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[ 0001 ] This application is a continuation application to 
U.S. application Ser . No. 16 / 554,934 , filed Aug. 29 , 2019 , 
which claims the benefit of U.S. Provisional Application No. 
62 / 724,447 , filed Aug. 29 , 2018. These applications are 
incorporated by reference in their entireties . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0002 ] FIGS . 1A - 1C illustrate example reach calculations 
that can be used in embodiments of the invention . 
[ 0003 ] FIG . 2 illustrates example panel data that can be 
used against simulated campaign plans in embodiments of 
the invention . 
[ 0004 ] FIG . 3 illustrates a simulated campaign plan con 
struct sample that can be used in embodiments of the 
invention . 
[ 0005 ] FIG . 4 illustrates a chart where an intersection of 
people can be seen that can be used in embodiments of the 
invention . 
[ 0006 ] FIG . 5 illustrates a chart showing example data that 
can be used in embodiments of the invention . 
[ 0007 ] FIG . 6 illustrates an example Reach and Frequency 
process that can be used in embodiments of the invention . 
[ 0008 ] FIG . 7-8 illustrate example parameters that can be 
used in embodiments of the invention . 
[ 0009 ] FIG . 9 illustrates example data that can be used in 
embodiments of the invention to generate campaign statis 
tics that can be used to train a Reach and Frequency model . 
[ 0010 ] FIG . 10 illustrates example features of a system 
that can be used to generate the reach and frequency 
calculations in some embodiments of the invention . 
[ 0011 ] FIG . 11 illustrates example features that can be 
used in some embodiments of the invention . 
[ 0012 ] FIG . 12 illustrates an example model feature value 
impact , according to embodiments of the invention . 
[ 0013 ] FIG . 13 illustrates example comparative results , 
according to embodiments of the invention . 
[ 0014 ] FIG . 14 illustrates an example computer that can be 
used in embodiments of the invention . 

lations can be based on complex training on mass data 
volume , utilizing machine learning algorithms , and costume 
feature creation . In some embodiments , numerous ( e.g. , 
more than 300,000 ) advertising campaigns can be 
and analyzed using advanced machine learning and deep 
learning tools in order to predict the Reach and Frequency 
for a given advertising campaign . 
[ 0018 ] In some embodiments , the given advertising cam 
paign can be one structured using typical panel data infor 
mation provided in a particular local market . In some 
embodiments , the Reach can be for a specific target demo 
graphic , using , for example , age & gender constructs . ( Note 
that any type of demographic may be used . ) 
[ 0019 ] In some embodiments , the data that is available to 
help determine the prediction can be a detailed campaign 
spot proposal plan , which can contain the following attri 
butes : 

[ 0020 ) Market 
[ 0021 ] Station 
[ 0022 ] Daypart 
[ 0023 ] Time 
[ 0024 ] Day , or range of days ( Typically Weekdays or 
Weekend ) 

[ 0025 ] Program Name 
[ 0026 ] Length ( Spot Duration ) 
[ 0027 ] Rate 
[ 0028 ] Ratings 

[ 0029 ] The Reach that can be determined can comprise the 
distinct number of viewers for the campaign ( e.g. , how many 
different people saw the campaign at least once ) . In some 
situations , mathematical models based on duplication matrix 
( e.g. , how many different people watch a cross of two 
programs ) can be used . However , it becomes complex to use 
these models when additional programs are added ( e.g. , how 
many different people watch programs A + B + C etc. ) 
[ 0030 ] FIGS . 1A - 1C illustrate a very simple example . If 
the campaign contains only two spots , the Reach can vary 
between the sum of the two ratings ( e.g. , the maximum 
possible Reach ( e.g. , FIG . 1B ) of rating A and rating B , 
where there is no intersection between the viewers of spot A 
and the viewers of spot B , and the minimal possible Reach 
( e.g. , FIG . 1C ) , where all the viewers of one spot are 
contained within the viewers of the other spot ) . FIG . 1A 
illustrates a medium case . 
[ 0031 ] In FIGS . 1A - 1C , the Reach is illustrated as the total 
area of the circles , which can have an inverse correlation to 
the size of the intersection . ( FIG . 4 illustrates a similar chart 
where the intersection of the people can be seen . FIG . 5 
illustrates a chart showing example data . ) For example , a 
small intersection could indicate a large Reach , and a large 
intersection could indicate a small Reach . The Reach can be 
calculated using an inclusion - exclusion principle . Thus , for 
the example above , using the inclusion - exclusion principle , 
the Reach can be : 

a 

DETAILED DESCRIPTION OF EMBODIMENTS 

a 

[ 0015 ] Systems and methods are disclosed herein for 
performing advertising Reach and Frequency calculations to 
determine how many people were uniquely exposed to a 
broadcaster message ( e.g. , an advertising campaign ) . 
[ 0016 ] Mathematical models based on duplication matri 
ces ( e.g. , how many people watch a cross of two or more 
programs ) can be used . Machine learning can be utilized 
along with panel data . Panel data can be data learned from 
an individual level analysis of viewing patterns ( e.g. , 
Nielsen Panels ) . A group of people who are monitored 
individually can be selected and weighed to be used in panel 
data . In some embodiments , the full panel data is utilized 
with the machine learning . In other embodiments , only a 
subset of the full panel data is utilized with the machine 
learning 
[ 0017 ] For example , summary reporting of people who 
watched the different programs where a broadcaster message 
was shown can be used . The Reach and Frequency calcu 

Reach = | A | + \ B1- ANB || 

[ 0032 ] As another example , for a campaign with three 
spots , the Reach can be : 

> Reach = | A | + BI + IC - ANC | - | BOCI + ANBNC 

[ 0033 ] Similarly , the formula can become exponentially 
larger with each spot that is added . For a very large cam 
paign , computing the Reach based on this formula is difficult 
for at least some of the following reasons : 
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( 0044 ) Example pseudocode is below : [ ] 

= -inf Previous_score 
For pl in [ param_11 , param_12 param_1A ] 

For p2 in [ param_21 , param_22 ... , param_2B ] 

For PM in [ param_ml , param_M2 , param_MC ] 
Current_Model = train ( campaigns_train_Set ) 
Predictions current_model.predict ( campaigns_validation_set ) 
Current_Score = compare ( predictions , validation_set_values ) 
If current_score > previous_score 
Chosen_model = current_model 

[ 0034 ] As campaign spots are added , the amount of 
intersections that need to be calculated can grow expo 
nentially - e.g . for a campaign with 100 spots , the 
amount of terms that needed to be computed is 2 / 100 
1. ( Note that for an average campaign , the number of 
spots based on a sample set is approximately 250. ) 

[ 0035 ] It can be difficult to estimate the intersection 
between n - spots where n is large enough because each 
such calculation can add noise to the final result . This 
noise can add up to a significant error on the final Reach 
calculation . 

[ 0036 ] We resolved this problem by letting machine learn 
ing analyse duplicated watching habits ( watching the same 
time of day , watching the same type of content , watching the 
same channels etc. etc. ) 
[ 0037 ] In some embodiments , in order to overcome the 
above issues as well as other issues , methods and systems 
can be improved by utilizing a machine learning to analyze 
duplicated watching habits ( e.g. , watching the same time of 
day , watching the same type of content , watching the same 
channels , etc. ) to determine Reach patterns . 
[ 0038 ] FIG . 6 illustrates an example of a process that can 
be used . As set forth in FIG . 6 , a large volume of labelled 
detailed viewership data can be utilized ( e.g. , individual 
member panel viewership data over years , one year STB 
data ) . Campaign attributes ( e.g. , such as those used by NBC 
O & O ) can be defined for a sample case ( e.g. , 10 campaigns 
A large volume of randomized campaigns can be generated 
in the NBC O & O style . A variation of demographics , 
channels and campaign durations can be factored in . The 
deep learning model can be trained to learn how data 
features impact cumulative reach . The best hyper - param 
eters can be evaluated for an optimized model . The test 
model produced reach can then be compared against real 
campaigns and the results can be compared to traditional 
solutions . 

[ 0039 ] FIG . 7 and FIG . 8 illustrate example parameters 
that can be used . 

[ 0040 ] For example , as shown in FIG . 2 , in 205 , panel data 
can be used against simulated campaign plans . The simu 
lated campaign plans should be based on a typical customer 
campaign structure ( e.g. , such as one expected to be used by 
NBC O & O in a particular market ) . 
[ 0041 ] Using campaign structure attributes , similar to pro 
vided samples , hundreds of thousands of synthetic cam 
paigns ( e.g. , > 300,000 campaigns ) can be auto - generated . 
Variations of number of networks , demographics , campaign 
durations , spot number in day parts , etc. can be mixed in 
order to maximize the variety of samples to be used for 
training 
( 0042 ] Training a deep learning model can involve fine 
tuning of hyper parameters in order to optimize the perfor 
mance of the model ( e.g. , learning rate , number of iterations , 
etc. ) . 
[ 0043 ] Grid Search can be done with cross validation : For 
each combination of hyper parameters , the data can be split 
into train and validation sets . The model can be trained 
against the train data set and evaluated against the validation 
data set . After testing each combination , the hyper - param 
eters combination with the best score on the validation set 
can be selected as the final model . 

[ 0045 ] The construct of each campaign plan can be 
defined according to expected customer campaign variation 
needs . For example , a specific day can be used for 40 % of 
the campaign spots , and a range of days ( for example 
Monday - Friday ) can be used for the remaining 60 % of the 
spots . ( This can be similar to the sample set provided by 
NBC O & O and sold by them in the local US market . ) 
[ 0046 ] Sample US markets can include some or all of the 
following in some embodiments : 

[ 0047 ] LOS ANGELES 
[ 0048 ] CHICAGO 
[ 0049 ] DALLAS - FT . WORTH 
[ 0050 ] HARTFORD & NEW HAVEN 
[ 0051 ] MIAMI - FT . LAUDERDALE 
[ 0052 ] NEW YORK 
[ 0053 ] SAN DIEGO 
[ 0054 ] SAN FRANCISCO - OAK - SA 
[ 0055 ) WASHINGTON , DC 
[ 0056 ] PHILADELPHIA 

[ 0057 ] In some embodiments , the simulated campaign 
plans can be preprocessed and additional features can be 
created for each campaign that helps the algorithm obtain a 
better prediction . Examples of features that can be added in 
some embodiments comprise any combination of the fol 
lowing : 

[ 0058 ] Maximum possible Reach , 
[ 0059 ] Minimum possible Reach , 
[ 0060 ] Total Television Average Ratings Points ( TARP ) 

for each day , 
[ 0061 ] Total TARP for each daypart 

[ 0062 ] In 210 , the final model of the simulated campaign 
plans data ( e.g. , the campaign spot plans ) can be applied to 
the known single viewer panel data in order to calculate each 
spot's TARP patterns , and to “ translate ” those TARP pat 
terns into a cumulative Reach number for every step of the 
campaign ( e.g. , we analyze the campaign after 1 spot , 2 
spots , etc. ) . 
[ 0063 ] Example pseudocode is below : 

Campaigns_feature_vectors = [ ] 
Labels = [ ] 
For c in all_campaigns : 

Current_feature_vector = create_feature_vector ( c ) 
Campaigns_feature_vectors.append ( current_feature_vector ) 
Labels.append ( reach_of_c ) 

TRAIN ( campaigns_feature_vector = > labels ) 

[ 0064 ] In some embodiments , grid - searches can be used in 
order to find the best hyper - parameters for the model , using 
cross - validation in order to achieve optimized results ( and 
for example to avoid problems such as overfitting ) . 
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[ 0065 ] A hyperparameter can be a parameter whose value 
is set before the learning process begins . By contrast , the 
values of other parameters can be derived via training . More 
information on hyper - parameters can be found at Wikipedia 
( e.g. , at the following site , which information is herein 
incorporated by reference ) : 
[ 0066 ] https://en.wikipedia.org/wiki/Hyperparameter_ 
( machine_learning ) 
[ 0067 ] Cross validation ( e.g. , such as k - fold ) can be a 
model validation techniques for assessing how the results of 
a statistical analysis will generalize to an independent data 
set . More information on cross validation can be found at 
Wikipedia ( e.g. , at the following site , which information is 
herein incorporated by reference ) : 
[ 0068 ] https://en.wikipedia.org/wiki/Cross-validation 
( statistics ) 
[ 0069 ] Overfitting can be the production of an analysis 
that corresponds too closely or exactly to a particular set of 
data , and may therefore fail to fit additional data or predict 
future observations reliably . More information on overfitting 
can be found at Wikipedia ( e.g. , at the following site , which 
information is herein incorporated by reference ) : 
[ 0070 ] https://en.wikipedia.org/wiki/Overfitting 
[ 0071 ] In 215 , each Reach number can be normalized and 
converted to a number between 0 and 1 , where 0 is the 
minimum possible Reach and 1 is the maximum possible 
Reach , according to the following formula : 

Reach_actual – Reach_min 
Reach_normalized = Reach_max – Reach_min 

Barbara Potasky ) and her contact information are listed . The 
date the information was exported is Mar. 19 , 2018. The 000 
P25-54 column lists the rating per spot for people aged 
25-54 . The spots length column lists how long the spots are . 
The columns with dates on them list the prices for various 
dates . The total spots total cost column lists the total amount 
of all the spots for a particular row . 
[ 0077 ] FIG . 9 illustrates other example data that can be 
used to generate , for example , campaign statistics that can 
be used to train the Reach and Frequency model : 
[ 0078 ] Number of Campaigns :( 
[ 0079 ] 380,506 
[ 0080 ] Campaign spots number : 
[ 0081 ] Max number of spots in campaign : 4,588 
[ 0082 ] Min number of spots in campaign : 1 
[ 0083 ] Average number of spots in campaign : 63.49 
[ 0084 ] Median number of spots in campaign : 20.0 
[ 0085 ) Std Div of number of spots in campaign : 145.37 
[ 0086 ] Demographic : 
[ 0087 ] Number of demographics : 63 
[ 0088 ] Max number of campaigns in one campaign demo 

graphic : 6,099 
[ 0089 ] Min number of campaigns in one campaign demo 

graphic : 5,994 
[ 0090 ] Average of campaigns per demographic : 6039.77 
[ 0091 ] Median of campaigns per demographic : 6041.0 
[ 0092 ] Std Div of campaigns per demographic : 20.67 
[ 0093 ] Stations : 
[ 0094 ] Number of stations : 20 
[ 0095 ] Max of campaigns in one campaign station : 20163 
[ 0096 ] Min of campaigns in one campaign station : 19620 
[ 0097 ] Average of campaigns per station : 19897.4 
[ 0098 ] Median of campaigns per station : 19900.5 
[ 0099 ] Std Div of campaigns per demographic : 138.631 
[ 0100 ] Campaign duration ( in days ) : 
[ 0101 ] Max days of campaigns duration : 365 
[ 0102 ] Min days of campaigns duration : 1 
[ 0103 ] Average of campaigns duration : 35.26 
[ 0104 ] Median of campaigns duration : 21.0 
[ 0105 ] Std Div of campaigns duration : 43.27 
[ 0106 ] FIG . 11 illustrates an example of the importance of 
various features that can be used . FIG . 12 illustrates an 
example model feature value impact . FIG . 13 illustrates 
example comparative results . 
[ 0107 ] FIG . 10 illustrates example features of a system 
that can be used to generate the reach and frequency 
calculations . Any or all of the following may be included in 
such a system : An AWS , a 256 Gb Random Access Memory 
( RAM ) , 32 cores , and parallel computer . 
[ 0108 ] Methods described herein may represent process 
ing that occurs within a system . The subject matter described 
herein can be implemented in digital electronic circuitry , or 
in computer software , firmware , or hardware , including the 
structural means disclosed in this specification and structural 
equivalents thereof , or in combinations of them . The subject 
matter described herein can be implemented as one or more 
computer program products , such as one or more computer 
programs tangibly embodied in an information carrier ( e.g. , 
in a machine readable storage device ) , or embodied in a 
propagated signal , for execution by , or to control the opera 
tion of , data processing apparatus ( e.g. , a programmable 
processor , a computer , or multiple computers ) . A computer 
program ( also known as a program , software , software 
application , or code ) can be written in any form of program 

[ 0072 ] So , for example , if in a given campaign the maxi 
mal possible Reach is 7 % , the minimal possible Reach is 3 % 
and the actual Reach is 6 % , the normalized Reach would be : 

6 - 3 3 
= 0.75 

4 7 - 3 

[ 0073 ] The normalization Reach can be used so that the 
algorithm can train on more similar campaigns and improve 
the learning of the campaign patterns . 
[ 0074 ] After we get the normalized reach , we can restore 
the actual reach using the following formula : 

REACH_ACTUAL = NORMALIZED_REACH * 
( REACH_MAX - REACH_MIN ) + REACH_MIN 

[ 0075 ] In 220 , the Frequency can be calculated by the 
formula : 

TOTAL_TARP Frequency = REACH_ACTUAL 

[ 0076 ] FIG . 3 illustrates a simulated campaign plan con 
struct sample , according to an embodiment . In this example , 
the campaign is NNBC IA 25-54 R & F testing . The market 
is Los Angeles . The station column lists the stations . The 
program and time slot column lists the program names and 
the time slots involved . The spot length is 30 seconds . The 
campaign dates are Jan. 1 , 2018 - Mar . 25 , 2018. The book 
column indicates the book information . The AE / SR ( e.g. , 
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by way 

ming language , including compiled or interpreted lan 
guages , and it can be deployed in any form , including as a 
stand - alone program or as a module , component , subroutine , 
or other unit suitable for use in a computing environment . A 
computer program does not necessarily correspond to a file . 
A program can be stored in a portion of a file that holds other 
programs or data , in a single file dedicated to the program in 
question , or in multiple coordinated files ( e.g. , files that store 
one or more modules , sub programs , or portions of code ) . A 
computer program can be deployed to be executed on one 
computer or on multiple computers at one site or distributed 
across multiple sites and interconnected by a communication 
network . 
[ 0109 ] The processes and logic flows described in this 
specification , including the method steps of the subject 
matter described herein , can be performed by one or more 
programmable processors ( e.g. , processor 1410 in FIG . 14 ) 
executing one or more computer programs to perform func 
tions of the subject matter described herein by operating on 
input data and generating output . The processes and logic 
flows can also be performed by , and apparatus of the subject 
matter described herein can be implemented as , special 
purpose logic circuitry , e.g. , an FPGA ( field programmable 
gate array ) or an ASIC ( application specific integrated 
circuit ) . 
[ 0110 ] FIG . 14 illustrates an example computer 1405 , 
according to some embodiments of the present disclosure . 
Computer 1405 can include a processor 1410 suitable for the 
execution of a computer program , and can include , by way 
of example , both general and special purpose microproces 
sors , and any one or more processor of any kind of digital 
computer . A processor can receive instructions and data 
from a memory 1430 ( e.g. , a read only memory or a random 
access memory or both ) . Processor 1410 can execute 
instructions and the memory 1430 can store instructions and 
data . A computer can include , or be operatively coupled to 
receive data from or transfer data to , or both , a storage 
medium 1440 for storing data ( e.g. , magnetic , magneto 
optical disks , or optical disks ) . Information carriers suitable 
for embodying computer program instructions and data can 
include all forms of nonvolatile memory , including by way 
of example semiconductor memory devices , such as 
EPROM , EEPROM , flash memory device , or magnetic 
disks . The processor 1410 and the memory 1430 can be 
supplemented by , or incorporated in , special purpose logic 
circuitry . 

[ 0111 ] The computer 1405 can also include an input / 
output 1420 , a display 1450 , and a communications interface 
1460 . 
[ 0112 ] While various embodiments have been described 
above , it should be understood that they have been presented 

of example and not limitation . It will be apparent to 
persons skilled in the relevant art ( s ) that various changes in 
form and detail can be made therein without departing from 
the spirit and scope . In fact , after reading the above descrip 
tion , it will be apparent to one skilled in the relevant art ( s ) 
how to implement alternative embodiments . For example , 
other steps may be provided , or steps may be eliminated , 
from the described flows , and other components may be 
added to , or removed from , the described systems . Accord 
ingly , other implementations are within the scope of the 
following claims . 
[ 0113 ] In addition , it should be understood that any FIGS . 
which highlight the functionality and advantages are pre 
sented for example purposes only . The disclosed methodol 
ogy and system are each sufficiently flexible and configur 
able such that they may be utilized in ways other than that 
shown . 
[ 0114 ] Although the term “ at least one ” may often be used 
in the specification , claims and drawings , the terms “ a ” , 
“ an ” , “ the ” , “ said ” , etc. also signify “ at least one ” or “ the at 
least one ” in the specification , claims and drawings . 
[ 0115 ] Finally , it is the applicant's intent that only claims 
that include the express language “ means for ” or “ step for ” 
be interpreted under 35 U.S.C. 112 ( f ) . Claims that do not 
expressly include the phrase “ means for ” or “ step for ” are 
not to be interpreted under 35 U.S.C. 112 ( f ) . 

1. A method , comprising : 
analyzing duplicated watching habits of viewers in a 

designated market using machine learning algorithms 
and auto - generated synthetic campaigns to obtain cam 
paign spot plans ; 

applying the campaign spot plants to single viewer data to 
calculate campaign spot plan Television Average Rat 
ings Points ( TARP ) pattern information ; and 

translating the TARP pattern information into reach infor 
mation determining how many people were uniquely 
exposed to each campaign spot . 

* 


