发明名称 缆线密封接头

摘要

本发明涉及一种缆线密封接头，尤其是通讯电缆或者通信光缆的密封接头，用来安装到装有加压气体、用来保护缆线接头的密封盒(1,11)的入口处，安装在一个与该密封盒(1,11)相连的管(4,14)中。该密封接头包括至少一个直径恒定的圆柱形管部分(2A,12A)，一个内密封部分连接在该圆柱形管部分上，用来从周围接触所述缆线(8,18)并朝向所述密封盒(1,11)内部设置。所述内密封部分由一个与所述圆柱形部分的端部相连的锥形形管部分(2B,12B)构成，其直径较小的端部有一个孔，该孔的直径小于要安装的缆线的直径。
1. 缆线密封接头，尤其是通讯电缆或者通信光缆的密封接头，用来安装到装有加压气体、用来保护缆线接头的密封盒（1、11）的入口处，安装于一个与该密封盒（1、11）相连的管（4、14）中，该密封接头包括至少一个直径恒定的圆柱形管部分（2A、12A），一个内密封部分连接在该圆柱形管部分上，用来从周围接触所述缆线（8、18）并朝向所述密封盒（1、11）内部设置，其特征在于，所述内密封部分由一个与所述圆柱形部分的端部相连的截锥形管部分（2B、12B）构成，其直径较小的端部有一个孔，该孔的直径小于要安装的缆线的直径。

2. 如权利要求1所述的接头，其特征在于，所述直径较小的端部有一个孔，该孔的直径小于要安装的缆线的最小直径。

3. 如权利要求2所述的接头，其特征在于，所述截锥形部分（2、12）的外表面有均匀间隔的环形切割槽（5）。

4. 如权利要求2所述的接头，其特征在于，所述圆柱形部分（2A、12A）的端部是一个与所述截锥形部分（12B）相对的外密封唇（12C）。

5. 一种缆线密封组件，尤其是通信电缆或通信光缆的密封组件，用来安装到装有加压气体的用来保护缆线接头的密封盒（1、11）的入口处，包括一个如权利要求1到3之一所述的接头（2），其特征在于，装在所述管（4）中，其内密封部（2B）朝向所述盒（1）内部设置的所述接头（2）由拧在所述管（4）上、纵向保持所述接头（2）的一个外部柱形塞（3）固定在位。

6. 一种缆线密封组件，尤其是通信电缆或通信光缆的密封组件，用来安装到装有加压气体的用来保护缆线接头的密封盒（11）的入口处，包括一个如权利要求4所述的接头（12），其特征在于，装在所述管（14）中，其内密封部（12B）朝向所述盒（11）内部设置的所述接头（12）的外密封唇（12C）由一个缆线导套（20）从四周压在所述缆线（18）上，该缆线导套（20）本身由一个拧在所述管（14）上的螺母或者密封圈（21）在纵向推压。
电缆密封接头

技术领域

本发明涉及电缆密封接头，尤其是用于通信电缆或者通信光缆的密封接头。

更具体地说，本发明涉及用于电缆，尤其是通讯电缆或者通信光缆的密封接头，用于安装在电缆有加压气体、用来保护电缆接头的密封盒的入口处。安装在一个与该密封盒相连的管中，该密封接头包括至少一个直径恒定的圆柱形管部分，一个内密封部分连接在该圆柱形管部分上，用来从周围接触所述电缆并朝向所述密封盒内部设置。

背景技术

专利文献 DE-U-782425 公开过一种这样的密封接头装置。根据该文献，一个接头按传统方式安装到一个盒上，更准确地说，是安装到装在该盒上的一个支承管上，并由一个螺母和密封圈紧固，该螺母和密封圈拧在所述管上，压紧所述电缆。该接头包括一个外锥形部分，该锥形部分的端部是一个密封唇，所述螺母将所述密封唇压在所述电缆的圆周上。该接头还包括朝向所述盒内部设置、通过弹性变形而抵在所述电缆上的挠性的内密封唇。

所述内密封唇对所述外唇部的密封作用加以补充，由于盒内部的气体压力的作用，它们单独不能起到有效的密封作用。

发明内容

本发明的目的是提供一个内密封部分，可以单独起到完全的密封作用，也就是说，不需要外唇部的配合就能实现有效的密封接头。

为此，根据本发明，该内密封部分由一个与所述圆柱形部分的端部相连的截锥形管部分构成，其直径较小的端部有一个孔，该孔的直径小于要安装的电缆的直径。

这种装置的优点是，所述接头在从密封组件上拆卸下来后可以重复
使用。

另外，根据上面所述的现有技术，外密封唇的直径的内径小于缆线的外径，以确保拧紧螺母后对缆线的压力。因此这种接头用于特定直径的缆线。换句话说，对于一种缆线直径，要用尺寸与该缆线对应的一种接头。

有利的是，本发明可以实现接头的标准化，可以只制造一种接头，这种接头可以安装到具有不同直径的一系列缆线上。

按照一种优选实施方式，所述内密封部件由一个截锥形管部分构成，其直径较小的端部有一个孔，该孔的直径小于要安装的缆线的最大直径。

可以制造出一种标准化接头，其端部在安装到缆线上之前被切割成需要的直径，该切割成的直径稍小于缆线直径，以确保对缆线的良好密封压力。

最好，所述截锥形部分的外表面有均匀间隔的环形切割槽。这些槽便于将接头切割到所需的稍小于要安装的缆线直径的直径。

按照一种变型，所述圆柱形部分的端部是一个与所述截锥形部分相对的外密封唇。

该更为复杂的变型的优点是，由于内密封和外密封的组合，具有更优的密封能力。另外，根据该变型，由于所述缆线由所述接头的两个隔开的圆周接触，即内圆周接触和外圆周接触支承着，接头不会因为缆线可能的挠曲而失效。这在用一个有好几个孔径的接头安装多条缆线的情况下尤为重要。事实上，在这种情况下，在安装过程中，缆线会因为密封组件的各零件的旋转而受到挠曲作用。

本发明还涉及一种缆线密封组件，尤其是通信电缆或通信光缆的密封组件，用来安装到装有压力气体的用来保护缆线接头的密封盒的入口处。

在第一种变型中，装在所述管中、其内密封部朝向所述盒内部设置的接头由拧在所述管上、纵向保持所述接头的一个外部柱形塞固定在位。
在第二种变型中，装在所述管中，其内密封部朝向所述盒内部设置的接头的外密封唇由一个缆线导套从四周压在所述缆线上，该缆线导套本身由一个拧在所述管上的螺母或者密封圈在纵向上推压。

附图说明

下面结合附图对本发明作更详细的说明。附图仅图示了本发明的优选实施例。附图中：

图 1 是具有本发明第一种实施例的密封接头的密封组件的纵剖面图。

图 2 是该密封组件的正视图。

图 3 是具有本发明第二种实施例的密封接头的密封组件的立体分解图。

图 4 是该密封组件的纵剖面图。

图 5 是本发明的接头的立体图。

具体实施方式

图 1 到图 4 图示了几种用于缆线，尤其是用于通讯电缆或者通信光纤的密封组件，用来安装到装有加压气体、用来保护缆线接头的密封盒 1 的入口处。在光缆的情况下，所述气体是空气。

按照图 1 和图 2 所示的变型，所述盒包括两个相同的缆线入口 8，这两个入口并排设置在盒主体 1 的一个前表面上。该盒在这里不作详细描述，它例如是法国专利 2728080 所公开的那种交接箱。每个所述入口限定一个圆周上完全闭合的、与盒 1 连为一体的通道或者管 4，其内表面是圆柱形并攻有螺纹。该入口接纳一个接头 2 和一个外部柱形塞 3，该接头的内密封部 2B 朝向盒 1 内部设置并具有相应的形状，该柱形塞拧在所述管 4 的螺纹部分中，在纵向保持所述接头 2。

该接头 2 由一个截锥形管部分 2B 构成，该部分的厚度是恒定的，形成所述密封部，连接到一个圆柱形管部分 2A 的端部，该圆柱形管部分的直径是恒定的，是所述密封部的延长。

该接头是可以切割的，以使得直径较小的所述截锥形部分的端部的直径稍小于要装到该接头中的缆线 8 的直径。为此，它有利地具有沿着
所述裁锥形部分 2B 均匀间隔的一系列环形切割槽。

这样，该标准化接头 2（在切割前）具有一个用来抵在缆线 8 上并
朝向所述盒 1 的内部设置的内密封部 2B。该内密封部 2B 由一个裁锥形
部分构成，该裁锥形部分的直径较小的端部具有一个孔，该孔的直径小
于要安装的缆线 8 的最小直径，该端部用来朝向所述盒 1 的内部方向安
装。

将缆线 8 用力插进切割好并已安装到位的接头中。当插进缆线 8
时接头材料的位移确保了缆线在其入口中的密封。塞子 3 将接头 2 保
持在管 4 中。这样，缆线就被借助于一个固定环 7 固定在盒体的与该入口
对齐的隔板 6 中，所述固定环 7 由固定压板 6A 卡在所述隔板 6 中。

根据示于图 3 和图 4 的另一种变型，盒 11 包括一个穿过盒体 11
一个前表面的缆线 18 入口。该入口形成一个在圆周上完全闭合的、与
盒 11 连为一体的通道或者管 14。其外表面是圆柱形并攻有螺纹。该入
口接纳一个接头 12，该接头的内密封部 12B 朝向盒 11 内部设置，并有
一个由缆线导套 20 和拧在所述管 14 的螺纹部分上的螺母或者密封圈 21
构成的的传统结构。

该接头 12 由一个裁锥形管部分 12B 构成，该部分的厚度大致是恒
定的，形成所述密封部，连接到一个圆柱形管部分 12A 的端部，该圆柱
形管部分的直径是恒定的，其端部是一个与所述裁锥形部分 12B 相对的
外密封唇 12C。

装在所述管 14 上的该接头 12 的内密封部 12B 朝向所述盒 11 的内
部，其外密封部 12C 被所述缆线导套 20 推向缆线 18，所述缆线导套 20
本身又被拧在所述管 14 上的所述螺母或者密封圈 21 在纵向上推压。

图 4 示出了本发明的一个双孔径接头 12'，它具有两个裁锥形管部
分 12B，以便通过两条缆线。除了这种区别之外，该接头 12'的构造与
前述接头是一样的。

除了因为切割到稍小于要安装的缆线直径的直径而作用于缆线的
压力之外，所述裁锥形部分 12B 另外还得益于装在所述盒中的气体对裁
锥形部分径向表面的压力 P（见图 4），从而形成优良的密封。因此，
密封性随着气体压力P而增强。

该接头用硬度较小的材料实施，例如用硅橡胶。

在示于图1和图2的第一种变型的情形下，所述内密封裁锥形部分2B的厚度与圆柱形部分2A的厚度相同，因此相对来说较厚。因此，密封性是由压在缆线圆周上的所述裁锥形部分2B的端部的材料的变形实现的。

在示于图3和图4的第二种变型的情形下，所述内密封裁锥形部分12B的厚度比圆柱形部分12A的厚度小，因此相对来说较薄。因此，密封性是由该裁锥形部分12B的端部的材料的如前所述的变形，以及该裁锥形部分12B在缆线方向的弹性变形实现的。后一部分变形与将该裁锥形部分12B压在所述缆线上的压力P成正比。