wo 2017/196381 A1 |00 0L

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual P <
O remiation = 00O O
International Bureau = (10) International Publication Number
(43) International Publication Date -—-/ WO 201 7/ 1 96381 Al

16 November 2017 (16.11.2017) WIPOQ | PCT

(51) International Patent Classification: HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA,
GO6F 11/00 (2006.01) LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN,
(21) International Application Number: MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE,
PCT/US2016/049120 PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE,
SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ,
(22) International Filing Date: UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
26 August 2016 (26.08.2016) (84) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of regional protection available): ARIPO (BW, GH,
s . GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
(26) Publication Language: English UG, ZM, ZW), Furasian (AM, AZ, BY, KG, KZ, RU, TJ,
(30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
62/335,619 12 May 2016 (12.05.2016) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
. . MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(71) Applicant: SYNOPSYS, INC. [US/US]; 690 East Middle- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
field Road, Mountain View, CA 94043 (US). KM, ML, MR, NE, SN, TD, TG).
(72) Imventors: LI, Guodong; 20 Park Plaza, #1400, Boston,
MA 02116 (US). STEVEN, John; 20 Park Plaza, #1400, Published:
Boston, MA 02116 (US). — with international search report (Art. 21(3))
(74) Agent: BEZOS, Salvador, M.; STERNE, KESSLER,
GOLDSTEIN & FOX P.L.L.C, 1100 New York Avenue.
N.W., Washington, DC 20005-3924 (US).
(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO,CR,CU,CZ,DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR,
(54) Title: SYSTEMS AND METHODS FOR MODEL-BASED ANALYSIS OF SOFTWARE

(57) Abstract: Systems and methods for software verification. In some embodiments,
an application architecture model is generated for a software application, wherein: the

’/ 100 application architecture model is generated based on source code of the software ap-
plication and a framework model representing a software framework using which the
Program Framework software application is developed; and the application architecture model comprises
Code Models a plurality of component models. One or more component models may be selected,
based on a property to be checked, from the plurality of component models. The one
l l or more component models may be analyzed to determine if the property is satisfied.
Properties
Analysis Engine 105 |4 toBe
Checked

Results
\ 4

Guidance Engine 110

Identified Issues,
Suggested Solutions,
¥ and/or Training Modules

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

SYSTEMS AND METHODS FOR MODEL-BASED ANALYSIS OF SOFTWARE

BACKGROUND

Computer software has become an indispensable tool in many aspects of human life.
Day-to-day activities (e.g., shopping, banking, signing up for health insurance, etc.) are often
conducted via web and mobile applications. Virtually all organizations, both public and private,
rely on software applications to process information and manage operations. Many of these
software applications handle sensitive information such as personal financial records, trade
secrets, classified government information, etc. Safety-critical systems in infrastructure,
transportation, medicine, etc. are increasingly being controlled by software.

Every year, trillions of dollars are spent globally to develop and maintain software
applications. Yet system failures and data breaches are constantly in the news. Decades of
research has failed to produce scalable and accurate solutions for improving reliability and

security of software applications.

SUMMARY

In accordance with some embodiments, a method is provided for performing static
analysis of software to detect security vulnerabilities, comprising acts of: generating an
application architecture model for a software application, wherein: the application architecture
model is generated based on source code of the software application and a framework model
representing a software framework using which the software application is developed; and the
application architecture model comprises a plurality of component models; selecting, based on a
property to be checked, one or more component models from the plurality of component models;
and analyzing the one or more component models to determine if the property is satisfied.

In accordance with some embodiments, a method is provided for performing static
analysis of software to detect security vulnerabilities, comprising acts of: generating an
application architecture model for a software application, wherein: the application architecture
model is generated based on source code of the software application; and the application
architecture model comprises a plurality of component models; selecting, based on a property to
be checked, a property model type from a plurality of property model types; selecting, based on
the selected property model type, one or more component models from the plurality of

component models; using the one or more selected component models to construct at least one

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

property model of the selected property model type; and analyzing the at least one property
model to determine if the property is satisfied with respect to the at least one property model.

In accordance with some embodiments, a method is provided for performing static
analysis of software to detect security vulnerabilities, comprising acts of: identifying, from a
discovery query written in a query language, a first statement comprising a side-effect construct
with at least a first parameter and a second parameter, wherein: the first parameter of the side-
effect construct comprises at least one second statement specifying one or more actions to be
performed; and the second parameter of the side-effect construct comprises at least one
condition specified based on a syntactic pattern; analyzing source code of a software application
to determine whether the at least one condition is satisfied, wherein determining whether the at
least one condition is satisfied comprises determining whether the source code comprises a
program element that matches the syntactic pattern; and in response to determining that the
source code comprises a program element that matches the syntactic pattern: storing the program
element in a variable; and performing the one or more actions specified by the discovery query,
wherein the one of more actions are performed based on the program element stored in the
variable.

In accordance with some embodiments, a method is provided for performing static
analysis of software to detect security vulnerabilities, comprising acts of: identifying, from a
discovery query written in a query language, a statement comprising a semantic operator with at
least a first parameter and a second parameter, wherein: the first parameter comprises a first
syntactic pattern; the second parameter comprises a second syntactic pattern; and the semantic
operator represents a semantic relationship between two program elements; and analyzing
source code of a software application to determine whether one or more portions of source code
match the statement identified from the discovery query, wherein analyzing the source code
comprises determining whether the source code comprises a first program element and a second
program element such that: the first program element matches the first syntactic pattern; the
second program element matches the second syntactic pattern; and the first and second program
elements satisfy the semantic relationship represented by the semantic operator.

In accordance with some embodiments, a method is provided for performing static
analysis of software to detect security vulnerabilities, comprising acts of: generating a first
application architecture model for a software application, wherein: the first application

architecture model is generated based on a first version of source code of the software

2

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

application; and the first application architecture model comprises a plurality of component
models; comparing a second version of source code against the first version of source code to
determine at least one difference; identifying, based on the at least one difference, at least one
affected component model of the first application architecture model; and generating, based on
the second version of source code, a second application architecture model, wherein generating
the second application architecture model comprises generating an updated version of the at
least one affected component model.

In accordance with some embodiments, a system is provided, comprising at least one
processor and at least one computer-readable storage medium having stored thereon instructions
which, when executed, program the at least one processor to perform any of the above methods.

In accordance with some embodiments, at least one computer-readable storage medium
is provided, having stored thereon instructions which, when executed, program at least one

processor to perform any of the above methods.

DESCRIPTION OF DRAWINGS

The accompanying drawings are not necessarily drawn to scale. For clarity, not every
component may be labeled in every drawing.

FIG. 1 shows an illustrative system 100 for software verification, in accordance with
some embodiments.

FIG. 2 shows an illustrative model-view-controller (MVC) architecture 200 that may be
modeled using one or more discovery queries, in accordance with some embodiments.

FIG. 3 shows an illustrative analysis engine 300 programmed to generate an application
architecture model based on program code and one or more framework models, in accordance
with some embodiments.

FIG. 4 shows an illustrative source program 400 and an illustrative discovery query 420,
in accordance with some embodiments.

FIG. 5 shows an illustrative source program 500 and illustrative property queries 510 and
515, in accordance with some embodiments.

FIG. 6 shows an illustrative process 600 that may be performed by an analysis engine, in
accordance with some embodiments.

FIG. 7 shows an illustrative AST 700 for an illustrative program 705, in accordance with

some embodiments.

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

FIG. 8 shows Backus Normal Form (BNF) definitions of some components of an
illustrative query language, in accordance with some embodiments.

FIG. 9 shows a transformation of an illustrative AST 900 to a transformed AST 905, in
accordance with some embodiments.

FIG. 10 shows an illustrative source program 1050 and an illustrative property query
1055, in accordance with some embodiments.

FIG. 11 shows an illustrative property query 1100, in accordance with some
embodiments.

FIG. 12 shows an illustrative network 1200 of modules, in accordance with some
embodiments.

FIG. 13 shows an illustrate set of nouns that may be used in a query language for
accessing components in an MVC architecture, in accordance with some embodiments.

FIG. 14 shows an illustrative hierarchy 1400 of MVC components, in accordance with
some embodiments.

FIG. 15 shows an illustrative network 1500 of models that may be used to facilitate
analysis of a software application, in accordance with some embodiments.

FIG. 16 shows illustrative framework models 1600 and 1605, in accordance with some
embodiments.

FIG. 17 illustrates an approach for programming an analysis engine to perform a field
and type analysis, in accordance with some embodiments.

FIG. 18A shows an illustrative application 1800 and illustrative component models 1805
and 1810, in accordance with some embodiments.

FIG. 18B shows illustrative groups 1815, 1820, and 1825 of security issues that may be
checked by an analysis engine, in accordance with some embodiments.

FIG. 19 shows a plurality of illustrative types of models that may be used by an analysis
engine to check a property of interest, in accordance with some embodiments.

FIG. 20 shows an illustrative mapping {rom types of properties to types of models, in
accordance with some embodiments.

FIG. 21 shows an illustrative process for selecting one or more types of property models
and using property models of the selected types to analyze a software application, in accordance

with some embodiments.

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

FIG. 22 shows an illustrative application 2200 and an illustrative analysis of the
application 2200, in accordance with some embodiments.

FIG. 23 shows illustrative program code 2300 and an illustrative analysis of the program
code 2300, in accordance with some embodiments.

FIG. 24 shows illustrative program code 2400 and an illustrative analysis of the program
code 2400, in accordance with some embodiments.

FIG. 25 shows an illustrative application architecture model 2500, in accordance with
same embodiments.

FIG. 26A shows an illustrative application 2600 and an illustrative implementation 2605
of route functions in the application 2600, in accordance with some embodiments

FIG. 26B shows an illustrative revised configuration model 2625 and an illustrative
revised route model 2635, in accordance with some embodiments.

FIG. 27 shows, schematically, an illustrative computer 1000 on which any aspect of the

present disclosure may be implemented.

DETAILED DESCRIPTION

The inventors have recognized and appreciated various disadvantages of existing
approaches to software verification. For instance, the inventors have recognized and appreciated
that some existing approaches focus solely on testing, which happens late in the system
development life cycle, when an application or module has already been implemented to a large
extent. At that late stage, correcting problems such as security vulnerabilities may involve
rewriting not only the portion of code that directly gives rise to an identified problem, but also
related portions of code. In some instances, it may be impractical to reverse certain design
decisions made during the development stage. As a result, a developer may be forced to adopt a
suboptimal solution to an identified problem.

Accordingly, in some embodiments, techniques are provided for detecting potential
problems during the development stage, so that an identified problem may be corrected before
additional code is written that depends on the problematic code, and a developer may have
greater freedom to implement an optimal solution to the identified problem. For instance, a
verification tool may be built into an integrated development environment (IDE) and may be
programmed to analyze code as the code is being written by a developer. Alternatively, or

additionally, a verification tool may be accessed via a web user interface. In either scenario, the

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

verification tool may be able to provide feedback sufficiently quickly (e.g., within minutes or
seconds) to allow the developer to make use of the feedback while the developer is still working
on the code.

The inventors have recognized and appreciated that some existing approaches of
software verification may be unhelpful to software developers. Software development teams are
under pressure to deliver products on time and within budget. When a problem is identified
through testing, a developer may be given little or no guidance on how to address the problem.
As aresult, the developer’s attempted fix may be ineffective, or may even create new problems.
This frustrating process may repeat until the developer stumbles upon a correct solution, often
after spending valuable time searching online resources and consulting with peers.

Accordingly, in some embodiments, techniques are provided for integrating training and
quality assessment. As an example, a verification tool may be programmed to link an identified
problem to one or more targeted training modules. As another example, a verification tool may
be programmed to analyze software code to understand a developer’s intent and proactively
suggest one or more training modules on common problems related to that intent. As yet
another example, a verification tool may be programmed to analyze code written by a developer
for a particular type of quality issue (e.g., a particular security vulnerability) after the developer
views, reads, or otherwise completes a training module on that type of quality issue.

In some embodiments, techniques are provided for presenting verification results to a
software developer. The inventors have recognized and appreciated that it may be beneficial to
present verification results in a streamlined fashion so that verification may become an integral
part of a software developer’s work, rather than an interruption. As an example, a verification
tool may be programmed to deliver results incrementally, for instance, by first delivering results
from easy checks (e.g., syntactic pattern matching), while the system is still performing a deep
analysis (e.g., model checking). In this manner, the developer may immediately begin to review
and address the results from the easy checks, without having to wait for the deep analysis to be
completed.

The inventors have further recognized and appreciated that it may be beneficial to
present suggested code transforms in an unintrusive fashion, so that a software developer may
come to view the verification tool as a helpful peer, rather than just an annoying issue-flagging
feature. For example, a verification tool may be programmed to analyze software code to

understand a developer’s intent and provide suggested code modifications based on the

6

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

identified intent. Additionally, or alternatively, the verification tool may allow the developer to
test a piece of suggested code in a sandbox.

In some embodiments, a verification tool may be programmed to select, from a variety of
different modes, an appropriate mode for delivering guidance to a software developer. For
instance, the verification tool may select from static content (e.g., text, video, etc. retrieved from
a content store), dynamically generated content (e.g., content that is customized based on current
code context), coding suggestions (e.g., suggested fixes to identified problems, or best practice
tips based on identified intent), a suggested version of code to be tested in a sandbox, etc.

It should be appreciated that the techniques introduced above and discussed in greater
detail below may be implemented in any of numerous ways, as the techniques are not limited to
any particular manner of implementation. Examples of details of implementation are provided
herein solely for illustrative purposes. Furthermore, the techniques disclosed herein may be
used individually or in any suitable combination, as aspects of the present disclosure are not

limited to the use of any particular technique or combination of techniques.

I Software Verification

Some techniques have been developed to automatically analyze program behavior with
respect to properties such as correctness, robustness, safety, and liveness. For instance, static
analysis techniques have been developed to analyze program code without executing the code,
whereas dynamic analysis techniques have been developed to analyze program code by
observing one or more executions of the code. Some software verification tools use a
combination of static and dynamic analysis techniques.

Examples of static analysis techniques include, but are not limited to, control flow
analysis, data flow analysis, abstract interpretation, type and effect analysis, and model
checking. An analysis engine implementing one or more of these techniques may receive as
input program code and one or more properties to be checked, and may output one or more
results (e.g., indicating a property is violated).

Model checking techniques were developed initially for hardware verification, and have
been used to some extent for software verification, albeit with lesser success, as software
systems tend to be significantly more complex than hardware systems. To verify a program for
compliance with a certain specification, a formal model of the program may be constructed, and

the model may be checked against the specification. For instance, a model may be formulated as

7

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

a finite state machine, and a property may be expressed as a formula in a suitable logic. A state
space of the finite state machine may be explored to check whether the property is satisfied.

In some implementations, states in a finite state machine may be explicitly enumerated.
Alternatively, or additionally, states may be symbolically enumerated, by encoding sets of states
into respective symbolic states. In some implementations, a symbolic execution technique may
be used, where an interpreter may simulate how a program executes and maintain program state

with symbolic data.

IL. Programmable Analysis of Software Applications

Many software applications are complex and difficult to analyze. For instance, an
application may include hundreds of modules and millions of lines of code, and may make use
of external components (e.g., frameworks, libraries, middleware, etc.) that may or may not be
open sourced. The inventors have recognized and appreciated that it may be beneficial to
provide techniques for abstracting a software application in a manner that focuses on one or
more properties of interest, and that it may also be beneficial to provide techniques for
abstracting a framework or library.

The inventors have additionally recognized and appreciated various disadvantages of
existing approaches for abstraction. For instance, some approaches are purely syntactic, such as
using a utility like grep to search through source code for a match of a regular expression, or rely
on simple abstractions such as performing a data flow analysis (e.g., based on bit propagation) to
abstract a program, and making Boolean marks on library functions in abstractions. The
inventors have recognized and appreciated that these approaches may fail to capture program
semantics sufficiently, and hence may incur high inaccuracies (e.g., false positives).
Furthermore, behaviors of external components such as frameworks and libraries may be
modeled poorly, if at all, and precise semantics of a programming language in which an
application is written may not be taken into account.

The inventors have further recognized and appreciated that some software verification
tools rely on limited methods for specifying properties to be checked. For instance,
specification methods based on XML (Extensible Markup Language) or JSON (JavaScript
Object Notation) may be cumbersome to use, and may allow only a limited set of constructs, so

that many interesting properties cannot be expressed. Furthermore, these methods may not

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

allow a user to specify a modification to be made to an application, for example, when a certain
issue is identified.

The inventors have recognized and appreciated that it may be beneficial to provide
improved techniques for abstracting an application and/or external components such as
frameworks and libraries, and for specifying properties to be checked and/or modifications to be
made to an application to satisfy the properties. In some embodiments, a unified method may be
provided to allow a user to program any one or more, or all, of the above aspects of a software
analysis engine. For example, a universal query language may be provided to allow a user to:
(1) model software components including code written by the user and/or external components
such as frameworks and libraries, (2) specify properties to be checked, and/or (3) mutate
programs to satisfy properties.

FIG. 1 shows an illustrative system 100 for software verification, in accordance with
some embodiments. In this example, the system 100 includes an analysis engine 105 and a
guidance engine 110. The analysis engine 105 may receive as input program code of a software
application to be analyzed. In some embodiments, the input program code may include source
code. Alternatively, or additionally, the input program code may include object code. The
analysis engine 105 may further receive as input one or more properties to be checked, and may
output one or more results of checking the one or more properties against the program code.
The one or more results may include a finding indicating whether a property is satisfied, an
identification of one or more portions of the input program code that violate a property, and/or a
suggested modification to the program code to satisfy a property. For instance, if the program
code does not satisfy a particular property, the analysis engine 105 may be programmed to
suggest a modification so that the modified program code will satisfy that property.

In some embodiments, the analysis engine 105 may further receive as input one or more
framework models. As one example, the analysis engine 105 may be programmed to select and
retrieve (e.g., from a database) one or more previously constructed framework models. The
selection may be based on any suitable information about the input program code, such as one or
more programming languages in which the input program code is written, and/or one or more
external components (e.g., frameworks, libraries, and/or middleware) used by the input program
code. As another example, one or more framework models may be selected by a user and
retrieved by the analysis engine 105 (e.g., from a database). As yet another example, one or

more framework models may be constructed by a user and provided to the analysis engine 105.

9

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

In some embodiments, a framework model may include one or more discovery queries
written in a query language. The inventors have recognized and appreciated that a deep
understanding of a software application, such as an architecture of the application, high-level
functionalities of various components in the architecture, and/or intrinsic connections among the
components, may facilitate accurate and efficient analysis of the application. Accordingly, in
some embodiments, techniques are provided for automatically discovering one or more aspects
of a software application. For instance, a discovery query may be applied to the application to
discover one or more portions of code corresponding to a component in an architecture, one or
more functionalities of the discovered component, and/or how the discovered component
interact with one or more other components in the architecture.

In some embodiments, discovery queries may be written by a user in a query language.
Alternatively, or additionally, discovery queries for particular external components (e.g.,
frameworks, libraries, and/or middleware) may be developed in advance and retrieved on
demand (e.g., from a database) when input program code is to be evaluated.

In some embodiments, a discovery query may include one or more statements instructing
the analysis engine 105 how to look for a portion of code that is relevant for a certain analysis
(e.g., looking for security vulnerabilities in general, or one or more specific types of security
vulnerabilities). Additionally, or alternatively, a discovery query may instruct the analysis
engine 105 what information to extract from the program code and store in a model, once a
relevant portion of code has been located. Thus, a discovery query may be an executable
program that takes as input the program code to be analyzed and produces as output one or more
models.

In some embodiments, the analysis engine 105 may be programmed to interpret
discovery queries written in a query language. For instance, the analysis engine 105 may
execute one or more discovery queries according to semantics of the query language, which may
cause the analysis engine 105 to gather certain information from source code elements of a
program to be analyzed. However, that is not required, as in some embodiments discovery
queries may be compiled into machine code and then the machine code may be executed.

In some embodiments, the analysis engine 105 may be programmed to apply one or more
discovery queries to program code and output a model of the program code that is specific to
such discovery queries. The model thus represents only a subset of the program code that is

relevant to the discovery queries. The analysis engine 105 may then analyze the model and/or a

10

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

subset of the program code to determine if a certain property of interest is satisfied. In some
embodiments, this analysis of the model and/or the subset of the program code may be
performed using property queries written in the same query language that is used for the
discovery queries.

With the above approach, particular portions of a large application program that are
relevant to one or more issues of interest (e.g., security) may be identified and represented by a
model, while irrelevant portions of the application may be ignored. The resulting model may
then be evaluated, and/or be used to identify relevant portions of the program code that should
be evaluated, using one or more property queries relating to the issue(s) of interest. By
employing such a divide-and-conquer approach, a highly complex application may be
effectively and efficiently evaluated for one or more specific issues of concern.

The inventors have recognized and appreciated that discovery queries may provide a
convenient way to capture knowledge regarding a programming language, framework, library,
middleware, etc. For instance, a user who understands semantics of a programming language
(or framework, library, middleware, etc.) may write discovery queries that help the analysis
engine 105 identify portions of program code that are relevant for a certain analysis that is being
performed (which may, although need not, be a security analysis). A model that results from
applying a discovery query to program code may be an abstraction of the program code with
respect to the analysis that is being performed. In this manner, property checking may be
performed more efficiently, because much of the program code may be irrelevant for the
analysis that is being performed, and may simply be ignored.

The inventors have further recognized and appreciated that framework models may be
managed advantageously as reusable assets. For example, once a discovery query is written by a
user for a certain analysis on a program written in a certain programming language (or using a
certain framework, library, middleware, etc.), the discovery query may be appropriately indexed
and stored. In this manner, when the same user or another user wishes to perform the same
analysis on a different program written in the same programming language (or using the same
framework, library, middleware, etc.), the previously written discovery query may be retrieved
and applied.

Returning to the example shown in FIG. 1, one or more results output by the analysis
engine 105 may be consumed by the guidance engine 110. The inventors have recognized and

appreciated that it may beneficial to provide customized and actionable guidance to a developer

11

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

when a problem is identified. Accordingly, in some embodiments, the guidance engine 110 may
be programmed to select, based on the one or more results output by the analysis engine 105, an
appropriate modality for aiding a user who wrote the input program code. Additionally, or
alternatively, the guidance engine 110 may be programmed to select, based on the one or more
results, appropriate content from a content store. For instance, if the one or more results
includes a finding indicative of a security vulnerability, the guidance engine 110 may present to
the user a textual or video message explaining the vulnerability, and/or an in-depth training
module. Additionally, or alternatively, if the one or more results includes a suggested
modification to the input program code, the guidance engine 110 may present to the user a
textual or video message explaining the suggested modification, and/or modified program code
ready to be tested in a sandbox.

In some embodiments, the guidance engine 110 may automatically determine and
present to a user a suggested technique for solving a problem. For example, the guidance engine
110 may determine a solution based on user preferences, an intended use for a software
application, and/or other context information about the software application.

It should be appreciated that the system 100 is shown in FIG. 1 and described above
solely for purposes of illustration. A software verification tool embodying one or more of the
inventive aspects described herein may be implemented in any of numerous ways. For instance,
in some embodiments, one or more of the functionalities described above in connection with the
analysis engine 105 may instead be implemented by the guidance engine 110, or vice versa. In
some embodiments, a software verification tool may be implemented with a single engine
programmed to analyze program code and to render guidance to a developer. In some
embodiments, the analysis engine 105 and the guidance engine 110 may be independently
implemented, each as a stand-alone tool. Aspects of the present disclosure are not limited to the
use of both the analysis engine 105 and the guidance engine 110.

As discussed above, the inventors have recognized and appreciated that a deep
understanding of a software application, such as an architecture of the application, high-level
functionalities of various components in the architecture, and/or intrinsic connections among the
components, may facilitate accurate and efficient analysis of the application. In some
embodiments, a software architecture may be represented using a framework model comprising
one or more discovery queries. By applying such discovery queries to program code, an

application architecture model may be generated that includes models for individual components

12

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

in the architecture. The application architecture model may then be used to facilitate verification
of the program code with respect to one or more properties of interest.

FIG. 2 shows an illustrative model-view-controller (MVC) architecture 200 that may be
modeled using one or more discovery queries, in accordance with some embodiments. An MVC
architecture may be used to build a web application comprising various components having
separate responsibilities. In the example shown in FIG. 2, the MVC architecture 200 includes a
web server component 210, a routes component 215, a dispatcher component 220, a controller
component 225, a model component 230, a database component 235, and a view component
240. The web server component 210 may receive a web request from a browser 205 and the
routes component 215 may map the request to one or more actions to be taken by the controller
component 225. The dispatcher component 220 may inform the controller component 225 of
the one or more actions to be taken, and the controller component 225 may issue one or more
commands to be executed by the model component 230. The model component 230 may
execute the one or more commands according to logic of the web application and may manage
data stored in the database component 235. The controller component 225 may receive an
execution result from the model component 230 and may cause the view component 240 to
generate an updated view based on the execution result. The controller component 225 may
then cause the web server component 210 to respond to the browser 205 with the updated view.

FIG. 3 shows an illustrative analysis engine 300 programmed to generate an application
architecture model based on program code and one or more framework models, in accordance
with some embodiments. For instance, the analysis engine 300 may be an implementation of the
illustrative analysis engine 105 shown in FIG. 1.

In the example shown in FIG. 3, the analysis engine 300 includes a model construction
component 305 and a property checking component 340. The model construction component
305 may receive as input program code (which may include source code and/or object code) and
one or more framework models. In some embodiments, the one or more framework models may
include one or more discovery queries.

In some embodiments, a framework model may reflect a software architecture, such as
the illustrative MVC architecture 200 shown in FIG. 2. The model construction component 305
may be programmed to use the framework model to understand the input program code, for

example, by extracting relevant information from the input program code and storing the

13

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

information in one or more models. In some embodiments, a model may correspond to a
component in the software architecture captured by the framework model.

For instance, in the example shown in FIG. 3, the model construction component 305
may be programmed by an MVC framework model to generate an application architecture
model 310 that includes a controller model 315, a view model 320, a database model 325, and a
route model 330, which may correspond, respectively, to the controller component 225, the view
component 240, the database component 235, and the routes component 215 of the illustrative
MCYV architecture 200 shown in FIG. 2. Additionally, or alternatively, the application
architecture model 310 may include a configuration model 335, which may not correspond to
any component in the illustrative MCV architecture 200, but may store configuration
information extracted from the input program code. Examples of configuration information that
may be extracted and stored, include, but are not limited to, session and cookie configurations in
web server code.

It should be appreciated that the MVC architecture 200 shown in FIG. 2 and the
application architecture model 310 shown in FIG. 3 are provided solely for purposes of
illustration, as the inventive aspects described herein may be used to model any software
architecture.

FIG. 4 shows an illustrative source program 400 and an illustrative discovery query 420,
in accordance with some embodiments. For instance, the source program 400 may be a portion
of the input program code shown in FIG. 3, and the discovery query 420 may be included in the
MVC framework model shown in FIG. 3.

In the example shown in FIG. 4, the discovery query 420 includes a PERFORM
statement with a WHEN clause. The PERFORM statement may specify one or more actions to
be performed if a condition specified in the WHEN clause is satisfied. In some embodiments,
the WHEN clause may specify a pattern and the one or more actions specified in the PERFORM
statement may be performed if the pattern specified in the WHEN clause is detected in the input
program code.

For instance, in the example shown in FIG. 4, the WHEN clause specifies a pattern
including a call to @RequestMapping with a URL $1, an HTTP method $2, and a function $f. A
model construction component (e.g., the illustrative model construction component 305 shown
in FIG. 3) may search through the input program code to identify a match of the pattern
specified in the WHEN clause. If a match is found, the PERFORM statement may be executed

14

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

to extract relevant information and store the extracted information in a model (e.g., the
illustrative route model 330 shown in FIG. 3).

For example, in the source program 400 shown in FIG. 4, the URL $/ may be matched
to the string “/database” at 405, the HTTP method $2 may be matched to the string “get” at
410, and the function $f may be matched to the declaration of injectableQuery at 415. As shown
at 435, the model construction component may execute the PERFORM statement and store the
declaration of injectableQuery in a resulting model at the following.

_model.routes[“/database” |[“get”].callbacks

In this manner, the model construction component may be programmable via a discovery
query (e.g., the discovery query 420 tells the model construction component what to look for in
the input program code and, once a relevant portion of code is found, what information to
extract). For instance, one or more discovery queries (e.g., the illustrative discovery 420 shown
in FIG. 4) may be written to model how a particular framework (e.g., a SpringMVC framework)
interprets program annotations (e.g., @ RequestMapping). Thus, the one or more discovery
queries may represent semantics given to such annotations by the particular framework. One or
more models (e.g., the illustrative model 435 shown in FIG. 4) that are constructed by applying
the one or more discovery queries may then replace source code of the particular framework for
purposes of checking whether one or more properties are satisfied.

It should be appreciated that the discovery query 420 is shown in FIG. 4 and described
above solely for purposes of illustration. In some embodiments, other types of conditions may
be specified, in addition to, or instead of, syntactic pattern matching. Furthermore, aspects of
the present disclosure are not limited to the use of a discovery query in a framework model. For
instance, in some embodiments (e.g., as shown in FIG. 16 and discussed below), a framework
model may include a model that is written directly to replace framework source code. Such a
model need not be a result of applying one or more discovery queries.

Returning to the example shown in FIG. 3, the application architecture model 310 may
be analyzed by the property checking component 340 of the analysis engine 300 to determine if
one or more properties are satisfied. Any suitable combination of one or more property
checking techniques may be used, including, but not limited to, data flow analysis, control flow
analysis, and/or model checking. The property checking component 340 may then output one or
more results, which may include a finding indicating an identified problem (e.g., a security

vulnerability), a suggested modification to the input program code to fix an identified problem,

15

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

an indication that the property checking component 340 is unable to reach a conclusion with
respect to a certain property, and/or any other observation of interest. For instance, a result may
flag a portion of code that, based on information available to the property checking component
340, does not yet amount to a problem but merits further investigation. In some embodiments, a
result output by the property checking component 340 may be processed by a guidance engine,
such as the illustrative guidance engine 110 shown in FIG. 1, to provide appropriate feedback
advice to a user.

FIG. 5 shows an illustrative source program 500 and illustrative property queries 510 and
515, in accordance with some embodiments. For instance, the source program 500 may be a
portion of the input program code shown in FIG. 3, and the property queries 510 and 515 may
be included in the properties to be checked shown in FIG. 3.

In the example shown in FIG. 5, the property query 505 includes a PERFORM statement
with a WHEN clause. The PERFORM statement may specify one or more actions to be
performed if a condition specified in the WHEN clause is satisfied. In some embodiments, the
WHEN clause may specify a pattern and the one or more actions specified in the PERFORM
statement may be performed if the pattern specified in the WHEN clause is detected in the input
program code.

For instance, in the example shown in FIG. 5, the WHEN clause specifies a pattern where
an assignment of a variable $x includes a call to getStringParameter or getRawParameter. A
property checking component (e.g., the illustrative property checking component 340 shown in
FIG. 3) may search through the input program code to identify a match of the pattern specified
in the WHEN clause. If a match is found, the property checking component may perform the
PERFORM statement to add a field named fainted to the matched variable and set the value of
that field to be true. In this manner, the property checking component may be programmable via
a property query (e.g., the property query 510 tells the property checking component what to
look for in program code and, once a relevant portion of code is found, what information to
maintain).

For example, in the source program 500 shown in FIG. 5, the variable $x may be
matched to accountName because the assignment of accountName at 520 includes a call to
getRawParameter. This may cause the property checking component to execute the PERFORM

statement, adding the field accountName.tainted and setting the value of that field to be true.

16

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

In some embodiments, a property checking component may be programmed to propagate
the value of an added field such as accountName.tainted. For instance, in the source program
500 at 525, the variable accountName 1s used in an assignment of the variable gquery. This may
cause a field query.tainted to be added and the value of that field set to true. Thus, in this
example, the property checking component is programmed to analyze the source program 500
both syntactically (e.g., via syntactic pattern matching on getRawParameter) and semantically
(e.g., via data flow analysis on the field rainted).

In some embodiments, a property checking component may be programmed to detect
and maintain type information. For instance, in the source program 500 at 530, an assignment of
the variable statement includes an invocation of connection.createStatement. The property
checking component may be programmed to determine type information based on this
assignment and associate the type information with the variable statement.

In the example shown in FIG. 5, the property query 515 includes a MATCH clause, a
WHERE clause, and a REWRITE clause. The REWRITE clause may specify one or more
modifications to be made to the program code if a condition specified by the MATCH and
WHERE clauses is satisfied.

For instance, in the source program 500 shown in FIG. 5, the object $o may be matched
to statement at 535, the method $f may be matched to executeQuery at 540, and the parameter $/
may be matched to the variable query at 545. The property checking component may then use
the type information associated with the variable statement to determine that the object $o,
which is matched to statement, is an instance of java.sql.Statement. The property checking
component may further determine that the name of the method $f, which is matched to
executeQuery, matches the regular expression “execute.*,” and that the value of the tainted field
of the parameter $/, which is matched to the variable guery, is true. Since all of the conditions
in the WHERE clause are satisfied, the property checking component may execute the REWRITE
clause, which may replace the variable guery with APLsanitize(query), so that the last line in the
source program 500 may become:

ResultSet results = statement.executeQuery(APLsanitize(query)).

Thus, in this example, the property query 515 programs the property checking

component to use syntactic information (e.g., presence of the substring execute), data flow

information (e.g., propagation of the field fainted), and type information (e.g., a type of the

17

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

variable statement) to determine whether to make a particular modification to the input program
code.

It should be appreciated that the property queries 510 and 515 are shown in FIG. 5 and
described above solely for purposes of illustration. Aspects of the present disclosure are not
limited to the use of syntactic analysis, data flow analysis, or type analysis. Furthermore,
aspects of the present disclosure are not limited to the use of a REWRITE clause, as a property
checking component may sometimes report a finding without suggesting a modification to the
input program code.

FIG. 6 shows an illustrative process 600 that may be performed by an analysis engine, in
accordance with some embodiments. For example, the process 600 may be performed by the
illustrative analysis engine 300 shown in FIG. 3 to construct the illustrative application
architecture model 310 and check one or more properties.

At act 605, the analysis engine may compile input program code into a suitable
representation, such as an abstract syntax tree (AST). FIG. 7 shows an illustrative AST 700 for
an illustrative program 705, in accordance with some embodiments. The inventors have
recognized and appreciated that an AST may be used to capture the structure of a program and
facilitate manipulations such as annotations and/or modifications. However, it should be
appreciated that aspects of the present disclosure are not limited to the use of an AST, or any
representation at all. Examples of representations that may be used instead of, or in additional
to, ASTs include, but are not limited to, byte-code, machine code, control flow graphs, logic
formulas modeling the semantics, etc.

At act 610, the analysis engine may select one or more discovery queries to be applied to
the AST constructed at act 605. For instance, in some embodiments, the analysis engine may
be programmed to select and retrieve (e.g., from a database) a previously constructed framework
model that includes one or more discovery queries. The selection may be based on any suitable
information about the input program code, such as one or more programming languages in
which the input program code is written, and/or one or more external components (e.g.,
frameworks, libraries, and/or middleware) used by the input program code. Additionally, or
alternatively, the analysis engine may be programmed to select and retrieve (e.g., from a
database) one or more discovery queries based on a type of analysis to be performed (e.g.,
looking for security vulnerabilities in general, or one or more specific types of security

vulnerabilities).

18

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

In some embodiments, the analysis engine may retrieve (e.g., from a database) a
discovery query selected by a user. Additionally, or alternatively, the analysis engine may
receive, via a user interface, a discovery query written by a user. In some embodiments, the user
interface may be part of an IDE, although that is not required.

At act 615, the analysis engine may apply the one or more discovery selected at act 610
to the AST constructed at act 605. An illustrative application of a discovery query is shown in
FIG. 4 and discussed above.

In some embodiments, the analysis engine may first apply one or more discovery queries
to extract relevant information from the AST constructed at act 605, thereby constructing a
reduced AST. The analysis engine may then apply one or more discovery queries to the reduced
AST to construct an application architecture model. Alternatively, or additionally, the analysis
engine may apply one or more discovery queries directly to the AST constructed at act 605 to
construct an application architecture model. Any suitable method may be used to traverse an
AST. For instance, in some embodiments, AST nodes may be visited based on control flow, and
relationships between the AST nodes may be examined to check a query. In some
embodiments, an analysis state may be maintained during such a traversal. For example, when
an AST node is visited, semantic information may be recorded in the analysis state, which may
be made available when a next AST node is processed. The query may then be checked over the
information stored in the analysis state.

At act 620, the analysis engine may apply one or more property queries to the application
architecture model constructed at act 615. Additionally, or alternatively, the analysis engine
may apply one or more property queries to the AST constructed at 605, and/or any reduced AST
constructed at act 605 (e.g., portions of the AST constructed at 605, and/or any reduced AST
constructed at act 605, that correspond to component models in the application architecture
model constructed at act 615). An illustrative application of property queries is shown in FIG. 5
and discussed above.

At act 625, the analysis engine may determine if the application of one or more property
queries at act 620 has resulted in any observation of interest. If there is an observation of
interest, the analysis engine may, at act 630, output one or more results. The one or more results
may include an indication of an identified problem (e.g., a security vulnerability), a suggested

modification to the input program code to fix an identified problem, an indication that the

19

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

analysis engine is unable to reach a conclusion with respect to a certain property, a portion of
code that merits further investigation, and/or any other observation of interest.

At act 635, the analysis engine may determine if the application of one or more property
queries at act 620 has resulted in a suggested modification to the input program code. If there is
a suggested modification to the input program code, the analysis engine may, at act 640,
transform the AST constructed at act 605. For example, the analysis engine may execute a
mutation query (e.g., with a REWRITE clause) to replace a portion of code (e.g., the variable
query in the example of FIG. 5) with another portion of code (e.g., APLsanitize(query) in the
example of FIG. 5).

At act 645, the analysis engine may use the transformed AST to modify the input
program code and output the modified program code. In some embodiments, a user interface
may be provided to allow a user to authorize use of the modified program code and/or to test the
modified program code in a sandbox. Alternatively, or additionally, a branch may be created in
a version control system for the modified program code generated by the analysis engine.

Upon outputting the modified program code, or if it is determined at act 635 that there is
no suggested modification to the input program code, the analysis engine may return to act 625
to determine if there is any additional observation of interest. The inventors have recognized
and appreciated that some property queries may take more computing time to answer.
Accordingly, in some embodiments, the analysis engine may be programmed to output results
incrementally. For example, the analysis engine may first deliver results from easy checks (e.g.,
syntactic pattern matching), while the analysis engine is still performing a deep analysis (e.g.,
model checking). In this manner, the user may immediately begin to review and address the
results from the easy checks, without having to wait for the deep analysis to be completed.

It should be appreciated that details of implementation are described above solely for
purposes of illustration, as aspects of the present disclosure are not limited to any particular
manner of implementation. For instance, in some embodiments, a separate guidance engine may
be provided that consumes outputs of the analysis engine and renders guidance to a developer

based on the analysis engine’s outputs.

III. Query Language
The inventors have recognized and appreciated that it may be beneficial to provide a

unified method for understanding, modeling, checking, and/or fixing software applications with

20

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

respect to one or more properties of interest (e.g., security vulnerabilities in general, or one or
more specific types of security vulnerabilities).

In some embodiments, a query language may be provided to allow a user to program any
one or more aspects of software verification, which may include, but are not limited to:

- modeling one or more external components (e.g., frameworks, libraries, and/or

middleware) used by a software application;

- constructing models of the application that abstract away irrelevant information (e.g.,

information that is irrelevant for a certain type of analysis such as security analysis);

- specifying one or more properties to be checked against the application;

- specifying how the application should be fixed if a problem is identified; and/or

- controlling how an analysis engine analyzes the application.

In some embodiments, a query language may be provided that is more expressive than
existing techniques for verifying software applications. For example, the query language may
be a superset of a full realistic programming language (e.g., JavaScript). In some embodiments,
a query language may be provided that is more powerful than existing techniques for verifying
software applications. For example, the query language may be used to define semantic
abstractions of a program and/or external components (e.g., frameworks, libraries, and/or
middleware) used by the program. Additionally, or alternatively, the query language may be
used to query program semantics. In some embodiments, a query language may be provided
that is more convenient to use than existing techniques for modeling software applications. For
example, the query language may have a succinct syntax and may allow modular definitions.

FIG. 8 shows Backus Normal Form (BNF) definitions of some components of an
illustrative query language, in accordance with some embodiments. Such a query language may
be used, for example, to write the illustrative discovery query 420 shown in FIG. 4 and the
illustrative property queries 510 and 515 shown in FIG. 5.

The inventors have recognized and appreciated that a query language having the
illustrative constructs shown in FIG. 8 and/or described herein may advantageously provide an
expressive, powerful, and convenient method for software verification. For example, these
constructs may allow different types of analyses (e.g., static scanning, data flow analysis,
fuzzing, dynamic scanning, etc.) to be specified using the same query language, so that the

different types of analyses may be combined in a deep way. Furthermore, these constructs may

21

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

allow different data sources to be queried using the same query language, so that query results
regarding the different data sources may be assessed collectively.

However, it should be appreciated that aspects of the present disclosure are not limited to
the use of a query language having all of the constructs shown in FIG. 8 and/or described herein.
In various embodiments, any one or more of these constructs, and/or other constructs, may be

included in a query language.

A. Syntax Matching Blocks

In some embodiments, a query language may include constructs for syntax matching
blocks, flow operators, semantic predicates, side-effect statements, and/or application
programming interface (API) functions for an analysis engine.

- Syntax matching blocks may be based on source code syntax for any one or more
programming languages, such as JavaScript, Java, C/C++/Objective-C, SWIFT,
ASP.NET, Python, Ruby, etc.

- Flow operators may be used to connect syntax matching blocks to describe flows
between different portions of a program.

- Semantic predicates may be built using first order logic and/or native constructs and
may be used for semantics queries.

- Side-effect statements may be used to instruct the analysis engine to perform specific
actions, such as building models for a program and/or modifying input program code.

- API functions may be used to access internal state of the analysis engine and/or
program how the analysis engine performs an analysis.

In some embodiments, a query language may be provided that uses source language
syntax directly for syntax matching. For instance, in the example shown in FIG. 8, the notation
<{ <source syntax> }> describes a syntax matching block for matching a syntactic element in a
source language, where free variables (which are prefixed by “$”) are assigned if a match is
found. Thus, syntax matching in this query language may depend on the syntax of a source
language (e.g., JavaScript, Java, C/C++/Objective-C, SWIFT, ASP.NET, Python, Ruby, etc.).

As an example, if variable assignment is denoted by “=""in a source language, then the
syntax matching block <{ a = $/ }> may match any assignment statement that assigns a value
to the variable a. For instance, the syntax matching block <{ @ = $b }> may match the

statement, @ = a + x, where the syntactic element ¢ + x may be assigned to the free variable $b.

22

10

15

20

25

30

35

WO 2017/196381 PCT/US2016/049120

As another example, the following syntax matching block may be specific to the syntax
of Java SpringMVC.

<{ @RequestMapping(value =$1, method = $2)

3f

7>

This syntax matching block may match a function declaration with an annotation of route
information, where the route’s URL may be assigned to the free variable $/, the name of the
HTTP method may be assigned to the free variable $2, and the function declaration may be
assigned to the free variable $f.

In some embodiments, a syntax matching block may include OR as a syntax operator.
For instance, the syntax matching block <{ getStringParameter() OR getRawParameter()
}> may match a function call to getStringParameter or getRawParameter.

[T

In some embodiments, a syntax matching block may include a character (e.g., “_”) for a

“don’t care” element. For instance, the following pattern may match any for loop regardless of
the condition, as long as the body of the for loop matches.

// pattern

Jor () f
if(81)
$2;

/

In some embodiments, a syntax matching block may include a syntax operator AS. For
instance, the syntax matching block <{ $f(_,$2) }> AS $call may match a function call of two
arguments. When a match is found, the function name may be assigned to $f, and the second
argument may be assigned to $2, while the first argument may not be stored. Because of the use
of the AS operator, the entire function call information, including function name, function
declaration, and/or one or more matched arguments, may be stored in $call.

In some embodiments, a syntax matching block may include multilayer static scopes.
For instance, nested scopes may be expressed using braces and may be matched according to the
syntax of a source language (e.g., JavaScript, Java, C/C++/Objective-C, SWIFT, ASP.NET,
Python, Ruby, etc.). As an example, the illustrative for loop pattern above may have two
matches in the following program code.

// program
if(b){
for(vari=1;i< 10;i++){
for (varkin[1,2,3]){
23

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

if (x> Ali]) {
if (b[k])
x=1;
/
/
/
/

In the first match, the syntactic element x > A[i] is assigned to $/, and the syntactic
element if (b[k]) x = 1 is assigned to $2. In the second match, the syntactic element b/k] is
assigned to $/, and the syntactic element x = 7 is assigned to $2. In both matches, both scopes

(i.e., for loop and if branch) are matched syntactically.

B. Flow Operators

In some embodiments, a query language may include one or more flow operators, for
example, to describe relationships between syntactic elements. For instance, one or more
temporal operators may be used to describe how a syntactic element flows to another syntactic
element. In some embodiments, an analysis engine may match a flow statement through a finite
state machine algorithm. For instance, a finite state machine may be defined that includes at
least two states. At the first state, the analysis engine may analyze portions of input program
code, looking for a first syntactic element. The analysis engine may stay in the first state until
the first syntactic element is matched. Once the first syntactic element is matched, the analysis
engine may move to the second state, where the analysis engine may analyze further portions of
the input program code, looking for a second syntactic element.

In some embodiments, a basic flow operator (-->) may be used to express that a syntactic
element is followed by another syntactic element in at least one program path. As one example,
the flow statement <{ $f1($al) --> $f2($a2) }> may be matched if one function call is followed
by another function call in at least one program path, where the two function may be different,
but each of the two functions has a signal argument. The name of the function that is called
earlier may be assigned to $f1, and the argument of that function may be assigned to $a/, while
the name of the function that is called later may be assigned to $f2, and the argument of that
function may be assigned to $a2.

As another example, the following flow statement may be matched if there is at least one
program path in which a method of an object is invoked on a variable which was previously

assigned the return value of a call to getStringParameter or getRawParameter. The name of the

24

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

variable may be assigned to $x, the name of the object may be assigned to $02, and the name of
the function of the object may be assigned to $f.

<{ $x = _.getStringParameter() OR _.getRawParameter() --> $02.$f($x) }>

In some embodiments, an all-path flow operator (-AP->) may be used to express that a
syntactic element is followed by another syntactic element in all program paths. For instance,
the flow statement <{ $f1($al) -AP-> $f2($a2) }> may be matched if a call to a first function
with a first argument is followed by a call to a second function with a second argument in all
program paths. The name of the first function may be assigned to $f1, and the first argument
may be assigned to $al, while the name of the second function may be assigned to $f2, and the
second argument may be assigned to $a2.

In some embodiments, an absence operator (MISSING) may be used to express that in no
program path a first syntactic element happens between a second syntactic element and a third
syntactic element. For instance, the flow statement <{ $f1($al) --> MISSING $a2 = _ -->
$2(8a2) }> may be matched if there is a program path in which a first function call is followed
by a second function call, and there is no assignment to the argument of the second function call
between the two function calls.

In some embodiments, operators FIRST and LAST may be used to match, respectively,
the first and last occurrences of a syntactic element. For instance, the flow statement <{ FIRST
fl($al) --> LAST f2($a2) }> may be matched if the first call to f1 precedes the last call to /2 in

at least one program path, where other calls to f7 and f2 in that program path may be ignored.

C. Semantic Predicates

In some embodiments, a query language may be provided that includes one or more
semantics predicates for expressing properties relating to variable values, types, etc. Unlike
syntax matching blocks, which may be used to query the syntax of a program, semantic
predicates may be used to query semantics of a program, such as values of variables, types of
variables, and/or semantic relationships between variables.

In some embodiments, semantic predicates may be built using first order logic and/or
native constructs. Examples of operators for building semantic predicates include, but are not
limited to:

- arithmetic operators (e.g., +, -, *, /, %, etc.);

- relational operators (e.g., >=, >, ==, etc.);

25

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

- propositional logic operators (e.g., AND, OR, NOT, IMPLY, etc.);

- first-order logic quantifiers (e.g., EXIST, FORALL, etc.);

- domain-specific operators (e.g., RegExp.match, string.indexOf, etc.);

- type operators (e.g., instanceof, ISCONSTANT, etc.); and/or

- flow operators (e.g., USE, CALL, etc.).

In some embodiments, an existentially quantified expression EXIST v IN c¢ : body may
evaluate to true if there is a value v in the set ¢ such that a condition specified in the body is true.
As one example, the expression EXIST x IN [1,2] : x > 0 may evaluate to true because there is a
value x in the range [/,2] such that x is greater than 0. As another example, the expression
EXIST arg IN f.arguments : arg.taint == true may evaluate to true if there is an argument in the
set of arguments f.arguments such that the taint field of the argument is set to true.

In some embodiments, a universally quantified expression FORALL v IN c : body may
evaluate to true if for every value v in the set ¢, a condition specified in the body is true. For
example, the following expression may evaluate to true if for every index y in the object
_model.routes, the route indexed by y, _model.routes[y], is not null.

FORALL y IN _model.routes : _model.routes[y] != null

In some embodiments, a data-flow operator USE may be used to express that a value of a
second syntactic element is used to compute a value of a first syntactic element. For example,
the expression $arg USE $input may evaluate to true if a value of the syntactic element assigned
to $input is used to compute a value of the syntactic element assigned to $arg.

In some embodiments, a control-flow operator CALL may be used to express that a call
to a first function includes a call to a second function. For example, the expression $f1 CALL
$f2 may evaluate to true if a call to the function assigned to $f7 includes a call to the function

assigned to $f2.

D. Side-Effect Statements

In some embodiments, a query language may be provided that includes one or more side-
effect constructs. For instance, a side-effect construct may be used to define a discovery query,
such as the illustrative discovery query 420 shown in FIG. 4.

In some embodiments, the following illustrative side-effect construct may be used, where
the PERFORM statement may specify one or more actions to be performed if a condition

specified in the WHEN clause is satisfied.

26

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

PERFORM <statement> WHEN <syntax matching block>

In some embodiments, the WHEN clause may specify a pattern and the one or more
actions specified in the PERFORM statement may be performed if the pattern specified in the
WHEN clause is detected in input program code. For instance, the PERFORM statement may
include a piece of executable code, where the WHEN clause may include a syntax matching
block (which may in turn include a semantic predicate). In some embodiments, a query
language may be a superset of the syntax of a high-level programming language (e.g.,
JavaScript), so the PERFORM statement may use any one or more constructs provided by the
high-level programming language.

For example, the following discovery query, when executed by an analysis engine, may
cause the analysis engine to search input program code for a declaration of a route function in an
MVC architecture, where the HTTP method in the declaration is a method of a RequestMethod
object. The route’s URL may be assigned to the free variable $/, the name of the method may
be assigned to the free variable $2, the name of the route function may be assigned to the free
variable $3, and the entire function declaration may be assigned to the free variable $f (using the
AS operator). The PERFORM statement may cause the analysis engine to store the function
declaration in a route model (e.g., such as the illustrative route model 330 shown in FIG. 3).

PERFORM _model.routes[$1][$2].callbacks = [$f]

WHEN <{ @RequestMapping(value = $1, method = RequestMethod.$2)

Sfunction $3(_) {_} AS $f }>

Additionally, or alternatively, a PERFORM statement may be used to inject data into an
AST (e.g., an AST compiled directly from input program code, or a reduced AST constructed by
removing certain information). For instance, in the following illustrative PERFORM statement,
the WHEN clause may specify a pattern where an assignment of a variable $x includes a call to
getStringParameter or getRawParameter. 1f an analysis engine finds a match of this pattern, the
analysis engine may add a field named tainfed to the matched variable and set the value of that
field to be true. In some embodiments, the analysis engine may be programmed to propagate the
value of the tainted field.

PERFORM $x.tainted = true

WHEN </{ $x = getStringParameter() OR getRawParameter() }

In some embodiments, data maintained in an added field may be used to facilitate

property checking and/or code editing. For instance, the following illustrative property query

27

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

may be used to check if an argument of a call to a method of an object is tainted, and if so,
replace the argument with a sanitized version of the argument.

<{ $0.8f($1) }>

WHERE $1.tainted == true

REWRITE $1 <= SanitizerAPL sanitize($1)

FIG. 9 shows a transformation of an illustrative AST 900 to a transformed AST 905, in
accordance with some embodiments. For instance, this transformation may be performed by an
analysis engine in executing the illustrative property query described above to syntactically
replace a subtree 910 assigned to the free variable $7 with a different subtree at a node 915. The
new subtree may correspond to applying the sanitize function in the SanitizerAPI library to the
argument $/, and may be constructed by attaching the subtree 910 to the node 915 as the
argument of SanitizerAPl. sanitize.

FIG. 10 shows an illustrative source program 1050 and an illustrative property query
1055, in accordance with some embodiments. In this example, the source program 1050 may
implement a bitwise comparison between two bit strings, which may be cryptographic digests
such as CRCs (cyclic redundancy checks) or HMACs (keyed-hash message authentication
codes). This particular implementation may be vulnerable to side-channel attacks because
execution time of the for loop may be input dependent. For instance, the for loop may exit early
if a difference is detected early in the bit strings, and may run through the entire lengths of the
bit strings if the bit strings are identical. This type of comparison is sometimes called a “fail
fast” comparison.

In some embodiments, a property query may program an analysis engine to detect “fail
fast” comparisons. For instance, in the example shown in FIG. 10, the property query 1055 may
be written using a data-flow operator USE, which may cause the analysis engine to search for a
function declaration that has two byte arrays as arguments ($a and $b) and includes a for loop
with an if statement in the body of the for loop, where the condition ($7) of the if statement
depends on both of the byte array arguments ($/ USE $a AND $2 USE $b). Thus, the property
query 1055 may cause the analysis engine to perform a combination of syntactic matching and
data flow analysis to detect a “fail fast” comparison.

In some embodiments, a property query may program an analysis engine to remove a
vulnerability caused by a “fail fast” comparison. FIG. 11 shows an illustrative property query

1100, in accordance with some embodiments. Like the illustrative property query 1055 shown

28

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

in FIG. 10, the property query 1100 may program an analysis engine to detect a “fail fast”
comparison. Additionally, the property query 1100 may cause the analysis engine to assign a
syntactic element (e.g., a subtree in an AST) corresponding to the for loop to a free variable
$body, for example, using an AS operator at 1110. At 1115, the property query 1100 may cause
the analysis engine to replace the syntactic element assigned to $body with a new body 1105,
resulting in a transformed function declaration. The transformed for loop may not exit early,
even if a difference has been detected, thereby removing the vulnerability to side-channel

attacks.

E. Analysis Engine API Functions

In some embodiments, a query language may be provided that includes one or more API
functions for accessing internal state of an analysis engine and/or programing how the analysis
engine performs an analysis. The inventors have recognized and appreciated that an analysis
engine may maintain useful information, such as ASTs (e.g., ASTs compiled directly from input
program code, and/or reduced ASTs constructed by removing certain information), variable
values, variable types, analysis results, internal data structures, relationships between internal
data, etc. Accordingly, a query language may implement a protocol for exposing some or all of
the information maintained by the analysis engine.

For example, an analysis engine may maintain a function closure as an internal
representation of a function in an AST. This closure may include information such as an
original AST, parent scope, type information, member declarations within a body of the function
body, etc. In some embodiments, an API construct, $f.ast, may be used to obtain an AST stored
by the analysis engine for the syntactic element assigned to $f, and an API construct,
$f.ast.name, may be used to obtain the function name in the AST. Additionally, or alternatively,
the statement, FORALL v IN $f: v instanceof String, may be used to enumerate all data members

in a function closure that are of the type String.

F. Aliases, Macros, and Modules

In some embodiments, a query language may allow definitions of aliases, macros, and/or
modules. The inventors have recognized and appreciated that such definitions may be used to
enhance reusability and modularization. However, it should be appreciated that aspects of the

present disclosure are not limited to the use of any alias, macro, or module.

29

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

In some embodiments, a keyword /e may be used to introduce an alias. An example is
as follows.

let source = getStringParameter() OR getRawParameter()

With this illustrative alias, the following queries are equivalent.
- PERFORM $x.tainted = true
WHEN </{ $x = source >}
- PERFORM $x.tainted = true
WHEN <{ $x = getStringParameter() OR getRawParameter() >}

In some embodiments, a keyword DEFINE may be used to introduce a macro. An
example is as follows.

DEFINE isStatement(v) { v instanceof java.sql.Statement, }

With this illustrative macro, the following queries are equivalent.
- MATCH <{ $0.%f($1) }>

WHERE isStatement($0)
- MATCH <{ $0.8f($1) }>

WHERE $o instanceof java.sql.Statement,

In some embodiments, a keyword IMPORT may be used to load one or more query
definitions from a query source file. This construct may advantageously allow query definitions
to be modularized.

FIG. 12 shows an illustrative network 1200 of modules, in accordance with some
embodiments. The network 1220 may include a node Module 1 corresponding to a first query
source file 1205, a node Module 2 corresponding to a second query source file 1210, and a node
Module 3 corresponding to a third query source file 1215. The first query source file 1205 may
include a framework model for an MVC architecture, the second query source file 1210 may
include a framework model for a Node.js runtime environment, and the third query source file
1215 may include a framework model for an Express framework.

In example shown in FIG. 12, the first query source file 1205 may be imported into the
second query source file 1210 via an IMPORT statement, so that queries in the Node.js

30

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

framework model may make use of query definitions in the MVC framework model. Similarly,
the second query source file 1210 may be imported into the third query source file 1215 via an
IMPORT statement, so that queries in the Express framework model may use of query
definitions in the Node.js framework model and/or the MVC framework model.

The inventors have recognized and appreciated that an organization of modules such as
that shown in FIG. 12 may improve reusability of query definitions. However, it should be
appreciated that aspects of the present disclosure are not limited to the use of modules for

organizing query definitions.

F. Libraries and High-Level Queries

The inventors have recognized and appreciated that it may be beneficial to store certain
commonly used query definitions in a library, so that these definitions may be accessed by
simply loading the library. For example, query definitions for discovering and/or manipulating
MVC components for web applications may be stored in a library, and definitions for
discovering and/or manipulating MVC components for mobile apps (e.g., for an Android™
operating system and/or an iOS™ operating system) may be stored in the same or a different
library.

FIG. 13 shows an illustrate set of nouns that may be used in a query language for
accessing components in an MVC architecture, in accordance with some embodiments. In some
embodiments, an MVC library may be provided that includes one or more predefined queries for
discovering and/or manipulating MVC components. The MVC library may allow a user to use
the nouns shown in FIG. 13 as high-level keywords in the query language.

In some embodiments, an MVC library may include one or more discovery queries that

program an analysis engine to build MVC component models. For instance, an analysis engine

may run the discovery queries on input program code and build the following illustrative model.

_model = {
config: [... },
MVC: [
{ model: ..., controller: { actionl: ..., action2: ... }, view: ...},
model: ..., controller: { actionl: ..., action2: ... }, view: ...},
)
/

FIG. 14 shows an illustrative hierarchy 1400 of MVC components, in accordance with

some embodiments. For example, the hierarchy 1400 may represent MVC components from the

31

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

above illustrative model, where two actions have been discovered for controllerl, but no action
has been discovered for controller 2 yet.

In some embodiments, the nouns shown in FIG. 13 may be used to access MVC
component models such as those shown in FIG. 14. Any suitable high-level language constructs
may be used to query MVC nouns. For example, a query may use Xpath, Jquery, or CSS-like
search, and may conveniently return a set of one or more elements.

As one example, the following high-level query written using an Xpath syntax may be
used to select all routings implementing a method for a GET request.

/route[@method="get']

In some embodiments, this high-level query may be implemented as follows.

varres = [];

for (var r of _model.route) {

(if r[‘get’] = null)
res.push[r];

/

return res;

As another example, the following high-level query written using an Xpath syntax may
be used to select the last view in an application. A low-level implementation may be similar to
the illustrative implementation shown above for /route[@ method="get'].

Japp/view[last()]

As another example, the following high-level query written using an Xpath syntax may
be used to select all views having a parent in an AST such that the parent has at least three child
nodes. A low-level implementation may be based on how an Xpath interpreter processes such a
query.

/Wiew[@ast.parent.children.num> 2]

In some embodiments, relationships between nouns may be expressed using verbs, where
a verb may be syntactic sugar for a low-level implementation. As one example, a verb bound
may have the following syntax.

<View(v)> bound <Controller(_)>

This statement may be implemented as follows.

EXISTS ¢ IN _model.controller : _model.controller{c].view == v

As another example, a verb manipulate may have the following syntax.
32

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

<ViewResolver(_)> manipulate <View(v)>
This statement may be implemented as follows.

EXISTS r IN _model.view[v]: _model.view[v][r].resolver = null

As another example, a verb call may have the following syntax.
<Request(r)> call <Function(f)>
This statement may be implemented as follows.

_model.request[r].handler = f

As another example, a verb phrase sef ... fo ... may have the following syntax.
<Session> set <Field(f)> to <Value(v)>
This statement be implemented as follows.

_model.session[f] = v

The inventors have appreciated that, in some instances, nouns and verbs may be more
convenient to use than the basic constructs of a query language. However, it should be
appreciated that aspects of the present disclosure are not limited to the use of nouns or verbs to
supplement the syntax of a query language. Furthermore, the techniques described here may be
applied to software architectures other than MVC, as aspects of the present disclosure are not so

limited.

IV. Model-Based Analysis of Software Applications

Scalable analysis of complex and large software applications has remained a challenge
for a long time. An application may contain many components, use various external
components (e.g., frameworks, libraries, middleware, etc.), and exhibit a complex architecture.
The inventors have recognized and appreciated that there may be a tradeoff between scalability
and accuracy. Accurate analysis often involve detailed modeling and rigorous checking, which
may provide a deep understanding of semantics of an application, but may require significant
time and effort (e.g., both for a human to formulate an analysis and for a machine to perform the
analysis). Accordingly, it may be beneficial to provide analysis techniques with improved

scalability and accuracy.

33

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

The inventors have recognized and appreciated that some solutions may sacrifice
accuracy for scalability, while others may sacrifice scalability for accuracy. For example,
syntactic analysis (e.g., based on grep) may be used to retrieve information from source code,
and data flow analysis (e.g., based on bit propagation) may be used to understand how data is
used by an application. The inventors have recognized and appreciated that these techniques
may involve over-approximations, which may lead to false positives.

On the other hand, dynamic analysis techniques may apply fewer approximations (e.g.
on relationships between components or on variables values) and therefore may be more
accurate. However, the inventors have recognized and appreciated that dynamic analysis
techniques may have low coverage (e.g., due to computational constraints), which may lead to
false negatives.

The inventors have recognized and appreciated that, as more external components such
as frameworks and libraries are used in software applications, and as software architectures
become more complex, it may be more difficult to achieve both accuracy and scalability.
Although a user may model and analyze various portions of an application separately, such an
ad hoc approach may be not only tedious, but also unreliable, as interactions between the
separately modeled portions may not be modeled adequately.

Accordingly, in some embodiments, techniques are provided for achieving a desirable
balance between scalability and accuracy. For example, one or more pieces of information,
including, but not limited to, software architecture (e.g., presence of one or more components
and/or connections between components), program semantics, domain knowledge (e.g.,
regarding one or more {frameworks, libraries, middleware, etc.), may be used to focus an analysis
engine on one or more portions of an application that are relevant for a particular analysis. In
some embodiments, such information may be explicitly recorded in one or more models.

In some embodiments, an analysis engine may be programmed to construct an
application architecture model for a software application. The application architecture model
may include models for individual components in an architecture. Given a certain property of
interest, the analysis engine may select one or more relevant component models. The analysis
engine may then check the property of interest against the selected component models. Using
such a divide-and-conquer approach, the amount of information analyzed by the analysis engine

may be reduced, while the risk of missing some relevant information may also be reduced

34

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

because the component models are constructed based on knowledge of the application’s
architecture.

In some embodiments, an analysis engine may be programmed to perform incremental
analysis as a software application evolves. For example, when a portion of source code is
revised or added, the analysis engine may determine one or more component models that are
affected, and may re-generate and/or re-analyze only the affected component models. This may
significantly improve the analysis engine’s response time and hence user acceptance.

In some embodiments, an analysis engine may be programmed to analyze an application
adaptively. For instance, given a certain property of interest, the analysis engine may select one
or more types of models that may be suitable for use in checking that property. The analysis
engine may then construct and analyze one or more models of a selected type. In some
embodiments, a model may be constructed by abstracting away information that is irrelevant for
the property to be checked, thereby improving efficiency of the analysis engine.

FIG. 15 shows an illustrative network 1500 of models that may be used to facilitate
analysis of a software application, in accordance with some embodiments. For instance, the
illustrative models shown in FIG. 15 may be used by an analysis engine (e.g., the illustrative
analysis engine 105 shown in FIG. 1) to check input program code 1505 with respect to one or
more properties of interest.

In the example shown in FIG. 15, the input program code 1505 may use one or more
external components 1515. Examples of external components include, but are not limited to,
frameworks, libraries, middleware, etc. Framework models 1520 for the external components
1515 may be built using a query language (e.g., via discovery queries), and may represent
abstractions of the external components 1515 (e.g., for purposes of security analysis) and/or
interactions between the external components 1515. In some embodiments, framework models
may be indexed and stored in a database, and may be retrieved as needed.

In some embodiments, the input program code 1505 may be compiled into a suitable
representation, such as an AST 1510. A reduced AST 1525 may then be constructed by
applying one or more discovery queries from the framework models 1520 to extract relevant
information from the AST 1510. For instance, the discovery queries may be used to identify and
extract information in the AST 1510 that is relevant for security analysis, and the extracted

information may be stored in the reduced AST 1525.

35

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

In the example shown in FIG. 15, the framework models 1520 and the reduced AST
1525 are used to construct an application architecture model 1530. The application architecture
model 1530 may include high-level information such as software architecture (e.g., one or more
components and/or connections between the components), program semantics, and/or domain
knowledge (e.g., regarding one or more {frameworks, libraries, middleware, etc.). For example,
the application architecture model 1530 may include models for individual components in a
software architecture, such as component model 1, component model 2, component model 3,
etc. shown in FIG. 15.

In the example shown in FIG. 15, the network 1500 further includes a property model
1535. In some embodiments, an analysis engine may receive as input a property query 1540,
which may capture semantics of a property of interest (e.g., a certain security property). Based
on the property query 1540, the analysis engine may select an appropriate property model type
and construct a property model of the selected type. For instance, the property model 1535 may
be of the selected type, and may be derived by the analysis engine from the reduced AST 1525
and/or the application architecture model 1530. The analysis engine may then check the
property model 1535 to determine if the property of interest is satisfied.

In some instances, the application architecture model 1530 may include sufficient high-
level information to allow an analysis engine to determine if a certain property is satisfied,
without analyzing low-level source code. This may allow the analysis engine to produce a result
more quickly, thereby improving user experience. For example, values of configuration
parameters may be extracted from input program code and may be stored in the application
architecture model 1530 (e.g., in a table). When one or more such values are needed, an analysis
engine may simply retrieve the one or more needed values from the application architecture
model 1530, without having to look for such values in the input program code. However, it
should be appreciated that aspects of the present disclosure are not limited to storing
configuration parameter values in an application architecture model.

It should be appreciated that details of implementation are shown in FIG. 15 and
described above solely for purposes of illustration, as aspects of the present disclosure are not
limited to any particular manner of implementation. For instance, aspects of the present
disclosure are not limited to the use of any reduced AST. In some embodiments, the AST 1510,
instead of the reduced AST 1525, may be used to generate the application architecture model

1530.

36

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

FIG. 16 shows illustrative framework models 1600 and 1605, in accordance with some
embodiments. The framework models 1600 and 1605 may be used by an analysis engine (e.g.,
the illustrative analysis engine 300 shown in FIG. 3) to generate an application architecture
model (e.g., the illustrative application architecture model 310 shown in FIG. 3).

The inventors have recognized and appreciated that an external component used by a
software application (e.g., framework, library, middleware, etc.) may include a large amount of
code. For example, the Express framework’s source code includes around 12,000 lines of
JavaScript code. Therefore, it may be desirable to provide an abstraction that represents
semantics of a resource in a concise way. Without such an abstraction, an analysis engine may
be unable to analyze a resource quickly enough to deliver results in real time.

In some embodiments, a framework model may include a specification of relevant
information about a resource. For example, a framework model may be defined using a query
language having one or more constructs such as the illustrative constructs shown in FIG. 8 and
discussed above.

In the example shown in FIG. 16, the framework models 1600 and 1605
represent semantics of the Express framework and the Express Session middleware,
respectively. For instance, the framework model 1600 may reflect how routes are defined.
Additionally, or alternatively, the framework model 1600 may define framework APIs. In some
embodiments, the framework model 1600 may include about 100 lines of code, which is a
significant reduction from the actual size of the Express framework (about 12,000 lines).

FIG. 16 shows an illustrative source code fragment 1610 that uses the Express
framework and the Express Session middleware. In some embodiments, an analysis engine may
be programmed to replace references to the Express framework and the Express Session
middleware with references to the respective framework models, resulting in illustrative code
fragment 1615. In this manner, framework models (e.g., the illustrative framework models 1600
and 1605 shown in FIG. 6) may be loaded, rather than source code of the Express framework
and the Express Session middleware.

FIG. 16 also shows an illustrative source code fragment 1620 that uses an HTTP
middleware and a Path middleware. The inventors have recognized and appreciated that some
external components may not be relevant for a property of interest and therefore a model for
such a resource need not be defined or loaded. This may reduce complexity and thereby

improve performance of an analysis engine.

37

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

In some embodiments, one or more of the following properties may be of interest.
1. Is an httpOnly flag set to true in a session cookie?
2. In any route related to /users, is there a JavaScript injection?
3. In any route related to user signup, is a user name properly checked?

For these properties, session cookie and routes may be relevant, whereas other
middleware such as HTTP and Path may not be relevant. Accordingly, in some embodiments,
an analysis engine may be programmed to ignore references to the HTTP middleware and the
Path middleware, as well as all subsequent code related to the HTTP middleware and the Path
middleware. For instance, a mapping between types of properties and relevant middleware may
be defined based on domain knowledge, and the analysis engine may be programmed to use the
mapping to identify middleware that may be ignored.

FIG. 17 illustrates an approach for programming an analysis engine to perform a field
and type analysis, in accordance with some embodiments. For example, a query language may
be used to program the analysis engine to perform a field and type analysis. In some
embodiments, the query language may include one or more constructs such as the illustrative
constructs shown in FIG. 8 and discussed above.

In some embodiments, a query language may be used to program an analysis engine to
track names and types of fields in an object, and/or names and types of member functions in the
object. These names and types may be matched with known signatures to infer a role of an
object and/or a role of a function using the object.

For instance, a route function in the Express framework may have the following
signature, and a query language may be used to program an analysis engine to determine if a
function matches this signature.

Junction test(req, res, ...)

The request object req may contain one or more of the following fields:

- body
- session
- etc.
The response object res may contain one or more of the following functions:
- render, with argument type String x Object
- session, with argument type String

- eftc.

38

WO 2017/196381 PCT/US2016/049120

FIG. 17 shows illustrative function declarations 1700, 1705, and 1710. In some
embodiments, the analysis engine may be programmed to determine that in the illustrative
declaration 1700, a login function has two arguments, req and res, where the object res has a
member function render with argument type String x Object. This may match the above

5 signature, and the analysis engine may infer that login is likely a route function. Such an
inference may be made even if there is not a perfect match. For instance, the analysis engine
may infer that login is a route function even though the object req does not contain any field.

In some embodiments, the analysis engine may be programmed to determine that in the
illustrative declaration 1705, a signup function has three arguments, req, res, and next, where

10 req has a field body, and res has a member function render with argument type String x Object
and a member function redirect of argument type String. This may match the above signature
(even though the name redirect does not match the name session). Therefore, the analysis
engine may infer that signup is a route function.

In some embodiments, the analysis engine may be programmed to determine that in the

15 illustrative declaration 1710, a fest function has three arguments, req, res, and next, where req
has a field body, but res has no member function. Therefore, the analysis engine may determine
it is unlikely that zest is a route function.

Below are examples of queries that may be used to program an analysis engine to

perform a field and type analysis (e.g., by performing syntactic pattern matching).

20 - Looking for a function of the form f(reg*, res*).

PERFORM _model.routes| /UNKNOWN’][' UNKNOWN’] = f
WHEN function f($1, $2)
WHERE $1.ast.name.startsWith(‘req’) AND $2.ast.name.startsWith(‘res’)

- Looking for a function with a first argument that has a member function session, body, or
params, or a second argument that has a member function render or redirect.

PERFORM _model.routes[/UNKNOWN’][' UNKNOWN’] = f
WHEN function f($1, $2)
{ $1.session OR $1.body OR $1.params OR $2.render OR $2.redirect }

In some embodiments, an analysis engine may be programmed by a framework model to
25 perform a field and type analysis to infer a role of an object and/or a role of a function using the

object. The framework model may include one or more queries written in a query language. An

39

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

inferred role for an object (or function) may be stored in an application architecture model in
association with that object (or function). For instance, one or more discovered routes may be
stored in a route model.

FIG. 18A shows an illustrative application 1800 and illustrative component models 1805
and 1810, in accordance with some embodiments. In this example, the application 1800 is
written using the Express framework. In some embodiments, an analysis engine may be
programmed to apply a framework model for the Express framework (e.g., the illustrative
framework model 1600 shown in FIG. 16) to construct an application architecture model for the
application 1800. The application architecture model may include one or more component
models, such as the component models 1805 and 1810 shown in FIG. 18A. The component
model 1805 may be a configuration model, and the component model 1810 may be a route
model. For instance, in some embodiments, the component models 1805 and 1810 may be
generated using the illustrative framework models 1600 and 1605 shown in FIG. 16. For
example, the analysis engine may interpret the framework models 1600 and 1605 the source
code 1800, thereby generating the components models 1805 and 1810 as output.

FIG. 18B shows illustrative groups 1815, 1820, and 1825 of security issues that may be
checked by an analysis engine, in accordance with some embodiments. The inventors have
recognized and appreciated that by constructing models for individual components in an
architecture, an analysis engine may be able to quickly identify relevant information to be
analyzed and safely disregard irrelevant information. As one example, to check configuration-
related issues 1815 such as Cross-Site Request Forgery (CSRF), configuration, secure
transportation, session cookie safety, etc., the analysis engine may focus on the configuration
model 1805. As another example, to check per-route issues 1825 such as invalidated redirect,
SQL injections, JavaScript injections, etc., the analysis engine may focus on the route model
1810. By contrast, both the configuration model 1805 and the route model 1810 may be
relevant for security issues in the group 1820, so the analysis engine may analyze both models
when checking an issue from the group 1820. In some embodiments, a mapping between types
of properties and respective components may be defined based on domain knowledge, and the
analysis engine may be programmed to use the mapping to select one or more relevant
components for a certain property to be checked. In this manner, the amount of information

analyzed by the analysis engine may be reduced, which may improve the analysis engine’s

40

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

performance, while the risk of missing some relevant information may also be reduced because
the component models are constructed based on knowledge of the application’s architecture.

FIG. 19 shows a plurality of illustrative types of property models that may be used by an
analysis engine to check a property of interest, in accordance with some embodiments. For
instance, an analysis engine may be programmed to determine which one or more types of
property models may be appropriate for use in checking a certain property of interest.
Additionally, or alternatively, the analysis engine may be programmed to generate a property
model of a selected type for a software application, and analyze the property model to determine
whether the software application satisfies a property of interest.

The inventors have recognized and appreciated that different types of property models
may be suitable for investigating different types of properties. As one example, a call graph may
be used to capture function call relationships, whereas a data flow graph may be used to capture
data dependence information (e.g., how a tainted value is propagated). As another example, a
type system may be used to record types of variables and objects. As another example, an
abstract numeric value estimation may be used to estimate possible values of numeric variables,
whereas a string value estimation may be used to estimate possible values of string variables.

As another example, a heap shape model may be used to capture pointer relationships between
components in a heap. As another example, predicate abstraction may be used to capture
relationships between values of variables. FIG. 20 shows an illustrative mapping from types of
properties to types of property models, in accordance with some embodiments.

The inventors have further recognized and appreciated that different types of property
models may offer different advantages. For instance, as shown in FIG. 19, property model types
at the top (e.g., call graph, data graph, and type system) may be more abstract, and hence easier
to compute but less precise. By contrast, property model types at the bottom (e.g., abstract
numeric value estimation and string value estimation) may be more detailed, and hence more
precise but harder to compute. Therefore, it may be beneficial to provide techniques for
selecting an appropriate type of property model to achieve a desired balance between efficiency
and accuracy.

FIG. 21 shows an illustrative process for selecting one or more property model types and
using property models of the selected types to analyze a software application, in accordance with
some embodiments. For example, the process shown in FIG. 21 may be used by an analysis

engine (e.g., the illustrative analysis engine 105 shown in FIG. 1) to check input program code

41

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

with respect to one or more properties of interest. For instance, a set of keywords may be
retrieved from a property query. Then, for each keyword, a set of one or more relevant
component models may be analyzed to generate one or more property models.

FIG. 21 shows an illustrative application architecture model 2100. In some
embodiments, the application architecture model 2100 may be built by applying one or more
framework models to input program code (e.g., as discussed above in connection with FIG. 15).
The application architecture model 2100 may include high-level information such as software
architecture (e.g., one or more components and/or connections between the components),
program semantics, and/or domain knowledge (e.g., regarding one or more frameworks,
libraries, middleware, etc.). For example, the application architecture model 2100 may include
models for individual components in a software architecture, such as component model A and
component model B shown in FIG. 21.

FIG. 21 also shows illustrative query 1 and illustrative query 2, which may each define a
property to be checked. In some embodiments, an analysis engine may be programmed to select
one or more property model types for a query such as query 1 or query 2. For instance, a query
may be defined using a query language having one or more constructs such as the illustrative
constructs shown in FIG. 8 and discussed above. The analysis engine may be programed to
parse the query based on a syntax of the query language, and to identify one or more semantic
predicates from the query. In the example shown in FIG. 21, a semantic keyword set 1 is
extracted from query 1, a semantic keyword set 2 is extracted from query 2, and so on.

In some embodiments, the analysis engine may select one or more property model types
based on the identified semantic predicates. For instance, the analysis engine may use the
identified semantic predicates to match the query to one of the illustrative property types shown
in FIG. 20, and then use the illustrative mapping shown in FIG. 20 to determine an appropriate
type of property model.

In some embodiments, the analysis engine may identify, for a component model in the
application architecture model 2100 (e.g., the component model A or the component model B),
one or more property model types for which the component model is relevant. For instance, the
analysis engine may determine, for each query and each property model type associated with the
query, whether the component model is relevant to the property model type (e.g., using one or
more techniques described above in connection with FIGs. 18A-B). If the component model is

determined to be relevant to the property model type, a property model of that type may be built

42

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

based on that component model, and the property model may be analyzed. A result of that
analysis may be output as a result for the query. In some embodiments, the analysis engine may
group and/or prioritize analysis results from checking various property models. However, that is
not required, as in some embodiments grouping and/or prioritization may be performed by a
guidance engine, or may not be performed at all.

The inventors have recognized and appreciated that the illustrative process shown in
FIG. 21 may be used advantageously to improve efficiency of an analysis engine. As one
example, if a semantic predicate identified from a query is concerned with only types and
Boolean/numeric values of some variables, then only type system analysis and numeric value
estimation may be performed, and only for the variables involved.

The inventors have further recognized and appreciated that if a property is disproved
using a more abstract model, then there may be no need to build and analyze a more detailed
model. Accordingly, in some embodiments, an analysis engine may be program to perform
analysis adaptively, for example, beginning with more abstract models and using more detailed
models only as needed.

FIG. 22 shows an illustrative application 2200 and an illustrative analysis of the
application 2200, in accordance with some embodiments. In this example, the application 2200
is written using the Express framework. In some embodiments, an analysis engine may be
programmed to apply a framework model for the Express framework (e.g., the illustrative
framework model 1600 shown in FIG. 16) to construct an application architecture model for the
application 2000. The application architecture model may include one or more component
models, such as the illustrative configuration model 2215 shown in FIG. 22.

In some embodiments, a query may be specified based on the following property, and an
analysis engine may be programmed to identify from the query a semantic predicate, such as the
illustrative semantic predicate 2205 shown in FIG. 22.

- Is an httpOnly flag set to true in a session cookie?

- Illustrative semantic predicate in a query language:

o model.setting.cookie.httpOnly == true

In some embodiments, the analysis engine may select, based on the semantic predicate
2205, one or more types of property models. For example, the analysis engine may determine at
2210 (e.g., using one or more techniques described in connection with FIG. 21) that Boolean or

numeric value estimation is to be performed for fields in session cookie. The analysis engine

43

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

may further determine (e.g., using one or more techniques described in connection with FIG. 21)
that the configuration model 2215 is relevant for Boolean or numeric value estimation for fields
in session cookie. The analysis engine may then perform Boolean or numeric value estimation
for fields in session cookie on the configuration model 2215 and output a result that the AttpOnly
flag is not set to true in session cookie.

FIG. 23 shows illustrative program code 2300 and an illustrative analysis of the program
code 2300, in accordance with some embodiments. The program code 2300 may be an
implementation of the illustrative application 2200 shown in FIG. 22.

In some embodiments, a query may be specified based on the following property, and an
analysis engine may be programmed to identify from the query a semantic predicate, such as the
illustrative semantic predicate 2305 shown in FIG. 23.

- In any route related to /users, is there a JavaScript injection?

- Illustrative semantic predicate in a query language:

o <{eval($1) }> WHERE $1.tainted = true

In some embodiments, the analysis engine may select, based on the semantic predicate
2305, one or more types of property models. For example, the analysis engine may determine at
2310 (e.g., using one or more techniques described in connection with FIG. 21) that data flow
analysis is to be performed to calculate “tainted” values for route functions related to /users.

The analysis engine may then analyze the program code 2300 (or an AST of the program code
2300) and construct a data flow graph 2315. Using the data flow graph 2315, the analysis
engine may determine that JavaScript injections are present at eval(body.preTax) and
eval(body.afterTax), and may output a result at 2320 accordingly.

FIG. 24 shows illustrative program code 2400 and an illustrative analysis of the program
code 2400, in accordance with some embodiments. The program code 2400 may be an
implementation of the illustrative application 2200 shown in FIG. 22.

In some embodiments, a query may be specified based on the following property, and an
analysis engine may be programmed to identify from the query a semantic predicate, such as the
illustrative semantic predicate 2405 shown in FIG. 24.

- In any route related to user signup, is a user name properly checked (e.g. can the user

name be empty when the user name is used for redirecting a page)?

- Illustrative semantic predicate in a query language:

o <{ $0.redirect(_+$2) }> WHERE $2 == “.

44

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

In some embodiments, the analysis engine may select, based on the semantic predicate
2405, one or more types of property models. For example, the analysis engine may determine at
2410 (e.g., using one or more techniques described in connection with FIG. 21) that variable
value estimation is to be performed for userName. The analysis engine may then perform
variable value estimation for userName and output a result that the user name must contain one
to 20 characters.

FIG. 25 shows an illustrative application architecture model 2500, in accordance with
same embodiments. Like the illustrative application architecture model 1530 shown in FIG. 15,
the application architecture model 2500 in the example of FIG. 25 includes models for
individual components in a software architecture. In some embodiments, the application
architecture model 2500 may be an updated version of the application architecture model 1530.
For example, an analysis engine may be programmed to update the application architecture
model 1530 based on code changes to generate the application architecture model 2500.

The inventors have recognized and appreciated that when a developer modifies program
code (e.g., by revising existing code and/or adding new code), regenerating the entire application
architecture model 1530 may involve unnecessary computation. For example, the code changes
may affect only some, but not all, of the component models in the application architecture model
1530. The inventors have recognized and appreciated that regenerating an unaffected
component model may result in an identical component model. Accordingly, in some
embodiments, techniques are provided for identifying one or more component models affected
by certain changes and regenerating only the affected component models, which may improve
an analysis engine’s response time significantly.

The inventors have further recognized and appreciated that when a developer modifies
program code (e.g., by revising existing code and/or adding new code), re-checking a property
that is unaffected by the code changes may involve unnecessary computation. Accordingly, in
some embodiments, techniques are provided for determining if a property is affected by certain
code changes. An analysis engine may re-check only properties that are affected, which may
also improve the analysis engine’s response time significantly.

In the example shown in FIG. 25, code changes include code revision 2505. An analysis
engine may be programmed to identify one or more component models (e.g., component model
2) that are affected by the code revision 2505. For example, if the code revision 2505 involves

changes to a certain function only, and the function relates to a route definition, then the analysis

45

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

engine may re-analyze only that route. Previous results relating to unchanged code may still be
valid.

In the example shown in FIG. 25, code changes include new code 2510. In some
embodiments, the analysis engine may be programmed to determine if the new code 2510 adds a
component to the software application that is being analyzed. If it is determined that the new
code 2510 adds a component to the software application that is being analyzed, the analysis
engine may generate a new component model N, as shown in FIG. 25. The analysis engine may
be further programmed to determine if any property is affected by the presence of the new
component model N. If it is determined that a property is affected by the presence of the new
component model N, the analysis engine may re-check that property.

In some embodiments, one or more incremental analysis techniques, such as those
described in connection with FIG. 25, may be used to construct an application architecture
model asynchronously. For example, different components in a software application may
become available at different times. Whenever a new component becomes available, a new
component model may be generated for that component, and affected properties may be re-
checked. In this manner, an analysis engine may be able to return results quickly at each
incremental step, rather than doing all of the computations after all components have become
available.

FIG. 26A shows an illustrative application 2600 and an illustrative implementation 2605
of route functions in the application 2600, in accordance with some embodiments. In this
example, the application 2600 includes a revision at 2610 to an assignment of a variable b, and
the implementation 2605 includes revisions at 2615 to assignments of two variables, preTax and
afterTax, as well as a new route function logout at 2620.

FIG. 26B shows an illustrative revised configuration model 2625 and an illustrative
revised route model 2635, in accordance with some embodiments. For instance, an analysis
engine may be programmed to determine that the revision at 2610 of FIG. 26A affects only the
configuration model, and to generate the revised configuration model 2625 to reflect, at 2630,
the revision to the assignment of the variable b. Furthermore, the analysis engine may be
programmed to determine that only properties 2650 are affected by a change in the configuration
model. Therefore, the analysis engine may check only the properties 2650 against the revised

configuration model 2625.

46

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

Similarly, the analysis engine may be programmed to determine that the revisions at
2615 and 2620 of FIG. 26A affect only the route model, and to generate the revised route model
2635 to reflect, at 2640, the new route function logout and, at 2645,the revisions to the
assignments of preTax and afterTax. Furthermore, the analysis engine may be programmed to
determine that only properties 2655 are affected by a change in the route model. Therefore, the
analysis engine may check only the properties 2655 against the revised route model 2635.

FIG. 27 shows, schematically, an illustrative computer 1000 on which any aspect of the
present disclosure may be implemented. In the embodiment shown in FIG. 27, the computer
1000 includes a processing unit 1001 having one or more processors and a non-transitory
computer-readable storage medium 1002 that may include, for example, volatile and/or non-
volatile memory. The memory 1002 may store one or more instructions to program the
processing unit 1001 to perform any of the functions described herein. The computer 1000 may
also include other types of non-transitory computer-readable medium, such as storage 1005
(e.g., one or more disk drives) in addition to the system memory 1002. The storage 1005 may
also store one or more application programs and/or external components used by application
programs (e.g., software libraries), which may be loaded into the memory 1002.

The computer 1000 may have one or more input devices and/or output devices, such as
devices 1006 and 1007 illustrated in FIG. 27. These devices can be used, among other things, to
present a user interface. Examples of output devices that can be used to provide a user interface
include printers or display screens for visual presentation of output and speakers or other sound
generating devices for audible presentation of output. Examples of input devices that can be
used for a user interface include keyboards and pointing devices, such as mice, touch pads, and
digitizing tablets. As another example, the input devices 1007 may include a microphone for
capturing audio signals, and the output devices 1006 may include a display screen for visually
rendering, and/or a speaker for audibly rendering, recognized text.

As shown in FIG. 27, the computer 1000 may also comprise one or more network
interfaces (e.g., the network interface 1010) to enable communication via various networks (e.g.,
the network 1020). Examples of networks include a local area network or a wide area network,
such as an enterprise network or the Internet. Such networks may be based on any suitable
technology and may operate according to any suitable protocol and may include wireless

networks, wired networks or fiber optic networks.

47

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

Having thus described several aspects of at least one embodiment, it is to be appreciated
that various alterations, modifications, and improvements will readily occur to those skilled in
the art. Such alterations, modifications, and improvements are intended to be within the spirit
and scope of the present disclosure. Accordingly, the foregoing description and drawings are by
way of example only.

The above-described embodiments of the present disclosure can be implemented in any
of numerous ways. For example, the embodiments may be implemented using hardware,
software or a combination thereof. When implemented in software, the software code can be
executed on any suitable processor or collection of processors, whether provided in a single
computer or distributed among multiple computers.

Also, the various methods or processes outlined herein may be coded as software that is
executable on one or more processors that employ any one of a variety of operating systems or
platforms. Additionally, such software may be written using any of a number of suitable
programming languages and/or programming or scripting tools, and also may be compiled as
executable machine language code or intermediate code that is executed on a framework or
virtual machine.

In this respect, the concepts disclosed herein may be embodied as a non-transitory
computer-readable medium (or multiple computer-readable media) (e.g., a computer memory,
one or more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit
configurations in Field Programmable Gate Arrays or other semiconductor devices, or other
non-transitory, tangible computer storage medium) encoded with one or more programs that,
when executed on one or more computers or other processors, perform methods that implement
the various embodiments of the present disclosure discussed above. The computer-readable
medium or media can be transportable, such that the program or programs stored thereon can be
loaded onto one or more different computers or other processors to implement various aspects of
the present disclosure as discussed above.

The terms “program” or “software” are used herein to refer to any type of computer code
or set of computer-executable instructions that can be employed to program a computer or other
processor to implement various aspects of the present disclosure as discussed above.
Additionally, it should be appreciated that according to one aspect of this embodiment, one or
more computer programs that when executed perform methods of the present disclosure need

not reside on a single computer or processor, but may be distributed in a modular fashion

48

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

amongst a number of different computers or processors to implement various aspects of the
present disclosure.

Computer-executable instructions may be in many forms, such as program modules,
executed by one or more computers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types. Typically the functionality of the program modules
may be combined or distributed as desired in various embodiments.

Also, data structures may be stored in computer-readable media in any suitable form.
For simplicity of illustration, data structures may be shown to have fields that are related
through location in the data structure. Such relationships may likewise be achieved by assigning
storage for the fields with locations in a computer-readable medium that conveys relationship
between the fields. However, any suitable mechanism may be used to establish a relationship
between information in fields of a data structure, including through the use of pointers, tags or
other mechanisms that establish relationship between data elements.

Various features and aspects of the present disclosure may be used alone, in any
combination of two or more, or in a variety of arrangements not specifically discussed in the
embodiments described in the foregoing and is therefore not limited in its application to the
details and arrangement of components set forth in the foregoing description or illustrated in the
drawings. For example, aspects described in one embodiment may be combined in any manner
with aspects described in other embodiments.

Also, the concepts disclosed herein may be embodied as a method, of which an example
has been provided. The acts performed as part of the method may be ordered in any suitable
way. Accordingly, embodiments may be constructed in which acts are performed in an order
different than illustrated, which may include performing some acts simultaneously, even though
shown as sequential acts in illustrative embodiments.

EEINT3

Use of ordinal terms such as “first,” “second,” “third,” etc. in the claims to modify a
claim element does not by itself connote any priority, precedence, or order of one claim element
over another or the temporal order in which acts of a method are performed, but are used merely
as labels to distinguish one claim element having a certain name from another element having a
same name (but for use of the ordinal term) to distinguish the claim elements.

Also, the phraseology and terminology used herein is for the purpose of description and

nn

should not be regarded as limiting. The use of "including," "comprising,” "having,"

49

WO 2017/196381 PCT/US2016/049120

9 el

“containing,” “involving,” and variations thereof herein, is meant to encompass the items listed

thereafter and equivalents thereof as well as additional items.

50

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

CLAIMS

What is claimed is:

1. A method for performing static analysis of software to detect security vulnerabilities,
comprising acts of:
generating an application architecture model for a software application, wherein:
the application architecture model is generated based on source code of the
software application and a framework model representing a software framework using
which the software application is developed; and
the application architecture model comprises a plurality of component models;
selecting, based on a property to be checked, one or more component models from the
plurality of component models; and

analyzing the one or more component models to determine if the property is satisfied.

2. The method of claim 1, further comprising an act of:
generating a representation of the source code of the software application, wherein the
application architecture model is generated based on the representation of the source code of the

software application.

3. The method of claim 2, wherein the representation of the source code of the software

application comprises an abstract syntax tree.

4. The method of claim 1, wherein:
the framework model comprises a plurality of discovery queries written in a query

language; and

the application architecture model is generated at least in part by applying the plurality of

discovery queries to the software application.

5. The method of claim 4, wherein:

the plurality of discovery queries comprise executable program code; and

applying the plurality of discovery queries comprises executing the plurality of discovery

queries.

51

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

6. The method of claim 4, wherein the plurality of discovery queries program an analysis
engine to:

extract, from the software application, information that is relevant for analysis of security
vulnerabilities; and

store the extracted information in the application architecture model.

7. The method of claim 4, wherein:

each component model in the application architecture model corresponds to a component
in the software framework using which the software application is developed; and

the plurality of discovery queries program an analysis engine to store, in each component

model, information relating to the corresponding component in the software framework.

8. A method for performing static analysis of software to detect security vulnerabilities,
comprising acts of:
generating an application architecture model for a software application, wherein:
the application architecture model is generated based on source code of the
software application; and
the application architecture model comprises a plurality of component models;
selecting, based on a property to be checked, a property model type from a plurality of
property model types;
selecting, based on the selected property model type, one or more component models
from the plurality of component models;
using the one or more selected component models to construct at least one property
model of the selected property model type; and
analyzing the at least one property model to determine if the property is satisfied with

respect to the at least one property model.

9. The method of claim 8, wherein the act of selecting a property model type comprises:
identifying one or more semantic predicates from a property query for the property to be
checked, wherein the property model type is selected based on the one or more semantic

predicates identified from the property query.

52

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

10. The method of claim 9, wherein:

the property query is written in a query language having a plurality of constructs for
building semantic predicates; and

the act of identifying one or more semantic predicates from the property query comprises

parsing the property query based on a grammar of the query language.

11. The method of claim 8, wherein the act of analyzing the at least one property model
comprises:
applying one or more model checking techniques associated with the selected property

model type to check if the property is satisfied with respect to the at least one property model.

12. The method of claim 8, wherein:
the selected property model type is a first property model type;
the one or more component models are one or more first component models;
the at least one property model is at least one first property model; and
the method further comprises, in response to determining that the property is satisfied
with respect to the at least one first property model:
selecting a second property model type from the plurality of property model
types;
selecting, based on the second property model type, one or more second
component models from the plurality of component models;
using the one or more second component models to construct at least one second
property model of the second property model type; and analyzing the at least one second
property model to determine if the property is satisfied with respect to the at least one

second property model.

13. The method of claim 12, wherein:

analyzing the at least one second property model to determine if the property is satisfied
with respect to the at least one second property model is computationally more intensive than
analyzing the at least one first property model to determine if the property is satisfied with

respect to the at least one first property model.

53

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

14. The method of claim 8, wherein the property is determined to be violated with respect to
the at least one property model, and wherein the method further comprises:

identifying a portion of source code of the software application that is related to a
violation of the property with respect to the at least one property model; and

providing a modified version of the identified portion of source code.

15. A method for performing static analysis of software to detect security vulnerabilities,
comprising acts of:
identifying, from a discovery query written in a query language, a first statement
comprising a side-effect construct with at least a first parameter and a second parameter,
wherein:
the first parameter of the side-effect construct comprises at least one second
statement specifying one or more actions to be performed; and
the second parameter of the side-effect construct comprises at least one condition
specified based on a syntactic pattern;
analyzing source code of a software application to determine whether the at least one
condition is satisfied, wherein determining whether the at least one condition is satisfied
comprises determining whether the source code comprises a program element that matches the
syntactic pattern; and
in response to determining that the source code comprises a program element that
matches the syntactic pattern:
storing the program element in a variable; and
performing the one or more actions specified by the discovery query, wherein the

one of more actions are performed based on the program element stored in the variable.

16. The method of claim 15, further comprising:

identifying the discovery query from a framework model representing a software
framework using which the software application is developed; and

using the framework model to generate an application architecture model for the
software application, wherein the one or more actions specified by the discovery query are

performed to generate at least a portion of the application architecture model.

54

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

17. The method of claim 16, wherein:
the application architecture model comprises a plurality of component models; and
the one or more actions specified by the discovery query are performed to generate at

least one component model of the plurality of component models.

18. The method of claim 16, wherein:
the framework model comprises a first module; and

the first module comprises the discovery query.

19. The method of claim 18, wherein:
the framework model further comprises a second module and a third module;
the first module is imported into the framework model via the second module; and

the second module is imported into the framework model via the third module.

20. The method of claim 19, wherein:
the framework model further comprises a fourth module; and

the fourth module is imported into the framework model via the second module.

21. The method of claim 16, wherein:

the discovery query is a first discovery query;

the framework model further comprises a second discovery query written in the query
language;

the application architecture model comprises a plurality of component models; and

the second discovery query comprises a noun for accessing a component model of the
plurality of component models, wherein the noun is defined in a library that is associated with

the software framework using which the software application is developed.
22. The method of claim 21, wherein:

the second discovery query further comprises a verb for querying the noun; and

an implementation of the verb is defined in the library.

55

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

23. The method of claim 15, further comprising:
identifying, from a property query written in the query language, a first statement, a
second statement, and a third statement, wherein:
the first statement comprises a syntactic pattern;
the second statement comprises at least one condition indicative of a security
vulnerability; and
the third statement comprises one or more actions to be performed;
analyzing source code of the software application to determine whether the source code
comprises a program element that matches the syntactic pattern of the first statement;
in response to determining that the source code comprises a program element that
matches the syntactic pattern of the first statement:
storing at least one portion of the program element in a variable; and
evaluating the at least one condition based at least in part on the at least one
portion of the program element stored in the variable;
in response to determining that the at least one condition is satisfied, performing

the one or more actions of the third statement.

24. The method of claim 23, wherein:
the variable is a first variable;
the at least one portion of the program element is a first portion of the program element;
the method further comprises storing a second portion of the program element in a
second variable; and
the one or more actions of the third statement are performed based on the second portion

of the program element stored in the second variable

25. The method of claim 24, wherein:
the program element is a first program element; and
the one or more actions comprise replacing the second portion of the program element

with a second program element to fix the security vulnerability.

26. A method for performing static analysis of software to detect security vulnerabilities,
comprising acts of:

56

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

identifying, from a discovery query written in a query language, a statement comprising
a semantic operator with at least a first parameter and a second parameter, wherein:
the first parameter comprises a first syntactic pattern;
the second parameter comprises a second syntactic pattern; and
the semantic operator represents a semantic relationship between two program
elements; and
analyzing source code of a software application to determine whether one or more
portions of source code match the statement identified from the discovery query, wherein
analyzing the source code comprises determining whether the source code comprises a first
program element and a second program element such that:
the first program element matches the first syntactic pattern;
the second program element matches the second syntactic pattern; and
the first and second program elements satisfy the semantic relationship

represented by the semantic operator.

27. The method of claim 26, wherein the first and second program elements satisfy the
semantic relationship represented by the semantic operator if there is a program path in which

the first program element is encountered before the second program element.

28. The method of claim 26, wherein the first and second program elements satisfy the
semantic relationship represented by the semantic operator if the first program element is

encountered before the second program element in every program path.

29. The method of claim 26, wherein the semantic operator has a third parameter, the third
parameter comprising a third syntactic pattern, and wherein the first and second program
elements satisfy the semantic relationship represented by the semantic operator if there is a
program path in which:

the first program element is encountered before the second program element; and

the third program element is absent between the first program element and the second

program element.

57

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

30. The method of claim 26, wherein the first and second program elements satisfy the
semantic relationship represented by the semantic operator if there is a program path in which:

the first program element is encountered before the second program element;

the first program element is an earliest program element in the program path that matches
the first syntactic pattern; and

the second program element is a latest program element in the program path that matches

the second syntactic pattern.

31. The method of claim 26, wherein:
the second program element comprises an expression that evaluates to a value; and
the first and second program elements satisfy the semantic relationship represented by

the semantic operator if the value is used by the first program element.

32. The method of claim 26, wherein:
the second program element comprises an expression that evaluates to a function; and
the first and second program elements satisfy the semantic relationship represented by

the semantic operator if the function is called by the first program element.

33. The method of claim 26, wherein the first syntactic pattern comprises a first variable and
the second syntactic pattern comprises a second variable, and wherein analyzing the source code
further comprises:

identifying, based on the first syntactic pattern, a first portion of the first program
element;

storing the first portion of the first program element in the first variable;

identifying, based on the second syntactic pattern, a second portion of the second
program element; and

storing the second portion of the second program element in the second variable.

34. The method of claim 26, wherein the first syntactic pattern is defined based on a syntax

of a programming language in which the software application is written.

58

10

15

20

25

30

WO 2017/196381 PCT/US2016/049120

35. A method for performing static analysis of software to detect security vulnerabilities,
comprising acts of:
generating a first application architecture model for a software application, wherein:
the first application architecture model is generated based on a first version of
source code of the software application; and
the first application architecture model comprises a plurality of component
models;
comparing a second version of source code against the first version of source code to
determine at least one difference;
identifying, based on the at least one difference, at least one affected component model
of the first application architecture model; and
generating, based on the second version of source code, a second application architecture
model, wherein generating the second application architecture model comprises generating an

updated version of the at least one affected component model.

36. The method of claim 35, wherein generating the second application architecture further

comprises adding a component model that is not in the first application architecture model.

37. The method of claim 35, further comprising acts of:

selecting, based on a property to be checked, one or more component models of the first
application architecture model; and

analyzing the one or more component models of the first application architecture model

to determine if the first application architecture model satisfies the property.

38. The method of claim 37, further comprising acts of:

determining whether the property to be checked is affected by the at least one difference
between the first version of source code and the second version of source code;

in response to determining that the property to be checked is affected by the at least one
difference, analyzing one or more component models of the second application architecture

model to determine if the second application architecture model satisfies the property.

59

10

15

WO 2017/196381 PCT/US2016/049120

39. The method of claim 38, wherein the one or more component models of the second
application architecture model comprises the updated version of the at least one affected

component model of the first application architecture model.

40. The method of claim 38, wherein the one or more component models of the second
application architecture model comprises a component model that is not in the first application

architecture model.

41. A system comprising at least one processor and at least one computer-readable storage
medium having stored thereon instructions which, when executed, program the at least one

processor to perform the method recited in any of claims 1-40.

42. At least one computer-readable storage medium having stored thereon instructions
which, when executed, program at least one processor to perform the method recited in any of

claims 1-40.

60

WO 2017/196381 PCT/US2016/049120

1127

/ 100

Program Framework

Code Models
Properties
Analysis Engine 105 |¢=—— to Be
Checked
Results
\ 4

Guidance Engine 110

Identified Issues,
Suggested Solutions,
and/or Training Modules

FIG. 1

WO 2017/196381

2/27

/ 235

PCT/US2016/049120

/ 200

/ 240

View

/ 210
Y

230
MySQL /
Model
Controller
225
220 Dispatcher
~_
215 Routes
\/
Web Server
Browser

FIG. 2

/_ 205

WO 2017/196381 PCT/US2016/049120

3127

Program MVC Framework

Analysis
Code Model /— Engine 300
| |

Model Construction 305 Application

Architecture

Model 310
I Y
I I
! :
: Controller Model 315 View Model 320 :
: .
I I
I I
I I
: Database Model 325 Route Model 330 :
: :
I I
I I
|| Configuration Model 335 e o o !
: :
P |

Properties
Property Checking 340 [« to Be
Checked

v

Results

FIG. 3

PCT/US2016/049120

WO 2017/196381

4/27

[ARzsnpsTgeaocslur | = [
syoeqrTeo" [,186,] [,9SRqRIRD/, | $9IN0I" TopOU

:Topow HUTITNSSI // i

114

¥ 'Old

:seanox Jawbutadg x03 Axsnb AxsaocosTqg //

ocy

(Aenb)Aieneinoexajuswalels = s}NsaJ }19gynsay
{(+++)IUBWSIL}SS]ESID UOIIOBUUOD = JUSWISIE]S JUSWSILLS
‘., + OWEeNjunoooe 4 = sweu)se| JYJHM BIep 48sn WOH4 x 103 13S,, = A4enb 3ulng
i(,PoweN J4noA ‘JNVN LODV)eleweledmeyled ()esiedled's = sweNunoooe
‘(s)uonosuuoDled salll|i}eseqele(] = UOIDBUUOD UOIIDBUUOY
m:q;ﬁow?_ juswse|3 peyosloud
(393 =poylsw ' eseqejep/ = anjesjduiddepisenbayp

‘sweNjunoooe 3ulg 9leAld

}

J91depyuossaT|enuanbag spusixs ||bs sse|2 olgnd

oLy SOV

yiomswedy DAWSUIIAG Suisn weldold 804nog eaep //
0]0)4

WO 2017/196381 PCT/US2016/049120

5/27

/ 500
// Java Source Program

protected Element injectableQuery(WebSession s) |

520 -

\\, GConnection connection = DatabaseUtilities.getConnection(s);

accountName = s.getParser().getRawParameter(ACCT_NAME, “Your
525 Name");

_/ String query = “SELECT * FROM user_data WHERE last_name =" +
a

ccountName + "' (_ 530
Statement statement = connection.createStatement(--+);

ResultSet results = statement. executeOuery(que v); 545

| NN

535 540

// query 1

QECRM Do tadntod /‘ 510

FIG. 5

WO 2017/196381 PCT/US2016/049120

6/27

605 600
/ /
Compile Program Code

into Abstract Syntax Tree

l 610
/

Select Discovery Queries

l 615
/

Apply Discovery Queries

to Abstract Syntax Tree to

Build Application
Architecture Model

620
\ 4 el
Apply Property Queries to
Abstract Syntax Tree
and/or Application
Architecture Model
625 / 630
Yes
Anything to Report? Output Results
635
No
ves 640
ol
Transform Abstract
Syntax Tree
l 645
~
Output Modified Program
FIG. 6 Code

PCT/US2016/049120

WO 2017/196381

7127

+

320Id

002 \

S[IUM

L "Old

| +X =X
} (e >X) s|iym

7

Go.

welbold

5

PCT/US2016/049120

WO 2017/196381

8127

8 'Old

(xejufs 1duogener -68) -

<[els}|> ;

{ <luswsajeis> } <pi>:

<Juswalels s|npow>

Juswajels i ;

T

434 <300|q Bulyolew xejuis> 7

.47, <lUBWIS]L]S>

<)20|q Bulyolew XBIUAS> 2;7%i-1 44 <JUDLWISIB]IS> ;

2x]

<aleolpald 108)j8-0pIS>

| <|=<|40O | ANV

<Jojelodo sonuewas>

<gleaipald sonuewsas> <iojeiado saluBwaS> <uoIssaidxo>

<geaIpaid sonuewoas>

<Jojesado moj)>

<luswalels MO|)> <lojeiado moj> <x3o0|q Buiydlew xejuAs>

<00|q Buiyolew xejuAs> <iojerado mo> <xo0|q Bulyoiew xejuAs>

<juswalels Mojy>

<Jo]esado xeluAs>

<XBlUAS 82in0s> <Jojeledo xeluAs> <weiboid sainos> | <welboid 8aincs>

<XBJUAS 82JN0S>

<)00|q Buiyolew XejuAs> i

<aleolpa.d SoNUBWSS> 4, <{ <xeluhs aoinos> }>

<00|q Buiyolew xejuAs>

<Juswalels sjnpow>

<aleolpa.d 108)j8-0pIS>

<gleaipaid sonuewas>

<Juswalels moj>

<o0|q Buiyolew xejuhs>

<Misnb>

PCT/US2016/049120

WO 2017/196381

((1$)eziues |dyi9ziUES))j$ 0%

016

9/27

18

GlL6

aziiues

Idviezhiues

()

506 \

()

0%

6 "Old

(1L$)ig 0%

016

006 \

18

()

0%

PCT/US2016/049120

WO 2017/196381

10/27

0l "©OId

JESTeey

raveng

‘0s|e} uINje.

([1a =i [1]e) #
} (++! ‘yaBuse > 10 = 1 Jul) Joy

‘9s|ey uinjad
} (U¥BusI'q = yisusye) H
} (4 []®3Aq ‘e []@3Aq)|enb3s| uesjooq o1je3s oliqnd

omoF\

:weJasoud 994nog

PCT/US2016/049120

WO 2017/196381

11/27

3%

Glil

"Old

‘0 == }Nse4 uineu

{
:[Ja=i [']e =| 3nsa.

J(++! fyaBus|e > 1:0 = | Jul) Joy
0 = }nseJ ul
GOl \A :Apoq maN

‘9s|e} uinye.

_
AEQH_ENI_ m
} (++1 'yyBuse > 10 = 13ur) Joy |

|

‘9s|ej uinjad
} (U¥BusI'q = Yidusye)
} (4 []®3Aq ‘e []@3Aq)[enbs| uesjooq olje3s oliqnd

\ we.foad 904nog
0G0l

PCT/US2016/049120

WO 2017/196381

12/27

¢l 'Old

£ 2[MPON

% 7 b i

GOMPON ¥ °[NPON [2[NPON

00Z1 \

Glcl

olcl

<

{(.SMePON,) LYOdNI
Adenbrsseudx3y ¢ 9|14

/I\-

(OAN) LHOdNI
Adsnb grepoN :z 9|14

S0Z) ~__

Aanb AN 1| 9|4

PCT/US2016/049120

WO 2017/196381

13/27

pawiioj1ad st uonoe ue 1a3Je 10 a10jaq Appijduwil pafeo s1jey) ssep y

€l 'Old

UOISSIS UODUU0D JUILIND
dde a1y Jo UONIBULOD JI0MIBU JUILINY
S3omauIeL] DA -UOU 10J 3[SIp Uo say [ea1sAyd
SE [[9M SB SUO[IOE J9[[0.3u0) pue stoawered Ty 1senbay Surwoour usamiag Suiddey
J9s[) 9Y3 03 d3Isgam Jo uonesijdde ays 0] uonewiojul Suissed 10j a[qisuodsar 309[qQ
211sgam Jo uopneddde ayy 03 19s() oY1 woay uonewriojul Suissed 10y a[qisuodsad 393[qQ

syusuodwiod uaamiaq eiep Jo
MOTJ pUE 90BJINS 3oe13E Uonesijdde oyy ouyap ey} SUOIIEIOUUE PUE SINILINE ‘SO JO 195
saa[puey 031 sysanbaa depy
uonoeIANUl I9sn oynads e Suipuey J0y o[qisuodsal s JeY3 pOYIaW I2[[01U0D)
2130 oypads uoneoydde
pue ‘mopj uoneoidde [[EI9A0 I9sN 93 WOIJ UOIEITUNWIIOD SI[PUEY JeL[} SISSE JO 195
paLedsip aq [[1m 1 s,uonesidde oy MOY S2UIJIP YITYM SISSE JO 195
parendiuew 1o paSueyd 9q Ued BIep 9y Moy SUlyap ey
S9N SSIUISN(SY3 SE [[PM SE 1M SuBIom 91,04 BIEP Y3 S9]LIOSIP I8} SOSSE JO 195
uonesipdde oy Aq pash uianed [eInionag Jo Joiaeyag jo uondrnssg
uonduosaq

<10ydaoanur>

<UO0ISS9S>
<UONOIUU0D>

<9Ioy>
<asuosdoy>
<3sanbay>

<8yuon>
<Jayosedsig>
<UOIPY>

<IB[[OIU0D>
<MIIA>

<[9PON>
<[Iomouwiel >
unoN JAN

PCT/US2016/049120

WO 2017/196381

14/27

gl "Old

S}insoy <«

O INEllg)
GEG | I19po|N Auadold [« oﬂwrmqo._n_
odA L [opoN
q q Auadolud 109198

|

¢ o o ¢ 19poJA Jusuodwo) |
| 0€S L 19POW
|
|

Z 19pOoJA Wwauodwon | [9PON Jusuodwo)

Jonisuo)

GZGl LSV paonpay

2JN108)IydIYy

elliNes|
(1SV) 0151 (sauanp Aianoosiq 6°3)
99l] XBJUAS 10BASAY 0251 S|9POIN YJomawel
sbenbue
\ 9lildwo) f1anpd ul |opo
00sS| GOS| 8poD weubolid ("013 ‘asema|ppIlN ‘seuRIqIT

‘SyJomawield “B°3) GLG| s92In0say

PCT/US2016/049120

WO 2017/196381

15/27

91 "Old

{
{
‘8unmyes = uoissesygpow”
} () uonouny uiMme.
} (Bumes)yuorssegsse.idxy uonouny

\ U0ISS8S SS8.UdxF 10) [spow e /)
G0o9l

‘1 (1)@o11s'syuswind.e :syoeq|ed } = [3sod,][1un]senoljepow ™

} (umuonouny : 3sod

1 (1)@o1]s'sjyuswins.e :syoeq|ed } = [388,][1un]sernoygpows”

} (unjuonouny : 108

spoyiew 8inoy //
} uameu

} ()ssesdxg uonouny
\ ssea.udxy Joj jspow e s/

0091

[9pOW UOISS9S—55940X9 = UOISSaS 1SU0D
a/ema|ppiw UoIsSsag ssaudxy, 8y3 8sn //
|spowrssaldxe = ssa/dxe }SU0D
Yiomawel) ssaidxy a8y} asn //

'(,Yred)adinbau = yjed 3suoo
H{ .Qﬁs_vw‘__:_ow‘_ = dyjy 3suoo
sJems|pplw Jsyjo //

sioL "~

ozolL "

i uolssas—ssaJdxa)a4inbaJ = Uo|SS8s }SU0D
9/ema|ppiw uoissag ssaudx3 ayy asn //
‘(,8s@4dx®,)a.inbaJ = ssa/dxa }SU0D
yMomewe,} ssaudx3y eyy esn //

olL9ol II\

PCT/US2016/049120

WO 2017/196381

16/27

uonduUNJ 9INOI B ST 1591, 1By} A[OYI[UN ST <==
uondUNJ IIqUISW OU SBY | S3I,, "¢

{

‘(04ul+ Je3sideu/saesn/ Ixeu uinie.
Apoqg'bau = oju1 Jea

{

£poaq,, proy sey bax, 7z €
Jaxau,, pue a1, ¢ box, syjuownge oo1y sey 1s9),, °|

A E

uonouny dnox e st dnudis,, <==
3ums

2d£y Juown3Ie Jo J0011pal,, UOIOUNJ IOQUISW © SBY[SAI,, '{
10lq0 x Suing

‘A'S9J4 4 X'S9J4 uJnjed

} (sedy H
\\ } (3xeU ‘seu ‘bau)ysey uonouny

oL/l —

{(04ul4 491S180./S49SN/)308IPSI S8 UINSI
‘piomssed + @ 4+ SWENJSSN = OJul JeA

iR

{

‘(s40au9 ‘' dnuBis)iepus.'sed uined
} ((eweNJesn)seY Y HISNI) #

adA) yJuswnSIe Jo JOPUSL, UOTIOUN] ISQUISW B SBY _ S9I,, "¢ <

Apoq,, p[oty e sey bar, -z
Jxou,, pue _so1, ¢ box, syjuownSie oomyy sey dnuSts,, ']

uonouny 9JnoI © st u1sof,, <==

19lqo x Sumng
<

/${02°1f ./ = 34 ¥3sSN 4eA
‘piomssed-Apoqbe. = piomssed JeA
‘owepNJosn'Apoq-be. = sweN.sosSN JBA

\ } (3xsu ‘seau ‘baJ)dnudis uonouny
G0ZL

Jdnusis/ 14N 4o} uonejusws|dwi eynod //

{

adA1 Jo J9pual,, UoTIdUNY I9QUISW B SBY SAT,, "7
.so1,, pue _ bor, sjuowinSre om) sey , UISO,, |

‘([w807, :epn} } ,u18o]/s4esn,)ispus.rsa.

P } (se4 ‘baujuido] uonouny

001 \\

PCT/US2016/049120

WO 2017/196381

17127

{(xepioye+xe]aud ¢ Suonnqguuod,)iapual sal uinjal
{(xeLI9YyE’ LA)JeAd = Xe] JalJe JeA
{(xerApoq-bai)jeas = xejaid Jea

} (1xau ‘saua ‘bas)uonouny = xejalepdn

<- 139 d11H <- xejeyepdn/siasn/,

‘g d1nol

8t
(({.wmibom, :oqu1 } ‘,u1Iboy/s1asn,)iopusi-sol
} (sal1 ‘bas)uibo] uonosuny

<- 139 d.LIH <- uboy,
'L 8ol

:]lopow ajno.

o{
anJ} :a1noes
‘as|e} :AluQdiy
} ;81000

} uoisses

;[opow uoleinhyuod

V8l 'Old

‘(xeysjepdn ‘ xejejepdn/stesn/ yed-dde
‘(dnudis ‘_dnuBis/sJesn/,)3sod dde
‘(ano3o| ‘Inoso|/ nes dde

‘(uigo| ' uido|/, 308 dde

sepnou 4esn //

(
{

an.j :94no9s
‘q:Auodiy
} :@njooo
Jyuoisses)esn-dde
‘osjej = q JeA
UuoT3eanbTyucd //
()ssoudxe = dde ysuoo

‘(,Yy3ed,)aainbau = yjed 3suoo

H{ .Qﬁs_vw‘__:_ow‘_ = dyjy suoo

SaJeMa|ppIW JaY1o //

i uolssas—_ssaudxa)aJInbseJ = UOISS8s }SU0D
eJeMa|ppiw uolssag ssaudx] eyy esn //
‘(,sseudxse,)aiinbe. = ssesdxe 3suod
sHomewely sseddx3 eyy esn //

PCT/US2016/049120

WO 2017/196381

18/27

Gosl

{

{(xepioye+xeaid ‘ sSuoiNquIIUO09,)Jopual-sal uinjal
{(xeI9le’ LA)|eAD = XB] I9)je JBeA
{(xeyApoq-bai)jeas = xejaid Jea

} (1xau ‘sai ‘bas)uoilouny = xejajepdn

<- 139 d11H <- xeieiepdn/siasn/,

;2 91noJ

o

{({.wmboT, o1 } ‘,uiboy/siasn,)ispualsal
} (sad ‘basjuiboj uonouny

<- 139 d.L1H <- uiboy,

;] @1noJ

|[epouw a1no.J

8t
anJ} :aIndas
‘as|e} :Aluodny
} ;o000

} uoissas

;[opouw uoneinbiyuod

a8l "Old

suonoslul iduogeaer

suonoslul 1OS

108.1paJ palepljeAu|

Gesl }\

44SO
SSX

0csl |I\

A1ojes 814000 UOISSaS

uoneuodsuel) 8iN08g

Byuoo 44sD

Gl8l }\

WO 2017/196381
19/27

abstraction numeric
value estimation

string value
estimation

Property
function call relation
injection, dependency

variable/object/function type

PCT/US2016/049120

more abstract,
less precise,
easier to compute

less abstract,
more precise,
harder to compute

Model Type
call graph
data flow graph

type system

abstract numeric value estimation

Boolean/numericvalue

abstract numeric value estimation

configuration
string value

variable data structure

Boolean formula on Boolean variable

FIG. 20

string value estimation

heap shape analysis

predicate abstraction

PCT/US2016/049120

WO 2017/196381

20/27

s)nsay

—

° ° ° Z Manpd

WSElle)

Z 19S pJomAay onuewas

| 10S pJomAay onuewas

Vv [9PON Jusuodwo)

|
|
|
|
|
“ ® ® ® g ISPON HCQCOQEOO
|
|
|
|
|

—_— e, e e e — — — — — ——— — —— —

L¢ "Old

00lLc IspoiN
2JN8/lYoLY
uoneolddy

PCT/US2016/049120

WO 2017/196381

21/27

SOTMO0D UOTISSSS UT anil == ATupdiay

:93e0IpaJd sonuewss

G0cc »/\

900D UOISSas Ul Sp|al) 40}
UoJ1EW 1S an|eA dliawnu/ueajoog
adA] |spo\ Apsdoud

o{
anl} :84noas
‘as|ey :Aluodiy
} ;81000

} uoisses

;[opow uoneinbyuod

¢¢ 'Old

‘(xeysjepdn ‘ xejejepdn/stesn/ yed-dde
‘(dnudis ‘_dnuBis/sJesn/,)3sod dde
‘(ano3o| ‘Inoso|/ nes dde

‘(uigo| ' uido|/, 308 dde

sepnou 4esn //

(
{

an.j :94no9s
‘q:Auodiy
} :@njooo
Jyuoisses)esn-dde
‘osjej = q JeA
UuoT3eanbTyucd //
()ssoudxe = dde ysuoo

‘(,Yy3ed,)aainbau = yjed 3suoo

H{ .Qﬁs_vw‘__:_ow‘_ = dyjy suoo

SaJeMa|ppIW JaY1o //

i uolssas—_ssaudxa)aJInbseJ = UOISS8s }SU0D
eJeMa|ppiw uolssag ssaudx] eyy esn //
‘(,sseudxse,)aiinbe. = ssesdxe 3suod
sHomewely sseddx3 eyy esn //

00c¢ |(\

PCT/US2016/049120

WO 2017/196381

22/27

psjute)y ‘- b-a)

(uoT3oungy 7TepaA2 03uT 3ndut
uotj3oalutr j3drtaogeaep
:91e901pe.d sonuewss

G0€Z -

s1asn/ 0} paje|aJ suollduny
91n0J 40} SiSAjeue mojj- eleq
adA] |spo Arisdoud

olec

xe | JeyeApoq

xe | aud Apoq

bau

ydeab moTI-eaep

sisz

(xerao37Ie " Apod) Teasd
(xel1oad- Apoq) Teas
:Je suonoslul yduogenep

ozez

€¢ 'Old

‘(xe] Jee+xe | 84d | SUOIINQLIUOD)J8puB.'S8. UIN}ed

‘(xe| soye'Apoq)jens = xe | Jee JeA
i(xe] @ud'Apoq)|ers = xe] aid JeA
‘Apoqg'bau = Apoq Jea

} (3xeu ‘sau ‘beau) xejerepdn uonouny

Xerojepdn/saesn/ 4 404 uonejuswejdwi 83nod //

{

{(0Jul+ 49181894 /S49SN /)}084IPaL'SBI UIN}ad

‘piomssed 4

“ 9

+ 9WEBNJ9SN = OJul JeA

‘(s40au9 ‘' dnuBis)iepus.sse. uinjed *

} ((eweNJesnIsey 4 YISNI) #

/$102'1Y ./ = 34743SN JeA

‘piomssed-Apoqbe. = piomssed Jea

‘oweNJesSN'Apoq-bal = sweNJssn JeA
} (3xau ‘seu ‘bau)dnusis uonouny

Jdnusis/ 14N 4oj uonejuswsejdwi enod //

{

‘({ w807, :opn} } ,uIdo|/siesn,ispusisa.
} (se4 ‘baujuido] uonouny
U301/ 14N 404 uonejuswejdwi enod //

oocz "

PCT/US2016/049120

WO 2017/196381

23/27

(xo2yo e

I973Je 2weu IJssn JO sanTena sTgrssod
‘+pro) sweu ISSN JO O8YD AJTURY
‘91e901pa.4d sonuewss

Govce |I\

JWIDNIasN
40} UOIlBWI1Se an|eA a|gelien
adA] |spoly Apsdoud

onJ} == (sweNJosnNseY /${0Z 1}/

gIS]10®vIRYD
0z ©3 T UTPIUOD 3JSnNuW SWeu I9S()

Glvc nl.\

¥¢ "'Old

{

(04Ul J93SIZ8U/S49SN/ 1308.IpeLSBU UIn}ad
‘piomssed 4

“ 9

+ 9WEBNJ9SN = OJul JeA

i(s40449 ‘ dnuBis)iepusJse. uime. *
} (BueNJesN)SeY Y HISNI) #
/${02°1f ./ = 34 43sSN 4eA
‘piomssed-Apoqbe. = piomssed JeA
‘oweNJesN Apoq b = swepNJssn JeA

} (3xsu ‘sau ‘bad)dnudis uonouny

Jdnusis/ 14N 4o} uonejuaws|dwi eynod //

{

i({ w307, 9N } ‘u1do|/siasn,)iepusssal
} (se4 ‘baujuido] uonouny
U301/ 14N 40y uonejuews|dwi eynod //

oovz "

PCT/US2016/049120

WO 2017/196381

24/27

%08UD

s)insay <«

[epo Auadoid —
8dA] [opoIN

q q Ausdolud 10918

1SV pssiney

—_—— e e e — — ———— ———

G¢ 'Ol
Kand
Auadold
0€se
S|spoN
Jusuodwo)
Bunsix3

€ |opolA wauodwon

N [8poA Jusuodwon

| [@PON Jusuodwo)

01 G 8p0D MaN

G0GC UOISINeY 8p0D

00GC ISPOIN

2JN)08)YDIY
uoneolddy

PCT/US2016/049120

WO 2017/196381

25/27

} (se4 ‘bauyno3o] uonouny
Jno3ol/ TdN 40} uonejusws|dwi eynoa //

0292 _

‘(xeJeje+xe | 84d ‘ SUOIINQLIUOD)J8pUB.I'Se. UIN}ed

C T (xepssyeapujesied = xe L9y JeA!
(xe]Joye’ |A)eAs = Xe | Joye JeA :A|snolraud /4
I

I
I
I
|
| |
“ ‘(xeyApoq-beu)jujesied = xe] sud ._m>"
I {(xeyApoqbadjers = xe] aud JeA :Asnoirsud //|
L 4

slog — "

} (3xeu ‘sau ‘bau) xejerepdn uonouny
Xeiojepdn/saesn/ [H(404 uonejuswejdwi 83nos //

|
a

/

G0o¢

V9¢ 'Old

‘(xeysjepdn ‘ xerejepdn/stesn/ yed-dde
‘(dnu3dis ‘_dnuBis/siesn/,)3sod dde
‘(ano3o| ‘Inoso|/ nesd dde

‘(uigo| ' uido|/, 308 dde

senou 4esn //

(d
{

an.n :84noo9s
‘q:Auodiy
} :enjooo
Jyuoisses)esn-dde

‘os|e} = q JeA lAjsnoineud // lenay = q JeAl

uoT3eanbITyucd //

()ssesdxe = dde ysuod

), uolsses—ssaudxs jaiinbai = UOISSSS }SUOD
jlomewed) sseddx3 eyjesn //
‘(,sseadxe,)auinbe. = ssesdxe 3suod
jlomewedy sseddx3 eyjesn //

009¢

I\

PCT/US2016/049120

26/27

WO 2017/196381

S 892 "9l

|||||||||||||||||||| 0
_xxm L Jale’ LA)ujasied = xe | Ja)e El
|« . . — ;

Groy — 1L oabaNIEsIed T i e

} (xeu ‘sau ‘bai) xejajepdn uonouny
<- 139 d11H <- xejarepdn/siasny,
:81N0J POSIASI

I
3 suonoslul Jduogeaep

[

[

[
_ } (sa1 ‘basjinobojuonouny |

0r9zZ __ <- 139 dL1H <- anoboy/! - suoposlul 108
_ -8In0J Moy 100.11p8J palepIeAU|

—_—_—— e, — e, ————— |

{
{{onJ} :aunoes ‘anuy :AluOdiy } :ejoos |
|I\ } uoisses | Alojes a1y009 uoISSas
W 0g9c¢
J[opow uoijeinbyuods uonepodsue.} aindes

mm@m:’\ 0G9¢

WO 2017/196381

PCT/US2016/049120

27127

1000
d

, 1002
Volatile Memory L~

1001
el

Processing Unit

Non-Volatile
Memory
1005
Z
Storage
Application .
Programs API Functions

=

1006

Output Devices

1007
Z

1010
-~

Input Devices

Network Interface

%

FIG. 27

1020

Communication
Network

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 16/49120

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 11/00 (2016.01)
CPC - GO6F 21/577

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8): GO6F 11/00 (2016.01)
CPC: GO6F 21/577

Minimum documentation searched (classification system followed by classification symbois)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 717/128, 726/25, 726/24, 717/174, 713/189, 726/23, 713/190,
GO6F 21/577, H04L 63/1433, HO4L 63/1416, HO4L 63/20, HO4L 63/1408 (Keyword limited; terms below)

713/188, 726/22, 705/51; IPC(8): GO6F 11/00 (2016.01), CPC:

Electronic data base consulted during the international search (name of
PatBase; Google (Scholar, Patents, Web)

data base and, where practicable, search terms used)

Terms used: security vulnerability "static analysis” software "source code" semantic query model component "syntax tree" noun verb

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2010/0083240 A1 (SIMAN), 01 April 2010 (01.04.2010), entire document, especially 1-34, 41-42/(1-34)

--- Abstract; Table 2; para [0011]-[0012], [0014], [0017], [0019]-[0020], [0048], [0050], [0067]-

Y {0068], [0070], {0084], [0086]-[0088], [0090}, {0092), [0115], [0119], [0124]), [0127], [0186]- 35-40, 41-42/(35-40)
[0197], [0199]-{0203), [0206]-{0207], [0212], [0220], [0282]

Y US 2014/0130020 A1 (BOSHERNITSAN et al.), 08 May 2014 (08.05.2014), entire document, 35-40, 41-42/(35-40)
especially Abstract; para [0008], [0024], [0061], (0092]-[0095], (0124]-[0126]
US 2007/0240138 A1 (CHESS et al.), 11 October 2007 (11.10.2007), entire document 1-42
US 2009/0307664 A1 (HUUCK et al.), 10 December 2009 (10.12.2009), entire document 1-42

A US 2011/0197180 A1 (HUANG et al.), 11 August 2011 (11.08.2011), entire document 1-42

D Further documents are listed in the continuation of Box C.

[

hd Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the apﬁlication but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

14 November 2016 (14.11.2016)

Date of mailing of the international search report

09DEC 2016

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: §71-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - wo-search-report

