(21) 申请号 2012102223817.6
(22) 申请日 2012.07.02
(73) 专利权人 深圳大学
地址 518060 广东省深圳市南山区南海大道3668号深圳大学计算机与软件学院
(72) 发明人 姜伟 俞航 李璞 纪震 张胜利
(74) 专利代理机构 深圳市顺天达专利商标代理有限公司 44217
代理人 易钊
(51) Int. Cl.
G06K 1/123 (2006.01)
G06K 19/067 (2006.01)
(56) 对比文件
(54) 发明名称
一种使用双频段停车卡的停车场管理方法
(57) 摘要
本发明公开了一种基于双频段停车卡的停车场管理系统以及停车场管理方法。该双频段停车卡包括读写装置、定位装置和通信装置。通过读写装置和定位装置的配合，可以实现对停车位的准确识别和管理。具体包括以下步骤：
1. 用户通过读写装置读取卡内信息，确定车位位置；
2. 读写装置向定位装置发送位置信息；
3. 定位装置将位置信息发送给用户或管理平台；
4. 用户根据接收到的信息，选择合适的车位并停车。
该方法不仅提高了停车位的使用效率，还提升了用户满意度。
权利要求书

1. 一种使用双频段停车卡的停车场管理方法，用于对进入停车场内的车辆进行管理，其特征在于，所述双频段停车卡包括：

使用第一频段的第一停车卡单元，与停车场内的定位装置通过无线远场通信方式连接以接收所述第一停车卡单元在停车场的位置信息；以及

使用第二频段的第二停车卡单元，所述第二停车卡单元具有身份码，并与读写装置通过无线近场通信方式连接以进行数据交换；

其中，所述第一频段与所述第二频段不同；所述第二停车卡单元与所述第一停车卡单元通过数据接口通信方式连接，以从所述第一停车卡单元接收所述位置信息，并通过与停车场内的车位指引装置交互以在所述车位指引装置上显示所述位置信息；

所述停车场管理方法包括步骤：

所述车辆进入所述停车场时，用户领取所述双频段停车卡；入口处的读写装置通过13.56MHz读取第二停车卡单元中存储的身份码，并将所述身份码发送至中央服务器，所述中央服务器识别所述身份码后开始计时收费；

当车辆停泊在停车位后，第一停车卡单元通过2.4GHz与定位装置通过无线远场通信方式以接收所述第一停车卡单元在所述停车场的位置信息，并将所述位置信息发送给第二停车卡单元，同时发送给中央服务器；

当用户找车时，使用所述第二停车卡单元与车位指引装置进行数据交换，所述车位指引装置从所述第二停车卡单元读取所述位置信息并显示所述位置信息；以及

出口处的读写装置读取所述第二停车卡单元中存储的身份码，并将所述身份码发送至中央服务器，所述中央服务器识别所述身份码后停止收费计时并计算停车费用。

2. 根据权利要求1所述的使用双频段停车卡的停车场管理方法，其特征在于，所述第二停车卡单元为工作频率为13.56MHz的无源RFID标签；所述第一停车卡单元为工作频率为2.4GHz的无源RFID标签。

3. 根据权利要求1所述的使用双频段停车卡的停车场管理方法，其特征在于，所述车位指引装置显示的所述位置信息通过文字的方式显示，并打印出纸条。
一种使用双频段停车卡的停车场管理方法

技术领域
[0001] 本发明涉及停车卡、停车场管理系统以及停车场管理方法，尤其涉及一种双频段停车卡以及使用该双频段停车卡的停车场管理系统和停车场管理方法。

背景技术
[0002] 在商场、购物中心等大型停车场内，由于停车场空间大，环境及标志物类似、方向不易辨别等原因，用户容易在停车场内迷失方向，找不到自己的车辆。目前停车场常用的方法是对停车位进行编号，以及将停车场划分为多个区域，例如编号为G1050的车位可表示该车位位于第1层的G区，从而方便用户找到车辆。即便如此，用户在找车时还是非常麻烦。首先，用户有可能会忘记或没有注意停车位的编号，一旦如此，将非常难于找到车辆。其次，即使知道停车位编号，但是要在拥有数百个停车位的停车场内找寻到该停车位也不是一件容易的事情，往往在找寻中会走弯路或绕远路，花费较长的时间。

发明内容
[0003] 本发明要解决的技术问题在于针对现有技术中在停车场内找寻车辆难的缺陷，提供一种双频段停车卡、停车场管理系统以及停车场管理方法。
[0004] 本发明解决其技术问题所采用的技术方案是：提供了一种双频段停车卡，包括：
[0005] 使用第一频段的第一停车卡单元，与停车场内的定位装置通过无线远场通信方式连接以接收所述第一停车卡单元在停车场的位置信息；以及
[0006] 使用第二频段的第二停车卡单元，所述第二停车卡单元具有身份码，并与读写装置通过无线近场通信方式连接以进行数据交换；
[0007] 其中，所述第一频段与所述第二频段不同；所述第二停车卡单元与所述第一停车卡单元通过数据接口通信方式连接，以向所述第一停车卡单元接收所述位置信息，并通过与停车场内的车位指引装置交互以在所述车位指引装置上显示所述位置信息。
[0008] 在依据本发明实施例的双频段停车卡中，所述第二停车卡单元为工作频率为13.56MHz的无源RFID标签；所述第一停车卡单元为工作频率为2.4GHz的无源RFID标签。
[0009] 在依据本发明实施例的双频段停车卡中，所述第一停车卡单元与所述第二停车卡单元可拆卸地安装在一起。
[0010] 本发明还提供了一种使用上述双频段停车卡的停车场管理系统，用于对进入停车场内的车辆进行管理，所述停车场管理系统进一步包括中央服务器、读写装置、定位装置以及车位指引装置；其中，
[0011] 所述定位装置用于确定所述车辆停放的停车位的位置信息；
[0012] 所述双频段停车卡的第一停车卡单元与所述定位装置通过无线远场通信方式连接以接收所述第一停车卡单元在停车场的位置信息，并将所述位置信息发送给所述双频段停车卡的第二停车卡单元；
[0013] 所述读写装置设置在停车场的出口和入口处，用于与所述第二停车卡单元进行数
据交互以分别进行出场和进场所登记；
[0014] 所述中央服务器与所述读写装置通信连接以进行数据交互，用于确定停车费用；
以及
[0015] 车位指引装置用于通过与所述第二停车卡单元交互，显示所述位置信息，并打印
位置信息的纸条。
[0016] 在根据本发明实施例的停车场管理系统中，所述定位装置包括对应设置在每个停
车位上的检测装置，所述检测装置包括：
[0017] 探测器，用于检测对应的停车位上是否停泊有车辆；
[0018] 寄存器，用于存储所述停车位的位置信息；
[0019] 发射器，用于与所述第一停车卡单元进行数据变换；以及
[0020] 控制器，用于在所述探测器检测到所述停车位上停泊有车辆时，通过所述发射器
发送所述位置信息至所述停车位上的所述第一停车卡单元，并将所述停车单元已被占用的
信息发送至所述中央服务器。
[0021] 在根据本发明实施例的停车场管理系统中，所述车位指引装置包括读卡器和显示
器，其中，所述读卡器在与所述第二停车卡单元进行数据交互时从所述第二停车卡单元读
取所述位置信息，并所述显示器用于显示所述位置信息，并打印所述的位置信息。
[0022] 在根据本发明实施例的停车场管理系统中，所述车位指引装置包括打印单元，用
以打印所述位置信息。
[0023] 本发明还提供了一种使用上述双频段停车卡的停车场管理系统，用于对进入停
车场内的车辆进行管理，所述停车场管理系统包括步骤：
[0024] 所述车辆进入所述停车场后，用户领取所述双频段停车卡；入口处的读写装置通
过 13.56MHz 读取第二停车卡单元中存储的身份码，并将所述身份码发送至中央服务器，所
述中央服务器识别所述身份码后开始计时收费；
[0025] 当车辆停泊在停车位后，第一停车卡单元通过 2.4GHz 与定位装置通过无线远场
通信方式连接以接收所述第一停车卡单元在所述停车场的位置信息，并将所述位置信息发
送给第二停车卡单元，同时发送给中央服务器；
[0026] 当用户找车时，使用所述第二停车卡单元与车位指引装置进行数据变换，所述车
位指引装置从所述第二停车卡单元读取所述位置信息并显示所述位置信息；以及
[0027] 出口处的读写装置读取所述第二停车卡单元中存储的身份码，并将所述身份码发
送至中央服务器；所述中央服务器识别所述身份码后停止收费计时并计算停车费用。
[0028] 在根据本发明实施例的停车场管理方法中，所述第二停车卡单元使用工作频率为
13.56MHz 的无源 RFID 标签；所述第一停车卡单元使用工作频率为 2.4GHz 的无源 RFID 标签。
[0029] 在根据本发明实施例的停车场管理系统中，所述车位指引装置显示的所述位置信
息通过文字的方式显示，并可打印出纸条。所述车位指引装置至。
[0030] 本发明产生的有益效果是：使用双频段停车卡对停车场内的车辆进行管理，其中，
双频段停车卡中的第一停车卡单元用于接收车辆在停车场的位置信息，第二停车卡单元从
第一停车卡单元读取该位置信息并进行存储，使得用户在找车时，可以使用第二停车卡单
元在车位指引装置处读取车辆在停车场停泊的准确位置，从而用户能方便快捷地找到停
泊的车辆，节省了时间。
附图说明
[0031] 下面将结合附图及实施例对本发明作进一步说明，附图中：
[0032] 图1示出了依据本发明实施例的停车场管理系统逻辑框图；
[0033] 图2示出了依据本发明实施例的双频段停车卡100的结构示意图；
[0034] 图3示出了依据本发明实施例的停车场管理方法的流程图。

具体实施方式
[0035] 为了使本发明的目的、技术方案及优点更加清楚明白，以下结合附图及实施例，对本发明进行进一步详细说明。应当理解，此处所描述的具体实施例仅用以解释本发明，并不用于限定本发明。
[0036] 图1示出了依据本发明实施例的停车场管理系统逻辑框图，如图1所示，停车场管理系统包括双频段停车卡100，中央服务器200，读写装置300，定位装置400以及车位指引装置500。其中，用户在进入停车场时领取双频段停车卡100，开闸后驶入停车场中央服务器200，读写装置300，定位装置400以及车位指引装置500固定设置在停车场内，中央服务器200与读写装置300通信连接。
[0037] 在本发明的第一实施例中，在停车场内，为了实现对进入其内的车辆进行精确定位，即在停车场内各个节点的定位，将这些节点作为车辆定位的参照点。每个节点在停车场内形成一个空间坐标系统，只要确定了车辆与空间坐标系统中节点的相对距离，即可确定车辆在该停车场中的具体位置，从而实现实时对车辆的精确定位。因此，此处的节点为通信基站，包括适当的逻辑电路和/或接口，可以支持多种方式的通信，例如，依据本发明实施例的节点支持射频、红外、超声波、WiFi、ZigBee以及线性频偏扩频通信技术等。当然，上述列举仅用作举例，并不是对本发明的限制，除此之外，本发明实施例中的节点还可支持其它类型的通信。
[0038] 在本发明的第二实施例中，定位装置400包括多个检测装置，一个检测装置设置在一个对应的停车位处。检测装置包括探测器（例如红外探头）、寄存器、控制器和发射器。其中，该检测装置的寄存器中存储有对应停车位的位置信息，例如A0100，表示A区第100个车位。当检测装置的探测器检测到对应停车位上停有车辆时，控制器通过其发射器将停车位的位置信息发送给中央服务器200。例如可认为第一停车卡单元110，此时可认为第一停车卡单元110在停车场的位置信息是车辆停放在停车场的位置信息。优选地，定位装置400以工作频率2.4GHz向第一停车卡单元110发送位置信息信息。
[0039] 中央服务器200可位于中央机房或服务处。中央服务器200可为个人电脑（PC），也可为服务器，以及类似地具有数据处理和存储功能的装置。
[0040] 读写装置300包括读写模块和读写天线，其中读写模块包括适当的逻辑电路和/或接口。通过读写天线与第二停车卡单元120配合，读写模块可与第二停车卡单元120进行数据交互，例如从第二停车卡单元120中读取数据（诸如身份码），并将该身份码发送至中央服务器200。优选地，读写装置300以工作频率13.56MHz与第二停车卡单元120进行数据交互。
[0041] 车位指引装置500包括适当的逻辑电路和/或代码，从而可以与第二停车卡单元
120 进行交互，例如从第二停车卡单元 120 读取其中存储的位置信息。另外，车位指引装置 500 还包括显示屏，可以将读取的位置信息显示到显示屏上，以便用户查看。使得用户可以快速地在停车场内找到该停车位，大大缩短了时间。优选地，车位指引装置 500 以工作频率 13.56MHz 与第二停车卡单元 120 进行数据交互。优选地，车位指引装置 500 具有打印单元，可打印该位置信息以方便用户找车。

[0042] 图 2 显示了依据本发明实施例的双频段停车卡 100 的结构示意图，如图 2 所示，双频段停车卡 100 包括第一停车卡单元 110 和第二停车卡单元 120。第一停车卡单元 110 和第二停车卡单元 120 以可拆卸的方式装配在一起，此处可采用任意适合的可拆卸方式，例如图 2 中的卡合方式。因此，用户在进入停车场时领取作为一个整体的双频段停车卡 100，将车辆在停车位停好之后，第一停车卡单元 110 留放在车辆内，第二停车卡单元 120 随身携带。另外，第一停车卡单元 110 和第二停车卡单元 120 也可固定设置在一起，由用户随身携带。

[0043] 第一停车卡单元 110 内存储有身份证，该身份证是唯一的，以约定的格式进行存储，从而可以对车辆进出停车场进行登记，以及在车辆驶离停车场时进行收费交易。

[0044] 第一停车卡单元 110 为使用第一频段的电子标签，第二停车卡单元 120 为使用第二频段的电子标签，第一频段与第二频段不同。在本发明的优选实施例中，第二停车卡单元 120 为工作频率为 13.56MHz 的无源 RFID 标签；第一停车卡单元 110 为工作频率为 2.4GHz 的无源 RFID 标签。

[0045] 第二停车卡单元 120 为现有的无源 RFID 卡，此处不再对其结构进行展开描述。本领域的技术人员可采用现有的任意适合的无源 RFID 标签作为本发明中的第二停车卡单元 120。

[0046] 图 3 显示了依据本发明实施例的停车场管理系统的方法流程图，该停车场管理系统中使用了上述的停车场管理系统，下面将按步骤描述该停车场管理系统。

[0047] S100，当车辆进入停车场时，用户领取作为一个整体的双频段停车卡 100。于此时同时，入口处的读写装置读取第二停车卡单元中存储的身份证，并将该身份证发送至中央服务器 200，中央服务器 200 开始收费计时。

[0048] S200，当停在停车位处时，第一停车卡单元 110 与定位装置 400 通过无线远场通信方式连接以接收它在停车场的位置信息，并将位置信息发送给第二停车卡单元 120。此时，可采用上述文中提及的两种定位装置或其它任何能够实现定位的其它定位装置来确定第一停车卡单元 110 在停车场的位置信息。随后，第一停车卡单元 110 将该位置信息发送给第二停车卡单元 120，使得位置信息存储在第二停车卡单元 120 中。

[0049] 当用户找到停车位将车辆停好之后，该双频段停车卡 100 的第二停车卡单元 120 随用户带走，第一停车卡单元 110 留放在停泊的车辆内。也可是第一停车卡单元 110 和第二停车卡单元 120 随用户随身携带。

[0050] S300，当用户需要找车时，使用第二停车卡单元 120 与车位指引装置 500 进行数据交换。具体而言，当用户使用第二停车卡单元 120 在车位指引装置 500 进行刷卡时，车位指引装置 500 的读卡器从第二停车卡单元 120 读取位置信息，并由显示器显示该位置信息。例如可显示该车辆所在的停车位的编号。优选地，车位指引装置 500 具有打印单元，可打印该图示信息以方便用户找车。
[0051] 另一方面，如果准备离开停车场，设置在出口处的读写装置 300 读取第二停车卡单元 120 存储的身份码，并将该身份码发送至中央服务器 200。中央服务器 200 计算车辆停车所花费的费用，并反馈给读写装置 300。读卡器将该费用显示在显示器上，用户缴费完成后即可离场。

[0052] 从以上可以看出，本发明中使用双频段停车卡对停车场内的车辆进行管理，其中，双频段停车卡中的第一停车卡单元接收车辆在停车场的位置信息，并将该位置信息发送给第二停车卡单元。当用户找车时，可使用第二停车卡单元在车位指引装置处读取车辆在停车场停留的准确位置，并获得具体图示指示，从而使得用户能方便快捷地找到停泊的车辆，节省了时间。

[0053] 应当理解的是，对本领域普通技术人员来说，可以根据上述说明加以改进或变换，而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
图 1
图 2
所述车辆进入所述停车场时，用户领取所述双频段停车卡；入口处的读写装置读取第二停车卡单元中存储的身份码，并将所述身份码发送至中央服务器。

当车辆停泊在停车位后，第一停车卡单元与定位装置通过无线远场通信方式连接以接收所述停车卡单元在所述停车场的位置信息，并通过数据接口通信方式连接将所述位置信息发送给第二停车卡单元。

当用户找车时，使用所述第二停车卡单元与车位指引装置进行数据交换，所述车位指引装置从所述第二停车卡单元读取所述位置信息并显示所述位置信息。

出口处的读写装置读取所述第二停车卡单元中存储的身份码，并将所述身份码发送至中央服务器；所述中央服务器识别所述身份码后停止收费计时并计算停车费用。