Title: CMOS IMAGE SENSOR PIXEL WITH SELECTABLE BINNING

Abstract: An image sensor includes a plurality of pixels, at least two pixels each having a photodetector, a charge-to-voltage conversion region; an input to an amplifier; and a switch for selectively connecting the charge-to-voltage conversion regions.

Published:
— with international search report

before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
CMOS IMAGE SENSOR PIXEL WITH SELECTABLE BINNING

FIELD OF THE INVENTION

The invention relates generally to the field of image sensors, and more particularly, to image sensors having pixels that can selectively combine charge-to-voltage conversion regions.

BACKGROUND OF THE INVENTION

Prior art CMOS Active Pixel Sensor pixel architectures are shown in Figs. 1, 2 and 3. Referring to Fig. 1, this four-transistor pixel has a photodetector n-PD and a charge-to-voltage conversion region n⁺ in each pixel. This architecture provides the some advantages. The first advantage is global shutter operation by using the charge-to-voltage conversion region n⁺ as a storage region. The second advantage is pixel symmetry. Each pixel is identical which provides identical photoresponse for each pixel. This pixel architecture also has disadvantages. A first disadvantage is that for large pixel sizes, the capacitance of the charge-to-voltage conversion region can be too small to hold all of the charge that is accumulated in the photodetector. A second disadvantage is lack of in-pixel charge domain binning.

The pixel shown in Fig. 2 addresses the first disadvantage. The charge-to-voltage conversion region capacitance is increased by incorporation of an added capacitance C_{add} in each pixel. While this solves the charge-to-voltage conversion region capacitance, and can provide a more linear output response, it has the disadvantage of reducing the fill factor of the pixel due to the area in the pixel allocated to the added capacitance C_{add}. The reduced fill factor, adversely affects the charge capacity and dynamic range of the pixel.

The pixel shown in Fig. 3 solves the disadvantages of lack of charge domain binning capability, low charge-to-voltage region capacitance, and low fill factor by sharing the charge-to-voltage conversion n⁺ between adjacent pixels. This pixel architecture has other disadvantages. A first disadvantage is
pixel symmetry. Each pixel is not identical, and this can lead to systematic differences in photoreponse, causing fixed pattern noise that can degrade image quality. A second disadvantage is lack of global shutter capability. Since the charge-to-voltage conversion region is shared by adjacent pixels, it cannot be used as a charge storage region to isolate the signal captured by individual photodetectors.

Consequently, a need exits for an image sensor that overcomes the above-described drawbacks.

SUMMARY OF THE INVENTION

The present invention is directed to overcoming one or more of the problems set forth above. Briefly summarized, according to one aspect of the present invention, the invention resides in an image sensor comprising a plurality of pixels, at least two pixels each comprising: (a) a photodetector; (b) a charge-to-voltage conversion region; (c) an input to an amplifier; and a switch for selectively connecting the charge-to-voltage conversion regions.

These and other aspects, objects, features and advantages of the present invention will be more clearly understood and appreciated from a review of the following detailed description of the preferred embodiments and appended claims, and by reference to the accompanying drawings.

Advantageous Effect Of The Invention

The present invention discloses a CMOS active pixel having the advantages of: (a) single four-transistor operation with global shutter; (b) selectable conversion gain by use of components in adjacent pixels; (c) selectable charge domain binning in both the vertical or horizontal direction; (d) higher data rate for reduced resolution readout; and (e) pixel symmetry since all pixels are identical.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a prior art pixel of an active pixel image sensor;
Fig. 2 is a prior art pixel of an image sensor having increased capacitance for the floating diffusion;

Fig. 3 is a prior art pixel of an image sensor having a shared amplifier;

Fig. 4 is a schematic drawing of a first embodiment of the present invention illustrating a five-transistor pixel that provides programmable conversion gain and binning by selective connection of charge-to-voltage conversion regions in the vertical direction;

Fig. 5 is a schematic drawing of a second embodiment of the present invention illustrating a five-transistor pixel that provides programmable conversion gain and binning by selective connection of charge-to-voltage conversion regions in the horizontal and vertical direction;

Fig. 6 is a timing diagram for Fig. 1 for the case of no charge-to-voltage conversion regions connected together;

Fig. 7 is a timing diagram for Fig. 1 for the case of two adjacent charge-to-voltage conversion regions connected together;

Fig. 8 is a timing diagram for Fig. 1 for the case of three charge-to-voltage conversion regions connected together;

Fig. 9 is a schematic drawing of a third embodiment of the present invention illustrating a four-transistor pixel that provides programmable conversion gain and binning by selective connection of photodetectors which also operate as charge-to-voltage conversion regions in the vertical direction;

Fig. 10 is a schematic drawing of a fourth embodiment of the present invention illustrating a four-transistor pixel that provides programmable conversion gain and binning by selective connection of photodetectors which also operate as charge-to-voltage conversion regions in the vertical and horizontal direction;

Fig. 11 is a schematic drawing of a fifth embodiment of the present invention illustrating a five-transistor pixel that provides programmable conversion gain and binning by selective connection of charge-to-voltage conversion regions for pixels with the same color filter in the vertical direction;
Fig. 12 is a schematic drawing of a fifth embodiment of the present invention illustrating a six-transistor pixel that provides programmable conversion gain and binning by selective connection of charge-to-voltage conversion regions for pixels with the same color filter in the vertical and horizontal direction;

Fig. 13 is a schematic drawing of a sixth embodiment of the present invention illustrating a five-transistor pixel that provides programmable conversion gain and binning by selective connection photodetectors that operate as charge-to-voltage conversion regions for pixels with the same color filter in the vertical and horizontal direction; and

Fig. 14 is a digital camera illustrating a typical commercial embodiment for the image sensor of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Before discussing the invention in detail, it is instructive to clearly define CMOS active pixel sensor. CMOS refers to complimentary metal oxide silicon transistors in which complimentary means there are two transistors operating together which are composed of different dopants, one of n-type dopant and one of p-type dopant. The n-type dopant transistor is referred to as NMOS, and the p-type dopant transistor is referred to as PMOS. Active pixel sensors refer to electronic image sensors with active devices, such as transistors, that are associated with each pixel.

Now referring to Fig. 4, the CMOS active pixel image sensor 10 of the present invention is shown one embodiment of the present invention that enables charge domain binning in a selectable manner. As seen in Fig. 1, this is in its simplest embodiment a five-transistor pixel. Each pixel 20 includes a photodetector 30, preferably an n-type photodetector for capturing incident light that is converted into charge. A transfer gate 40 is pulsed to pass the charge from the photodetector 30 to a floating diffusion 50, whose signal varies according to the amount of received charge. A reset transistor 60 with a reset gate 70 is pulsed to reset the charge on the floating diffusion 50, and a row select transistor 80 with
a row select gate 90 is pulsed to select the particular row of the pixel array. A source follower input transistor 100 senses the voltage on the floating diffusion 50 and amplifies it. A plurality of “bin select” transistors 110 each with a bin select gate 120 may be addressed in any desired combination to electrically connect adjacent floating diffusion regions 50 thus providing the ability to combine charge from adjacent floating diffusions 50. For example, the charge from two floating diffusions 50 may be combined or the charge from all three floating diffusions 50 may be combined. This configuration is referred to as vertical binning.

The design of Fig. 4 is referred to as a five-transistor, non-shared pixel (5TNS). The benefits of this pixel architecture are: (1) pixels which are identical so fixed pattern noise associated with layout differences is mitigated; (2) charge domain binning can be accomplished by turning on bin select to connect adjacent floating diffusions; (3) variable charge-to-voltage conversion for a single pixel readout can be accomplished by timing of the bin select and row select addresses; and (4) charge domain binning is configurable rather than being hardwired.

Referring to Fig. 5, horizontal bin selection can also be accomplished by addition of a horizontal bin selection transistor (HBSEL) 130, hereinafter referred to as a six-transistor device. In this embodiment, the additional transistor 130 permits horizontal binning by a plurality of floating diffusions 50. In this embodiment the BSEL transistor 110 described in Fig. 4 is referred to and labeled as a vertical bin selection transistor VBSEL 110 to denote selective connection of row adjacent floating diffusions 50. Again, the number of floating diffusions 50 that are binned are determined by the number of floating diffusions 50 that are connected through the one or more horizontal bin selects 130. It is noted for clarity that the vertical bin selection transistors 110 are connected as discussed hereinabove for vertical binning.

Referring to Fig. 6, there is shown a timing diagram for Fig. 4 in which no BSEL transistors 110 are turned on so that the floating diffusions are not connected together.
Referring to Fig. 7, there is shown the timing diagram for Fig. 4 in which the vertically adjacent floating diffusions 50 are connected together. As a result, the BSEL transistor 110 for the row being addressed and readout is turned on so that the floating diffusion 50 of the row being readout and an adjacent row are connected together to form a single floating diffusion sense node. In this configuration, the conversion gain is reduced and the floating diffusion 50 capacitance and charge capacity is increased. The increased charge capacity for readout of a single photodiode 30 is desired for large pixel sensors where the charge capacity of the photodiode 30 is large and the floating diffusion 50 capacitance is too small to handle the photodiode capacity. The increased floating diffusion 50 capacity is accomplished without having to integrate a large capacitance in each pixel 20.

The timing diagram for connecting three row adjacent floating diffusions 50 together is shown in Fig. 8. In this case, two BSEL transistors 110 are turned on, the row being addressed and an adjacent row, so that the floating diffusion 50 of the row being readout and two adjacent rows are connected together to form a single floating diffusion sense node. In this configuration, the conversion gain is reduced further and the floating diffusion charge capacity is increased further.

The examples shown so far pertain to four transistor pixels that enable true correlated double sampling (CDS). Figs. 9 and 10 respectively illustrate the same concept applied to a three transistor (3T) pixel as in Figs. 4 and 5. In this case, the BSEL transistor 110 is connected between photodiodes 30 in adjacent rows. The resulting pixel is now a four transistor (4T). Otherwise operation is similar to that described for the pixels in Figs. 4 and 5. For the pixels in Figs. 9 and 10, the photodiode 30 also operates as the charge-to-voltage conversion node 50 or sense node 50.

It should be noted that the selection of how many pixels to connect with the BSEL (VBSEL) transistors 110 and 130 could be independent of the binning operation. For example, it may be desired to have three floating diffusions 50 connected to achieve adequate floating diffusion capacitance to hold
the electrons stored in one photodiode 30. Now binning can be selectively employed or not employed in addition to the floating diffusion connection selection. In low light conditions, one may choose to “un-connect” adjacent pixels in order to reduce the sense node capacitance and increase the conversion gain in order to maximize the signal to noise ratio of the sensor in low light regions of the scene.

Another embodiment of this invention is shown in Fig. 11. The BSEL transistors 110 can be arranged to connect the adjacent pixels 20 of the same color filter pattern rather than the physically adjacent pixels. For example, colors 1 are connected together and colors 2 are connected together.

Another embodiment of this invention is shown in Fig. 12. This is similar to the embodiment shown in Fig. 11 with the added feature that selective addressing of the vertical BSEL (VBSEL) transistors and horizontal BSEL (HBSEL) transistors can be done to connect both row and column adjacent pixels of the same color filter pattern.

Another embodiment of this invention is shown in Fig. 13. This is similar to the embodiment shown in Fig. 12 except the photodetector also operates as the floating diffusion and charge-to-voltage conversion region.

Fig. 14 is a digital camera 160 containing the image sensor 10 of the present invention for illustrating a typical embodiment to which the ordinary consumer is accustomed.
PARTS LIST

10 image sensor

5 20 pixel
30 photodetector/photodiode
40 transfer gate
50 floating diffusion
60 reset transistor

10 70 reset gate
80 row select transistor
90 row select gate
100 source follower input transistor
110 “bin select” transistor (BSEL)

15 120 bin select gate or vertical bin selection transistor (VBSEL)
130 horizontal bin selection transistor (HBSEL)
160 digital camera
CLAIMS:

1. An image sensor comprising:
 a plurality of pixels, at least two pixels each comprising:
 (a) a photodetector;
 (b) a charge-to-voltage conversion region;
 (c) an input to an amplifier; and
 a switch for selectively connecting the charge-to-voltage conversion regions.

2. The image sensor as in claim 1, wherein each charge-to-voltage conversion region is connected to the photodetector by a transfer gate.

3. The image sensor as in claim 1, wherein each charge-to-voltage conversion region is integrally formed as a portion of the photodetector.

4. The image sensor as in claim 3, wherein the photodetector is a photodiode.

5. The image sensor as in claim 1, wherein the switch is a transistor.

6. The image sensor as in claim 5, wherein the transistor is a NMOS transistor.

7. The image sensor as in claim 1, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of row adjacent pixels.
8. The image sensor as in claim 1, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of column adjacent pixels.

9. The image sensor as in claim 1, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of row and column adjacent pixels.

10. The image sensor as in claim 3, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of row adjacent pixels.

11. The image sensor as in claim 3, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of column adjacent pixels.

12. The image sensor as in claim 3, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of row and column adjacent pixels.

13. The image sensor as in claim 1 further comprising a color filter array spanning the plurality of pixels and the switch selectively connects charge-to-voltage conversion regions of adjacent pixels covered by the same color of the color filter array.

14. The image sensor as in claim 3 further comprising a color filter array spanning the plurality of pixels and the switch selectively connects charge-to-voltage conversion regions of adjacent pixels covered by the same color of the color filter array.
15. The image sensor as in claim 1, wherein the switch functions as either all or any combination of providing a desired capacitance for the charge-to-voltage conversion regions or providing a means of combining charge from adjacent photodetectors.

16. The image sensor as in claim 1, wherein the switch functions to provide a desired capacitance for the charge-to-voltage conversion regions.

17. The image sensor as in claim 1, wherein the switch functions to provide a means of combining charge from adjacent photodetectors.

18. A camera comprising:
 an image sensor comprising:
 a plurality of pixels, at least two pixels each comprising:
 (a) a photodetector;
 (b) a charge-to-voltage conversion region;
 (c) an input to an amplifier; and
 a switch for selectively connecting the charge-to-voltage conversion regions.

19. The camera as in claim 18, wherein each charge-to-voltage conversion region is connected to the photodetector by a transfer gate.

20. The camera as in claim 18, wherein each charge-to-voltage conversion region is integrally formed as a portion of the photodetector.

21. The camera as in claim 20, wherein the photodetector is a photodiode.

22. The camera as in claim 18, wherein the switch is a transistor.
23. The camera as in claim 22 wherein the transistor is an NMOS transistor.

24. The camera as in claim 18, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of row adjacent pixels.

25. The camera as in claim 18, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of column adjacent pixels.

26. The camera as in claim 18, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of row and column adjacent pixels.

27. The camera as in claim 20, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of row adjacent pixels.

28. The camera as in claim 20, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of column adjacent pixels.

29. The camera as in claim 20, wherein the plurality of pixels are arranged in rows and columns and the switch selectively connects charge-to-voltage conversion regions of row and column adjacent pixels.

30. The camera as in claim 18 further comprising a color filter array spanning the plurality of pixels and the switch selectively connects charge-to-voltage conversion regions of adjacent pixels covered by the same color of the color filter array.
31. The camera as in claim 20 further comprising a color filter array spanning the plurality of pixels and the switch selectively connects charge-to-voltage conversion regions of adjacent pixels covered by the same color of the color filter array.

32. The camera as in claim 18, wherein the switch functions as either all or any combination of providing a desired capacitance for the charge-to-voltage conversion regions or providing a means of combining charge from adjacent photodetectors.

33. The camera as in claim 18, wherein the switch functions to provide a desired capacitance for the charge-to-voltage conversion regions.

34. The camera as in claim 18, wherein the switch functions to provide a means of combining charge from adjacent photodetectors.
FIG. 1
(Prior Art)

FIG. 2
(Prior Art)
FIG. 3
(Prior Art)
<table>
<thead>
<tr>
<th>BSEL</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSEL</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RG</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>TG</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>COL</td>
<td>0,1,2,3..</td>
<td>0,1,2,3..</td>
<td>0,1,2,3..</td>
</tr>
</tbody>
</table>

FIG. 6

<table>
<thead>
<tr>
<th>BSEL SET</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSEL CLR</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RSEL</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RG</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>TG</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>COL</td>
<td>0,1,2,3..</td>
<td>0,1,2,3..</td>
<td>0,1,2,3..</td>
</tr>
</tbody>
</table>

FIG. 7
FIG. 8
FIG. 9
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H04N3/15

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 467 410 A (DIALOG SEMICONDUCTOR) 13 October 2004 (2004-10-13) paragraph [0022]; figure 8a</td>
<td>1,18</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 102 323 A (CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA) 23 May 2001 (2001-05-23) paragraph [0006]; figure 2</td>
<td>1,18</td>
</tr>
<tr>
<td>P,X</td>
<td>WO 2005/107235 A (KONINKLIJKE PHILIPS ELECTRONICS N.V.; PHILIPS INTELLECTUAL PROPERTY & S) 10 November 2005 (2005-11-10) page 7, line 15 - line 27; figure 2</td>
<td>1,18</td>
</tr>
</tbody>
</table>

 irreversible

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

3 October 2006

Date of mailing of the international search report

18/10/2006

Name and mailing address of the ISA

European Patent Office, P.B. 5018 Patentlaan 2 NL-2280 HV Bilthoven
Tel. (+31-70) 340-2540, Tx. 31 651 eipo nl, Fax (+31-70) 340-3016

Authorized officer

Bequet, Thierry

Form PCT/SA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1271930</td>
<td>02-01-2003</td>
<td>CN 1394079 A</td>
<td>29-01-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003010896 A1</td>
<td>16-01-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004135063 A1</td>
<td>15-07-2004</td>
</tr>
<tr>
<td>WO 2005107235</td>
<td>10-11-2005</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>