a2 United States Patent

US009905237B2

10) Patent No.: US 9,905,237 B2

Grant et al. 45) Date of Patent: *Feb. 27,2018
(54) DECODING OF ENCODED AUDIO (52) US. CL
BITSTREAM WITH METADATA CPC GI10L 197167 (2013.01); G10L 19/002
CONTAINER LOCATED IN RESERVED (2013.01); HO3G 9/005 (2013.01); HO3G
DATA SPACE 9/025 (2013.01)
(58) Field of Classification Search
(71) Applicant: DOLBY LABORATORIES None =~ .
LICENSING CORPORATION, San See application file for complete search history.
Francisco, CA (US) (56) References Cited
(72) Inventors: Michael Grant, San Francisco, CA U.S. PATENT DOCUMENTS
(US); Scott Gregory Norcross, San _
Rafael, CA (US); Jeffrey Riedmiller, 5,583,962 A 12/1996 Davis
Penngrove, CA (US); Michael Ward, 3,632,005 A 5/1997 ,DaVlS
Orinda, CA (US) (Continued)
(73) Assignee: Dolby Laboratories Licensing FOREIGN PATENT DOCUMENTS
Corporation, San Francisco, CA (US) CN 1973434 5/2007
CN 102754151 10/2012
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by O days. OTHER PUBLICATIONS
Thi.s patent is subject to a terminal dis- “Digital Audio Compression (AC-3) Enhanced 1-15 AC-3) Stan-
claimer. dard: JTC-026v131” ETSI Draft JTC-026V 131, European Telecom-
munications Standards Institute, Jan. 7, 2014, pp. 1-227.
(21) Appl. No.: 15/491,661 (Continued)
(22) Filed: Apr. 19, 2017 Primary Examiner — Richa Mishra
(65) Prior Publication Data (57) ABSTRACT
US 2017/0221496 Al Aug. 3, 2017 Apparatus and methods for generating an encoded audio
bitstream, including by including program loudness meta-
data and audio data in the bitstream, and optionally also
Related U.S. Application Data program boundary metadata in at least one segment (e.g.,
. . L frame) of the bitstream. Other aspects are apparatus and
(63) Cont.lnu.atlon of application No. 14/434,528, filed as methods for decoding such a bitstream, e.g., including by
application No. PCT/US2014/011672 on Jan. 15, performing adaptive loudness processing of the audio data
2014. of an audio program indicated by the bitstream, or authen-
(Continued) tication and/or validation of metadata and/or audio data of
such an audio program. Another aspect is an audio process-
(51) Int. CL ing unit (e.g., an encoder, decoder, or post-processor) con-
GI0L 19/16 (2013.01) figured (e.g., programmed) to perform any embodiment of
HO3G 9/00 (2006.01) the method or which includes a buffer memory which stores
(Continued) (Continued)
b pANCRM T
107~ 0a.
! : __l Audio 104N
: Decude Di?ta y 105.\\ ﬁ-}?\ 109..‘_\‘
P ~ fler/ ,
Aagio 1110 T 195 Fiiziae“{er
input ! Buffer Parser Loudness T y
tgggV i uffer arser Processing
strgam ' LPSM
! (Metadata) ™ I ; Metadata |] .
; Generator f’og
] 102 | audio State % Dialog Loudness
i Validator Meastrement
H aunn
; Log;jz;t,:ss ~ A ?
Sy e T
100 —/] User Targst Other

Encader Loudness / Dynamic Range Metadata

US 9,905,237 B2
Page 2

at least one frame of an audio bitstream generated in
accordance with any embodiment of the method.

6 Claims, 6 Drawing Sheets

Related U.S. Application Data
(60) Provisional application No. 61/824,010, filed on May
16, 2013, provisional application No. 61/754,882,
filed on Jan. 21, 2013.

(51) Imt.CL
GI0L 19/002 (2013.01)
HO03G 9/02 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

5,633,981 A 5/1997 Davis
5,727,119 A 3/1998 Davidson
6,446,037 Bl 9/2002 Fielder
2004/0044525 Al* 3/2004 Vinton HO3G 5/165
704/224
2004/0123109 Al* 6/2004 Choicccoeevennn. HO4L 9/3239
713/176
2006/0039482 Al 2/2006 Cho

2006/0158613 Al 7/2006 Fancher

2006/0256972 Al* 11/2006 ROy ..cccovviiiinnne HO4N 21/235
381/23

2008/0080722 Al 4/2008 Carroll

2009/0063159 Al* 3/2009 Crockett GI10L 19/167
704/500

2009/0164378 Al* 6/2009 Westccccoevvvnnn. G06Q 10/06
705/55

2010/0272290 Al
2012/0046956 Al
2012/0124573 Al*

10/2010 Carroll

2/2012 Stewart

5/2012 Mamtani HO4N 21/233
718/1

2012/0130721 Al

2012/0287999 Al

5/2012 Sirivara
11/2012 Li

FOREIGN PATENT DOCUMENTS

CN 102792588 11/2012
JP 5166241 9/2008
KR 10-1996-0012804 4/1996
KR 10-2008-0059156 6/2008
KR 10-0860984 9/2008
™ 200638335 11/2006
WO 2005/069612 7/2005
WO 2005/125217 12/2005
WO 2006/113062 10/2006
WO 2008/136608 11/2008
WO 2012/075246 6/2012
WO 2012/138594 10/2012
WO 2012/146757 11/2012

OTHER PUBLICATIONS

ATSC Standard: Digital Audio Compression (AC-3, E-AC-3), Doc
A/52:2012, Mar. 23, 2012, pp. 1-269.

ATSC: “ATSC Standard: Digital Audio Compression (AC-3), Revi-
sion A, Doc A/52A”, Aug. 20, 2001, pp. 1-140.

EBU-Tech 3341, “Loudness Metering: EBU Mode Metering to
Supplement Loudness Normalisation in Accordance with EBU R
128” Geneva, Aug. 2011.

ETSI Digital Audio Compression (AC-3, Enhanced AC-3) Standard
TS 102 366 v1.3.1 Jan. 7, 2014, pp. 1-227.

Fielder L.D. et al. “Introduction to Dolby Digital Plus, an Enhance-
ment to the Dolby Digital Coding System” Preprints of Papers
Presented at the AES Convention, Oct. 28, 2004, pp. 1-30.
Fielder, L. et al “Professional Audio Coder Optimized for Use with
Video” AES Preprint, 5033, 107th AES Conference, Sep. 1, 1999.
ITU-R BS.1770-3, “Algorithms to Measure Audio Programme
Loudness and True-Peak Audio Level” Aug. 2012.

Truman, M. et al “Efficient Bit Allocation, Quantization, and
Coding in an Audio Distribution System” AES Convention 107,
Sep. 1, 1999.

* cited by examiner

US 9,905,237 B2

Sheet 1 of 6

Feb. 27, 2018

U.S. Patent

g1epeIap
R_YG

i+

obugy JUBUAG / SS8UPNDT
b Jesn

J8poouy

m\: 004

3252225&5%232: ;3§§§§§§§§!i§ii ;
1apooag ! 3 |
Y /!mmh m 4 w , SSRUPNGT M
! JUBWIBINSES b JOIEDIRA]
Aanag M ssaupnot Boeig a|Ig cIny Jf.m o1 i
;
w/.fgmi 201 J 0jeIauss) M
w SENGETYI I N g M v (ejepelap) |
; NSdT i
Bans
weans-ig M m%w\\. BuIsSSantid m Esﬁmb
intulsley m mwm%sﬁ - JOSIEY s Jeung &EM..EEMWE
aipny !
’ JSpBLLC opn
pspoous =1 Jopng \Wmsu\mm SUOOUT [e /fmg W//.:L\ ,/10: w feny
i
- }
M //,mg H f!mg f!mg . ® opooa(|
{ oipny _Ei i
;
{ POE /!M\QM\ ;
M INHONTYIC |
—d BUI155820i0-1504 Jspoosq JApOosuURIL cmwmw\mwwmww%wﬁ o~ JBPOOUT e Buissanoid-aly e

US 9,905,237 B2

Sheet 2 of 6

Feb. 27, 2018

U.S. Patent

J08838004d-1804

18poos(

R\\QQN

m]
g} !
| " ! |
. w HOILg. 10jeIoURS) HOEpHEA et JOSIEA w
m Hg 1o4uoD) SIEIS oy o
m 1 //. //! g0z |
| vz (WSd) t0e !
. m elepelRiy SlElS m
m \ b d M Wesnsug
])\ SP0IS(] et ioyng te—t— iy
M hd Ble(y oipny ! uwwwwmm
o . \-z0z Ny M
M elepelapy JUl0 m

US 9,905,237 B2

Sheet 3 of 6

Feb. 27, 2018

U.S. Patent

COHO I XNY | M

Gav 'pav ‘£8Y 29V 18V 08V {0 Xis 0] suo

A

SUel

: 7 7 /IR
54 Ppe | §Isqppe | sisgppe \ CWHONTYIC \\\\\\\\&@amﬁuzﬁwﬁ ¢ LOHO | MS
Y / |
159 1S
COHO XNV (M} G8BY (M) PEY M} E8Y M| Z8Y (M LEY (A 08Y | ISE IS

US 9,905,237 B2

Sheet 4 of 6

Feb. 27, 2018

U.S. Patent

{weibBold jo BuiuBeag jop dny Bununon Beiy Asepunog weiBold Jo Xewig)

0

{-} umogQ
{ (+) gnjuned

91.<-1000

8<-100

<10

<

JGIUN0es sl

181Xy

<o
£ I00 A0 i E0

01001

01001

0101

2

o)
junl

sjusiuen Bepd
Aepunog weiboid

gl

143

el

¢l

i

0l

ABpUNOE O] S9UIBI4

Gl

£l

4

bi

0}

LD 3O 1<

oueld

{fiepunog weiBald o3 umog Bupunocn Bepq Arpunog weibold 10 XeuAg)

E

b

{-} umog]
/ (+) duned

o<}

y<-t0

8<-L00

81<-L000

J21N0Ty suivly

b

e

aal EnaipRealy Fenl

o3
o

LLOE

¢

L1000

siusiion bejdy
Aepunog welboid

o0

m;.f

0}-

Li-

[R

Pi-

gi-

ABpUNOG 0] SaLrd

St

£l

43

b

Ot

0

§ eleld

US 9,905,237 B2

Sheet 5 of 6

Feb. 27, 2018

U.S. Patent

7

aulel4 o sjdieg 716 Alepunog enig

7O BTISBUIRL

Y iV iV ivid d

Y Y Y d
% geg | eZIsauRl 4

Arepunog

U.S. Patent Feb. 27, 2018 Sheet 6 of 6 US 9,905,237 B2

Scenario 1: P1 and P2 Both Have Flags

E Program 1 (P1)| Program 2 (P2}

F F F FF FF F F F

Boundary Timer
{Calibrated by Flags, F}

Scenario 2: Only P1 Has Flags

! Program 1 (P1)] Program 2 (P2}

F F F FF

Boundary Timer
(Calibrated by Flags, F)

Scenario 3: End of P1 Spliced

] Program 1 (P1) | Program 2 (P2}

F F FFOF F F

Boundary Timer s
{Calibrated by Flags, F)

Scenario 4: End of P1, Start of P2 Spliced

E Program 1 {P1}{ Program 2 (P2)

Boundary Timer
{Calibrated by Flags, F}

s

US 9,905,237 B2

1
DECODING OF ENCODED AUDIO
BITSTREAM WITH METADATA
CONTAINER LOCATED IN RESERVED
DATA SPACE

TECHNICAL FIELD

The invention pertains to audio signal processing, and
more particularly, to encoding and decoding of audio data
bitstreams with metadata indicative of the loudness process-
ing state of audio content and the location of audio program
boundaries indicated by the bitstreams. Some embodiments
of the invention generate or decode audio data in one of the
formats known as AC-3, Enhanced AC-3 or E-AC-3, or
Dolby E.

BACKGROUND OF THE INVENTION

Dolby, Dolby Digital, Dolby Digital Plus, and Dolby E
are trademarks of Dolby Laboratories Licensing Corpora-
tion. Dolby Laboratories provides proprietary implementa-
tions of AC-3 and E-AC-3 known as Dolby Digital and
Dolby Digital Plus, respectively.

Audio data processing units typically operate in a blind
fashion and do not pay attention to the processing history of
audio data that occurs before the data is received. This may
work in a processing framework in which a single entity
does all the audio data processing and encoding for a variety
of target media rendering devices while a target media
rendering device does all the decoding and rendering of the
encoded audio data. However, this blind processing does not
work well (or at all) in situations where a plurality of audio
processing units are scattered across a diverse network or are
placed in tandem (i.e., chain) and are expected to optimally
perform their respective types of audio processing. For
example, some audio data may be encoded for high perfor-
mance media systems and may have to be converted to a
reduced form suitable for a mobile device along a media
processing chain. Accordingly, an audio processing unit may
unnecessarily perform a type of processing on the audio data
that has already been performed. For instance, a volume
leveling unit may perform processing on an input audio clip,
irrespective of whether or not the same or similar volume
leveling has been previously performed on the input audio
clip. As a result, the volume leveling unit may perform
leveling even when it is not necessary. This unnecessary
processing may also cause degradation and/or the removal
of specific features while rendering the content of the audio
data.

A typical stream of audio data includes both audio content
(e.g., one or more channels of audio content) and metadata
indicative of at least one characteristic of the audio content.
For example, in an AC-3 bitstream there are several audio
metadata parameters that are specifically intended for use in
changing the sound of the program delivered to a listening
environment. One of the metadata parameters is the DIAL-
NORM parameter, which is intended to indicate the mean
level of dialog occurring an audio program, and is used to
determine audio playback signal level.

During playback of a bitstream comprising a sequence of
different audio program segments (each having a different
DIALNORM parameter), an AC-3 decoder uses the DIAL-
NORM parameter of each segment to perform a type of
loudness processing in which it modifies the playback level
or loudness of such that the perceived loudness of the dialog
of the sequence of segments is at a consistent level. Each
encoded audio segment (item) in a sequence of encoded

10

15

20

25

30

35

40

45

50

55

60

65

2

audio items would (in general) have a different DIALNORM
parameter, and the decoder would scale the level of each of
the items such that the playback level or loudness of the
dialog for each item is the same or very similar, although this
might require application of different amounts of gain to
different ones of the items during playback.

DIALNORM typically is set by a user, and is not gener-
ated automatically, although there is a default DIALNORM
value if no value is set by the user. For example, a content
creator may make loudness measurements with a device
external to an AC-3 encoder and then transfer the result
(indicative of the loudness of the spoken dialog of an audio
program) to the encoder to set the DIALNORM value. Thus,
there is reliance on the content creator to set the DIAL-
NORM parameter correctly.

There are several different reasons why the DIALNORM
parameter in an AC-3 bitstream may be incorrect. First, each
AC-3 encoder has a default DIALNORM value that is used
during the generation of the bitstream if a DIALNORM
value is not set by the content creator. This default value may
be substantially different than the actual dialog loudness
level of the audio. Second, even if a content creator mea-
sures loudness and sets the DIALNORM value accordingly,
a loudness measurement algorithm or meter may have been
used that does not conform to the recommended AC-3
loudness measurement method, resulting in an incorrect
DIALNORM value. Third, even if an AC-3 bitstream has
been created with the DIALNORM value measured and set
correctly by the content creator, it may have been changed
to an incorrect value during transmission and/or storage of
the bitstream. For example, it is not uncommon in television
broadcast applications for AC-3 bitstreams to be decoded,
modified and then re-encoded using incorrect DIALNORM
metadata information. Thus, a DIALNORM value included
in an AC-3 bitstream may be incorrect or inaccurate and
therefore may have a negative impact on the quality of the
listening experience.

Further, the DIALNORM parameter does not indicate the
loudness processing state of corresponding audio data (e.g.
what type(s) of loudness processing have been performed on
the audio data). Until the present invention, an audio bit-
stream had not included metadata, indicative of the loudness
processing state (e.g., type(s) of loudness processing applied
to) the audio content of the audio bitstream or the loudness
processing state and loudness of the audio content of the
bitstream, in a format of a type described in the present
disclosure. Loudness processing state metadata in such a
format is useful to facilitate adaptive loudness processing of
an audio bitstream and/or verification of validity of the
loudness processing state and loudness of the audio content,
in a particularly efficient manner.

Although the present invention is not limited to use with
an AC-3 bitstream, an E-AC-3 bitstream, or a Dolby E
bitstream, for convenience it will be described in embodi-
ments in which it generates, decodes, or otherwise processes
such a bitstream which includes loudness processing state
metadata.

An AC-3 encoded bitstream comprises metadata and one
to six channels of audio content. The audio content is audio
data that has been compressed using perceptual audio cod-
ing. The metadata includes several audio metadata param-
eters that are intended for use in changing the sound of a
program delivered to a listening environment.

Details of AC-3 (also known as Dolby Digital) coding are
well known and are set forth many published references
including the following:

US 9,905,237 B2

3

ATSC Standard A52/A: Digital Audio Compression Stan-
dard (AC-3), Revision A, Advanced Television Systems
Committee, 20 Aug. 2001; and

U.S. Pat. Nos. 5,583,962; 5,632,005; 5,633,981; 5,727,
119; and 6,021,386, all of which are hereby incorporated by
reference in their entirety.

Details of Dolby Digital Plus (E-AC-3) coding are set
forth in “Introduction to Dolby Digital Plus, an Enhance-
ment to the Dolby Digital Coding System,” AES Convention
Paper 6196, 1177 AES Convention, Oct. 28, 2004.

Details of Dolby E coding are set forth in “Efficient Bit
Allocation, Quantization, and Coding in an Audio Distribu-
tion System”, AES Preprint 5068, 107th AES Conference,
August 1999 and “Professional Audio Coder Optimized for
Use with Video”, AES Preprint 5033, 107th AES Confer-
ence August 1999.

Each frame of an AC-3 encoded audio bitstream contains
audio content and metadata for 1536 samples of digital
audio. For a sampling rate of 48 kHz, this represents 32
milliseconds of digital audio or a rate of 31.25 frames per
second of audio.

Each frame of an E-AC-3 encoded audio bitstream con-
tains audio content and metadata for 256, 512, 768 or 1536
samples of digital audio, depending on whether the frame
contains one, two, three or six blocks of audio data respec-
tively. For a sampling rate of 48 kHz, this represents 5.333,
10.667, 16 or 32 milliseconds of digital audio respectively or
a rate of 189.9, 93.75, 62.5 or 31.25 frames per second of
audio respectively.

As indicated in FIG. 4, each AC-3 frame is divided into
sections (segments), including: a Synchronization Informa-
tion (SI) section which contains (as shown in FIG. 5) a
synchronization word (SW) and the first of two error cor-
rection words (CRC1); a Bitstream Information (BSI) sec-
tion which contains most of the metadata; six Audio Blocks
(ABO to AB5) which contain data compressed audio content
(and can also include metadata); waste bit segments (W)
which contain any unused bits left over after the audio
content is compressed; an Auxiliary (AUX) information
section which may contain more metadata; and the second of
two error correction words (CRC2). The waste bit segment
(W) may also be referred to as a “skip field.”

As indicated in FIG. 7, each E-AC-3 frame is divided into
sections (segments), including: a Synchronization Informa-
tion (SI) section which contains (as shown in FIG. 5) a
synchronization word (SW); a Bitstream Information (BSI)
section which contains most of the metadata; between one
and six Audio Blocks (ABO to AB5) which contain data
compressed audio content (and can also include metadata);
waste bit segments (W) which contains any unused bits left
over after the audio content is compressed (although only
one waste bit segment is shown, a different waste bit
segment would typically follow each audio block); an Aux-
iliary (AUX) information section which may contain more
metadata; and an error correction word (CRC). The waste bit
segment (W) may also be referred to as a “skip field.”

In an AC-3 (or E-AC-3) bitstream there are several audio
metadata parameters that are specifically intended for use in
changing the sound of the program delivered to a listening
environment. One of the metadata parameters is the DIAL-
NORM parameter, which is included in the BSI segment.

As shown in FIG. 6, the BSI segment of an AC-3 frame
includes a five-bit parameter (“DIALNORM”) indicating
the DIALNORM value for the program. A five-bit parameter
(“DIALNORM?2”) indicating the DIALNORM value for a
second audio program carried in the same AC-3 frame is

10

20

30

40

45

50

55

4

included if the audio coding mode (“acmod™) of the AC-3
frame is “0”, indicating that a dual-mono or “1+1” channel
configuration is in use.

The BSI segment also includes a flag (“addbsie™) indi-
cating the presence (or absence) of additional bit stream
information following the “addbsie” bit, a parameter (“add-
bsil”) indicating the length of any additional bit stream
information following the “addbsil” value, and up to 64 bits
of'additional bit stream information (“addbsi”) following the
“addbsil” value.

The BSI segment includes other metadata values not
specifically shown in FIG. 6.

BRIEF DESCRIPTION OF THE INVENTION

In a class of embodiments, the invention is an audio
processing unit that includes a buffer memory, an audio
decoder, and a parser. The buffer memory stores at least one
frame of an encoded audio bitstream. The encoded audio
bitstream includes audio data and a metadata container. The
metadata container includes a header, one or more metadata
payloads, and protection data. The header includes a sync-
word identitying the start of the container. The one or more
metadata payloads describe an audio program associated
with the audio data. The protection data is located after the
one or more metadata payloads. The protection data is also
capable of being used to verify the integrity of the metadata
container and the one or more payloads within the metadata
container. The audio decoder is coupled to the buffer
memory and is capable of decoding the audio data. The
parser is coupled to or integrated with the audio decoder and
capable of parsing the metadata container.

In typical embodiments, the method includes receiving an
encoded audio bitstream where the encoded audio bitstream
is segmented into one or more frames. The audio data is
extracted from the encoded audio bitstream, along with a
container of metadata. The container of metadata includes a
header followed by one or more metadata payloads followed
by protection data. Finally, the integrity of the container and
the one or more metadata payloads is verified through the
use of the protection data. The one or more metadata
payloads may include a program loudness payload that
contains data indicative of the measured loudness of an
audio program associated with the audio data.

A payload of program loudness metadata, referred to as
loudness processing state metadata (“LPSM”), embedded in
an audio bitstream in accordance with typical embodiments
of the invention may be authenticated and validated, e.g., to
enable loudness regulatory entities to verify if a particular
program’s loudness is already within a specified range and
that the corresponding audio data itself have not been
modified (thereby ensuring compliance with applicable
regulations). A loudness value included in a data block
comprising the loudness processing state metadata may be
read out to verify this, instead of computing the loudness
again. In response to LPSM, a regulatory agency may
determine that corresponding audio content is in compliance
(as indicated by the LPSM) with loudness statutory and/or
regulatory requirements (e.g., the regulations promulgated
under the Commercial Advertisement Loudness Mitigation
Act, also known as the “CALM” Act) without the need to
compute loudness of the audio content.

Loudness measurements that are required for compliance
with some loudness statutory and/or regulatory requirements
(e.g., the regulations promulgated under the CALM Act) are
based on integrated program loudness. Integrated program
loudness requires that a loudness measurement, either of the

US 9,905,237 B2

5

dialog level or full-mix level, be made over an entire audio
program. Thus, in order to make program loudness mea-
surements (e.g., at various stages in the broadcast chain) to
verify compliance with typical legal requirements, it is
essential for the measurements to be made with knowledge
of what audio data (and metadata) determine an entire audio
program, and this typically requires knowledge of the loca-
tion of the beginning and the end of the program (e.g., during
processing of a bitstream indicative of a sequence of audio
programs).

In accordance with typical embodiments of the present
invention, an encoded audio bitstream is indicative of at
least one audio program (e.g., a sequence of audio pro-
grams), and program boundary metadata and LPSM
included in the bitstream enable resetting of program loud-
ness measurement at the end of a program and thus provide
an automated way of measuring integrated program loud-
ness. Typical embodiments of the invention include program
boundary metadata in an encoded audio bitstream in an
efficient manner, which allows accurate and robust determi-
nation of at least one boundary between consecutive audio
programs indicated by the bitstream. Typical embodiments
allow accurate and robust determination of a program
boundary in the sense that they allow accurate program
boundary determination even in cases in which bitstreams
indicative of different programs are spliced together (to
generate the inventive bitstream) in a manner that truncates
one or both of the spliced bitstreams (and thus discards
program boundary metadata that had been included in at
least one of the pre-splicing bitstreams).

In typical embodiments, the program boundary metadata
in a frame of the inventive bitstream is a program boundary
flag indicative of a frame count. Typically, the flag is
indicative of the number of frames between the current
frame (the frame which includes the flag) and a program
boundary (the beginning or the end of the current audio
program). In some preferred embodiments, program bound-
ary flags are inserted in a symmetric, efficient manner at the
beginning and end of each bitstream segment which is
indicative of a single program (i.e., in frames occurring
within some predetermined number of frames after the
segment’s beginning, and in frames occurring within some
predetermined number of frames before the segment’s end),
so that when two such bitstream segments are concatenated
(so as to be indicative of a sequence of two programs), the
program boundary metadata can be present (e.g., symmetri-
cally) on both sides of the boundary between the two
programs.

To limit the data rate increase which results from includ-
ing program boundary metadata in an encoded audio bit-
stream (which may be indicative of one audio program or a
sequence of audio programs), in typical embodiments pro-
gram boundary flags are inserted in only a subset of the
frames of the bitstream. Typically, the boundary flag inser-
tion rate is a non-increasing function of increasing separa-
tion of each of the bitstream’s frames (in which a flag is
inserted) from the program boundary which is nearest to said
each of the frames, where “boundary flag insertion rate”
denotes the average ratio of the number of frames (indicative
of a program) which include a program boundary flag to the
number of frames (indicative of the program) which do not
include a program boundary flag, where the average is a
running average over a number (e.g., relatively small num-
ber) of consecutive frames of the encoded audio bitstream.
In a class of embodiments, the boundary flag insertion rate
is a logarithmically decreasing function of increasing dis-
tance (of each flag insertion location) from the nearest

10

15

20

25

30

35

40

45

50

55

60

65

6

program boundary, and for each flag-containing frame
which includes one of the flags, the size of the flag in said
flag-containing frame is equal to or greater than the size of
each flag in a frame located closer to the nearest program
boundary than is said flag-containing frame (i.e., the size of
the program boundary flag in each flag-containing frame is
a non-decreasing function of increasing separation of said
flag-containing frame from the nearest program boundary).

Another aspect of the invention is an audio processing
unit (APU) configured to perform any embodiment of the
inventive method. In another class of embodiments, the
invention is an APU including a buffer memory (buffer)
which stores (e.g., in a non-transitory manner) at least one
frame of an encoded audio bitstream which has been gen-
erated by any embodiment of the inventive method.
Examples of APUs include, but are not limited to encoders
(e.g., transcoders), decoders, codecs, pre-processing systems
(pre-processors), post-processing systems (post-processors),
audio bitstream processing systems, and combinations of
such elements.

In another class of embodiments, the invention is an audio
processing unit (APU) configured to generate an encoded
audio bitstream comprising audio data segments and meta-
data segments, where the audio data segments are indicative
of audio data, and each of at least some of the metadata
segments includes loudness processing state metadata
(LPSM) and optionally also program boundary metadata.
Typically, at least one such metadata segment in a frame of
the bitstream includes at least one segment of LPSM indica-
tive of whether a first type of loudness processing has been
performed on the audio data of the frame (i.e., audio data in
at least one audio data segment of the frame), and at least
one other segment of LPSM indicative of loudness of at least
some of the audio data of the frame (e.g., dialog loudness of
at least some of the audio data of the frame which are
indicative of dialog). In one embodiment in this class, the
APU is an encoder configured to encode input audio to
generate encoded audio, and the audio data segments
include the encoded audio. In typical embodiments in this
class, each of the metadata segments has a preferred format
to be described herein.

In some embodiments, each of the metadata segments of
the encoded bitstream (an AC-3 bitstream or an E-AC-3
bitstream in some embodiments) which includes LPSM
(e.g., LPSM and program boundary metadata) is included in
a waste bit of skip field segment of a frame of the bitstream
(e.g., a waste bit segment W of the type shown in FIG. 4 or
FIG. 7). In other embodiments, each of the metadata seg-
ments of the encoded bitstream (an AC-3 bitstream or an
E-AC-3 bitstream in some embodiments) which includes
LPSM (e.g., LPSM and program boundary metadata) is
included as additional bit stream information in the “addbsi”
field of the Bitstream Information (“BSI”) segment of a
frame of the bitstream or in an auxdata field (e.g., an AUX
segment of the type shown in FIG. 4 or FIG. 7) at the end
of a frame of the bitstream. Each metadata segment includ-
ing LPSM may have the format specified herein with
reference to Tables 1 and 2 below (i.e., it includes the core
elements specified in Table 1 or a variation thereon, fol-
lowed by payload ID (identifying the metadata as LPSM)
and payload size values, followed by the payload (LPSM
data which has format as indicated in Table 2, or format as
indicated in a variation on Table 2 described herein). In some
embodiments, a frame may include one or two metadata
segments, each of which includes LPSM, and if the frame

US 9,905,237 B2

7
includes two metadata segments, one may be present in the
addbsi field of the frame and the other in the AUX field of
the frame.

In a class of embodiments, the invention is a method
including the steps of encoding audio data to generate an
AC-3 or E-AC-3 encoded audio bitstream, including by
including in a metadata segment (of at least one frame of the
bitstream) LPSM and program boundary metadata and
optionally also other metadata for the audio program to
which the frame belongs. In some embodiments, each such
metadata segment is included in an addbsi field of the frame,
or an auxdata field of the frame. In other embodiments, each
such metadata segment is included in a waste bit segment of
the frame. In some embodiments, each metadata segment
which contains LPSM and program boundary metadata
contains a core header (and optionally also additional core
elements), and after the core header (or the core header and
other core elements) an LPSM payload (or container) seg-
ment having the following format:

a header, typically including at least one identification
value (e.g., LPSM format version, length, period,
count, and substream association values, as indicated in
Table 2 set forth herein), and

after the header, the LPSM and the program boundary
metadata. The program boundary metadata may
include a program boundary frame count, and a code
value (e.g., an “offset_exist” value) indicative of
whether the frame includes only a program boundary
frame count or both a program boundary frame count
and an offset value), and (in some cases) an offset
value. The LPSM may include:

at least one dialog indication value indicating whether
corresponding audio data indicates dialog or does
not indicate dialog (e.g., which channels of correspond-
ing audio data indicate dialog). The dialog indication
value(s) may indicate whether dialog is present in any
combination of, or all of, the channels of the corre-
sponding audio data;

at least one loudness regulation compliance value indi-
cating whether corresponding audio data complies with
an indicated set of loudness regulations;

at least one loudness processing value indicating at least
one type of loudness processing which has been per-
formed on the corresponding audio data; and

at least one loudness value indicating at least one loudness
(e.g., peak or average loudness) characteristic of the
corresponding audio data.

In other embodiments, the encoded bitstream is a bit-
stream which is not an AC-3 bitstream or an E-AC-3
bitstream, and each of the metadata segments which
includes LPSM (and optionally also program boundary
metadata) is included in a segment (or field or slot) of the
bitstream reserved for storage of additional data. Each
metadata segment including LPSM may have format similar
or identical to that specified herein with reference to Tables
1 and 2 below (i.e., it includes core elements similar or
identical to those specified in Table 1, followed by payload
ID (identifying the metadata as LPSM) and payload size
values, followed by the payload (LPSM data which has
format similar or identical to the format indicated in Table
2 or a variation on Table 2 described herein).

In some embodiments, the encoded bitstream comprises a
sequence of frames, each of the frames includes a Bitstream
Information (“BSI”) segment including an “addbsi” field
(sometimes referred to as segment or slot), and an auxdata
field or slot (e.g., the encoded bitstream is an AC-3 bitstream
or an E-AC-3 bitstream), and comprises audio data segments

10

20

25

30

35

40

45

50

55

60

65

8

(e.g., the AB0-ABS segments of the frame shown in FIG. 4)
and metadata segments, where the audio data segments are
indicative of audio data, and each of at least some of the
metadata segments includes loudness processing state meta-
data (LPSM) and optionally also program boundary meta-
data. The LPSM are present in the bitstream in the following
format. Each of the metadata segments which includes
LPSM is included in an “addbsi” field of the BSI segment of
a frame of the bitstream, or in an auxdata field of a frame of
the bitstream, or in a waste bit segment of a frame of the
bitstream. Each metadata segment including LPSM includes
an LPSM payload (or container) segment having the fol-
lowing format:

a header (typically including at least one identification
value, e.g., the LPSM format version, length, period,
count, and substream association values indicated in
Table 2 below); and

after the header, the LPSM and optionally also the pro-
gram boundary metadata. The program boundary meta-
data may include a program boundary frame count, and
a code value (e.g., an “offset_exist” value) indicative of
whether the frame includes only a program boundary
frame count or both a program boundary frame count
and an offset value), and (in some cases) an offset
value. The LPSM may include:

at least one dialog indication value (e.g., parameter “Dia-
log channel(s)” of Table 2) indicating whether corre-
sponding audio data indicates dialog or does not indi-
cate dialog (e.g., which channels of corresponding
audio data indicate dialog). The dialog indication
value(s) may indicate whether dialog is present in any
combination of, or all of, the channels of the corre-
sponding audio data;

at least one loudness regulation compliance value (e.g.,
parameter “Loudness Regulation Type” of Table 2)
indicating whether corresponding audio data complies
with an indicated set of loudness regulations;

at least one loudness processing value (e.g., one or
more of parameters “Dialog gated Loudness Correction
flag,” “Loudness Correction Type,” of Table 2) indi-
cating at least one type of loudness processing which
has been performed on the corresponding audio data;
and

at least one loudness value (e.g., one or more of param-
eters “ITU Relative Gated Loudness,” “ITU Speech
Gated Loudness,” “ITU (EBU 3341) Short-term 3s
Loudness,” and “True Peak” of Table 2) indicating at
least one loudness (e.g., peak or average loudness)
characteristic of the corresponding audio data.

In any embodiment of the invention which contemplates,
uses, or generates at least one loudness value indicative of
corresponding audio data, the loudness value(s) may indi-
cate at least one loudness measurement characteristic uti-
lized to process the loudness and/or dynamic range of the
audio data.

In some implementations, each of the metadata segments
in an “addbsi” field, or an auxdata field, or a waste bit
segment, of a frame of the bitstream has the following
format:

a core header (typically including a syncword identifying
the start of the metadata segment, followed by identi-
fication values, e.g., the Core element version, length,
and period, extended element count, and substream
association values indicated in Table 1 below); and

after the core header, at least one protection value (e.g., an
HMAC digest and Audio Fingerprint values, where the
HMAC digest may be a 256-bit HMAC digest (using
SHA-2 algorithm) computed over the audio data, the

US 9,905,237 B2

9

core element, and all expanded elements, of an entire
frame, as indicated in Table 1) useful for at least one of
decryption, authentication, or validation of at least one
of loudness processing state metadata or the corre-
sponding audio data); and

also after the core header, if the metadata segment
includes LPSM, LPSM payload identification (“ID”)
and LPSM payload size values which identify follow-
ing metadata as an LPSM payload and indicate size of
the LPSM payload. The LPSM payload segment (pref-
erably having the above-specified format) follows the
LPSM payload ID and LPSM payload size values.

In some embodiments of the type described in the previ-
ous paragraph, each of the metadata segments in the auxdata
field (or “addbsi” field or waste bit segment) of the frame has
three levels of structure:

a high level structure, including a flag indicating whether
the auxdata (or addbsi) field includes metadata, at least
one ID value indicating what type(s) of metadata are
present, and typically also a value indicating how many
bits of metadata (e.g., of each type) are present (if
metadata is present). One type of metadata that could
be present is LSPM, another type of metadata that
could be present is program boundary metadata, and
another type of metadata that could be present is media
research metadata;

an intermediate level structure, comprising a core element
for each identified type of metadata (e.g., core header,
protection values, and payload ID and payload size
values, e.g., of the type mentioned above, for each
identified type of metadata); and

a low level structure, comprising each payload for one
core element (e.g., an LPSM payload, if one is identi-
fied by the core element as being present, and/or a
metadata payload of another type, if one is identified by
the core element as being present).

The data values in such a three level structure can be
nested. For example, the protection value(s) for an LPSM
payload and/or another metadata payload identified by a
core element can be included after each payload identified
by the core element (and thus after the core header of the
core element). In one example, a core header could identify
an LPSM payload and another metadata payload, payload
ID and payload size values for the first payload (e.g., the
LPSM payload) could follow the core header, the first
payload itself could follow the ID and size values, the
payload ID and payload size value for the second payload
could follow the first payload, the second payload itself
could follow these ID and size values, and protection
value(s) for either or both of the payloads (or for core
element values and either or both of the payloads) could
follow the last payload.

In some embodiments, the core element of a metadata
segment in an auxdata field (or “addbsi” field or waste bit
segment) of a frame comprises a core header (typically
including identification values, e.g., core element version),
and after the core header: values indicative of whether
fingerprint data is included for metadata of the metadata
segment, values indicative of whether external data (related
to audio data corresponding to the metadata of the metadata
segment) exists, payload ID and payload size values for each
type of metadata (e.g., LPSM, and/or metadata of a type
other than LPSM) identified by the core element, and
protection values for at least one type of metadata identified
by the core element. The metadata payload(s) of the meta-
data segment follow the core header, and are (in some cases)
nested within values of the core element.

20

25

30

40

45

10

In another preferred format, the encoded bitstream is a
Dolby E bitstream, and each of the metadata segments which
includes LPSM (and optionally also program boundary
metadata) is included in the first N sample locations of the
Dolby E guard band interval.

In another class of embodiments, the invention is an APU
(e.g., a decoder) coupled and configured to receive an
encoded audio bitstream comprising audio data segments
and metadata segments, where the audio data segments are
indicative of audio data, and each of at least some of the
metadata segments includes loudness processing state meta-
data (LPSM) and optionally also program boundary meta-
data, and to extract the LPSM from the bitstream, to generate
decoded audio data in response to the audio data and to
perform at least one adaptive loudness processing operation
on the audio data using the LPSM. Some embodiments in
this class also include a post-processor coupled to the APU,
wherein the post-processor is coupled and configured to
perform at least one adaptive loudness processing operation
on the audio data using the LPSM.

In another class of embodiments, the invention is an audio
processing unit (APU) including a buffer memory (buffer)
and a processing subsystem coupled to the buffer, wherein
the APU is coupled to receive an encoded audio bitstream
comprising audio data segments and metadata segments,
where the audio data segments are indicative of audio data,
and each of at least some of the metadata segments includes
loudness processing state metadata (LPSM) and optionally
also program boundary metadata, the buffer stores (e.g., in
a non-transitory manner) at least one frame of the encoded
audio bitstream, and the processing subsystem is configured
to extract the LPSM from the bitstream and to perform at
least one adaptive loudness processing operation on the
audio data using the LPSM. In typical embodiments in this
class, the APU is one of an encoder, a decoder, and a
post-processor.

In some implementations of the inventive method, the
audio bitstream generated is one of an AC-3 encoded
bitstream, an E-AC-3 bitstream, or a Dolby E bitstream,
including loudness processing state metadata, as well as
other metadata (e.g., a DIALNORM metadata parameter,
dynamic range control metadata parameters, and other meta-
data parameters). In some other implementations of the
method, the audio bitstream generated is an encoded bit-
stream of another type.

Aspects of the invention include a system or device
configured (e.g., programmed) to perform any embodiment
of the inventive method, and a computer readable medium
(e.g., a disc) which stores code (e.g., in a non-transitory
manner) for implementing any embodiment of the inventive
method or steps thereof. For example, the inventive system
can be or include a programmable general purpose proces-
sor, digital signal processor, or microprocessor, programmed
with software or firmware and/or otherwise configured to
perform any of a variety of operations on data, including an
embodiment of the inventive method or steps thereof. Such
a general purpose processor may be or include a computer
system including an input device, a memory, and processing
circuitry programmed (and/or otherwise configured) to per-
form an embodiment of the inventive method (or steps
thereof) in response to data asserted thereto.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an embodiment of a system
which may be configured to perform an embodiment of the
inventive method.

US 9,905,237 B2

11

FIG. 2 is a block diagram of an encoder which is an
embodiment of the inventive audio processing unit.

FIG. 3 is a block diagram of a decoder which is an
embodiment of the inventive audio processing unit, and a
post-processor coupled thereto which is another embodi-
ment of the inventive audio processing unit.

FIG. 4 is a diagram of an AC-3 frame, including the
segments into which it is divided.

FIG. 5 is a diagram of the Synchronization Information
(SI) segment of an AC-3 frame, including segments into
which it is divided.

FIG. 6 is a diagram of the Bitstream Information (BSI)
segment of an AC-3 frame, including segments into which
it is divided.

FIG. 7 is a diagram of an E-AC-3 frame, including
segments into which it is divided.

FIG. 8 is a diagram of frames of an encoded audio
bitstream which includes program boundary metadata
whose format is in accordance with an embodiment of the
invention.

FIG. 9 is a diagram of other frames of the encoded audio
bitstream of FIG. 9. Some of these frames include program
boundary metadata having format in accordance with an
embodiment of the invention.

FIG. 10 is a diagram of two encoded audio bitstreams: a
bitstream (IEB) in which a program boundary (labeled
“Boundary”) is aligned with a transition between two frames
of the bitstream, and another bitstream (TB) in which a
program boundary (labeled “True Boundary”) is offset by
512 samples from a transition between two frames of the
bitstream.

FIG. 11 is a set of diagrams showing four encoded audio
bitstreams. The bitstream at the top of FIG. 11 (labeled
“Scenario 1) is indicative of a first audio program (P1)
including program boundary metadata followed by a second
audio program (P2) which also includes program boundary
metadata; the second bitstream (labeled “Scenario 2”) is
indicative of a first audio program (P1) which includes
program boundary metadata followed by a second audio
program (P2) which does not include program boundary
metadata; the third bitstream (labeled “Scenario 3”) is
indicative of a truncated first audio program (P1) which
includes program boundary metadata, and which has been
spliced with an entire second audio program (P2) which
includes program boundary metadata; and the fourth bit-
stream (labeled “Scenario 4”) is indicative of a truncated
first audio program (P1) which includes program boundary
metadata, and a truncated second audio program (P2) which
includes program boundary metadata and which has been
spliced with a portion of the first audio program.

NOTATION AND NOMENCLATURE

Throughout this disclosure, including in the claims, the
expression performing an operation “on” a signal or data
(e.g., filtering, scaling, transforming, or applying gain to, the
signal or data) is used in a broad sense to denote performing
the operation directly on the signal or data, or on a processed
version of the signal or data (e.g., on a version of the signal
that has undergone preliminary filtering or pre-processing
prior to performance of the operation thereon).

Throughout this disclosure including in the claims, the
expression “system” is used in a broad sense to denote a
device, system, or subsystem. For example, a subsystem that
implements a decoder may be referred to as a decoder
system, and a system including such a subsystem (e.g., a
system that generates X output signals in response to mul-

10

15

20

25

30

40

45

50

55

60

12

tiple inputs, in which the subsystem generates M of the
inputs and the other X-M inputs are received from an
external source) may also be referred to as a decoder system.

Throughout this disclosure including in the claims, the
term “processor” is used in a broad sense to denote a system
or device programmable or otherwise configurable (e.g.,
with software or firmware) to perform operations on data
(e.g., audio, or video or other image data). Examples of
processors include a field-programmable gate array (or other
configurable integrated circuit or chip set), a digital signal
processor programmed and/or otherwise configured to per-
form pipelined processing on audio or other sound data, a
programmable general purpose processor or computer, and
a programmable microprocessor chip or chip set.

Throughout this disclosure including in the claims, the
expressions “audio processor” and “audio processing unit”
are used interchangeably, and in a broad sense, to denote a
system configured to process audio data. Examples of audio
processing units include, but are not limited to encoders
(e.g., transcoders), decoders, codecs, pre-processing sys-
tems, post-processing systems, and bitstream processing
systems (sometimes referred to as bitstream processing
tools).

Throughout this disclosure including in the claims, the
expression “processing state metadata” (e.g., as in the
expression “loudness processing state metadata™) refers to
separate and different data from corresponding audio data
(the audio content of an audio data stream which also
includes processing state metadata). Processing state meta-
data is associated with audio data, indicates the loudness
processing state of the corresponding audio data (e.g., what
type(s) of processing have already been performed on the
audio data), and typically also indicates at least one feature
or characteristic of the audio data. The association of the
processing state metadata with the audio data is time-
synchronous. Thus, present (most recently received or
updated) processing state metadata indicates that the corre-
sponding audio data contemporaneously comprises the
results of the indicated type(s) of audio data processing. In
some cases, processing state metadata may include process-
ing history and/or some or all of the parameters that are used
in and/or derived from the indicated types of processing.
Additionally, processing state metadata may include at least
one feature or characteristic of the corresponding audio data,
which has been computed or extracted from the audio data.
Processing state metadata may also include other metadata
that is not related to or derived from any processing of the
corresponding audio data. For example, third party data,
tracking information, identifiers, proprietary or standard
information, user annotation data, user preference data, etc.
may be added by a particular audio processing unit to pass
on to other audio processing units.

Throughout this disclosure including in the claims, the
expression “loudness processing state metadata” (or
“LPSM”) denotes processing state metadata indicative of the
loudness processing state of corresponding audio data (e.g.
what type(s) of loudness processing have been performed on
the audio data) and typically also at least one feature or
characteristic (e.g., loudness) of the corresponding audio
data. Loudness processing state metadata may include data
(e.g., other metadata) that is not (i.e., when it is considered
alone) loudness processing state metadata.

Throughout this disclosure including in the claims, the
expression “channel” (or “audio channel”) denotes a mono-
phonic audio signal.

Throughout this disclosure including in the claims, the
expression “audio program” denotes a set of one or more

US 9,905,237 B2

13

audio channels and optionally also associated metadata (e.g.,
metadata that describes a desired spatial audio presentation,
and/or LPSM, and/or program boundary metadata).

Throughout this disclosure including in the claims, the
expression “program boundary metadata” denotes metadata
of an encoded audio bitstream, where the encoded audio
bitstream is indicative of at least one audio program (e.g.,
two or more audio programs), and the program boundary
metadata is indicative of location in the bitstream of at least
one boundary (beginning and/or end) of at least one said
audio program. For example, the program boundary meta-
data (of an encoded audio bitstream indicative of an audio
program) may include metadata indicative of the location
(e.g., the start of the “N”th frame of the bitstream, or the
“M”th sample location of the bitstream’s “N”th frame) of
the beginning of the program, and additional metadata
indicative of the location (e.g., the start of the “J”’th frame of
the bitstream, or the “K”th sample location of the bitstream’s
“J’th frame) of the program’s end.

Throughout this disclosure including in the claims, the
term “couples” or “coupled” is used to mean either a direct
or indirect connection. Thus, if a first device couples to a
second device, that connection may be through a direct
connection, or through an indirect connection via other
devices and connections.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

In accordance with typical embodiments of the invention,
a payload of program loudness metadata, referred to as
loudness processing state metadata (“LPSM”) and option-
ally also program boundary metadata are embedded in one
or more reserved fields (or slots) of metadata segments of an
audio bitstream which also includes audio data in other
segments (audio data segments). Typically, at least one
segment of each frame of the bitstream includes LPSM, and
at least one other segment of the frame includes correspond-
ing audio data (i.e., audio data whose loudness processing
state and loudness is indicated by the LPSM). In some
embodiments, the data volume of the LPSM may be suffi-
ciently small to be carried without affecting the bit rate
allocated to carry the audio data.

Communicating loudness processing state metadata in an
audio data processing chain is particularly useful when two
or more audio processing units need to work in tandem with
one another throughout the processing chain (or content
lifecycle). Without inclusion of loudness processing state
metadata in an audio bitstream, severe media processing
problems such as quality, level and spatial degradations may
occur, for example, when two or more audio codecs are
utilized in the chain and single-ended volume leveling is
applied more than once during bitstream’s journey to a
media consuming device (or a rendering point of the audio
content of the bitstream).

FIG. 1 is a block diagram of an exemplary audio pro-
cessing chain (an audio data processing system), in which
one or more of the elements of the system may be configured
in accordance with an embodiment of the present invention.
The system includes the followings elements, coupled
together as shown: a pre-processing unit, an encoder, a
signal analysis and metadata correction unit, a transcoder, a
decoder, and a pre-processing unit. In variations on the
system shown, one or more of the elements are omitted, or
additional audio data processing units are included.

In some implementations, the pre-processing unit of FIG.
1 is configured to accept PCM (time-domain) samples

20

25

40

45

55

14

comprising audio content as input, and to output processed
PCM samples. The encoder may be configured to accept the
PCM samples as input and to output an encoded (e.g.,
compressed) audio bitstream indicative of the audio content.
The data of the bitstream that are indicative of the audio
content are sometimes referred to herein as “audio data.” If
the encoder is configured in accordance with a typical
embodiment of the present invention, the audio bitstream
output from the encoder includes loudness processing state
metadata (and typically also other metadata, optionally
including program boundary metadata) as well as audio
data.

The signal analysis and metadata correction unit of FIG.
1 may accept one or more encoded audio bitstreams as input
and determine (e.g., validate) whether processing state meta-
data in each encoded audio bitstream is correct, by perform-
ing signal analysis (e.g., using program boundary metadata
in an encoded audio bitstream). If the signal analysis and
metadata correction unit finds that included metadata is
invalid, it typically replaces the incorrect value(s) with the
correct value(s) obtained from signal analysis. Thus, each
encoded audio bitstream output from the signal analysis and
metadata correction unit may include corrected (or uncor-
rected) processing state metadata as well as encoded audio
data.

The transcoder of FIG. 1 may accept encoded audio
bitstreams as input, and output modified (e.g., differently
encoded) audio bitstreams in response (e.g., by decoding an
input stream and re-encoding the decoded stream in a
different encoding format). If the transcoder is configured in
accordance with a typical embodiment of the present inven-
tion, the audio bitstream output from the transcoder includes
loudness processing state metadata (and typically also other
metadata) as well as encoded audio data. The metadata may
have been included in the bitstream.

The decoder of FIG. 1 may accept encoded (e.g., com-
pressed) audio bitstreams as input, and output (in response)
streams of decoded PCM audio samples. If the decoder is
configured in accordance with a typical embodiment of the
present invention, the output of the decoder in typical
operation is or includes any of the following:

a stream of audio samples, and a corresponding stream of
loudness processing state metadata (and typically also
other metadata) extracted from an input encoded bit-
stream; or

a stream of audio samples, and a corresponding stream of
control bits determined from loudness processing state
metadata (and typically also other metadata) extracted
from an input encoded bitstream; or

a stream of audio samples, without a corresponding
stream of processing state metadata or control bits
determined from processing state metadata. In this last
case, the decoder may extract loudness processing state
metadata (and/or other metadata) from the input
encoded bitstream and perform it least one operation on
the extracted metadata (e.g., validation), even though it
does not output the extracted metadata or control bits
determined therefrom.

By configuring the post-processing unit of FIG. 1 in
accordance with a typical embodiment of the present inven-
tion, the post-processing unit is configured to accept a
stream of decoded PCM audio samples, and to perform post
processing thereon (e.g., volume leveling of the audio con-
tent) using loudness processing state metadata (and typically
also other metadata) received with the samples, or control
bits (determined by the decoder from loudness processing
state metadata and typically also other metadata) received

US 9,905,237 B2

15

with the samples. The post-processing unit is typically also
configured to render the post-processed audio content for
playback by one or more speakers.

Typical embodiments of the present invention provide an
enhanced audio processing chain in which audio processing
units (e.g., encoders, decoders, transcoders, and pre- and
post-processing units) adapt their respective processing to be
applied to audio data according to a contemporaneous state
of the media data as indicated by loudness processing state
metadata respectively received by the audio processing
units.

The audio data input to any audio processing unit of the
FIG. 1 system (e.g., the encoder or transcoder of FIG. 1) may
include loudness processing state metadata (and optionally
also other metadata) as well as audio data (e.g., encoded
audio data). This metadata may have been included in the
input audio by another element of the FIG. 1 system (or
another source, not shown in FIG. 1) in accordance with an
embodiment of the present invention. The processing unit
which receives the input audio (with metadata) may be
configured to perform it least one operation on the metadata
(e.g., validation) or in response to the metadata (e.g., adap-
tive processing of the input audio), and typically also to
include in its output audio the metadata, a processed version
of the metadata, or control bits determined from the meta-
data.

A typical embodiment of the inventive audio processing
unit (or audio processor) is configured to perform adaptive
processing of audio data based on the state of the audio data
as indicated by loudness processing state metadata corre-
sponding to the audio data. In some embodiments, the
adaptive processing is (or includes) loudness processing (if
the metadata indicates that the loudness processing, or
processing similar thereto, has not already been performed
on the audio data, but is not (and does not include) loudness
processing (if the metadata indicates that such loudness
processing, or processing similar thereto, has already been
performed on the audio data). In some embodiments, the
adaptive processing is or includes metadata validation (e.g.,
performed in a metadata validation sub-unit) to ensure the
audio processing unit performs other adaptive processing of
the audio data based on the state of the audio data as
indicated by the loudness processing state metadata. In some
embodiments, the validation determines reliability of the
loudness processing state metadata associated with (e.g.,
included in a bitstream with) the audio data. For example, if
the metadata is validated to be reliable, then results from a
type of previously performed audio processing may be
re-used and new performance of the same type of audio
processing may be avoided. On the other hand, if the
metadata is found to have been tampered with (or otherwise
unreliable), then the type of media processing purportedly
previously performed (as indicated by the unreliable meta-
data) may be repeated by the audio processing unit, and/or
other processing may be performed by the audio processing
unit on the metadata and/or the audio data. The audio
processing unit may also be configured to signal to other
audio processing units downstream in an enhanced media
processing chain that loudness processing state metadata
(e.g., present in a media bitstream) is valid, if the unit
determines that the processing state metadata is valid (e.g.,
based on a match of a cryptographic value extracted and a
reference cryptographic value).

FIG. 2 is a block diagram of an encoder (100) which is an
embodiment of the inventive audio processing unit. Any of
the components or elements of encoder 100 may be imple-
mented as one or more processes and/or one or more circuits

10

15

20

25

30

35

40

45

50

55

60

65

16

(e.g., ASICs, FPGAs, or other integrated circuits), in hard-
ware, software, or a combination of hardware and software.
Encoder 100 comprises frame buffer 110, parser 111,
decoder 101, audio state validator 102, loudness processing
stage 103, audio stream selection stage 104, encoder 105,
stuffer/formatter stage 107, metadata generation stage 106,
dialog loudness measurement subsystem 108, and frame
buffer 109, connected as shown. Typically also, encoder 100
includes other processing elements (not shown).

Encoder 100 (which is a transcoder) is configured to
convert an input audio bitstream (which, for example, may
be one of an AC-3 bitstream, an E-AC-3 bitstream, or a
Dolby E bitstream) to an encoded output audio bitstream
(which, for example, may be another one of an AC-3
bitstream, an E-AC-3 bitstream, or a Dolby E bitstream)
including by performing adaptive and automated loudness
processing using loudness processing state metadata
included in the input bitstream. For example, encoder 100
may be configured to convert an input Dolby E bitstream (a
format typically used in production and broadcast facilities
but not in consumer devices which receive audio programs
which have been broadcast thereto) to an encoded output
audio bitstream (suitable for broadcasting to consumer
devices) in AC-3 or E-AC-3 format.

The system of FIG. 2 also includes encoded audio deliv-
ery subsystem 150 (which stores and/or delivers the encoded
bitstreams output from encoder 100) and decoder 152. An
encoded audio bitstream output from encoder 100 may be
stored by subsystem 150 (e.g., in the form of a DVD or Blu
ray disc), or transmitted by subsystem 150 (which may
implement a transmission link or network), or may be both
stored and transmitted by subsystem 150. Decoder 152 is
configured to decode an encoded audio bitstream (generated
by encoder 100) which it receives via subsystem 150,
including by extracting loudness processing state metadata
(LPSM) from each frame of the bitstream (and optionally
also extracting program boundary metadata from the bit-
stream), and generating decoded audio data. Typically,
decoder 152 is configured to perform adaptive loudness
processing on the decoded audio data using the LPSM (and
optionally also program boundary metadata), and/or to for-
ward the decoded audio data and LPSM to a post-processor
configured to perform adaptive loudness processing on the
decoded audio data using the LPSM (and optionally also
program boundary metadata). Typically, decoder 152
includes a buffer which stores (e.g., in a non-transitory
manner) the encoded audio bitstream received from subsys-
tem 150.

Various implementations of encoder 100 and decoder 152
are configured to perform different embodiments of the
inventive method. Frame buffer 110 is a buffer memory
coupled to receive an encoded input audio bitstream. In
operation, buffer 110 stores (e.g., in a non-transitory man-
ner) at least one frame of the encoded audio bitstream, and
a sequence of the frames of the encoded audio bitstream is
asserted from buffer 110 to parser 111.

Parser 111 is coupled and configured to extract loudness
processing state metadata (LPSM), and optionally also pro-
gram boundary metadata (and/or other metadata) from each
frame of the encoded input audio in which such metadata is
included, to assert at least the LPSM (and optionally also
program boundary metadata and/or other metadata) to audio
state validator 102, loudness processing stage 103, stage 106
and subsystem 108, to extract audio data from the encoded
input audio, and to assert the audio data to decoder 101.
Decoder 101 of encoder 100 is configured to decode the
audio data to generate decoded audio data, and to assert the

US 9,905,237 B2

17

decoded audio data to loudness processing stage 103, audio
stream selection stage 104, subsystem 108, and typically
also to state validator 102.

State validator 102 is configured to authenticate and
validate the LPSM (and optionally other metadata) asserted
thereto. In some embodiments, the LPSM is (or is included
in) a data block that has been included in the input bitstream
(e.g., in accordance with an embodiment of the present
invention). The block may comprise a cryptographic hash (a
hash-based message authentication code or “HMAC”) for
processing the LPSM (and optionally also other metadata)
and/or the underlying audio data (provided from decoder
101 to validator 102). The data block may be digitally signed
in these embodiments, so that a downstream audio process-
ing unit may relatively easily authenticate and validate the
processing state metadata.

For example, the HMAC is used to generate a digest, and
the protection value(s) included in the inventive bitstream
may include the digest. The digest may be generated as
follows for an AC-3 frame:

1. After AC-3 data and LPSM are encoded, frame data bytes
(concatenated frame_data #1 and frame_data #2) and the
LPSM data bytes are used as input for the hashing-function
HMAC. Other data, which may be present inside an auxdata
field, are not taken into consideration for calculating the
digest. Such other data may be bytes neither belonging to the
AC-3 data nor to the LSPSM data. Protection bits included
in LPSM may not be considered for calculating the HMAC
digest.

2. After the digest is calculated, it is written into the
bitstream in a field reserved for protection bits.

3. The last step of the generation of the complete AC-3 frame
is the calculation of the CRC-check. This is written at the
very end of the frame and all data belonging to this frame is
taken into consideration, including the LPSM bits.

Other cryptographic methods including but not limited to
any of one or more non-HMAC cryptographic methods may
be used for validation of LPSM (e.g., in validator 102) to
ensure secure transmission and receipt of the LPSM and/or
the underlying audio data. For example, validation (using
such a cryptographic method) can be performed in each
audio processing unit which receives an embodiment of the
inventive audio bitstream to determine whether the loudness
processing state metadata and corresponding audio data
included in the bitstream have undergone (and/or have
resulted from) specific loudness processing (as indicated by
the metadata) and have not been modified after performance
of such specific loudness processing.

State validator 102 asserts control data to audio stream
selection stage 104, metadata generator 106, and dialog
loudness measurement subsystem 108, to indicate the results
of the validation operation. In response to the control data,
stage 104 may select (and pass through to encoder 105)
either:

the adaptively processed output of loudness processing

stage 103 (e.g., when the LPSM indicate that the audio
data output from decoder 101 have not undergone a
specific type of loudness processing, and the control
bits from validator 102 indicate that the LPSM are
valid); or

the audio data output from decoder 101 (e.g., when the

LPSM indicate that the audio data output from decoder
101 have already undergone the specific type of loud-
ness processing that would be performed by stage 103,
and the control bits from validator 102 indicate that the
LPSM are valid).

5

10

15

20

25

30

35

40

45

50

55

60

65

18

Stage 103 of encoder 100 is configured to perform adap-
tive loudness processing on the decoded audio data output
from decoder 101, based on one or more audio data char-
acteristics indicated by LPSM extracted by decoder 101.
Stage 103 may be an adaptive transform-domain real time
loudness and dynamic range control processor. Stage 103
may receive user input (e.g., user target loudness/dynamic
range values or dialnorm values), or other metadata input
(e.g., one or more types of third party data, tracking infor-
mation, identifiers, proprietary or standard information, user
annotation data, user preference data, etc.) and/or other input
(e.g., from a fingerprinting process), and use such input to
process the decoded audio data output from decoder 101.
Stage 103 may perform adaptive loudness processing on
decoded audio data (output from decoder 101) indicative of
a single audio program (as indicated by program boundary
metadata extracted by parser 111), and may reset the loud-
ness processing in response to receiving decoded audio data
(output from decoder 101) indicative of a different audio
program as indicated by program boundary metadata
extracted by parser 111.

Dialog loudness measurement subsystem 108 may oper-
ate to determine loudness of segments of the decoded audio
(from decoder 101) which are indicative of dialog (or other
speech), e.g., using the LPSM (and/or other metadata)
extracted by decoder 101, when the control bits from vali-
dator 102 indicate that the LPSM are invalid. Operation of
dialog loudness measurement subsystem 108 may be dis-
abled when the LPSM indicate previously determined loud-
ness of dialog (or other speech) segments of the decoded
audio (from decoder 101) when the control bits from vali-
dator 102 indicate that the LPSM are valid. Subsystem 108
may perform a loudness measurement on decoded audio
data indicative of a single audio program (as indicated by
program boundary metadata extracted by parser 111), and
may reset the measurement in response to receiving decoded
audio data indicative of a different audio program as indi-
cated by such program boundary metadata.

Useful tools (e.g., the Dolby LM 100 loudness meter) exist
for measuring the level of dialog in audio content conve-
niently and easily. Some embodiments of the inventive APU
(e.g., stage 108 of encoder 100) are implemented to include
(or to perform the functions of) such a tool to measure the
mean dialog loudness of audio content of an audio bitstream
(e.g., a decoded AC-3 bitstream asserted to stage 108 from
decoder 101 of encoder 100).

If stage 108 is implemented to measure the true mean
dialog loudness of audio data, the measurement may include
a step of isolating segments of the audio content that
predominantly contain speech. The audio segments that
predominantly are speech are then processed in accordance
with a loudness measurement algorithm. For audio data
decoded from an AC-3 bitstream, this algorithm may be a
standard K-weighted loudness measure (in accordance with
the international standard ITU-R BS.1770). Alternatively,
other loudness measures may be used (e.g., those based on
psychoacoustic models of loudness).

The isolation of speech segments is not essential to
measure the mean dialog loudness of audio data. However,
it improves the accuracy of the measure and typically
provides more satisfactory results from a listener’s perspec-
tive. Because not all audio content contains dialog (speech),
the loudness measure of the whole audio content may
provide a sufficient approximation of the dialog level of the
audio, had speech been present.

Metadata generator 106 generates (and/or passes through
to stage 107) metadata to be included by stage 107 in the

US 9,905,237 B2

19

encoded bitstream to be output from encoder 100. Metadata
generator 106 may pass through to stage 107 the LPSM (and
optionally also program boundary metadata and/or other
metadata) extracted by encoder 101 and/or parser 111 (e.g.,
when control bits from validator 102 indicate that the LPSM
and/or other metadata are valid), or generate new LPSM
(and optionally also program boundary metadata and/or
other metadata) and assert the new metadata to stage 107
(e.g., when control bits from validator 102 indicate that the
LPSM and/or other metadata extracted by decoder 101 are
invalid, or it may assert to stage 107 a combination of
metadata extracted by decoder 101 and/or parser 111 and
newly generated metadata. Metadata generator 106 may
include loudness data generated by subsystem 108, and at
least one value indicative of the type of loudness processing
performed by subsystem 108, in the LPSM it asserts to stage
107 for inclusion in the encoded bitstream to be output from
encoder 100.

Metadata generator 106 may generate protection bits
(which may consist of or include a hash-based message
authentication code or “HMAC”) useful for at least one of
decryption, authentication, or validation of the LPSM (and
optionally also other metadata) to be included in the encoded
bitstream and/or the underlying audio data to be included in
the encoded bitstream. Metadata generator 106 may provide
such protection bits to stage 107 for inclusion in the encoded
bitstream.

In typical operation, dialog loudness measurement sub-
system 108 processes the audio data output from decoder
101 to generate in response thereto loudness values (e.g.,
gated and ungated dialog loudness values) and dynamic
range values. In response to these values, metadata generator
106 may generate loudness processing state metadata
(LPSM) for inclusion (by stuffer/formatter 107) into the
encoded bitstream to be output from encoder 100.

Additionally, optionally, or alternatively, subsystems of
106 and/or 108 of encoder 100 may perform additional
analysis of the audio data to generate metadata indicative of
at least one characteristic of the audio data for inclusion in
the encoded bitstream to be output from stage 107.

Encoder 105 encodes (e.g., by performing compression
thereon) the audio data output from selection stage 104, and
asserts the encoded audio to stage 107 for inclusion in the
encoded bitstream to be output from stage 107.

Stage 107 multiplexes the encoded audio from encoder
105 and the metadata (including LPSM) from generator 106
to generate the encoded bitstream to be output from stage
107, preferably so that the encoded bitstream has format as
specified by a preferred embodiment of the present inven-
tion.

Frame buffer 109 is a buffer memory which stores (e.g.,
in a non-transitory manner) at least one frame of the encoded
audio bitstream output from stage 107, and a sequence of the
frames of the encoded audio bitstream is then asserted from
buffer 109 as output from encoder 100 to delivery system
150.

The LPSM generated by metadata generator 106 and
included in the encoded bitstream by stage 107 is indicative
of'the loudness processing state of corresponding audio data
(e.g., what type(s) of loudness processing have been per-
formed on the audio data) and loudness (e.g., measured
dialog loudness, gated and/or ungated loudness, and/or
dynamic range) of the corresponding audio data.

Herein, “gating” of loudness and/or level measurements
performed on audio data refers to a specific level or loudness
threshold where computed value(s) that exceed the threshold
are included in the final measurement (e.g., ignoring short

30

35

40

45

50

55

65

20

term loudness values below —60 dBFS in the final measured
values). Gating on an absolute value refers to a fixed level
or loudness, whereas gating on a relative value refers to a
value that is dependent on a current “ungated” measurement
value.

In some implementations of encoder 100, the encoded
bitstream buffered in memory 109 (and output to delivery
system 150) is an AC-3 bitstream or an E-AC-3 bitstream,
and comprises audio data segments (e.g., the AB0-AB5
segments of the frame shown in FIG. 4) and metadata
segments, where the audio data segments are indicative of
audio data, and each of at least some of the metadata
segments includes loudness processing state metadata
(LPSM). Stage 107 inserts LPSM (and optionally also
program boundary metadata) into the bitstream in the fol-
lowing format. Each of the metadata segments which
includes LPSM (and optionally also program boundary
metadata) is included in a waste bit segment of the bitstream
(e.g., a waste bit segment “W” as shown in FIG. 4 or FIG.
7), or an “addbsi” field of the Bitstream Information (“BSI”)
segment of a frame of the bitstream, or in an auxdata field
(e.g., the AUX segment shown in FIG. 4 or FIG. 7) at the end
of a frame of the bitstream. A frame of the bitstream may
include one or two metadata segments, each of which
includes LPSM, and if the frame includes two metadata
segments, one may be present in the addbsi field of the frame
and the other in the AUX field of the frame. In some
embodiments, each metadata segment including LPSM
includes an LPSM payload (or container) segment having
the following format:

a header (typically including a syncword identifying the
start of the LPSM payload, followed by at least one
identification value, e.g., the LPSM format version,
length, period, count, and substream association values
indicated in Table 2 below); and

after the header,

at least one dialog indication value (e.g., parameter “Dia-
log channel(s)” of Table 2) indicating whether corre-
sponding audio data indicates dialog or does not indi-
cate dialog (e.g., which channels of corresponding
audio data indicate dialog);

at least one loudness regulation compliance value (e.g.,
parameter “Loudness Regulation Type” of Table 2)
indicating whether corresponding audio data complies
with an indicated set of loudness regulations;

at least one loudness processing value (e.g., one or more
of parameters “Dialog gated Loudness Correction
flag,” “Loudness Correction Type,” of Table 2) indi-
cating at least one type of loudness processing which
has been performed on the corresponding audio data;
and

at least one loudness value (e.g., one or more of param-
eters “ITU Relative Gated Loudness,” “ITU Speech
Gated Loudness,” “ITU (EBU 3341) Short-term 3s
Loudness,” and “True Peak” of Table 2) indicating at
least one loudness (e.g., peak or average loudness)
characteristic of the corresponding audio data.

In some embodiments, each metadata segment which
contains LPSM and program boundary metadata contains a
core header (and optionally also additional core elements),
and after the core header (or the core header and other core
elements) an LPSM payload (or container) segment having
the following format:

a header, typically including at least one identification
value (e.g., LPSM format version, length, period,
count, and substream association values, as indicated in
Table 2 set forth herein), and

US 9,905,237 B2

21

after the header, the LPSM and the program boundary
metadata. The program boundary metadata may
include a program boundary frame count, and a code
value (e.g., an “offset_exist” value) indicative of
whether the frame includes only a program boundary
frame count or both a program boundary frame count
and an offset value), and (in some cases) an offset
value.

In some implementations, each of the metadata segments
inserted by stage 107 into a waste bit segment or an “addbsi”
field or an auxdata field of a frame of the bitstream has the
following format:

a core header (typically including a syncword identifying
the start of the metadata segment, followed by identi-
fication values, e.g., the Core element version, length,
and period, extended element count, and substream
association values indicated in Table 1 below); and

after the core header, at least one protection value (e.g.,
the HMAC digest and Audio Fingerprint values of
Table 1) useful for at least one of decryption, authen-
tication, or validation of at least one of loudness
processing state metadata or the corresponding audio
data); and

also after the core header, if the metadata segment
includes LPSM, LPSM payload identification (“ID”)
and LPSM payload size values which identify follow-
ing metadata as an LPSM payload and indicate size of
the LPSM payload.

The LPSM payload (or container) segment (preferably
having the above-specified format) follows the LPSM pay-
load ID and LPSM payload size values.

In some embodiments, each of the metadata segments in
the auxdata field (or “addbsi” field) of a frame has three
levels of structure:

a high level structure, including a flag indicating whether
the auxdata (or addbsi) field includes metadata, at least
one ID value indicating what type(s) of metadata are
present, and typically also a value indicating how many
bits of metadata (e.g., of each type) are present (if
metadata is present). One type of metadata that could
be present is LSPM, another type of metadata that
could be present is program boundary metadata, and
another type of metadata that could be present is media
research metadata (e.g., Nielsen Media Research meta-
data);

an intermediate level structure, comprising a core element
for each identified type of metadata (e.g., core header,
protection values, and LPSM payload ID and LPSM
payload size values, as mentioned above, for each
identified type of metadata); and

a low level structure, comprising each payload for one
core element (e.g., an LPSM payload, if one is identi-
fied by the core element as being present, and/or a
metadata payload of another type, if one is identified by
the core element as being present).

The data values in such a three level structure can be
nested. For example, the protection value(s) for an LPSM
payload and/or another metadata payload identified by a
core element can be included after each payload identified
by the core element (and thus after the core header of the
core element). In one example, a core header could identify
an LPSM payload and another metadata payload, payload
ID and payload size values for the first payload (e.g., the
LPSM payload) could follow the core header, the first
payload itself could follow the ID and size values, the
payload ID and payload size value for the second payload
could follow the first payload, the second payload itself

20

40

45

50

55

22

could follow these ID and size values, and protection bits for
both payloads (or for core element values and both pay-
loads) could follow the last payload.

In some embodiments, if decoder 101 receives an audio
bitstream generated in accordance with an embodiment of
the invention with cryptographic hash, the decoder is con-
figured to parse and retrieve the cryptographic hash from a
data block determined from the bitstream, said block com-
prising loudness processing state metadata (LPSM) and
optionally also program boundary metadata. Validator 102
may use the cryptographic hash to validate the received
bitstream and/or associated metadata. For example, if vali-
dator 102 finds the LPSM to be valid based on a match
between a reference cryptographic hash and the crypto-
graphic hash retrieved from the data block, then it may
disable operation of processor 103 on the corresponding
audio data and cause selection stage 104 to pass through
(unchanged) the audio data. Additionally, optionally, or
alternatively, other types of cryptographic techniques may
be used in place of a method based on a cryptographic hash.

Encoder 100 of FIG. 2 may determine (in response to
LPSM, and optionally also program boundary metadata,
extracted by decoder 101) that a post/pre-processing unit has
performed a type of loudness processing on the audio data
to be encoded (in elements 105, 106, and 107) and hence
may create (in generator 106) loudness processing state
metadata that includes the specific parameters used in and/or
derived from the previously performed loudness processing.
In some implementations, encoder 100 may create (and
include in the encoded bitstream output therefrom) process-
ing state metadata indicative of processing history on the
audio content so long as the encoder is aware of the types of
processing that have been performed on the audio content.

FIG. 3 is a block diagram of a decoder (200) which is an
embodiment of the inventive audio processing unit, and of
a post-processor (300) coupled thereto. Post-processor (300)
is also an embodiment of the inventive audio processing
unit. Any of the components or elements of decoder 200 and
post-processor 300 may be implemented as one or more
processes and/or one or more circuits (e.g., ASICs, FPGAs,
or other integrated circuits), in hardware, software, or a
combination of hardware and software. Decoder 200 com-
prises frame buffer 201, parser 205, audio decoder 202,
audio state validation stage (validator) 203, and control bit
generation stage 204, connected as shown. Typically also,
decoder 200 includes other processing elements (not
shown).

Frame buffer 201 (a buffer memory) stores (e.g., in a
non-transitory manner) at least one frame of the encoded
audio bitstream received by decoder 200. A sequence of the
frames of the encoded audio bitstream is asserted from
buffer 201 to parser 205.

Parser 205 is coupled and configured to extract loudness
processing state metadata (LPSM) and optionally also pro-
gram boundary metadata, and other metadata from each
frame of the encoded input audio, to assert at least the LPSM
(and program boundary metadata if any is extracted) to
audio state validator 203 and stage 204, to assert the LPSM
(and optionally also program boundary metadata) as output
(e.g., to post-processor 300), to extract audio data from the
encoded input audio, and to assert the extracted audio data
to decoder 202.

The encoded audio bitstream input to decoder 200 may be
one of an AC-3 bitstream, an E-AC-3 bitstream, or a Dolby
E bitstream.

The system of FIG. 3 also includes post-processor 300.
Post-processor 300 comprises frame buffer 301 and other

US 9,905,237 B2

23

processing elements (not shown) including at least one
processing element coupled to buffer 301. Frame buffer 301
stores (e.g., in a non-transitory manner) at least one frame of
the decoded audio bitstream received by post-processor 300
from decoder 200. Processing elements of post-processor
300 are coupled and configured to receive and adaptively
process a sequence of the frames of the decoded audio
bitstream output from buffer 301, using metadata (including
LPSM values) output from decoder 202 and/or control bits
output from stage 204 of decoder 200. Typically, post-
processor 300 is configured to perform adaptive loudness
processing on the decoded audio data using the LPSM
values and optionally also program boundary metadata (e.g.,
based on loudness processing state, and/or one or more
audio data characteristics, indicated by LPSM for audio data
indicative of a single audio program).

Various implementations of decoder 200 and post-proces-
sor 300 are configured to perform different embodiments of
the inventive method.

Audio decoder 202 of decoder 200 is configured to
decode the audio data extracted by parser 205 to generate
decoded audio data, and to assert the decoded audio data as
output (e.g., to post-processor 300).

State validator 203 is configured to authenticate and
validate the LPSM (and optionally other metadata) asserted
thereto. In some embodiments, the LPSM is (or is included
in) a data block that has been included in the input bitstream
(e.g., in accordance with an embodiment of the present
invention). The block may comprise a cryptographic hash (a
hash-based message authentication code or “HMAC”) for
processing the LPSM (and optionally also other metadata)
and/or the underlying audio data (provided from parser 205
and/or decoder 202 to validator 203). The data block may be
digitally signed in these embodiments, so that a downstream
audio processing unit may relatively easily authenticate and
validate the processing state metadata.

Other cryptographic methods including but not limited to
any of one or more non-HMAC cryptographic methods may
be used for validation of LPSM (e.g., in validator 203) to
ensure secure transmission and receipt of the LPSM and/or
the underlying audio data. For example, validation (using
such a cryptographic method) can be performed in each
audio processing unit which receives an embodiment of the
inventive audio bitstream to determine whether the loudness
processing state metadata and corresponding audio data
included in the bitstream have undergone (and/or have
resulted from) specific loudness processing (as indicated by
the metadata) and have not been modified after performance
of such specific loudness processing.

State validator 203 asserts control data to control bit
generator 204, and/or asserts the control data as output (e.g.,
to post-processor 300), to indicate the results of the valida-
tion operation. In response to the control data (and option-
ally also other metadata extracted from the input bitstream),
stage 204 may generate (and assert to post-processor 300)
either:

control bits indicating that decoded audio data output

from decoder 202 have undergone a specific type of
loudness processing (when the LPSM indicate that the
audio data output from decoder 202 have undergone the
specific type of loudness processing, and the control
bits from validator 203 indicate that the LPSM are
valid); or

control bits indicating that decoded audio data output

from decoder 202 should undergo a specific type of
loudness processing (e.g., when the LPSM indicate that
the audio data output from decoder 202 have not
undergone the specific type of loudness processing, or
when the LPSM indicate that the audio data output

10

15

20

25

30

35

40

45

50

55

60

65

24

from decoder 202 have undergone the specific type of
loudness processing but the control bits from validator
203 indicate that the LPSM are not valid).
Alternatively, decoder 200 asserts the metadata extracted
by decoder 202 from the input bitstream, and the LPSM (and
optionally also program boundary metadata) extracted by
parser 205 from the input bitstream to post-processor 300,
and post-processor 300 performs loudness processing on the
decoded audio data using the LPSM (and optionally also the
program boundary metadata), or performs validation of the
LPSM and then performs loudness processing on the
decoded audio data using the LPSM (and optionally also
program boundary metadata) if the validation indicates that
the LPSM are valid.
In some embodiments, if decoder 200 receives an audio
bitstream generated in accordance with an embodiment of
the invention with cryptographic hash, the decoder is con-
figured to parse and retrieve the cryptographic hash from a
data block determined from the bitstream, said block com-
prising loudness processing state metadata (LPSM). Valida-
tor 203 may use the cryptographic hash to validate the
received bitstream and/or associated metadata. For example,
if validator 203 finds the LPSM to be valid based on a match
between a reference cryptographic hash and the crypto-
graphic hash retrieved from the data block, then it may
signal to a downstream audio processing unit (e.g., post-
processor 300, which may be or include a volume leveling
unit) to pass through (unchanged) the audio data of the
bitstream. Additionally, optionally, or alternatively, other
types of cryptographic techniques may be used in place of a
method based on a cryptographic hash.
In some implementations of decoder 200, the encoded
bitstream received (and buffered in memory 201) is an AC-3
bitstream or an E-AC-3 bitstream, and comprises audio data
segments (e.g., the AB0-ABS segments of the frame shown
in FIG. 4) and metadata segments, where the audio data
segments are indicative of audio data, and each of at least
some of the metadata segments includes loudness processing
state metadata (LPSM) and optionally also program bound-
ary metadata. Decoder stage 202 (and/or parser 205) is
configured to extract from the bitstream LPSM (and option-
ally also program boundary metadata) having the following
format. Each of the metadata segments which includes
LPSM (and optionally also program boundary metadata) is
included in a waste bit segment of a frame of the bitstream,
or an “addbsi” field of the Bitstream Information (“BSI”)
segment of a frame of the bitstream, or in an auxdata field
(e.g., the AUX segment shown in FIG. 4) at the end of a
frame of the bitstream. A frame of the bitstream may include
one or two metadata segments, each of which may include
LPSM, and if the frame includes two metadata segments,
one may be present in the addbsi field of the frame and the
other in the AUX field of the frame. In some embodiments,
each metadata segment including LPSM includes an LPSM
payload (or container) segment having the following format:
a header (typically including a syncword identifying the
start of the LPSM payload, followed by identification
values, e.g., the LPSM format version, length, period,
count, and substream association values indicated in
Table 2 below); and

after the header,

at least one dialog indication value (e.g., parameter “Dia-
log channel(s)” of Table 2) indicating whether corre-
sponding audio data indicates dialog or does not indi-
cate dialog (e.g., which channels of corresponding
audio data indicate dialog);

at least one loudness regulation compliance value (e.g.,

parameter “Loudness Regulation Type” of Table 2)
indicating whether corresponding audio data complies
with an indicated set of loudness regulations;

US 9,905,237 B2

25

at least one loudness processing value (e.g., one or more
of parameters “Dialog gated Loudness Correction
flag,” “Loudness Correction Type,” of Table 2) indi-
cating at least one type of loudness processing which
has been performed on the corresponding audio data;
and

at least one loudness value (e.g., one or more of param-
eters “ITU Relative Gated Loudness,” “ITU Speech
Gated Loudness,” “ITU (EBU 3341) Short-term 3s
Loudness,” and “True Peak” of Table 2) indicating at
least one loudness (e.g., peak or average loudness)
characteristic of the corresponding audio data.

In some embodiments, each metadata segment which
contains LPSM and program boundary metadata contains a
core header (and optionally also additional core elements),
and after the core header (or the core header and other core
elements) an LPSM payload (or container) segment having
the following format:

a header, typically including at least one identification
value (e.g., LPSM format version, length, period,
count, and substream association values, as indicated in
Table 2 below), and

after the header, the LPSM and the program boundary
metadata. The program boundary metadata may
include a program boundary frame count, and a code
value (e.g., an “offset_exist” value) indicative of
whether the frame includes only a program boundary
frame count or both a program boundary frame count
and an offset value), and (in some cases) an offset
value.

In some implementations, parser 205 (and/or decoder
stage 202) is configured to extract, from a waste bit segment,
or an “addbsi” field, or an auxdata field, of a frame of the
bitstream, each metadata segment having the following
format:

a core header (typically including a syncword identifying
the start of the metadata segment, followed by at least
one identification value, e.g., the Core element version,
length, and period, extended element count, and sub-
stream association values indicated in Table 1 below);
and

after the core header, at least one protection value (e.g.,
the HMAC digest and Audio Fingerprint values of
Table 1) useful for at least one of decryption, authen-
tication, or validation of at least one of loudness
processing state metadata or the corresponding audio
data); and

also after the core header, if the metadata segment
includes LPSM, LPSM payload identification (“ID”)
and LPSM payload size values which identify follow-
ing metadata as an LPSM payload and indicate size of
the LPSM payload.

The LPSM payload (or container) segment (preferably
having the above-specified format) follows the LPSM pay-
load ID and LPSM payload size values.

More generally, the encoded audio bitstream generated by
preferred embodiments of the invention has a structure
which provides a mechanism to label metadata elements and
sub-elements as core (mandatory) or expanded (optional
elements). This allows the data rate of the bitstream (includ-
ing its metadata) to scale across numerous applications. The
core (mandatory) elements of the preferred bitstream syntax
should also be capable of signaling that expanded (optional)
elements associated with the audio content are present
(in-band) and/or in a remote location (out of band).

Core element(s) are required to be present in every frame
of the bitstream. Some sub-elements of core elements are

10

15

20

25

30

35

40

45

50

55

60

65

26

optional and may be present in any combination. Expanded
elements are not required to be present in every frame (to
limit bitrate overhead). Thus, expanded elements may be
present in some frames and not others. Some sub-elements
of an expanded element are optional and may be present in
any combination, whereas some sub-elements of an
expanded element may be mandatory (i.e., if the expanded
element is present in a frame of the bitstream).

In a class of embodiments, an encoded audio bitstream
comprising a sequence of audio data segments and metadata
segments is generated (e.g., by an audio processing unit
which embodies the invention). The audio data segments are
indicative of audio data, each of at least some of the
metadata segments includes loudness processing state meta-
data (LPSM) and optionally also program boundary meta-
data, and the audio data segments are time-division multi-
plexed with the metadata segments. In preferred
embodiments in this class, each of the metadata segments
has a preferred format to be described herein.

In one preferred format, the encoded bitstream is an AC-3
bitstream or an E-AC-3 bitstream, and each of the metadata
segments which includes LPSM is included (e.g., by stage
107 of a preferred implementation of encoder 100) as
additional bit stream information in the “addbsi” field
(shown in FIG. 6) of the Bitstream Information (“BSI”)
segment of a frame of the bitstream, or in an auxdata field
of a frame of the bitstream, or in a waste bit segment of a
frame of the bitstream.

In the preferred format, each of the frames includes a core
element having the format shown in Table 1 below, in the
addbsi field (or waste bit segment) of the frame:

TABLE 1
Mandatory/
Parameter Description Optional
SYNC [ID] The syncword may be a 16-bit M
value set to the value of 0x5838
Core element version M
Core element length M
Core element period (xxx) M
Extended element count Indicates the number of extended M

metadata elements associated

with the core element. This value

may increment/decrement as the
bitstream is passed from

production through distribution

and final emission.

Describes which substream(s) the

core element is associated with.

256-bit HMAC digest (using

SHA-2 algorithm) computed over

the audio data, the core element,

and all expanded elements, of the

entire frame.

Field only appears for some (@)
number of frames at the head or

tail of an audio program

file/stream. Thus, a core element

version change could be used to

signal the inclusion of this

parameter.

Audio Fingerprint taken over (@)
some number of PCM audio

samples represented by the core

element period field.

Video Fingerprint taken over (@)
some number of compressed

video samples (if any)

represented by the core element

period field.

Substream association

Signature (HMAC digest)

PGM boundary countdown

Audio Fingerprint

Video Fingerprint

27

TABLE 1-continued

US 9,905,237 B2

28

In the preferred format, each of the addbsi (or auxdata)

fields or waste bit segments which contains LPSM contains

Mandatory/ a core header (and optionally also additional core elements),
Parameter Description Optional and after the core header (or the core header and other core
)) 5 elements), the following LPSM values (parameters):
URL/UUID This field is defined to carry a © a payload ID (identifying the metadata as LPSM) follow-
URL and/or a UUID (it may be . . .
redundant to the fingerprint) that ing the core element values (e.g., as specified in Table
references an external location of 1); . o .
additional program content a payload size (indicating the size of the LPSM payload)
(essence) and/or metadata 10 following the payload ID; and
associated with the bitstream. LPSM data (following the payload ID and payload size
value) having format as indicated in the following table
(Table 2):
TABLE 2
LPSM Insertion Rate
Parameter number (Period of
[Intelligent of unique updating of the
Loudness] Description states Mandatory/Optional para-meter)
LPSM M
version
LPSM period Applicable to xxx flelds M
(XXX) only
LPSM count M
LPSM M
substream
association
Dialog Indicates which 8 M ~0.5 seconds
channel(s) combination of L, C & R (typical)
audio channels contain
speech over the previous
0.5 seconds. When, speech
is not present in any L, C or R
combination, then this
parameter shall indicate
“no dialog”
Loudness Indicates that the associated 8 M Frame
Regulation audio data stream is in
Type compliance with a specific
set of regulations (e.g., ATSC
A/85 or EBU R128)
Dialog gated Indicates if the associated 2 O (only present if Frame
Loudness audio stream has been Loudness_Regulation_
Correction corrected based on dialog Type indicates
flag gating that the corresponding
audio is
UNCORRECTED)
Loudness Indicates if the associated 2 O (only present if Frame
Correction audio stream has been Loudness_Regulation_
Type corrected with an infinite Type indicates

ITU Relative
Gated
Loudness
(INF)

ITU Speech
Gated
Loudness
(INF)

ITU (EBU
3341) Short-
term 3 s
Loudness

look-ahead (file-based) or
with a realtime (RT)
loudness and dynamic
range controller.
Indicates the ITU-R 128 (@) 1 sec
BS.1770-3 integrated

loudness of the associated

audio stream w/o metadata

applied (e.g.,

7 bits: -58 -> +5.5 LKFS

0.5 LKFS steps)

Indicates the ITU-R 128 (@) 1 sec
BS.1770-1/3 integrated

loudness of the

speech/dialog of the

associated audio stream

w/o metadata applied (e.g.,

7 bits: -58 -> +5.5 LKFS

0.5 LKFS steps)

Indicates the 3-second ungated 256 (@)
ITU (ITU-BS.1771-1)

loudness of the associated

that the corresponding
audio is
UNCORRECTED)

0.1 sec

audio stream w/o metadata
applied (sliding window) @
~10 Hz insertion rate

(e.g., 8 bits: 116 -> +11.5
LKFS 0.5 LKFS steps)

US 9,905,237 B2

29
TABLE 2-continued

30

LPSM
Parameter
[Intelligent
Loudness]

number
of unique

Description states

Mandatory/Optional

Insertion Rate
(Period of
updating of the
para-meter)

True Peak
value

Indicates the ITU-R
BS.1770-3 Annex 2
TruePeak value (dB TP) of
the associated audio stream
w/o metadata applied.

(i.e., largest value over
frame period signaled

in element period field)
116 -> +11.5 LKFS

0.5 LKFS steps

Indicates downmix loudness
offset

Indicates, in frames, when
a program boundary will
or has occurred. When
program boundary is not

at frame boundary,
optional sample offset will
indicate how far in frame
actual program boundary
occurs

256 O

Downmix
Offset
Program
Boundary

0.5 sec

In another preferred format of an encoded bitstream
generated in accordance with the invention, the bitstream is
an AC-3 bitstream or an E-AC-3 bitstream, and each of the
metadata segments which includes LPSM (and optionally
also program boundary metadata) is included (e.g., by stage
107 of a preferred implementation of encoder 100) in any of:
a waste bit segment of a frame of the bitstream; or an
“addbsi” field (shown in FIG. 6) of the Bitstream Informa-
tion (“BSI”) segment of a frame of the bitstream; or an
auxdata field (e.g., the AUX segment shown in FIG. 4) at the
end of a frame of the bitstream. A frame may include one or
two metadata segments, each of which includes LPSM, and
if the frame includes two metadata segments, one may be
present in the addbsi field of the frame and the other in the
AUX field of the frame. Each metadata segment including
LPSM has the format specified above with reference to
Tables 1 and 2 above (i.e., it includes the core elements
specified in Table 1, followed by the payload ID (identifying
the metadata as LPSM) and payload size values specified
above, followed by the payload (the LPSM data which has
format as indicated in Table 2).

In another preferred format, the encoded bitstream is a
Dolby E bitstream, and each of the metadata segments which
includes LPSM (and optionally also program boundary
metadata) is the first N sample locations of the Dolby E
guard band interval. A Dolby E bitstream including such a
metadata segment which includes LPSM preferably includes
a value indicative of LPSM payload length signaled in the
Pd word of the SMPTE 337M preamble (the SMPTE 337M
Pa word repetition rate preferably remains identical to
associated video frame rate).

In a preferred format, in which the encoded bitstream is
an E-AC-3 bitstream, each of the metadata segments which
includes LPSM (and optionally also program boundary
metadata) is included (e.g., by stage 107 of a preferred
implementation of encoder 100) as additional bitstream
information in a waste bit segment, or in the “addbsi” field
of the Bitstream Information (“BSI”) segment, of a frame of
the bitstream. We next describe additional aspects of encod-
ing an E-AC-3 bitstream with LPSM in this preferred
format:

25

30

35

40

45

50

55

60

65

1. during generation of an E-AC-3 bitstream, while the
E-AC-3 encoder (which inserts the LPSM values into the
bitstream) is “active,” for every frame (syncframe) gen-
erated, the bitstream should include a metadata block
(including LPSM) carried in the addbsi field (or waste bit
segment) of the frame. The bits required to carry the
metadata block should not increase the encoder bitrate
(frame length);
2. Every metadata block (containing LPSM) should contain
the following information:
loudness_correction_type_flag: where ‘1’ indicates the
loudness of the corresponding audio data was corrected
upstream from the encoder, and ‘0’ indicates the loud-
ness was corrected by a loudness corrector embedded
in the encoder (e.g., loudness processor 103 of encoder
100 of FIG. 2);

speech_channel: indicates which source channel(s) con-
tain speech (over the previous 0.5 sec). If no speech is
detected, this shall be indicated as such;

speech_loudness: indicates the integrated speech loudness
of each corresponding audio channel which contains
speech (over the previous 0.5 sec);

ITU_loudness: indicates the integrated ITU BS.1770-3

loudness of each corresponding audio channel; and

gain: loudness composite gain(s) for reversal in a decoder
(to demonstrate reversibility);

3. While the E-AC-3 encoder (which inserts the LPSM
values into the bitstream) is “active” and is receiving an
AC-3 frame with a ‘trust’ flag, the loudness controller in
the encoder (e.g., loudness processor 103 of encoder 100
of FIG. 2) should be bypassed. The ‘trusted’ source
dialnorm and DRC values should be passed through (e.g.,
by generator 106 of encoder 100) to the E-AC-3 encoder
component (e.g., stage 107 of encoder 100). The LPSM
block generation continues and the loudness_correction-
type{flag is set to ‘1’. The loudness controller bypass
sequence must be synchronized to the start of the decoded
AC-3 frame where the ‘trust’ flag appears. The loudness
controller bypass sequence should be implemented as
follows: the leveler_amount control is decremented from
a value of 9 to a value of 0 over 10 audio block periods
(i.e. 53.3 msec) and the leveler_back_end_meter control

US 9,905,237 B2

31

is placed into bypass mode (this operation should result in

a seamless transition). The term “trusted” bypass of the

leveler implies that the source bitstream’s dialnorm value

is also re-utilized at the output of the encoder. (e.g. if the

‘trusted’ source bitstream has a dialnorm value of -30

then the output of the encoder should utilize -30 for the

outbound dialnorm value);
4. While the E-AC-3 encoder (which inserts the LPSM
values into the bitstream) is “active” and is receiving an
AC-3 frame without the ‘trust’ flag, the loudness control-
ler embedded in the encoder (e.g., loudness processor 103
of encoder 100 of FIG. 2) should be active. LPSM block
generation continues and the loudness_correction_type_
flag is set to ‘0’. The loudness controller activation
sequence should be synchronized to the start of the
decoded AC-3 frame where the ‘trust’ flag disappears. The
loudness controller activation sequence should be imple-
mented as follows: the leveler_amount control is incre-
mented from a value of 0 to a value of 9 over 1 audio
block period. (i.e. 5.3 msec) and the leveler_back_end_
meter control is placed into ‘active’ mode (this operation
should result in a seamless transition and include a
back_end_meter integration reset); and
5. during encoding, a graphic user interface (GUI) should
indicate to a user the following parameters: “Input Audio
Program: [Trusted/Untrusted|”—the state of this param-
eter is based on the presence of the “trust” flag within the
input signal; and “Real-time Loudness Correction: [En-
abled/Disabled]”—the state of this parameter is based on
the whether this loudness controller embedded in the
encoder is active.
When decoding an AC-3 or E-AC-3 bitstream which has
LPSM (in the preferred format) included in a waste bit
segment, or the “addbsi” field of the Bitstream Information
(“BSI”) segment, of each frame of the bitstream, the decoder
should parse the LPSM block data (in the waste bit segment
or addbsi field) and pass all of the extracted LPSM values to
a graphic user interface (GUI). The set of extracted LPSM
values is refreshed every frame.
In another preferred format of an encoded bitstream
generated in accordance with the invention, the encoded
bitstream is an AC-3 bitstream or an E-AC-3 bitstream, and
each of the metadata segments which includes LPSM is
included (e.g., by stage 107 of a preferred implementation of
encoder 100) in a waste bit segment, or in an Aux segment,
or as additional bit stream information in the “addbsi” field
(shown in FIG. 6) of the Bitstream Information (“BSI”)
segment, of a frame of the bitstream. In this format (which
is a variation on the format described above with references
to Tables 1 and 2), each of the addbsi (or Aux or waste bit)
fields which contains LPSM contains the following LPSM
values:
the core elements specified in Table 1, followed by
payload ID (identifying the metadata as LPSM) and
payload size values, followed by the payload (LPSM
data) which has the following format (similar to the
mandatory elements indicated in Table 2 above):

version of LPSM payload: a 2-bit field which indicates the
version of the LPSM payload;

dialchan: a 3-bit field which indicates whether the Left,

Right and/or Center channels of corresponding audio
data contain spoken dialog. The bit allocation of the
dialchan field may be as follows: bit 0, which indicates
the presence of dialog in the left channel, is stored in
the most significant bit of the dialchan field; and bit 2,

32

which indicates the presence of dialog in the center
channel, is stored in the least significant bit of the
dialchan field.
Each bit of the dialchan field is set to ‘1 if the corresponding
5 channel contains spoken dialog during the preceding 0.5
seconds of the program;
loudregtyp: a 4-bit field which indicates which loudness
regulation standard the program loudness complies
with. Setting the “loudregtyp” field to ‘000 indicates
10 that the LPSM does not indicate loudness regulation
compliance. For example, one value of this field (e.g.,
0000) may indicate that compliance with a loudness
regulation standard is not indicated, another value of
this field (e.g., 0001) may indicate that the audio data
15 of the program complies with the ATSC A/85 standard,
and another value of this field (e.g., 0010) may indicate
that the audio data of the program complies with the
EBU R128 standard. In the example, if the field is set
to any value other than ‘0000°, the loudcorrdialgat and
20 loudcorrtyp fields should follow in the payload;
loudcorrdialgat: a one-bit field which indicates if dialog-
gated loudness correction has been applied. If the
loudness of the program has been corrected using
dialog gating, the value of the loudcorrdialgat field is
25 set to ‘1°. Otherwise it is set to ‘0’
loudcorrtyp: a one-bit field which indicates type of loud-
ness correction applied to the program. If the loudness
of the program has been corrected with an infinite
look-ahead (file-based) loudness correction process,
30 the value of the loudcorrtyp field is set to ‘0°. If the
loudness of the program has been corrected using a
combination of realtime loudness measurement and
dynamic range control, the value of this field is set to
9>
35 loudrelgate: a one-bit field which indicates whether rela-
tive gated loudness data (ITU) exists. If the loudrelgate
field is set to ‘1°, a 7-bit ituloudrelgat field should
follow in the payload;
loudrelgat: a 7-bit field which indicates relative gated
40 program loudness (ITU). This field indicates the inte-
grated loudness of the audio program, measured
according to ITU-R BS.1770-3 without any gain
adjustments due to dialnorm and dynamic range com-
pression being applied. The values of 0 to 127 are
45 interpreted as =58 LKFS to +5.5 LKFS, in 0.5 LKFS
steps;
loudspchgate: a one-bit field which indicates whether
speech-gated loudness data (ITU) exists. If the loud-
spchgate field is set to “1°, a 7-bit loudspchgat field
50 should follow in the payload;
loudspchgat: a 7-bit field which indicates speech-gated
program loudness. This field indicates the integrated
loudness of the entire corresponding audio program,
measured according to formula (2) of ITU-R
55 BS.1770-3 and without any gain adjustments due to
dialnorm and dynamic range compression being
applied. The values of 0 to 127 are interpreted as —58
to +5.5 LKFS, in 0.5 LKFS steps;
loudstrm3se: a one-bit field which indicates whether
60 short-term (3 second) loudness data exists. If the field
is setto 17, a 7-bit loudstrm3s field should follow in the
payload;
loudstrm3s: a 7-bit field which indicates the ungated
loudness of the preceding 3 seconds of the correspond-
65 ing audio program, measured according to ITU-R
BS.1771-1 and without any gain adjustments due to
dialnorm and dynamic range compression being

US 9,905,237 B2

33

applied. The values of O to 256 are interpreted as =116
LKFS to +11.5 LKFS in 0.5 LKFS steps;

truepke: a one-bit field which indicates whether true peak
loudness data exists. If the truepke field is setto “1°, an
8-bit truepk field should follow in the payload; and

truepk: an 8-bit field which indicates the true peak sample
value of the program, measured according to Annex 2
of ITU-R BS.1770-3 and without any gain adjustments
due to dialnorm and dynamic range compression being
applied. The values of O to 256 are interpreted as =116
LKFS to +11.5 LKFS in 0.5 LKFS steps.

In some embodiments, the core element of a metadata
segment in a waste bit segment or in an auxdata (or
“addbsi”) field of a frame of an AC-3 bitstream or an
E-AC-3 bitstream comprises a core header (typically includ-
ing identification values, e.g., core element version), and
after the core header: values indicative of whether finger-
print data is (or other protection values are) included for
metadata of the metadata segment, values indicative of
whether external data (related to audio data corresponding to
the metadata of the metadata segment) exists, payload 1D
and payload size values for each type of metadata (e.g.,
LPSM, and/or metadata of a type other than LPSM) iden-
tified by the core element, and protection values for at least
one type of metadata identified by the core element. The
metadata payload(s) of the metadata segment follow the core
header, and are (in some cases) nested within values of the
core element.

Typical embodiments of the invention include program
boundary metadata in an encoded audio bitstream in an
efficient manner which allows accurate and robust determi-
nation of at least one boundary between consecutive audio
programs indicated by the bitstream. Typical embodiments
allow accurate and robust determination of a program
boundary in the sense that they allow accurate program
boundary determination even in cases in which bitstreams
indicative of different programs are spliced together (to
generate the inventive bitstream) in a manner that truncates
one or both of the spliced bitstreams (and thus discards
program boundary metadata that had been included in at
least one of the pre-splicing bitstreams).

In typical embodiments, the program boundary metadata
in a frame of the inventive bitstream is a program boundary
flag indicative of a frame count. Typically, the flag is
indicative of the number of frames between the current
frame (the frame which includes the flag) and a program
boundary (the beginning or the end of the current audio
program). In some preferred embodiments, program bound-
ary flags are inserted in a symmetric, efficient manner at the
beginning and end of each bitstream segment which is
indicative of a single program (i.e., in frames occurring
within some predetermined number of frames after the
segment’s beginning, and in frames occurring within some
predetermined number of frames before the segment’s end),
so that when two such bitstream segments are concatenated
(so as to be indicative of a sequence of two programs), the
program boundary metadata can be present (e.g., symmetri-
cally) on both sides of the boundary between the two
programs.

Maximum robustness can be achieved by inserting a
program boundary flag in every frame of a bitstream indica-
tive of a program, but this would typically not be practical
due to the associated increase in data rate. In typical embodi-
ments, program boundary flags are inserted in only a subset
of the frames of an encoded audio bitstream (which may be
indicative of one audio program or a sequence of audio
programs), and the boundary flag insertion rate is a non-

10

15

20

25

30

35

40

45

50

55

60

65

34

increasing function of increasing separation of each of the
bitstream’s frames (in which a flag is inserted) from the
program boundary which is nearest to said each of the
frames, where “boundary flag insertion rate” denotes the
average ratio of the number of frames (indicative of a
program) which include a program boundary flag to the
number of frames (indicative of the program) which do not
include a program boundary flag, where the average is a
running average over a number (e.g., relatively small num-
ber) of consecutive frames of the encoded audio bitstream.

Increasing the boundary flag insertion rate (e.g., at loca-
tions in the bitstream closer to a program boundary)
increases the data rate required for delivery of the bitstream.
To compensate for this, the size (number of bits) of each
inserted flag is preferably decreased as the boundary flag
insertion rate is increased (e.g., so that the size of the
program boundary flag in the “N”th frame of the bitstream,
where N is an integer, is a non-increasing function of the
distance (number of frames) between the “N”th frame and
the nearest program boundary). In a class of embodiments,
the boundary flag insertion rate is a logarithmically decreas-
ing function of increasing distance (of each flag insertion
location) from the nearest program boundary, and for each
flag-containing frame which includes one of the flags, the
size of the flag in said flag-containing frame is equal to or
greater than the size of each flag in a frame located closer to
the nearest program boundary than is said flag-containing
frame. Typically, the size of each flag is determined by an
increasing function of the number of frames from the flag’s
insertion location to the nearest program boundary.

For example, consider the embodiment of FIGS. 8 and 9,
in which each column identified by a frame number (in the
top row) indicates a frame of an encoded audio bitstream.
The bitstream is indicative of an audio program having a first
program boundary (indicative of the beginning of the pro-
gram) which occurs immediately to the left of the column
identified by frame number “17” on the left side of FIG. 9,
and a second program boundary (indicative of the end of the
program) which occurs immediately to the right of the
column identified by frame number “1” on the right side of
FIG. 8. The program boundary flags included in frames
shown in FIG. 8 count down the number of frames between
the current frame and the second program boundary. The
program boundary flags included in frames shown in FI1G. 9
count up the number of frames between the current frame
and the first program boundary.

In the embodiment of FIGS. 8 and 9, a program boundary
flag is inserted only in each of the “2™*’th frames of the first
X frames of the encoded bitstream after the start of the audio
program indicated by the bitstream, and in each of the
“2™th frames (of the last X frames of the bitstream) nearest
to the end of the program indicated by the bitstream, where
the program comprises Y frames, X is an integer less than or
equal to Y/2, and N is a positive integer in a range from 1
to log,(X). Thus (as indicated in FIGS. 8 and 9), a program
boundary flag is inserted in the second frame (N=1) of the
bitstream (the flag-containing frame nearest to the beginning
of the program), in the fourth frame (N=2), in the eighth
frame (N=3), and so on, and in the eighth frame from the end
of the bitstream, in the fourth frame from the end of the
bitstream, and in the second frame from the end of the
bitstream (the flag-containing frame nearest to the end of the
program). In this example, the program boundary flag in the
“2™th frame from the beginning (or end) of the program
comprises log,(2"*) binary bits, as indicated in FIGS. 8 and
9. Thus, the program boundary flag in the second frame
(N=1) from the beginning (or end) of the program comprises

US 9,905,237 B2

35

log,(2™**)=log,(2*)=3 binary bits, and the flag in the fourth
frame (N=2) from the beginning (or end) of the program
comprises log,(2V*?)=log,(2*)=4 binary bits, and so on.

In the example of FIGS. 8 and 9, the format of each
program boundary flag is as follows. Each program bound-
ary flag consists of a leading “1” bit, a sequence of “0” bits
(either no “0” bit or one or more consecutive “0” bits) after
the leading bit, and a two-bit trailing code. The trailing code
is “11” for the flags in the last X frames of the bitstream (the
frames nearest to the program end), as indicated in FIG. 8.
The trailing code is “10” for the flags in the first X frames
of the bitstream (the frames nearest to the beginning of the
program), as indicated in FI1G. 9. Thus, to read (decode) each
flag, the number of zeros between the leading “1” bit and the
trailing code is counted. If the trailing code is identified to
be “117, the flag indicates that there are (2°*'-1) frames
between the current frame (the frame which includes the
flag) and the program’s end, where Z is the number of zeros
between the flag’s leading “1” bit and trailing code. The
decoder can be efficiently implemented to ignore the first
and last bit of each such flag, to determine the inverse of the
sequence of the flag’s other (intermediate) bits (e.g., if the
sequence of intermediate bits is “0001” with the “1” bit
being the last bit in the sequence, the inverted sequence of
intermediate bits is “1000” with the “1” bit being the first bit
in the inverted sequence), and to identify the binary value of
the inverted sequence of intermediate bits as the index of the
current frame (the frame in which the flag is included)
relative to the program’s end. For example, if the inverted
sequence of intermediate bits is “1000”, this inverted
sequence has the binary value 2*=16, and the frame is
identified as the 16” frame before the program’s end (as
indicated in the column of FIG. 8 which describes frame
“0”).

If the trailing code is identified to be “10”, the flag
indicates that there are (2°*'-1) frames between the start of
the program and the current frame (the frame which includes
the flag), where Z is the number of zeros between the flag’s
leading “1” bit and trailing code. The decoder can be
efficiently implemented to ignore the first and last bit of each
such flag, to determine the inverse of the sequence of the
flag’s intermediate bits (e.g., if the sequence of intermediate
bits is “0001” with the “1” bit being the last bit in the
sequence, the inverted sequence of intermediate bits is
“1000” with the “1” bit being the first bit in the inverted
sequence), and to identify the binary value of the inverted
sequence of intermediate bits as the index of the current
frame (the frame in which the flag is included) relative to the
program’s beginning. For example, if the inverted sequence
of intermediate bits is “10007, this inverted sequence has the
binary value 2*=16, and the frame is identified as the 16"
frame after the program’s beginning (as indicated in the
column of FIG. 9 which describes frame “32”).

In the example of FIGS. 8 and 9, a program boundary flag
is only present in each of the “2™th frames of the first X
frames of an encoded bitstream after the start of an audio
program indicated by bitstream, and in each of the “2*”th
frames (of the last X frames of the bitstream) nearest to the
end of the program indicated by the bitstream, where the
program comprises Y frames, X is an integer less than or
equal to Y/2, and N is a positive integer in a range from 1
to log,(X). Inclusion of the program boundary flags adds
only an average bit rate of 1.875 bits/frame to the bit rate
required to transmit the bitstream without the flags.

In a typical implementation of the embodiment of FIGS.
8 and 9 in which the bitstream is an AC-3 encoded audio
bitstream, each frame contains audio content and metadata

10

15

20

25

30

35

40

45

50

55

60

65

36

for 1536 samples of digital audio. For a sampling rate of 48
kHz, this represents 32 milliseconds of digital audio or a rate
of 31.25 frames per second of audio. Thus, in such an
embodiment, a program boundary flag in a frame separated
by some number of frames (“X” frames) from a program
boundary indicates that the boundary occurs 32X millisec-
onds after the end of the flag-containing frame (or 32X
milliseconds before the start of the flag-containing frame).

In a typical implementation of the embodiment of FIGS.
8 and 9 in which the bitstream is an E-AC-3 encoded audio
bitstream, each frame of the bitstream contains audio content
and metadata for 256, 512, 768 or 1536 samples of digital
audio, depending on whether the frame contains one, two,
three or six blocks of audio data respectively. For a sampling
rate of 48 kHz, this represents 5.333, 10.667, 16 or 32
milliseconds of digital audio respectively or a rate of 189.9,
93.75, 62.5 or 31.25 frames per second of audio respectively.
Thus, in such an embodiment (assuming that each frame is
indicative of 32 milliseconds of digital audio), a program
boundary flag in a frame separated by some number of
frames (“X” frames) from a program boundary indicates that
the boundary occurs 32X milliseconds after the end of the
flag-containing frame (or 32X milliseconds before the start
of the flag-containing frame).

In some embodiments in which a program boundary can
occur within a frame of an audio bitstream (i.e., not in
alignment with the beginning or end of a frame), the
program boundary metadata included in a frame of the
bitstream includes a program boundary frame count (i.e.,
metadata indicative of the number of full frames between the
beginning or end of the frame count-containing frame and a
program boundary) and an offset value. The offset value is
indicative of an offset (typically a number of samples)
between the beginning or end of a program boundary-
containing frame, and the actual location of the program
boundary within the program boundary-containing frame.

An encoded audio bitstream may be indicative of a
sequence of programs (soundtracks) of a corresponding
sequence of video programs, and boundaries of such audio
programs tend to occur at the edges of video frames rather
than at the edges of audio frames. Also, some audio codecs
(e.g., E-AC-3 codecs) use audio frame sizes that are not
aligned with video frames. Also, in some cases an initially
encoded audio bitstream undergoes transcoding to generate
a transcoded bitstream, and the initially encoded bitstream
has a different frame size than does the transcoded bitstream
so that a program boundary (determined by the initially
encoded bitstream) is not guaranteed to occur at a frame
boundary of the transcoded bitstream. For example, if the
initially encoded bitstream (e.g., bitstream “IEB” of FIG.
10) has a frame size of 1536 samples per frame, and the
transcoded bitstream (e.g., bitstream “TB” of FIG. 10) has a
frame size of 1024 samples per frame, the transcoding
process may cause the actual program boundary to occur not
at a frame boundary of the transcoded bitstream but some-
where in a frame thereof (e.g., 512 samples into a frame of
the transcoded bitstream, as indicated in FIG. 10), due to
differing frame sizes of the different codecs. Embodiments
of the present invention in which the program boundary
metadata included in a frame of an encoded audio bitstream
includes an offset value as well as a program boundary frame
count are useful in the three cases noted in this paragraph (as
well as in other cases).

The embodiment described above with reference to FIGS.
8 and 9 does not include an offset value (e.g., an offset field)
in any of the frames of the encoded bitstream. In variations
on this embodiment, an offset value is included in each

US 9,905,237 B2

37

frame of an encoded audio bitstream which includes a
program boundary flag (e.g., in frames corresponding to the
frames numbered 0, 8, 12, and 14 in FIG. 8, and the frames
numbered 18, 20, 24, and 32 in FIG. 9).

In a class of embodiments, a data structure (in each frame
of an encoded bitstream which contains the inventive pro-
gram boundary metadata) includes a code value indicative of
whether the frame includes only a program boundary frame
count, or both a program boundary frame count and an offset
value. For example, the code value may be the value of a
single-bit field (to be referred to herein as an “offset_exist”
field), the value “offset_exist”™=0 may indicate that no offset
value is included in the frame, and the value “offset_ex-
ist”=1 may indicate that both a program boundary frame
count and an offset value are included in the frame.

In some embodiments, at least one frame of an AC-3 or
E-AC-3 encoded audio bitstream includes a metadata seg-
ment which includes LPSM and program boundary metadata
(and optionally also other metadata) for an audio program
determined by the bitstream. Each such metadata segment
(which may be included in an addbsi field, or an auxdata
field, or a waste bit segment of the bitstream) contains a core
header (and optionally also additional core elements), and
after the core header (or the core header and other core
elements) an LPSM payload (or container) segment having
the following format:

a header (typically including at least one identification
value, e.g., LPSM format version, length, period,
count, and substream association values), and

after the header, the program boundary metadata (which
may include a program boundary frame count, a code
value (e.g., an “offset_exist” value) indicative of
whether the frame includes only a program boundary
frame count or both a program boundary frame count
and an offset value, and in some cases an offset value)
and the LPSM. The LPSM may include:

at least one dialog indication value indicating whether
corresponding audio data indicates dialog or does not
indicate dialog (e.g., which channels of corresponding
audio data indicate dialog). The dialog indication
value(s) may indicate whether dialog is present in any
combination of, or all of, the channels of the corre-
sponding audio data;

at least one loudness regulation compliance value indi-
cating whether corresponding audio data complies with
an indicated set of loudness regulations;

at least one loudness processing value indicating at least
one type of loudness processing which has been per-
formed on the corresponding audio data; and

at least one loudness value indicating at least one loudness
(e.g., peak or average loudness) characteristic of the
corresponding audio data.

In some embodiments, the LPSM payload segment
includes a code value (an “offset_exist” value) indicative of
whether the frame includes only a program boundary frame
count or both a program boundary frame count and an offset
value. For example, in one such embodiment, when such a
code value indicates (e.g., when offset_exist=1) that the
frame includes a program boundary frame count and an
offset value, the LPSM payload segment may include an
offset value which is an 11-bit unsigned integer (i.e., having
value from 0 to 2048) and which indicates the number of
additional audio samples between the signaled frame bound-
ary (the boundary of the frame which includes the program
boundary) and the actual program boundary. If the program
boundary frame count indicates the number of frames (at the
current frame rate) to the program boundary-containing

40

45

55

38

frame, the precise location (in units of number of samples)
of the program boundary (relative to the start or end of the
frame which includes the LPSM payload segment) would be
calculated as:

S=(frame_counter*frame size)+offset,

where S is the number of samples to the program boundary
(from the start or end of the frame which includes the LPSM
payload segment), “frame_counter” is the frame count indi-
cated by the program boundary frame count, “frame size” is
the number of samples per frame, and “offset” is the number
of samples indicated by the offset value.

Some embodiments in which the insertion rate of program
boundary flags increases near the actual program boundary
implement a rule that an offset value is never included in a
frame if the frame is less than or equal to some number (“Y™”)
of frames from the frame which includes the program
boundary. Typically, Y=32. For an E-AC-3 encoder which
implements this rule (with Y=32), the encoder never inserts
an offset value in the final second of an audio program. In
this case, the receiving device is responsible for maintaining
a timer and thus performing its own offset calculation (in
response to program boundary metadata, including an offset
value, in a frame of the encoded bitstream which is more
than Y frames from the program boundary-containing
frame).

For programs whose audio programs are known to be
“frame aligned” to video frames of corresponding video
programs (e.g., typical contribution feeds with Dolby E
encoded audio), it would be superfluous to include offset
values in the encoded bitstreams indicative of the audio
programs. Thus, offset values will typically not be included
in such encoded bitstreams.

With reference to FIG. 11, we next consider cases in
which encoded audio bitstreams are spliced together to
generate an embodiment of the inventive audio bitstream.

The bitstream at the top of FIG. 11 (labeled “Scenario 17)
is indicative of an entire first audio program (P1) including
program boundary metadata (program boundary flags, F)
followed by an entire second audio program (P2) which also
includes program boundary metadata (program boundary
flags, F). The program boundary flags in the first program’s
end portion (some of which are shown in FIG. 11) are
identical or similar to those described with reference to FIG.
8, and determine the location of the boundary between the
two programs (i.e., the boundary at the beginning of the
second program). The program boundary flags in the second
program’s beginning portion (some of which are shown in
FIG. 11) are identical or similar to those described with
reference to FIG. 9, and they also determine the location of
the boundary. In typical embodiments, an encoder or
decoder implements a timer (calibrated by the flags in the
first program) which counts down to the program boundary,
and the same timer (calibrated by the flags in the second
program) counts up from the same program boundary. As
indicated by the boundary timer graph in Scenario 1 of FIG.
11, such a timer’s countdown (calibrated by flags in the first
program) reaches zero at the boundary, and timer’s count up
(calibrated by flags in the second program) indicates that the
same location of the boundary.

The second bitstream from the top of FIG. 11 (labeled
“Scenario 2”) is indicative of an entire first audio program
(P1) including program boundary metadata (program
boundary flags, F) followed by an entire second audio
program (P2) which does not include program boundary
metadata. The program boundary flags in the first program’s
end portion (some of which are shown in FIG. 11) are

US 9,905,237 B2

39

identical or similar to those described with reference to FIG.
8, and determine the location of the boundary between the
two programs (i.e., the boundary at the beginning of the
second program), just as in Scenario 1. In typical embodi-
ments, an encoder or decoder implements a timer (calibrated
by the flags in the first program) which counts down to the
program boundary, and the same timer (without being fur-
ther calibrated) continues to count up from the program
boundary (as indicated by the boundary timer graph in
Scenario 2 of FIG. 11).

The third bitstream from the top of FIG. 11 (labeled
“Scenario 3”) is indicative of a truncated first audio program
(P1) which includes program boundary metadata (program
boundary flags, F), and which has been spliced with an entire
second audio program (P2) which also includes program
boundary metadata (program boundary flags, F). The splic-
ing has removed the last “N” frames of the first program.
The program boundary flags in the second program’s begin-
ning portion (some of which are shown in FIG. 11) are
identical or similar to those described with reference to FIG.
9, and they determine the location of the boundary (splice)
between the truncated first program and entire second pro-
gram. In typical embodiments, an encoder or decoder imple-
ments a timer (calibrated by the flags in the first program)
which counts down to the end of the untruncated first
program, and the same timer (calibrated by the flags in the
second program) counts up from the beginning of the second
program. The beginning of the second program is the
program boundary in Scenario 3. As indicated by the bound-
ary timer graph in Scenario 3 of FIG. 11, such a timer’s
countdown (calibrated by the program boundary metadata in
the first program) is reset (in response to the program
boundary metadata in the second program) before it would
have reached zero (in response to the program boundary
metadata in the first program). Thus, although the truncation
of the first program (by the splice) prevents the timer from
identifying the program boundary between the truncated first
program and the beginning of the second program in
response to (i.e., under calibration by) program boundary
metadata in the first program alone, the program metadata in
the second program resets the timer, so that the reset timer
correctly indicates (as the location corresponding to the
“zero” count of the reset timer) the location of the program
boundary between the truncated first program and the begin-
ning of the second program.

The fourth bitstream (labeled “Scenario 4”) is indicative
of a truncated first audio program (P1) which includes
program boundary metadata (program boundary flags, F),
and a truncated second audio program (P2) which includes
program boundary metadata (program boundary flags, F)
and which has been spliced with a portion (the non-truncated
portion) of the first audio program. The program boundary
flags in the beginning portion of the entire (pre-truncation)
second program (some of which are shown in FIG. 11) are
identical or similar to those described with reference to FIG.
9, and the program boundary flags in the end portion of the
entire (pre-truncation) first program (some of which are
shown in FIG. 11) are identical or similar to those described
with reference to FIG. 8. The splicing has removed the last
“N” frames of the first program (and thus some of the
program boundary flags that had been included therein
before the splice) and the first “M” frames of the second
program (and thus some of the program boundary flags that
had been included therein before the splice). In typical
embodiments, an encoder or decoder implements a timer
(calibrated by the flags in the truncated first program) which
counts down toward the end of the untruncated first pro-

5

10

15

20

25

30

40

45

50

55

60

40

gram, and the same timer (calibrated by the flags in the
truncated second program) counts up from the beginning of
the untruncated second program. As indicated by the bound-
ary timer graph in Scenario 4 of FIG. 11, such a timer’s
countdown (calibrated by the program boundary metadata in
the first program) is reset (in response to the program
boundary metadata in the second program) before it would
have reached zero (in response to the program boundary
metadata in the first program). The truncation of the first
program (by the splice) prevents the timer from identifying
the program boundary between the truncated first program
and the beginning of the truncated second program) in
response to (i.e., under calibration by) program boundary
metadata in the first program alone. However, the reset timer
does not correctly indicate the location of the program
boundary between the end of the truncated first program and
the beginning of the truncated second program. Thus, trun-
cation of both spliced bitstreams may prevent accurate
determination of the boundary between them.

Embodiments of the present invention may be imple-
mented in hardware, firmware, or software, or a combination
of both (e.g., as a programmable logic array). Unless oth-
erwise specified, the algorithms or processes included as
part of the invention are not inherently related to any
particular computer or other apparatus. In particular, various
general-purpose machines may be used with programs writ-
ten in accordance with the teachings herein, or it may be
more convenient to construct more specialized apparatus
(e.g., integrated circuits) to perform the required method
steps. Thus, the invention may be implemented in one or
more computer programs executing on one or more pro-
grammable computer systems (e.g., an implementation of
any of the elements of FIG. 1, or encoder 100 of FIG. 2 (or
an element thereot), or decoder 200 of FIG. 3 (or an element
thereof), or post-processor 300 of FIG. 3 (or an element
thereof)) each comprising at least one processor, at least one
data storage system (including volatile and non-volatile
memory and/or storage elements), at least one input device
or port, and at least one output device or port. Program code
is applied to input data to perform the functions described
herein and generate output information. The output infor-
mation is applied to one or more output devices, in known
fashion.

Each such program may be implemented in any desired
computer language (including machine, assembly, or high
level procedural, logical, or object oriented programming
languages) to communicate with a computer system. In any
case, the language may be a compiled or interpreted lan-
guage.

For example, when implemented by computer software
instruction sequences, various functions and steps of
embodiments of the invention may be implemented by
multithreaded software instruction sequences running in
suitable digital signal processing hardware, in which case
the various devices, steps, and functions of the embodiments
may correspond to portions of the software instructions.

Each such computer program is preferably stored on or
downloaded to a storage media or device (e.g., solid state
memory or media, or magnetic or optical media) readable by
a general or special purpose programmable computer, for
configuring and operating the computer when the storage
media or device is read by the computer system to perform
the procedures described herein. The inventive system may
also be implemented as a computer-readable storage
medium, configured with (i.e., storing) a computer program,
where the storage medium so configured causes a computer

US 9,905,237 B2

41

system to operate in a specific and predefined manner to
perform the functions described herein.

A number of embodiments of the invention have been
described. Nevertheless, it will be understood that various
modifications may be made without departing from the spirit
and scope of the invention. Numerous modifications and
variations of the present invention are possible in light of the
above teachings. It is to be understood that within the scope
of the appended claims, the invention may be practiced
otherwise than as specifically described herein.

What is claimed is:

1. An audio processing apparatus for decoding an encoded
audio bitstream, the audio processing apparatus comprising:

an input buffer that stores at least a portion of the encoded

audio bitstream, the encoded audio bitstream including
audio data and a metadata container;

a bitstream parser that parses the audio data; and

a decoder that decodes the audio data,

wherein the encoded audio bitstream is segmented into

one or more frames, each frame including:

a synchronization information section including a
frame synchronization word,

a bitstream information section following the synchro-
nization information section, the bitstream informa-
tion including audio metadata,

an additional bitstream information section located at
an end of the bitstream information section,

up to six blocks of audio data following the bitstream
information section,

an auxiliary information section following the up to six
blocks of audio data,

an error correction word following the auxiliary infor-
mation section, and

one or more skip fields containing any unused space
remaining in the frame,

wherein at least one of the one or more frames includes

the metadata container, the metadata container located
in a reserved data space selected from the group
consisting of the one or more skip fields, the additional
bitstream information section, the auxiliary informa-
tion section, or a combination thereof,

wherein the metadata container includes:

a header identifying a start of the metadata container,
the header including a syncword followed by a
length field specifying a length of the metadata
container,

a format version field following the header, the format
version field specifying a format version of the
metadata container,

one or more metadata payloads following the format
version field, each metadata payload including an
identifier uniquely identifying the metadata payload
followed by metadata of the metadata payload, and

protection data following the one or more metadata
payloads, the protection data for authenticating or
validating the metadata container or the one or more
metadata payloads within the metadata container,
and

wherein the one or more metadata payloads includes a
program loudness payload, and the loudness payload
includes a loudness regulation type field, the loud-
ness regulation type field consisting of a 4-bit field
indicating which loudness regulation standard was
used to calculate a program loudness associated with
the audio data.

2. The audio processing apparatus of claim 1 wherein the
syncword is a 16-bit field having a value of 0x5838.

10

15

20

25

30

35

40

45

50

55

60

65

42

3. The audio processing apparatus of claim 1 wherein the
one or more metadata payloads includes a program loudness
payload, and the loudness payload includes a dialogue
channel field, the dialogue channel field consisting of a 3-bit
field indicating whether a left, right or center channel of the
audio data contains spoken dialogue.

4. The audio processing apparatus of claim 1 wherein the
one or more metadata payloads includes a program loudness
payload, wherein the program loudness payload includes a
loudness correction type, the loudness correction type con-
sisting of a 1-bit field indicating whether the audio data was
corrected with an infinite look-ahead or file-based loudness
correction process.

5. The audio processing apparatus of claim 1 wherein the
encoded audio bitstream is an AC-3 bitstream or an E-AC-3
bitstream.

6. A method for decoding an encoded audio bitstream, the
method comprising:

receiving at least a portion of the encoded audio bitstream,

the encoded audio bitstream including audio data and a

metadata container;

parsing the audio data; and

decoding the audio data,

wherein the encoded audio bitstream is segmented into

one or more frames, each frame including:

a synchronization information section including a
frame synchronization word,

a bitstream information section following the synchro-
nization information section, the bitstream informa-
tion including audio metadata,

an additional bitstream information section located at
an end of the bitstream information section,

up to six blocks of audio data following the bitstream
information section,

an auxiliary information section following the up to six
blocks of audio data,

an error correction word following the auxiliary infor-
mation section, and

one or more skip fields containing any unused space
remaining in the frame,

wherein at least one of the one or more frames includes

the metadata container, the metadata container located
in a reserved data space selected from the group
consisting of the one or more skip fields, the additional
bitstream information section, the auxiliary informa-
tion section, or a combination thereof,

wherein the metadata container includes:

a header identifying a start of the metadata container,
the header including a syncword followed by a
length field specifying a length of the metadata
container,

a format version field following the header, the format
version field specifying a format version of the
metadata container,

one or more metadata payloads following the format
version field, each metadata payload including an
identifier uniquely identifying the metadata payload
followed by metadata of the metadata payload, and

protection data following the one or more metadata
payloads, the protection data for authenticating or
validating the metadata container or the one or more
metadata payloads within the metadata container,
and

wherein the one or more metadata payloads includes a
program loudness payload, and the loudness payload
includes a loudness regulation type field, the loud-
ness regulation type field consisting of a 4-bit field

US 9,905,237 B2
43

indicating which loudness regulation standard was
used to calculate a program loudness associated with
the audio data.

#* #* #* #* #*

44

