis, Guillain-Barre syndrome, restenoses after percutaneous transluminal angioplasty, Alzheimer's disease, acute and chronic pain, arteriosclerosis, reperfusion injury, congestive heart failure, myocardial infarction, thermal injury, multiple organ injury secondary to trauma, acute purulent meningitis, necrotizing enterocolitis and syndromes associated with hemodialysis, leukopheresis, and granulocyte transfusion.

Moreover, the compounds of general formula I according to the invention can be used for treatment and prophylaxis of additional pathologic conditions that are not mentioned above, for which synthetic glucocorticoids are now used (see in this respect Hatz, H. J., Glucocorticoide: Immunologische Grundlagen, Pharmakologie und Therapierichtlinien, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1998).

All previously mentioned indications (i) to (xx) are described in more detail in Hatz, H. J., Glucocorticoide: Immunologische Grundlagen, Pharmakologie und Therapierichtlinien, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1998.

For the therapeutic actions in the above-mentioned pathologic conditions, the suitable dose varies and depends on, for example, the active strength of the compound of general formula I, the host, the type of administration, and the type and severity of the conditions that are to be treated, as well as the use as a prophylactic agent or therapeutic agent.

In addition, the invention provides:

(i) The use of one of the compounds of formula I according to the invention or mixture thereof for the production of a medication for treating a DISEASE;

(ii) A process for treating a DISEASE, said process comprises an administration of an amount of the compound according to the invention,
in which the amount suppresses the disease and in which the amount of compound is given to a patient who requires such a medication;

(iii) A pharmaceutical composition for treating a DISEASE, said treatment comprises one of the compounds according to the invention or mixture thereof and at least one pharmaceutical adjuvant and/or vehicle.

In general, satisfactory results can be expected in animals when the daily doses comprise a range of 1 µg to 100,000 µg of the compound according to the invention per kg of body weight. In the case of larger mammals, for example the human, a recommended daily dose lies in the range of 1 µg to 100,000 µg per kg of body weight. Preferred is a dose of 10 to 30,000 µg per kg of body weight, and more preferred is a dose of 10 to 10,000 µg per kg of body weight. For example, this dose is suitably administered several times daily. For treating acute shock (e.g., anaphylactic shock), individual doses can be given that are significantly above the above-mentioned doses.

The formulation of the pharmaceutical preparations based on the new compounds is carried out in a way that is known in the art by the active ingredient being processed with the vehicles that are commonly used in galenicals, fillers, substances that influence decomposition, binding agents, moisturizers, lubricants, absorbents, diluents, flavoring correctives, coloring agents, etc., and converted into the desired form of administration. In this case, reference is made to Remington's Pharmaceutical Science, 15th Edition, Mack Publishing Company, East Pennsylvania (1980).

For oral administration, especially tablets, coated tablets, capsules, pills, powders, granulates, lozenges, suspensions, emulsions or solutions are suitable.

For parenteral administration, injection and infusion preparations are possible.

For intra-articular injection, correspondingly prepared crystal suspensions can be used.

For intramuscular injection, aqueous and oily injection solutions or suspensions and corresponding depot preparations can be used.
For rectal administration, the new compounds can be used in the form of suppositories, capsules, solutions (e.g., in the form of enemas) and ointments both for systemic and for local treatment.

For pulmonary administration of the new compounds, the latter can be used in the form of aerosols and inhalants.

For local application to eyes, outer ear channels, middle ears, nasal cavities, and paranasal sinuses, the new compounds can be used as drops, ointments and tinctures in corresponding pharmaceutical preparations.

For topical application, formulations in gels, ointments, fatty ointments, creams, pastes, powders, milk and tinctures are possible. The dosage of the compounds of general formula I should be 0.01 %-20% in these preparations to achieve a sufficient pharmacological action.

The invention also comprises the compounds of general formula I according to the invention as therapeutic active ingredients.

In addition, the compounds of general formula I according to the invention are part of the invention as therapeutic active ingredients together with pharmaceutically compatible and acceptable adjuvants and vehicles.

The invention also comprises a pharmaceutical composition that contains one of the pharmaceutically active compounds according to the invention or mixtures thereof or a pharmaceutically compatible salt thereof and a pharmaceutically compatible salt or pharmaceutically compatible adjuvants and vehicles.

The compounds of general formula (I) according to the invention can optionally also be formulated and/or administered in combination with other active ingredients.

The invention further relates to combination therapies or compositions wherein a GR agonist of formula (I), or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising a GR agonist of formula (I), or a pharmaceutically acceptable salt thereof, is administered concurrently (possibly in the same composition) or sequentially with one or more agents for the treatment of any of the above disease states.
For example, for the treatment of rheumatoid arthritis, osteoarthritis, COPD, asthma or allergic rhinitis a GR agonist of the invention can be combined with one or more agents for the treatment of such a condition. Where such a combination is to be administered by inhalation, then the one or more agents is selected from the list comprising:

- a PDE4 inhibitor including an inhibitor of the isoform PDE4D;
- a selective β.sub2. adrenoceptor agonist such as metaproterenol, isoproterenol, isoprenaline, albuterol, salbutamol, formoterol, salmeterol, terbutaline, orciprenaline, bitolterol mesylate, pirbuterol or indacaterol;
- a muscarinic receptor antagonist (for example a M1, M2 or M3 antagonist, such as a selective M3 antagonist) such as ipratropium bromide, tiotropium bromide, oxtropium bromide, pirenzepine or telenzepine;
- a modulator of chemokine receptor function (such as a CCR1 receptor antagonist);
- an inhibitor of p38 kinase function;
- an inhibitor of matrix metalloproteases, most preferably targeting MMP-2, MMP-9 or MMP-12, or
- An inhibitor of neutrophil serine proteases, most preferably neutrophil elastase or proteinase 3.

In another aspect of the invention where such a combination is for the treatment of COPD, asthma or allergic rhinitis the GR agonist of formula (I), or a pharmaceutically acceptable salt thereof, can be administered by inhalation or by the oral route and this is in combination with a xanthine (such as aminophylline or theophylline) which can be administered by inhalation or by the oral route.
Experimental Part:
The various aspects of the invention described in this application are illustrated by the following examples which are not meant to limit the invention in any way.

Example 1

5-Amino-1-(4-fluorophenyl)-N-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide

31 mg (81 µmol) HATU are dissolved in 200 µl DMF. 28 µl diisopropyl ethyl amine and 18 mg (81 µM) 5-amino-1-(4-fluorophenyl)-1 H-pyrazole-4-carboxylic acid are added and the mixture is shaken for 10 minutes. 25 mg (81 µM) (c/s)-1-amino-1,2,3,4-tetrahydro-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-2-ol (WO2006/108712) are added and the mixture is shaken until the amine is solved. After 16 hours the mixture is diluted with trichloromethan and directly chromatographed on silica gel (2 x 20 cm x 20 cm TLC plates, hexane / ethyl acetate 50%). 31 mg of the desired product are obtained.

1H-NMR (CDCl$_3$); δ = 1.49 (s, 3H), 1.65 (s, 3H), 2.03 (d, 1H), 2.11 (d, 1H), 3.96 (s, 3H), 5.38 (br., 1H), 5.54 (s, 2H), 6.45 (d, 1H), 6.96 (dd, 1H), 7.02 (dd, 1H), 7.23 (dd, 2H), 7.54 (dd, 2H), 7.79 (s, 1H).
Example 2

5-Amino-1-(4-fluorophenyl)-N-[N-(4-fluorophenyl)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide

15 mg (28 µmol) 5-Amino-1-(4-fluorophenyl)-N-[N-(4-fluorophenyl)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide in 3 ml of CH₂Cl₂, are mixed at -30°C with 1.5 ml of 1 M boron tribromide solution in CH₂Cl₂. The mixture is warmed to 0°C over 5 hours and stirred for additional 16 hours while warming to room temperature. The batch is poured into saturated NaHCO₃ and ice, stirred for 10 minutes and extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄) and concentrated by evaporation in a vacuum. After preparative thin layer chromatography on silica gel (hexane / 2-propanol 9 %), 8 mg of the desired product are obtained.

¹H-NMR (CD₃OD); δ = 1.57 (s, 3H), 1.71 (s, 3H), 2.02 (d, 1H), 2.14 (d, 1H), 5.54 (br., 1H), 6.77 (dd, 1H), 6.97 (d, 1H), 7.33 (dd, 2H), 7.62 (dd, 1H), 7.94 (s, 1H).
Example 3

5-Amino-1-(2,4-difluorophenyl)-L-\((c/s)\)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-vn-1/-/-pyrazole-4-carboxamide

31 mg (81 µmol) HATU are dissolved in 200 µl DMF. 28 µl diisopropyl ethylamine and 20 mg (81 µM)-5-amino-1-(2,4-difluorophenyl)-1H-pyrazole-4-carboxylic acid are added and the mixture is shaken for 10 minutes. 25 mg (81 µM) (c/s)-1-amino-1,2,3,4-tetrahydro-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-2-ol are added and the mixture is shaken until the amine is solved. After 16 hours the mixture is diluted with trichloromethane and directly chromatographed on silica gel (2 x 20 cm x 20 cm TLC plates, hexane/ethylacetate 50%). 36 mg of the desired product are obtained.

\(^{1}\text{H}-\text{NMR} \ (\text{CDCl}_3); \delta = 1.49 \ (s, 3\text{H}), 1.64 \ (s, 3\text{H}), 2.02 \ (d, 1\text{H}), 2.10 \ (d, 1\text{H}), 3.95 \ (s, 3\text{H}), 5.40 \ (br., 1\text{H}), 5.44 \ (s, 2\text{H}), 6.45 \ (d, 1\text{H}), 6.97 \ (d, 1\text{H}), 7.02 \ (dd, 1\text{H}), 7.05 \ (m, 2\text{H}), 7.51 \ (ddd, 1\text{H}), 7.72 \ (s, 1\text{H}).

Example 4
5-Amino-1-(2,4-difluorophenyl)-N-f(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl-1/-/-pyrazole-4-carboxamide

15 mg (28 µmol) 5-Amino-1-(2,4-difluorophenyl)-N-[f(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1/-/-pyrazole-4-carboxamide in 3 ml of CH$_2$Cl$_2$ are mixed at -30°C with 1.5 ml of 1 M boron tribromide solution in CH$_2$Cl$_2$. The mixture is warmed to 0°C over 5 hours and stirred for additional 16 hours while warming to room temperature. The batch is poured into saturated NaHCO$_3$ and ice, stirred for 10 minutes and extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na$_2$SO$_4$) and concentrated by evaporation in a vacuum. After preparative thin layer chromatography on silica gel (hexane / 2-propanol 9%), 10 mg of the desired product are obtained.

1H-NMR (CD$_3$OD); δ = 1.57 (s, 3H), 1.71 (s, 3H), 2.03 (d, 1H), 2.14 (d, 1H), 5.53 (s, 1H), 6.78 (dd, 1H), 6.98 (d, 1H), 7.21 (dd, 1H), 7.30 (dd, 1H), 7.61 (ddd, 1H), 7.96 (s, 1H).

Example 5
5-Amino-1-(6-fluoropyridin-3-yl)-\textit{N}-\textit{f}(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-vn-1/-/pyrazole-4-carboxamide

Analogously to example 1 (c/s)-1-amino-1,2,3,4-tetrahydro-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-2-ol can be reacted with 5-amino-1-(6-fluoropyridin-3-yl)-1 H-pyrazole-4-carboxylic acid using HATU as amid coupling agent.

Example 6

5-Amino-1-(6-fluoropyridin-3-yl)-\textit{N}\textit{-r}(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl \pi naphthalene-1-vn-1H-pyrazole-4-carboxamide

Analogously to example 2 5-Amino-1-(6-fluoropyridin-3-yl)-\textit{N}-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1 -yl]-1/-/pyrazole-4-carboxamide can be reacted with boron tribromide to give the ether cleaved product.
Example 7

5-Amino-1-(4-fluorophenyl)-N-(1α,2α,4β)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1-vn-1/-/-pyrazole-4-carboxamide

Analogously to example 3 (5a, 6a, 8/7)-5-amino-2-fluoro-5,6,7,8-tetrahydro-8-ethyl-6-(trifluoromethyl)naphthalene-1,6-diol can be reacted with 1-(4-fluorophenyl)-1/-/-pyrazole-4-carboxylic acid using HATU as the amid coupling reagent.

Example 8

5-Amino-1-(6-fluoropyridin-3-yl)-A/-r(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-y/1-1 H-pyrrole-4-carboxamide

Analogously to example 3, 5-amino-2-fluoro-5,6,7,8-tetrahydro-8,8-dimethyl-6-(trifluoromethyl)naphthalene-1,6-diol can be reacted with 1-(6-fluoropyridin-3-yl)-1 H-pyrrole-4-carboxylic acid using HATU as the amid coupling reagent.
Example 9

5-Amino-1-(6-fluoropyridin-3-yl) - N-(7 α,2 α,4 J)-6-fluoro-1,2,3,4-tetrahydro-2,5-
dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1-yl-1 /-/-pyrrole-4-carboxamide

Analogously to example 3 (5α,6α,8/?)-5-amino-2-fluoro-5,6,7,8-tetrahydro-8-ethyl-6-
(trifluoromethyl)naphthalene-1 ,6-diol can be reacted with 1-(4-fluorophenyl)-1 /-/-
pyrrole-4-carboxylic acid using HATU as the amid coupling reagent.

Example 10

5-Amino-1-(6-fluoropyridin-3-yl) - N-(1α,2α,4β)-6-fluoro-1,2,3,4-tetrahydro-2,5-
dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1-yn-1 /-/-pyrrole-4-carboxamide

Analogously to example 3 (5α;6 α,8^-)-5-amino-2-fluoro-5,6,7,8-tetrahydro-8-ethyl-6-
(trifluoromethyl)naphthalene-1 ,6-diol can be reacted with 1-(6-fluoropyridin-3-yl)-1 /-/-
pyrrole-4-carboxylic acid using HATU as the amid coupling reagent.
Example 11

5-Amino-1-(2-fluoropyridin-4-yl)-1H,-r(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl-1H/-H-pyrazole-4-carboxamide

Analogously to example 1 (c/s)-1-amino-1,2,3,4-tetrahydro-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-2-ol can be reacted with 5-amino-1-(2-fluoropyridin-4-yl)-1H/-H-pyrazole-4-carboxylic acid using HATU as amid coupling agent.

Example 12

5-Amino-1-(4-fluorophenyl)-N-r(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-3,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl-1H/-H-pyrazole-4-carboxamide
Analogously to example 3 5-amino-2-fluoro-5,6,7,8-tetrahydro-7,8-dimethyl-6-(trifluoromethyl)naphthalene-1,6-diol can be reacted with 1-(4-fluorophenyl)-1H-pyrazole-4-carboxylic acid using HATU as the amid coupling reagent.

Example 13

5-Amino-1-(2,4-difluorophenyl)-N-[c/s]-6-fluoro-2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-vn-1/-/-pyrazole-4-carboxamide

Analogously to example 3 5-amino-2-fluoro-5,6,7,8-tetrahydro-7,8-dimethyl-6-(trifluoromethyl)naphthalene-1,6-diol can be reacted with 1-(2,4-difluorophenyl)-1/-/-pyrazole-4-carboxylic acid using HATU as the amid coupling reagent.

Example 14
5-Amino-1-(4-fluorophenyl)-N-(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-3,4-dimethyl-2-(trifluoromethyl)naphthalene-1-vin-1/-/-pyrrole-4-carboxamide

Analogously to example 3 5-amino-2-fluoro-5,6,7,8-tetrahydro-7,8-dimethyl-6-(trifluoromethyl)naphthalene-1,6-diol can be reacted with 1-(4-fluorophenyl)-1H-pyrrole-4-carboxylic acid using HATU as the amid coupling reagent.

Example 15

\[\text{5-Amino-6.7-difluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-} \]
\[\text{(trifluoromethyl)naphthalen-i-vin-1-(4-fluorophenyl)-1/-/-pyrazole-4-carboxamide} \]

Analogously to example 3 5-amino-2,3-difluoro-5,6,7,8-tetrahydro-8-ethyl-6-(trifluoromethyl)naphthalene-1,6-diol can be reacted with 1-(4-fluorophenyl)-1H-pyrazole-4-carboxylic acid using HATU as the amid coupling reagent.

Example 16
5-Amino-1-(4-fluorophenyl)-N-\textit{N}-(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl1/-/-imidazole-4-carboxamide

1-(4-fluorophenyl)-\textit{1}H-imidazole-4-carboxylic acid

A solution of amino-cyano-acetic acid ethyl ester (Ahn et al. J. Med. Chem., 1997, 40, p. 2208) and triethyl orthoformate in 25 ml acetonitrile is heated under reflux for 45 minutes. After cooling to room temperature 1.27 ml (13.3 mmol) 4-fluoroaniline are added and the mixture is stirred for 16 hours. 400 mg 1-(4-fluorophenyl)-1H-imidazole-4-carboxylic acid ethyl ester precipitate out and are isolated by filtration.

1.5 g (6 mmol) 1-(4-fluorophenyl)-1H-imidazole-4-carboxylic acid ethyl ester in 7.5 ml ethanol and 30 ml NaOH are heated to 75°C for 3 hours. The pH of the solution is adjusted to pH 7 by 1 N HCl solution and the precipitating acid is collected by filtration. 922 mg of the desired acid are obtained after drying in vacuum.

Analogously to example 3 5-amino-2-fluoro-5,6,7,8-tetrahydro-8-ethyl-6-(trifluoromethyl)naphthalene-1,6-ol can be reacted with 1-(4-fluorophenyl)-1H-imidazole-4-carboxylic acid using HATU as the amid coupling reagent.

1H-NMR (CDCl$_3$); δ = 1.47 (s, 3H), 1.63 (s, 3H), 1.98 (d, 1H), 2.13 (d, 1H), 5.00 (s, 1H), 5.21 (br, 1H), 6.91 (dd, 1H), 7.03 (dd, 1H), 7.13 (s, 1H), 7.26 (dd, 2H), 7.41 (dd, 2H), 7.46 (d, 1H).

Example 17
5-5-Amino-1-(4-fluorophenyl)-\(\Lambda\)-(c/s)-6-fluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl-1H-imidazole-4-carboxamide

Analogously to example 2 5-Amino-1-(4-fluorophenyl)-\(\Lambda\)-[(c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1-yl]-1H-imidazole-4-carboxamide can be reacted with boron tribromide to give the ether cleaved product.

Example 18

5-Amino-r6.7-difluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1,6-diol can be reacted with 1-(4-fluorophenyl)-1H-imidazole-4-carboxylic acid using HATU as the amid coupling reagent.

Example 19
5-Amino-r6,7-difluoro-1,2,3,4-tetrahydro-2,5-dihydroxy-4-ethyl-2-(trifluoromethyl)naphthalene-1,6-diyli-1-(4-fluorophenyl)-1H,2,3-triazole-4-carboxamide

Analogously to example 3 5-amino-2,3-difluoro-5,6,7,8-tetrahydro-8-ethyl-6-(trifluoromethyl)naphthalene-1,6-diol can be reacted with 1-(4-fluorophenyl)-1H-triazole-4-carboxylic acid using HATU as the amid coupling reagent.

Example 20

5-Amino- Α(f/c/s)-6-fluoro-1,2,3,4-tetrahydro-2-hydroxy-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-1,6-diyli-1-phenyl-1,2,3-triazole-4-carboxamide

Analogously to example 3 (c/s)-1-amino-1,2,3,4-tetrahydro-5-methoxy-4,4-dimethyl-2-(trifluoromethyl)naphthalene-2-ol can be reacted with 1-(fluorophenyl)-1H-triazole-4-carboxylic acid using HATU as the amid coupling reagent.

1H-NMR (CDCl$_3$); δ = 1.49 (s, 3H), 1.66 (s, 3H), 2.02 (d, 1H), 2.13 (d, 1H), 3.96 (s, 3H), 5.33 (br, 3H), 6.94 (dd, 1H), 7.04 (dd, 1H), 7.57 (m, 5H).
Claims

1. A compound of general formula I

![Chemical Structure]

in which

5 \(X\) is N or C-\(\text{R}^4\)

Y is N or C-\(\text{R}^4\)

\(\text{R}^1, \text{R}^2, \text{R}^3\) independently of one another, are selected from the group consisting of hydrogen, halogen, cyano, nitro, hydroxy, or (CrC\(_5\))-alkyl, (CrC\(_5\))-halo-alkyl, (d-C\(_5\))alkoxy, (CrC\(_5\))halo-alkoxy and COOR\(^9\),

10 and in which two vicinal substituents together may form a group that is selected from the groups

\(-\text{O-CH}_2\text{p-O-, -O-CH}_2\text{p-CH}_2\text{-, -O-CH=CH-, -(CH}_2\text{p+2-, -NH-(CH}_2\text{p+1-, -NCCrCs-alkylHCHzJp+r, and -NH-N=CH-,}

in which \(p = 1\) or 2, and in which \(\text{R}^9\) means hydrogen or Ci-C\(_4\)-alkyl

15 \(\text{R}^4\) is selected from the group consisting of hydrogen, (d-C\(_5\))-alkyl, or (d-C\(_5\))-halo-alkyl, and should two \(\text{R}^4\) moities be present in one molecule these have independent meanings,

\(\text{R}^5\) means a phenyl, pyridinyl or pyrimidinyl rest

which may have 1-3 substituents independently selected from the group

20 consisting of halogen, cyano, nitro hydroxy, or (C\(_{r+C}\))-alkyl, (d-C\(_5\))-halo-alkyl, (C\(_r\)C\(_5\))alkoxy, (d-C\(_5\))halo-alkoxy and COOR\(^9\), in which \(\text{R}^9\) has the
above identified meaning,
and in which two vicinal substituents together may form a group that is
selected from the groups
\[-O-(\text{CH}_2)_p-O-, \quad -O-(\text{CH}_2)_p-\text{CH}_2-, \quad -0-\text{CH}==\text{CH}-, \quad -(\text{CH}_2)_p+2-, \quad -\text{NH}-(\text{CH}_2)_p+r, \quad
-N(C_1-C_3ltkVI)-(\text{CH}_2)_p+1-, \quad \text{and } -\text{NH}-\text{N}=\text{CH}-,
\]

\[R^6\]
is selected from the group consisting of hydrogen or \((d-C_5)\)-alkyl or
\((Ci-C_5)\)-halo-alkyl

\[R^7, R^8\]
individually of one another, are selected from the group consisting of
hydrogen or \((Ci-C_5)\)-alkyl, \((Ci-C_5)\)-halo-alkyl

or in which \(R^6\) and \(R^7\) together or \(R^6\) and \(R^8\) together or \(R^7\) and \(R^8\) together
may form a \(C_3-C_8\) cycloalkyl ring.

2. A compound according to claim 1, in which at least one of the groups \(R^1\)-
\(R^3\) is selected from the group consisting of fluoro, chloro, hydroxy, \(C_1-C_3\)-
alkyl, \(C_1-C_3\)-alkoxy,
or in which two of the groups \(R^1\)-\(R^3\) together form a group \(-0-\text{CH}_2-O-\) or
\(-\text{CH}_2-\text{CH}_2-O-\).

3. A compound according to claim 1, in \(R^4\) is selected from the group
consisting of hydrogen, \(CrCs\)-alkyl.

4. A compound according to claim 1, in which \(R^5\) is selected from the group
consisting of phenyl, fluorophenyl, fluoropyridinyl, methylphenyl,
dimethylphenyl, difluorophenyl.

5. A compound according to claim 1, in \(R^6\) is selected from the group
consisting of hydrogen, \(CrC_3\)-alkyl.

6. A compound according to claim 1, in which one of \(R^7\) and \(R^8\) is hydrogen
and the other is methyl or ethyl or
in which both of \(R^7\) and \(R^8\) are methyl or ethyl.

7. Compounds according to claimi selected from the list consisting of
8. Use of the compounds according to at least one of claims 1-6 for the manufacture of pharmaceutical agents.

9. Use of the compounds according to at least one of claims 1-6 for the manufacture of pharmaceutical agents for treating inflammatory diseases.

10. Process for the production of compounds according to claim 1, wherein a compound of formula I is coupled with an acid of the general formula (III), in which under X, Y, R⁴ and R⁵ have the meaning that is defined in claim 1, under usage of amide coupling reagent or the compound of formula (III) is reacted with SOCl₂ or (COCl)₂ to form an acid chloride reacting with compounds of formula (II) to yield to compounds of the general formula (I)

\[
R¹, R², R³, R⁶, R⁷ and R⁸ have the meanings that are defined in claim 1,
\]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D207/34 C07D231/40 C07D233/90 C07D249/06 C07D401/04
A61K31/415 A61K31/4192 A61K31/4164 A61P29/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2006/108712 A (SCHERING AG [DE]; HUWE CHRISTOPH [DE]; SKUBALLA WERNER [DE]; NGUYEN DU) 19 October 2006 (2006-10-19) cited in the application claim 1; examples</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2007/000334 A (GLAXO GROUP LTD [GB]; BARKER MICHAEL DAVID [GB]; HOUSE DAVID [GB]; JON) 4 January 2007 (2007-01-04) cited in the application claim 1</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>WO 02/10143 A (SCHERING AG [DE]) 7 February 2002 (2002-02-07) cited in the application claim 1</td>
<td>1-10</td>
</tr>
</tbody>
</table>

D. Further documents are listed in the continuation of Box C.

X. See patent family annex.

• Special categories of cited documents:
 'A' document defining the general state of the art which is not considered to be of particular relevance
 'E' earlier document but published on or after the international filing date
 'I' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 'O' document referring to an oral disclosure, use, exhibition or other means
 'P' document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 12 June 2008

Date of mailing of the international search report: 19/06/2008

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer: De Jong, Bart