
(19) United States
US 20010047421A1

(12) Patent Application Publication (10) Pub. No.: US 2001/0047421 A1
Sridhar et al.

(54) ENHANCED NETWORK COMMUNICATION

(75) Inventors: Manickam R. Sridhar, Holliston, MA
(US); Boris Boruchovich, Bedford, MA
(US); Steven Sigel, North Andover, MA
(US); Sylvain Louchez, Wrentham, MA
(US); Malik Z. Khan, Sherborn, MA
(US); Mary Sabin, St. Milton, MA
(US)

Correspondence Address:
ERC L. PRAHL
Fish & Richardson P.C.
225 Franklin Street
Boston, MA 02110-2804 (US)

(73) Assignee: Sitara Networks, Inc. a Delaware cor
poration

(21) Appl. No.: 09/911,201

(22) Filed: Jul. 23, 2001

Related U.S. Application Data

(60) Division of application No. 09/176,065, filed on Oct.
20, 1998, which is a continuation-in-part of applica
tion No. 09/016,120, filed on Jan. 30, 1998, now Pat.
No. 6,098,108, which is a continuation-in-part of
application No. 08/886,869, filed on Jul. 2, 1997, now
Pat. No. 6,266,701.

674
Call handler application

1329- COntext handler -1327

(43) Pub. Date: Nov. 29, 2001

(30) Foreign Application Priority Data

Jul. 1, 1997 (US)............................. PCT/US98/11928

Publication Classification

(51) Int. Cl. ... G06F 15/16
(52) U.S. Cl. .. 709/230

(57) ABSTRACT

A communication System in which client and Server com
munication Systems are coupled over a data network. A
request to communicate with one of the Server communica
tion Systems is accepted and based on an identification of the
Server communication System in the request, one of a set of
transport layer protocols is Selected for communication
between the client and Server Systems. The Set of transport
layer protocols can be determined by retrieving information
from a directory Service computer, Such as an Internet
Domain Name Server (DNS), where the address of the
directory Service computer is related to the identification of
the Server communication System. In addition, the Server
communication System can include an address translation
table that associates a network address provided by a client
communication System with local network addresses of
Server computers. The Server communication System Selects
one of the Server computers in response to a request from the
client communication system and passes communication
between the client System and the Selected Server computer.

I/O device

communication:
modules

321

l

i

f

US 2001/0047421 A1 Patent Application Publication Nov. 29, 2001 Sheet 1 of 27

Þ011-/ d0d py1 !

Patent Application Publication Nov. 29, 2001 Sheet 2 of 27 US 2001/0047421 A1

7. Application

6. Presentation

4. Transport
e.g., TCP

3. NetWOrk
e.g., IP

2. Data Link

1. Physical Layer

FIG. 2
(Prior Art)

Patent Application Publication Nov. 29, 2001 Sheet 3 of 27 US 2001/0047421 A1

R1

AR1

D1
D2
D3
D4

Sds AD1
AD2

D5

sD7

AD4

AD5

D9

D6
D7
D8
D9

5S 304

302

Client SeWe
COmputer C4 Computer S1

FIG 3

Patent Application Publication Nov. 29, 2001 Sheet 4 of 27 US 2001/0047421 A1

G1

3.

P3

Client SeVe?
Computer C4 Computer S1

FIG. 4
(Prior Art)

Patent Application Publication Nov. 29, 2001 Sheet 5 of 27 US 2001/0047421 A1

506

Client gateWay SeWer
Computer C4 COmputer Computer S1

F.G. 5
(Prior Art)

Patent Application Publication

Patent Application Publication Nov. 29, 2001 Sheet 7 of 27 US 2001/0047421 A1

710 712 718

Client gateWay remote SerWer
Computer Computer COmmunication Computer

SerWer

FIG. 7

US 2001/0047421 A1

T?l?z)
Patent Application Publication Nov. 29, 2001 Sheet 8 of 27

Patent Application Publication Nov. 29, 2001 Sheet 9 of 27 US 2001/0047421 A1

proXy application 613

---93 - - - - - - - - - - - - -
COmmunication modules

Compression
mOCule

layered tion Security
COUICatC) mOdule

mOdule

COntrol
mOdule

is a ea is as s r. as are as a sa is a is as as is a is an at

Patent Application Publication Nov. 29, 2001 Sheet 10 of 27 US 2001/0047421 A1

USC

interface
mOdule 6133

broWSer application

COmmunication 663
mOdules

FIG. 9A

Patent Application Publication Nov. 29, 2001 Sheet 11 of 27 US 2001/0047421 A1

redirectory request
1002 1010 1030

Other requests
1004 1011 1031

request TCP to 100k up look up
Create SOCket handle in SOcket handle in SOcket
and return aSSOCiation aSSOCiation
TCP handle table table

C done)
Y handle N Y handle N

toyd foung
1073 1012 1036 1032
Send request
to mOdule
indicated

in the table

look up
address in
in-table

Select Select mO(dule
indicated

TCP module in table

1016 1018

Select look up
address in

TCP mOCule Out-table

address O

UP server
-1022

COntact
select HTTP Create directory Server

engine XTP SOCKet to update tables

replay-O done) Odone tracing buffer

Patent Application Publication Nov. 29, 2001 Sheet 13 of 27 US 2001/0047421 A1

I/O device

Call handler application

-1324 1326 -1322

-1325

TCP html OCal
bufferS parser table

table
update
mOcule

a a - a a - - - - P - P

COmmunication
mOdules

1321

- - - - - - - - - - - - see all as - - - - as a - a - - - - - - - as as a an all - a

Patent Application Publication Nov. 29, 2001 Sheet 14 of 27 US 2001/0047421 A1

SerWer
application

1402
layered

COmmunication
Services

aSSOCiation
table

1460

COntext
handler

transport -1404
Services 1416 1456

Patent Application Publication Nov. 29, 2001 Sheet 15 of 27 US 2001/0047421 A1

Client COmputer
Working Non-VOlatile
Storage data St0rage

Program
1453 PrOCeSSOr storage

COmm.
interface

1458 1457

1451

1454
1462

Non-Volatile
data storage

1470
1459

NS
1461

1440

LAN 1430

Server computer
Server Computer

Working NOn-WOlatile
StOrage data Storage

1420

1418

1416
Remote COmmunication PrOCeSSOr Program

SerWer storage

1419 interface

FIG. 14 1410

Patent Application Publication Nov. 29, 2001 Sheet 16 of 27 US 2001/0047421 A1

1535 1510

UI application Client application

1520

1530
1550 1540

| Directory move H lies." |
------------------ e- - - - us as or Redirector:

Transport Services

1595

FIG. 15

Patent Application Publication Nov. 29, 2001 Sheet 17 of 27 US 2001/0047421 A1

1535 1510

UI application Client application

1520

Directory manager
1540

Layered Service module
(LSM)

List
SerWer
aCCESS

SerWer
aCCSS

Directory module

Transport Services
1660 1662

to
FIG. 16

Patent Application Publication Nov. 29, 2001 Sheet 18 of 27 US 2001/0047421 A1

1795 1795 1795 1795

SS IP WS NAME SITE INFO

90 1770 1780 7

FIG. 17A

F.G. 17B

Patent Application Publication Nov. 29, 2001 Sheet 19 of 27 US 2001/0047421 A1

WinSOCK2 1520 host reSOlution

1810
Request name resolution from
name reSOlution Service 1650

812 1820

- N Request name resolution from
default DNS

1822

N
1824

Report WSIP Report name lookup failure

FIG. 18

Patent Application Publication Nov. 29, 2001 Sheet 20 of 27 US 2001/0047421 A1

LSM 1540 handle request to connect to WSP

Connect to WSP using Connect to SS IP using
TCP Service 1660 XTP Service 1662

Request database update from
directOrW manaOer

FIG. 19

Patent Application Publication Nov. 29, 2001 Sheet 21 of 27 US 2001/0047421 A1

Directory manager 1610; handle request to
UDCate database

2020

Attempt to obtain site file from
WS IP

Site file
retrieved

2024
Update memory Cache 1622
and address database 1624 in

database 1620

Update memory cache 1622 in
database 1620

FIG. 20

Patent Application Publication Nov. 29, 2001 Sheet 22 of 27 US 2001/0047421 A1

retrieve COmmunication Server information

2110

Obtain COmmunication SeVer
info. from database 1620

mOdule been
retrieved

haS module
expired

is a
eWer Version
available

retrieVe Oadable mOdule

FIG 21

Patent Application Publication Nov. 29, 2001 Sheet 23 of 27 US 2001/0047421 A1

1510 2210

Client Application
application interface

Basic
layered L0adable
SeWICS mOdules |

Transport
Services

FIG.22

Patent Application Publication Nov. 29, 2001 Sheet 24 of 27 US 2001/0047421 A1

2330

SBVer
Computer

SerWer
COmputer

tO
internet

address
aSSOCiation

table
2340

remote
COmmunication Server

SerWer
aSSOCiation

table 2350

remote
COmmunication SerWer

SeVer
aSSOCiation

table

FIG. 23

Patent Application Publication Nov. 29, 2001 Sheet 25 of 27 US 2001/0047421 A1

DNS 24.24
1451 CENT (CLIENT

COMPUTER DOMAIN)
2422

1440 DNS

Gene (N-ADDR.ARPA)
DNS 242O

(DOMAIN C)

2410

DNS
DOMAN B.C

LAN (430

REMOTE
COMMUNICATION

SERVER SERVER
COMPUTER COMPUTER

SERVER
COMPUTER

SERVER
AO.B.C
1.2.3.10

A1B.C A1.B.C
1.2.3.20 1.23.30

1410 1410 1410

FIG. 24

A1,B,C
1.2.3.40

142O

Patent Application Publication Nov. 29, 2001 Sheet 26 of 27 US 2001/0047421 A1

CLIENT APPLICATION

WINSOCK2

1510

1540 NAME
RESOLUTION
SERVICES

DIRECTORY MODULE

1590

TRANSPORT
SERVICES

Patent Application Publication Nov. 29, 2001 Sheet 27 of 27 US 2001/0047421 A1

2410

ADMINISTRATION
APPLICATION HOST

DATABASE

NAME
SERVICE

APPLICATION

TO INTERNET
1440 FIG. 26

26.10

HOST DATABASE

2710
27.20
2730
274O

A1.B.C A 1.2.3.20
A1.B.C TXT SSS: AO.B.C
20.3.2.1.N-ADDRARPA PTR A1.B.C
20.3.2.1.IN-ADDRARPA TXT SSS: AO.B.C

FIG. 27

US 2001/0047421 A1

ENHANCED NETWORK COMMUNICATION

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation-in-part of U.S.
Ser. No. 09/016,120, filed on Jan. 30, 1998, which is a
continuation in part of U.S. Ser. No. 08/886,869, filed on Jul.
2, 1997. This application also claims the benefit of PCT
International Application Serial No. PCT/US98/11928 filed
on Jul. 1, 1997.

BACKGROUND OF THE INVENTION

0002 The invention relates to a distributed directory of
information related to enhanced communication between
computers coupled over a data network, Such as enhanced
communication between client and Server computers
coupled through the Internet.
0003. The Internet has become a ubiquitous tool for
accessing and retrieving information, and for conducting
business in general. Accessing and displaying distributed
linked multimedia documents on the Internet, known as
browsing pages on the World Wide Web (the “Web”), has
become an essential part of information retrieval both for
busineSS and pleasure. The Internet has brought previously
hard to find information to everyone's fingertips. Devices
Such as commerce Servers are now enabling busineSS trans
actions to be conducted through the Internet. Due in part to
the convenience of obtaining information and carrying out
commercial transactions, people are joining the Internet
community at a very rapid pace. This explosive growth of
the number of users and the popularity of the available
Services has put a Strain on the network which has become
congested. This congestion has lead to users experiencing
undue delays while trying to retrieve information and com
municate through the network. The congestion also leads to
the Internet behaving inconsistently. One can experience
almost instantaneous response at certain times of the day,
while it may appear to be impossible to reach the same
Server at other times of the day. Long delays and inconsis
tency diminish the user experience and may result in lost
business opportunities.
0004 Referring to FIG. 1, client and server computers
C1-C9, S1-S4 (that is, computers executing the client and
server applications) are coupled to the Internet 100. The
Internet itself includes high speed (“backbone') data con
nections typically operating at data rates in the range of 45
Mb/s (e.g., T3 capacity telephone trunks) or higher con
nected by Switches or routers that forward packets towards
their destinations. Computers C1-C9, S1-S4 are connected
to the Internet through network Points of Presence (POPs)
110a–110d. APOP typically includes routers 112a-112d that
are coupled to the Internet through data connections 114a
114d each having a capacity typically in the range of 1.5
Mb/s (e.g., a T1 capacity telephone connection) to 45 Mb/s
(T3 capacity). Client computers C1-C3 can connect to a POP
in a variety of ways, including those described below.
0005 Client computers C1-C3 connect directly to a POP
110a over slow-speed, telephone modem connections 121
123 communicating a data rates in the range of 28 kb/s to 56
kb/s.

0006 Clients computers C4-C6 are connected to each
other within a Single location using a local area network

Nov. 29, 2001

(LAN) 130 and a single computer or router serves as a
gateway device 132. This gateway may serve a variety of
functions, including packet routing, packet filtering (a Secu
rity firewall), and various types of proxy service. The
connection 124 between gateway device 132 and POP110a
is Similar to that of the individual clients, although the data
rate is typically higher, for example, in the range of 128 kb/s
(e.g., an ISDN telephone connection) to serve the require
ments of the multiple clients.
0007 Client computers C7-C9 connect directly to a POP
110b, but access a gateway device 140 at the POP that acts
as a proxy Server coupling the clients to a router 112b and
then to the Internet. The connections 127-129 between the
clients and the POP typically are slow-speed telephone
modem connection. The connection between the client and
the proxy server may use Standard protocols or may use a
proprietary protocol not generally used elsewhere in the
Internet.

0008 Servers S1-S4 are connected to POPs 110c-110d,
although the communication capacity between a server Site
and a POP is typically 1.5 Mb/s or higher. At the serversites,
local area networks 150, 152 having a capacity of 10 Mb/s
or higher couple multiple servers and routers 154, 156 that
are used to communicate with the POPs.

0009 Internet communication is based on a layered
model of communication protocols consistent with that
published by the International Standards Organization (ISO)
as shown in FIG. 2. The set of ISO protocol layers, or
protocol stack, is numbered from one, at the lowest layer, to
Seven, at the application layer.

0010 Communication over the Internet is based on
packet-Switching techniques. Addressing and transport of
individual packets within the Internet is handled by the
Internet Protocol (IP) corresponding to layer three, the
network layer, of the ISO protocol stack. This layer provides
a means for Sending data packets from one host to another
based on a uniform addressing plan where individual com
puters have unique host numbers and each computer has a
logical Set of numbered ports that can be addressed indi
vidually. By making use of the IPlayer, a Sending computer
is relieved of the task of finding a route to the destination
host. However, packets may be lost or damaged and are not
guaranteed to be delivered in the order sent. Therefore, the
Sending host needs to make Sure that the data Sent is received
Successfully and that a Series of individual packets is
assembled appropriately.

0011. A common denominator for the Internet is the
“everything over IP paradigm. There are protocol varia
tions above layer three, for example, various application and
transport protocols, and protocol variations below layer
three, for example, various communication paths making up
the network infrastructure, but layer three does not change.
This allows IP to be the sole routing scheme in the Internet
thereby enabling the worldwide connectivity which is a
major ingredient of its Success.
0012. A transport layer protocol provides end-to-end
communication between applications executing on different
computers and regulates the flow of information between
those applications. Rate and flow control are two examples
of regulations of the flow of information. A transport layer
protocol may also provide reliable transportation of infor

US 2001/0047421 A1

mation including, for example, in-sequence delivery of
information and retransmission of lost or damaged informa
tion. Today, the Transmission Control Protocol (TCP) is
used almost exclusively to provide end-to-end reliable (i.e.,
error free) data streams between computers over the Internet.
TCP is layered on the IP protocol and corresponds to ISO
layer four, the transport layer.
0013 Software that supports the TCP protocol is pro
Vided on most popular operating Systems, Such as MicroSoft
Windows 95 and Windows NT, and most variants of Unix.
An application using TCP is relieved of the details of
creating or maintaining a reliable Stream to a remote appli
cation by Simply requesting that a TCP-based Stream be
established between itself and a specified remote System.
0.014. As a result of TCP being essentially universally
accepted as the transport protocol, Various client Server
applications have evolved which layer application-specific
protocols on top of end-to-end TCP communication chan
nels, which are in turn layered on the IP network layer.
Application layer protocols for file transfer, FTP (file trans
fer protocol), and for Web page access, HTTP (hyper-text
transfer protocol), are two examples of popular application
protocols layered on TCP.
0015 The World Wide Web implements a system in
which client applications, e.g., browserS Such as Netscape
Navigator or MicroSoft Internet Explorer, can access and
display linked documents, called Web pages, through Server
applications using the application layer hyper-text transfer
protocol, HTTP. An address of a Web page or related data,
referred to as a URL (uniform resource locator), typically
includes a Server host name and a symbolic reference to the
data. The browser typically establishes a TCP-based con
nection to a predetermined port on the Server host. That port
is monitored by the server process. The client and the server
communicate using the HTTP protocol over one or more
TCP connections. Today, HTTP version 1.0 is commonly
used.

0016 A Web page typically includes references (URLs)
to other files that also must be retrieved in order to complete
the rendering of the originally requested page. A browser
interprets incoming data from a Server, determines the URL
of other files that are needed, and establishes concurrent TCP
connections to retrieve those Subordinate files as well. The
Subordinate files do not necessarily come from the same
Server. For example, a Scanned image included on a Web
page, Such as an advertising banner, will be included in that
page as a reference to a separate file on a different Server.
Such a scanned image file is retrieved over its own TCP
connection.

0.017) TCP based communication can use an end-to-end
Sliding window protocol where many packets of data can be
Sent before requiring that data in the first packet is acknowl
edged by the receiver. If one packet is lost or damaged, the
Sender determines after a time-out period that the packet
needs retransmission and the entire Sequence must be
restarted at the un-acknowledged packet in a “Go-Back-N”
paradigm. The timeout period must be significantly greater
than a typical round-trip time from one host to the other and
back to avoid premature timeouts. All the packets Sent after
the lost or damaged packet are Sent again. Since most of the
packets Sent after the lost or damaged packet have likely
been received Successfully, this error recovery procedure

Nov. 29, 2001

results in unnecessary use of communication capacity. There
is no means for the receiver to simply request the missing
packet using TCP. A very Small window is generally used on
channels with high rates of packet loSS or error. A Small
window can result in low throughput.
0018 FIG. 3 shows an exemplary sequence of data
transferS between a representative client computer C1 and a
representative Server computer S1 using an end-to-end TCP
channel over a communication path which is transported
through POPs 110a and 110c and through the Internet 100,
as shown in FIG. 1. Client computer C1 is represented in
FIG. 3 by vertical line 302 and server computer S1 by
vertical line 304. Time flows from top to bottom and each
arrow represents a data packet traveling across the commu
nication channel. For illustration, we assume that TCP is
operating with a sliding window Size of four packets. The
client Sends a request R1 to the Server who sends back
acknowledgment AR1. The Server then sends a Sequence of
data packets D1-D4 and then must wait for an acknowledg
ment to D1 before proceeding. In this example, the Server
can Start Sending data as Soon as it has receive the request.
Acknowledgments AD1 and AD2 are received by the server
who proceeds to send data packets DS and D6. For illus
tration, the sixth packet D6 is lost near the midpoint of the
communication path. Data packets D7-D9 are transmitted
after acknowledgments AD3-AD5 are received. The server
now waits to receive acknowledgment for the lost Sixth
packet D6. After a time-out period 310, the server retrans
mits the Sixth packet D6' and then continues in Sequence
with the retransmissions D7-D9'.

0019 Referring to FIG. 4, using HTTP to retrieve data
for a Web page which includes embedded references to other
data requires several TCP exchanges. FIG. 4 shows the
Sequence of data transfers (without showing the acknowl
edgments) in which client computer C1, represented by
vertical line 402 requests and receives a Web page from
server computer S1, represented by vertical line 404. No
transmission errors are illustrated in this case. Acknowledg
ments are not shown. Client computer C1 sends a request G1
to server computer S1. Server computer S1 responds with
Web page P1. The client computer parses page P1 and
determines that it needs two additional documents and issues
requests G2 and G3. Server computer S1 receives the
requests and sends data P2 and P3 concurrently to the client
computer.

0020 FIG. 5 shows an exemplary sequence of data
transferS between a representative client computer C4 that is
Serviced by a proxy application, hosted on a gateway com
puter 132, and a representative server computer S1 (FIG. 1).
Client computer C4 is represented by vertical line 502,
gateway computer 132 is represented by vertical line 504,
and server computer S1 is represented by vertical line 506.
Separate TCP channels are established between client com
puter C4 and gateway computer 132 and between the
gateway computer and Server computer S1. Communication
between the client computer and the gateway computer uses
TCP but encapsulates application-specific requests and
responses in a proxy protocol. The proxy application Strips
the proxy protocol from outbound packets and forwards
them to the intended recipient. The proxy application there
fore acts as a server from the point of view of the client
application and acts as a client from the point of view of the
Server application. Inbound packets are received by the

US 2001/0047421 A1

proxy application, wrapped with the proxy protocol and
forwarded to client application. Client computer C4 sends a
request G11 to gateway computer 132. Gateway computer
132 forwards the request as G12 to server computer Si.
Server computer S1 responds with Web page P11 which is
forwarded by gateway computer 132 to client computer C4
as P12. The client computer parses page P12 and determines
that it needs two additional documents and issues requests
G21 and G31 which are forwarded to server computer S1 as
G22 and G32 by gateway computer 132. Server computer S1
receives the requests and Sends the requested data concur
rently to the gateway computer as P21 and P31. The gateway
computer forward the data to the client computer as P22 and
P32.

0021 Referring to FIG. 1, a proxy application serving
the same function as that hosted on gateway computer 132
described above can be hosted on proxy server 140. In this
case, a Sequence of data transferS between a representative
client computer C7 that is serviced by a proxy server 140 at
POP site 110b and a representative server S1 follows the
same pattern as shown in FIG. 5. Although the sequence of
transferS is the Same, in the previous case the data rate
between the client application and the proxy application is
high and the connection between the proxy application and
the Internet is slow, while in this case, the connection
between the client application and the proxy application is
Slow and the connection between the proxy application and
the Internet is high.

SUMMARY

0022. In one aspect, in general, the invention is a method
for communicating between a client communication System
and multiple Server communication Systems over a data
communication network. The method includes accepting a
request to communicate with one of the Server communica
tion Systems. Accepting the request including receiving an
identification of the Server communication System, for
example, including a host name or a network address of the
Server communication System. The identification of the
Server communication System is then used to determine a Set
of one or more transport layer protocols for which the Server
communication System is configured to communicate and
then Selecting one those layer protocols for communicating
with the Server communication System. The client commu
nication System then communicates with the Server commu
nication System over the data communication network using
the Selected transport layer protocol.

0023 Preferred embodiments include one or more of the
following features.
0024 Determining the set of transport layer protocols can
include retrieving information related to the Server commu
nication System from a directory Service computer over the
data communication network. The address of the directory
Service computer is related to the identification of the Server
communication System. For example, the identification of
the Server communication System includes a network
address of the Server communication System, for instance, an
Internet Protocol (IP) address or a host name, and the
address of the directory Service computer, for instance, an
Internet Domain Name Server, is determined from the
network address of the Server communication System.
0.025 Determining the set of protocols can further
include monitoring prior communication with the Server

Nov. 29, 2001

communication System and updating the Set of transport
layer protocols based on the monitored communication. For
instance, monitoring the prior communication includes
detecting portions of application layer communication, Such
as headers of HTTP-based communication, passing between
an application and the Server communication System.
0026. In another aspect, in general, the invention is a
method for communicating between a client communication
System and multiple Server communication Systems over a
data communication network. The method includes accept
ing a request to communicate with one of the Server com
munication Systems, including accepting a request to com
municate with a server computer at a first network address
over the data communication network. A Second network
address, which may be different than the first network
address, is then Selected for communicating with the Server
communication System. The client communication System
then communicates with a computer at the Second network
address. Selecting the Second network address can include
retrieving information related to the Server communication
System from a directory Service computer over the data
communication network, where the address of the directory
Service computer is related to the first network address.
0027. In another aspect, in general, the invention is a
client communication System coupled to a data network for
communicating with multiple Server communication Sys
tems each configured to communicate with the client com
munication System using at least one of multiple transport
layer protocols. The System includes a transport layer mod
ule implementing the transport layer protocols for commu
nicating with the Server communication Systems. The Sys
tem also includes a layered communication module that is
coupled to the transport layer module and includes a proto
col Selector. The protocol Selector receives a request to
communicate with a requested one of the plurality of Server
communication Systems and, using the request to commu
nicate, chooses one the transport layer protocols for com
munication with the requested Server System. The System
further includes a directory Service module coupled to the
layered communication module for accessing over the data
network information related to the transport layer protocols
with which the requested Server communication System is
configured to communicate. The directory Service module
can include a module for retrieving the information related
to the transport layer protocols from a directory Service
computer, Such as an Internet domain name Server, over the
data network.

0028. In another aspect, in general, the invention is a
Server communication System coupled over a data commu
nication network to multiple client communication Systems.
The System includes a transport layer module for commu
nicating with the client communication Systems and one or
more Server application modules, and a communication
application module coupled to the transport layer module.
The communication application module maintains a trans
port layer communication Stream with each of a number of
client communication Systems, accepts requests over the
communication Streams from client communication Systems
to communicate with the one or more Server application
modules, and for passes information between the client
communication Systems and the Server application modules
over the communication Streams. The System further
includes an address translation table for associating network

US 2001/0047421 A1

addresses provided by client communication Systems as
identifiers of Server application modules with local network
addresses used for communicating between the communi
cation application module and the Server application mod
ules. The address translation table is configured to associate
more than one local network address with each network
address provided by a client communication System, and the
Server communication System further includes a Server
Selection module for Selecting one of the local addresses in
response to a request to communicate from a client com
munication System.
0029. Other aspects and features will be apparent from
the following description, and from the claims.

DESCRIPTION OF THE DRAWINGS

0030 FIG. 1 illustrates typical coupling of client and
Server computers to the Internet,
0.031 FIG. 2 shows the seven ISO communication pro
tocol layers,
0.032 FIG. 3 shows an exemplary sequence of data
transferS between a client computer and a server computer
using TCP;
0.033 FIG. 4 shows an exemplary sequence of data
transferS between a client computer and a server computer
using HTTP;
0034 FIG. 5 shows an exemplary sequence of data
transferS between a client computer and a server computer
communicating through a gateway computer using TCP,

0.035 FIG. 6 illustrates a client computer and server
computers coupled to the Internet and shows a gateway
computer and a remote communication Server used for
communication between the client computer and certain
Server computers,

0.036 FIG. 7 shows an exemplary sequence of data
transferS between a client computer and a server computer
through a gateway computer and a remote communication
Server,

0037 FIG. 8 shows an exemplary sequence of data
transferS between a client computer and a server computer
using a modified HTTP protocol;
0.038 FIG. 9 shows an arrangement of Software modules
which execute on a gateway computer;
0.039 FIG. 9a shows an arrangement of software mod
ules which execute on a client computer;
0040 FIG. 10 is a flowchart of the operation of a
redirector in response to requests from an application;
0041 FIG. 11 is a flowchart of the operation of an HTTP
Engine in response to requests from a redirector;
0.042 FIG. 12 shows an arrangement of software mod
ules which execute on a remote communication Server;
0.043 FIG. 13 shows an arrangement of software mod
ules which execute on a Server computer which Supports
communication using both TCP and XTP protocols;
0044 FIG. 14 illustrates a client computer coupled over
the Internet to a Domain Name Server, a list server, and a
server LAN,

Nov. 29, 2001

004.5 FIG. 15 shows an arrangement of software mod
ules, including a directory module, on a client computer;
0046 FIG. 16 shows software modules on a client com
puter, including a detailed View of modules that are part of
the directory module;
0047 FIG. 17a shows the format of a database record for
a Server computer;

0048)
0049)
0050 FIG. 19 is a flowchart of a layered service module
handling a request to connect to a Server computer;
0051 FIG. 20 is a flowchart of a directory manager
handling a request for a remote communication Server
address,
0052 FIG. 21 is a flowchart of a directory manager
retrieving remote communication Server information and
loadable modules,
0053 FIG. 22 shows software modules, including load
able modules, in a layered Service module,
0054 FIG. 23 shows a network address translator cou
pling a Server computers and remote communication Servers
to the Internet;

FIG. 17b shows the format of a record in a site file;
FIG. 18 is a flowchart of a host name resolution;

0055 FIG. 24 illustrates a client computer coupled over
the Internet to a server LAN, and a number of Domain Name
Servers;

0056 FIG. 25 shows software modules on a client com
puter, including a DNS resolver that is part of a directory
module,
0057 FIG. 26 shows the software modules of a domain
name Server; and
0058
database.

FIG. 27 illustrates exemplary records in a host

DESCRIPTION

0059 Embodiments of this invention involve communi
cation between a client application and a Server application
over a data network, Such as the Internet. An example of
Such communication is between a client application which is
a Web browser and a server application which is a Web
Server, although other types of client and Server applications
can be involved as well. Furthermore, although one appli
cation is referred to as the “client' and one as the "server,
embodiments of this invention are applicable to many Situ
ations when one application communicates with another
over a data network and neither is exclusively a client or a
SCWC.

0060. In the description that follows, a client application
executes on a client computer which is coupled to the data
network. A Server application executes on a Server computer
also coupled to the data network. A Server Site includes one
or more Server computers on which Server applications can
execute, and in Some embodiments of the invention, the
Server Site also includes an additional computer used for
communication between a client application and a server
application executing at the Server Site. From the point of
View of a client application, the combination of Several
computers at a Server Site can be viewed as a "server

US 2001/0047421 A1

communication System' providing Services to the client
application. Similarly, from the point of View of a Server
application, a Single client computer coupled to the Internet,
or multiple client computers and a gateway or proxy com
puter can be viewed as a “client communication System”
requesting Services from the Server application.

0061. Several embodiments of the invention substantially
share common functionality implemented in Software mod
ules executing on various computers, including client and
Server computers as well as other computers, Such as gate
way computers, used for communicating between client and
Server computers. In a first embodiment of the invention,
both the client communication System and the Server com
munication System include multiple computers. Software
modules which implement the common functionality are
hosted on computers other than client or Server computers
which host the client and Server applications. In a Second
embodiment software modules which implement the com
mon functionality is hosted on the client and Server com
puters themselves. Other embodiments use various combi
nations of computers to host Software modules.

0.062 Referring to FIG. 6, a first illustrative embodiment
of the invention Supports communication between an exem
plary client application 611 executing on a client computer
610 and exemplary server applications 619, 621, 634 execut
ing on server computers 618, 620, 632 at server sites 616,
630. All the computers are coupled to Internet 100, which
uses the Internet Protocol (IP) for network layer (ISO layer
3) communication. Client application 611 and server appli
cation 619,621,634 are configured to use TCP.
0.063 Client application 611 executing on client com
puter 610 communicates over the Internet with server com
puters 618, 620, 632 through a gateway computer 612 that
in turn communicates with Internet 100 through POP 614. A
proxy application 613 executes on gateway computer 612.
Client application 611 is configured Such that when it needs
to establish a communication channel to a Server computer,
it contacts proxy application 613 with a request to establish
that communication path. Once the communication channel
is established further communication between client appli
cation 611 and the Server computer passes through gateway
computer 612 and is handled by proxy application 613.
From the point of view of a Server computer, client computer
610 and gateway computer 612 function as a single client
communication System 606. It appears to the Server com
puter that an application on gateway computer 612, rather
than an application on client computer 610, is requesting
Services. For example, the address of the client computer is
generally not known by the Server computer. Proxy appli
cation 613 can in general handle multiple communication
channels between one or more client applications and one or
more remote SerVerS.

0064. Two server communication systems 616, 630
include server computers 618, 620 at server communication
system 616 and server 632 at server system 630 coupled to
LANs 617 and 638 respectively. Routers 622 and 636 are
coupled to LANs 617 and 638 respectively and provide
access through POP 624 to Internet 100. Server applications
619, 621, 634 are hosted on server computers 618, 620, 632
respectively. Server communication System 616 is Specially
configured in that it also includes a remote communication
server 626 (a computer) also coupled to LAN 617. Remote

Nov. 29, 2001

communication Server 626 is used to pass certain commu
nication between router 622 and server computers 618, 620.
Server communication system 630 does not include a remote
communication Server computer.

0065. In this first embodiment, communication between
client application 611 hosted on client computer 610 and
server application 619 hosted on server computer 618 at
Server communication System 616 can use two different
types of transport layer communication paths. A first type of
transport layer communication path is made up of two
TCP-based Segments in Series, one between client computer
610 and gateway computer 612 executing a proxy applica
tion 613, and one between gateway computer 612 and Server
computer 618. The path followed by the second segment
passes from gateway computer 612 to router 615 at POP
614, through various communication links and routers in
Internet 100, then to router 625 at POP 624, to router 622 on
LAN 617 at server site 616, and finally to server computer
618.

0066 Communication on the first segment between client
computer 610 and gateway computer 612 uses TCP as the
transport protocol. At the application layer, on the first
Segment, client application 611 communicates with proxy
application 613 using a proxy protocol that incorporates
application protocols used for the end-to-end application
layer communication between the client application and the
Server application. On the Second Segment, proxy applica
tion 613 communicates with server application 619 using the
appropriate application layer protocol for which the Server
application is configured. Two specific application protocols
that are used to communicate between client application 611
and server applications are HTTP for accessing Web pages
and data embedded in Web pages and FTP for accessing
remotely stored files.

0067. A second type of transport layer communication
path between client application 611 on client computer 610
and server application 619 hosted on server computer 618 at
Server communication System 616 uses remote communica
tion Server 626 to forward communication between gateway
computer 612 and server computer 618. Rather than com
municating directly with Server computer 618, gateway
computer 612 communicates with remote communication
server 626 which in turn communicates with server com
puter 618, thereby creating three separate Segments on the
path joining client computer 610 and server computer 618.
The first Segment is a direct path between client computer
610 and gateway computer 612. The second segment fol
lows the path from gateway computer 612 to router 615 at
POP 614, through various communication links and routers
in Internet 100, then to router 625 at POP 624, to router 622
on LAN 617 at server site 616, and finally to remote
communication Server 626. The third Segment is a direct
path over LAN 617 between remote communication server
626 and server computer 618.

0068 Communication on the first segment, from client
computer 610 to gateway computer 612, uses the same
protocols as on the same Segment in the first transport layer
communication path described above. Communication on
the Second Segment joining gateway computer 612 and
remote communication server 626, rather than using TCP,
uses XTP, an alternate transport layer protocol on the Second
Segment. Furthermore, when client application 611 and

US 2001/0047421 A1

server application 619 are both using the HTTP application
layer protocol, a data Stream corresponding to that HTTP
communication uses a modified HTTP protocol. Communi
cation over the third Segment from remote communication
server 626 to server computer 618 uses TCP and standard
application layer protocols including HTTP.
0069. On this second type of transport layer communi
cation path from client computer 610 to server computer 618
there are three segments at a transport layer (ISO layer 4).
At the application layer (ISO layer 7) the communication
path is made up of either one logical Segment or three logical
segments. When HTTP is not used, there is one logical
Segment joining the client and Server application. That is, a
Sequence of data bytes Sent by the client application are
transported to the server application unmodified. When
HTTP is used, there are three logical segments at the
application layer. The first Segment and the third Segment
use HTTP, while the second segment uses a modified HTTP
protocol. Furthermore, a Sequence of data bytes Sent accord
ing the HTTP protocol from client application 611 is not
necessarily delivered to server application 619. HTTP data
Streams received at gateway computer 612 and at remote
communication Server 626 are interpreted and are not nec
essarily passed on without modification. Gateway computer
612 and remote communication Server 626 cooperate to
provide the needed translation into appropriate protocols for
communicating with the client and Server computers.
0070. As there is no remote communication server at
Server communication System 630, communication between
client application 611 at client computer 610 and server
application 634 at Server computer 632 uses a two-segment
TCP-based communication path. The first segment is
between client computer 610 and gateway computer 612
executing proxy application 613, and the Second Segment is
between gateway computer 612 and Server computer 632.
The Second Segment passes from gateway computer 612 to
router 615 at POP 614, through various communication links
and routers in Internet 100, then to router 625 at POP 624,
to router 636 on LAN 638 at server communication system
630, and finally to server computer 632. Gateway computer
612 can concurrently Support communication directly with
Server computers as well as via remote communication
SCWCS.

0071. When client application 611 initiates communica
tion with a Server application, Such as Server application 619
or Server application 634, gateway computer 612 determines
whether a data path through a remote communication Server
can be established, or whether a direct path to a server
computer must be used. A path through a remote commu
nication Server is preferred since Such a path can use the
alternative transport and application layer protocols
described above, which results in higher data throughput and
lower latency than when using a direct path and Standard
transport and application layer protocols to communicate
between gateway computer 612 and a Server computer.
0.072 Referring still to FIG. 6, gateway computer 612
includes CPU 661 and storage 662, such as a magnetic disk
drive. Software stored in storage 662, when executed on
CPU 661, includes proxy application 613 and communica
tion modules 663. Communication modules 663 provide an
interface for proxy application 613 to communicate with
client application 611 and with Server applications at the
server sites coupled to Internet 100.

Nov. 29, 2001

0073 Remote communication server 626 includes CPU
671 and storage 672. Software stored in storage 672, when
executed on CPU 671, includes call handler application 674
and communication modules 673. Communication modules
673 provide an interface for call handler application 674 to
communicate with server applications 619 and 621 and
proxy application 613.
0074. Note that the term “module” generally is used to
refer to a component of an operating System or an applica
tion, and "application' or “application program' is used to
refer to a separate process managed by an operating System.
AS alternative embodiments can use different approaches to
coordinate Software components, the distinction between a
component being a "module' or an “application' is not
generally significant.

0075). In this first embodiment illustrated in FIG. 6, a
central database 645 is hosted on a directory server 640 also
coupled to Internet 100. Database 645 includes information
which can be used to identify a remote communication
Server which is be configured to communicate with a par
ticular Server computer. This database can be used by
gateway computer 612 to determine whether a request to
communicate with a Server computer can be Satisfied by
establishing a communication path through a remote com
munication Server. Each entry in the database 645 associates
a network address of a Server application with certain
information needed to Set up an indirect path to that Server
application through a remote communication Server. A net
work address of a Server application includes a host address
and port index of a port listened to by that server application.
Information needed to set up an indirect path includes the
network address used to connect to an appropriate remote
communication Server. In addition, the database can option
ally be used to indicate that a particular application layer
protocol is used by the Server application at a particular
Server application address.
0076. In this first embodiment, as introduced above, the
transport (ISO layer 4) protocol used between gateway
computer 612 and remote communication Server 626 is
based on the express Transport Protocol (XTP). XTP is
layered on the IP network protocol (ISO layer 3) which is
used to route packets which make up the XTP communica
tion between gateway computer 612 and remote communi
cation server 626. XTP also supports bidirectional data
communication over a single XTP connection.
0.077 XTP has several characteristics that differ from
TCP and that give it advantages over TCP. One characteristic
of XTP is that it supports use of a sliding window in
combination with Selective retransmission of lost or dam
aged packets. This combination allows efficient Streaming of
data over the XTP based Segment joining gateway computer
612 and remote communication server 626.

0078 FIG. 7 illustrates an exemplary sequence of data
transferS involved in Sending a request and receiving a
multipacket reply along a communication path (FIG. 6)
from client computer 610 through gateway computer 612
and remote communication Server 626 and finally to Server
computer 618. For illustration, vertical lines 710, 712, 726,
718 in FIG. 7 represent client computer 610, gateway
computer 612, remote communication Server 626 and Server
computer 618, respectively, and diagonal lines illustrate data
and acknowledgment packets that pass between the com

US 2001/0047421 A1

puterS along the communication path. AS described above,
TCP is used on the first segment between client computer
610 and gateway computer 612 as well as on the third
Segment from remote communication Server 626 and Server
computer 618. XTP is used on the second segment from
gateway computer 612 to remote communication Server 626.
In this illustration, both the first and third, TCP, segments
and the Second, XTP, Segment operate with a sliding window
sizes of four packets and each packet is explicitly acknowl
edged.
0079 A request R11 from client computer 610 is for
warded by gateway computer 612 as R12, and then for
warded by remote communication server 626 as R13.
Acknowledgments AR11, AR12, AR13 are sent by gateway
computer 612, remote communication Server 626 and Server
compute 618, respectively, when the corresponding request
packets are received. After acknowledging receipt of request
R13, server computer 618 immediately begins sending data
D11-D19. Remote communication server 626 has a large
buffer for data packets and quickly accepts and acknowl
edges all the data packets from server 618. When remote
communication Server 626 receives the first data packet
D11, it begins Sending data D12 to gateway computer 612.
This continues with data packets D22-D92. In this example,
it is assumed that data packet D62 is lost at a point between
the Server computer and the client computer and is never
acknowledged. Once the remote communication Server
determines that the packet is lost, either by a time-out or by
an explicit negative acknowledgment (NACK), the remote
communication server retransmits that packet as D62. Note
that Since the remote communication Server has buffered the
data and therefore does not have to request retransmission of
the sixth packet from server 618. The gateway computer
forwards data packets D12-D52 to client computer 610 as
packets D13-D53 but waits for successful receipt of the sixth
data packet D62 until it can deliver packets D63-D93 in the
correct order to the client computer. FIG. 7 should be
contrasted with FIG. 3 which illustrates a similar request,
and reply on a single TCP connection. In FIG. 3, in addition
to retransmitting the Sixth packet, the Seventh through ninth
must be retransmitted as well. Also, Since there is only one
TCP Segment, packet retransmissions must pass over the
entire path from the Server computer to the client computer
and not simply over a portion of the path.
0080. Other transport layer protocol characteristics in the
XTP Segment joining gateway computer 612 and remote
communication Server 626 include explicit rate control,
which avoids congestion along a communication path, and
multiplexing of multiple logical data Streams between com
puters, which provides more efficient data transfer. Note that
TCP does not have a similar explicit mechanism for rate
control, and uses a separate instance of the TCP protocol for
each logical data Stream. AS described more fully below,
each of these characteristics yields performance advantages
over using TCP.
0081. With explicit rate control a sending computer can
limit the rate at which data is Sent along a communication
path based on knowledge of the ability of the data path to
transfer data. Referring to FIG. 6, consider the data path
from remote communication Server 626 and gateway com
puter 612. Along this path, data links of widely varying data
rates are traversed. A 128 kb/s link joins gateway computer
612 and POP 614 while a 10 Mb/s link joins remote

Nov. 29, 2001

communication server 626 to router 622. If remote commu
nication Server 626 Sends data Significantly faster than can
be passed over the 128 kb/s link from POP 614 to gateway
computer 612, that data will have to be buffered somewhere
along the path. This results in various inefficiencies includ
ing possible loss of a packet due to an overfull buffer, for
example, a buffer at POP 614. Such a lost packet would only
be discovered at the other end of the transport layer data
Stream, namely, at gateway computer 612 in this case. The
lost data would then have to be retransmitted over the entire
path. Rate control is used to limit the rate at which remote
communication Server 626 Sends data to avoid this problem.
In this case, the allowable rate of transmission from remote
communication Server 626 would not be significantly higher
than the 128 kb/s that can be Sustained on the link from POP
614 to gateway computer 612.

0082 Multiplexing enables a computer to use a single
instance of the XTP protocol executing for a pair of com
puters communicating using XTP to handle multiple logical
data Streams between the two computers. This multiplexing
capability is in contrast to TCP in which a separate instance
of the TCP protocol executes independently for each logical
data Stream. An example of a Situation in which multiple
data Streams are passing concurrently between two comput
ers is when a Web browser requests data to render a
particular Web page. If there are embedded references to
other data in a Web page, Separate TCP data Streams, each
with a separate instance of the TCP protocol, are used to
retrieve the referenced data. Using XTP, if the data is
retrieved from the same computer, the multiple data streams
are multiplexed and use only a single instance of the
protocol.

0083 Bidirectional data communication using XTP
enables one to implicitly open a reverse data channel when
a forward data channel is open. This is in contrast to TCP in
which a reverse data channel must be set up using the same
Sequence of eXchanges that are required to Set up the forward
data channel.

0084. The previously mentioned modified HTTP proto
col is used when a client application and a server application
communicate using the HTTP protocol over an indirect
communication path through a remote communication
server. The modified HTTP protocol maintains the format of
underlying data transported over HTTP (such as html for
matted Web pages). In a first aspect of the modified HTTP
protocol, multiple HTTP data streams between the client and
the Server are multiplexed on a single logical XTP data
Stream over the Segment joining the remote communication
Server and the gateway computer. Note that multiplexing of
multiple HTTP data streams onto one logical XTP data
stream is different from and in addition to XTP itself
multiplexing multiple logical data Streams between a pair of
computers for transmission using a single instance of the
XTP protocol. Moreover, as is described further below, not
all commands or data pass across the entire path from client
application 611 to server application 619. For example,
Some client application commands Send from the client
application to the proxy application may be handled on the
gateway computer and may not require Services of the
remote communication Server or the Server computer.
0085. A second aspect of the modified HTTP protocol is
that data is prefetched from server computers 618,621 by

US 2001/0047421 A1

remote communication Server 626 and is Sent to the gateway
computer 612 in anticipation of client application 611 mak
ing an explicit request for the data. The data is buffered at
gateway computer 612 until it is requested by the client
application. Remote communication Server 626 determines
what data to prefetch based on references embedded in html
format Web pages that are transferred from Server computer
618 or 621 through the remote communication server to the
client application.
0.086 FIG. 8 illustrates operation of the modified HTTP
protocol which involves coordinated operation at the remote
communication Server and the gateway computer. This
should be contrasted to a similar exchange using an end-to
end HTTP based connection shown in FIG. 4. Client com
puter 610, gateway computer 612, remote communication
server 626, and server computer 618 (FIG. 6) are illustrated
as vertical lines 810, 812, 826,818, respectively, in FIG. 8.
Transmission of Web page and other object requests and
responses are shown as arrows with time increasing from top
to bottom in the figure. Acknowledgments are not illustrated.
Client computer 610 sends an initial “GET request G11 for
a Web page. Gateway computer 612 forwards the request
from the client computer to remote communication Server
626 as request G12. Remote communication server 626
receives G12 and requests the Web page from Web server
618 using a standard HTTP request G13. Web server 618
Sends the requested page P11 to the remote communication
Server. Remote communication Server 626 Sends as page
P12 to gateway computer 612, which in turn sends page P13
to client computer 610.
0.087 Remote communication server 626, in addition to
forwarding page P11 received from server computer 618 to
gateway computer 612 as page P12, interprets page P11 if it
is in html format. Page P11 is parsed by an html parser and
two embedded references to imageS or other objects found
on that page are extracted. For illustration, two references in
the received page P11 result in remote communication
server 626 sending requests G23 and G33 to server com
puter 618. The server computer responds with data P21 and
P31 which are, in turn, forwarded by the remote communi
cation server to gateway computer 612 as P22 and P32.
When this data is received by the gateway computer, it is
buffered since client computer has not yet requested the data.
The data is effectively “prefetched” in anticipation of client
application 611 on client computer 610 requesting that data.
When gateway computer receives page P12 from remote
communication server 626, it forwards that page as P13 to
the client computer where it is interpreted by the client
application that made the ordinal request G11. The client
application makes requests G21 and G22 for the same data
already requested by remote communication Server 626 in
requests G23 and G33. Gateway computer 612 does not
forward the requests G21 and G31 since the data P22 and
P32 which satisfies these requests has already been received
and buffered by the gateway computer. The gateway com
puter passes the buffered data to the client computer. From
the client computer's perspective, the fact that the data was
prefetched is not evident other than in that the requests are
Satisfied with less delay than might be expected if requests
G21 and G31 had been forwarded all the way to server
computer 618 before being serviced.
0088. There are at least two situations in which remote
communication Server 626 anticipates a request from client

Nov. 29, 2001

computer 610 and retrieves and sends the data to satisfy the
request, but client computer 610 does not make the request
as expected. The first situation is when the end user aborts
retrieval of a Web page interactively with client application
611. In this case, client application 611 may never request
the data referenced in the references embedded in received
page. According to the HTTP protocol, an abort message is
sent by client computer 610 to gateway computer 612 and
this abort message is forwarded to remote communication
Server 626. Once the remote communication Server receives
the abort message, further referenced data for that page is
not sent. Data already Sent to the gateway computer is
buffered at the gateway computer but not forwarded to the
client computer. In order that the buffer at gateway computer
612 does not grow too large, oldest unretrieved data is
discarded by the gateway computer.

0089. The second situation in which the requests are not
made as expected for the embedded data is when the user
“follows a link,’ that is, a user requests yet another page
before the current page has been rendered and all embedded
data has been received. In this case, no abort message is sent
and all the data is prefetched. If the user returns to the
original page, the embedded data will likely still be buffered
on the gateway computer and the requests for that data can
be Satisfied without making another request of Server com
puter 618.

0090 Referring to FIG. 9, proxy application 613 and
communication modules 663 executing on gateway com
puter 612 implement the functionality of the gateway com
puter as described above. This first embodiment uses the
Microsoft Windows 95 or Windows NT operating system on
the gateway computer. A description of the Software mod
ules that implement the functionality of remote communi
cation Server 626 follows the description of gateway com
puter 612.

0091 Proxy application 613 interacts with several soft
ware modules in order to communicate with client computer
610, server computer 618, and other server computers and
remote communication Servers. Proxy application 613 can
be implemented in a variety of ways, including those used
in a number of commercially available proxy application
programs. Typically, a proxy application has a Server module
902 which accepts requests from client applications execut
ing on other computers, and a client module 904 coupled to
the server module which communicates with the server
Systems.

0092. In order to establish communication paths to client
or Server computers, proxy application 613 requests Services
from one or more communication Software modules which
implement various communication protocols. AS normally
configured in a typical installation of Windows 95 or Win
dows NT, TCP related requests from proxy application 613
would be passed directly to transport layer modules 940
which include TCP module 916. In this embodiment, a
layered communication module 930 is coupled between
proxy application 613 and transport layer modules 940.
Layered communication module 930 includes a software
interface module, a “hook,” Such that all TCP related
requests from any application, and in particular from proxy
application 613, are passed to redirector 914. The hook can
be implemented as a layered service module within Win
sock2. The redirector can pass these requests for TCP

US 2001/0047421 A1

services to TCP module 916, to XTP module 956, or to
HTTP Engine 920 which may request services from XTP
module 956. TCP module 916 and XTP module 956 request
Services from Raw IP module 950 which in turn communi
cates with data and link layer module 952. Data and link
layer module 952 is responsible for maintaining communi
cation links with remote computers including client com
puter 610, server computer 618, and remote communication
server 626.

0.093 Layered communication module 930 includes a
compression module 918 for optionally compressing and
decompressing data Streams passing to and from transport
layer modules 940, and a security module 917 for optionally
encrypting and decrypting the data Streams.

0094) Not shown in FIG. 9 are additional software inter
face modules on the paths used to pass communication
requests from proxy application 613 to redirector 914, from
redirector 914 to each of TCP module 916 and XTP module
956, and from HTTP Engine 920 to XTP module 956. These
Software interface modules accept requests according to the
Windows Socket (Winsock) API as specified my Microsoft
and pass the requests on to the respective modules. The
Software interface module on the path joining proxy appli
cation 613 and redirector 914 is implemented by the “hook”
Software interface module introduced above, and is config
ured to pass only TCP related requests from the proxy
application to redirector 914. Requests by proxy application
613 for services involving other protocols than TCP are
passed to other Software modules which are not shown in the
figure. The Software interface module on the paths joining
redirector 914 to TCP module 916 and to XTP module 956,
as well as on the path joining HTTP Engine 920 to XTP
module 956 use a Winsock2 module which is a dynamically
linked library supplied by Microsoft. Winsock accepts
requests according to the Winsock API and makes requests
according to the Winsock Service Provider Interface (SPI).
0.095 Proxy application 613, as well as other modules
using the Winsock API, request communication Services in
multistep sequences. These Steps can include the following
types of requests:

0096 A. Request creation of a “socket” using a
particular communication protocol, Such as TCP or
XTP. At any one time, this socket can be used for a
Single data Stream. On Successful completion of the
request, a “handle' to the Socket, an unsigned Scalar
index, is returned. Further requests related to this
Socket use the Socket handle to identify the Socket.

0097 B. Request that an outbound communication
channel be established to (connected to) a remote
computer. For TCP/IP, the remote host address and
port indeX are specified as the terminating end of the
communication channel.

0098 C Request that an inbound communication
channel be established (listened for and accepted)
from a remote computer on a particular port. The
port may be the port already used for an outbound
channel established in a step B above, or may be
explicitly Specified.

0099 D. Send data on the outbound communication
channel.

Nov. 29, 2001

0100 E. Receive data from the inbound communi
cation channel.

0101 Proxy application 613 makes a series of these
communication requests Specifying TCP as the communi
cation protocol to be used. These requests are passed to
redirector 914. In particular, in order to accept a connection
from client computer 610 and then open a connection to
server computer 618 on behalf of the client computer, client
application 613 executes a Series of communication requests
including:

0102) 1. Create a socket(A) for communicating with
client computer 610 using TCP.

0.103 2. Listen for and accept an inbound commu
nication channel (C) on a particular port known to
the client computer.

0104 3. Request that an outbound communication
channels be open (B) to the client computer. The port
indeX at the client computer is the Source port of the
inbound communication channel.

0105. 4. Receive data (E) from the client computer.
This data includes the address of Server computer
618 with whom the client computer requests to
communicate.

0106 5. Create a second socket (A) for communi
cating using TCP.

0107 6. Connect to server computer 618 (B) using
the Second Socket.

0108 7. Send data (D) (a request) received from
client computer 610 to server computer 618.

0109) 8. Listen for an inbound channel (C) from
server computer 618 on the port used for the out
bound communication with the Server computer.

0110 9. Receive data (E) using the second socket
from the Server computer.

0111) 10. Send the received data (D) using the first
socket to client computer 610.

0112 Proxy application 613 makes the same of Winsock
API requests regardless of whether a Server computer is at
a specially configured Server Site or a normally configured
Server Site. The proxy application is not aware at the point
of making the request whether a communication path
through a remote communication Server can be established,
nor is it aware after communication has been established
whether a direct TCP connection has been made to a server
computer or whether an XTP connection has been made to
a remote communication Server.

0113 At the application layer, when client application
611 communicates with server application 619 using HTTP,
client application 611 creates an outbound data Stream and
receives an inbound data stream according to the HTTP
protocol. When client application 611 sends HTTP data to
proxy application 613, the proxy application requests that
the data be written to an open Socket but does not otherwise
interpret it. Proxy application 613 makes the Same request to
write HTTP data regardless of whether it is communicating
with a specially configured Server site or a normally con
figured Server Site. The proxy application is not aware
whether the HTTP data will be sent to server computer 618

US 2001/0047421 A1

over a TCP connection, Sent first to remote communication
server 626 using the modified HTTP protocol and XTP
protocol, or handled on the gateway computer without
requiring communication with any other computer.
0114. In the sequence of requests executed by proxy
application 613 enumerated above, redirector 914 passes all
the requests related to first Socket, which is used to com
municate with client computer 610, to TCP module 916.
Communication between proxy application 613 and Server
application 619, hosted on server computer 618, over a
direct path between gateway computer 612 and Server
computer 618 passes through redirector 914, TCP Module
916, and finally Raw IP module 950 and data and link layer
module 952. Communication between proxy application 613
and a remote communication Server passes through redirec
tor 914, may pass through HTTP Engine 920, passes through
XTP module 956, Raw IP module 950 and finally data and
link layer module 952. XTP module 956 implements a
similar level of functionality as TCP module 916 using XTP
as the transport layer protocol rather than TCP, HTTP engine
920 interprets data Streams passing through it and imple
ments the client end of the modified HTTP protocol used on
the communication Segment between gateway computer 612
and remote communication Server 626.

0115) In order to determine whether an indirect commu
nication path to a server computer can be established
through a remote communication Server, a protocol Selector
923 in redirector 914 uses information obtained from central
database 645 on directory server 640. This information is
used to determine if a Suitable remote communication server
is available and if So, the address of that remote communi
cation Server. The host name or network address of directory
server 640 is preconfigured in proxy application 613.
0116 Rather than accessing central database 645 when
ever it needs to establish a communication path to a server
application, redirector 914 maintains server tables 924 that
reflect Some of the information in central database 645. A
first table, “in table'926, includes a subset of the entries in
central database 645. If an entry is found in this table, the
central database does not have to be queried Since the
information in central database 645 is available locally. A
second table, “out table”928, includes addresses of server
applications known to not have entries in central database
645. If a server application does not have an entry, that
Server application is accessed using a direct communication
path between the gateway computer and a server computer.
If a server address is found in out table, there is no reason
to query directory server 640 since it is known locally at
gateway computer 612 that no entry will typically be found.
These two tables are updated based on information in central
database 645. A user interface application 912 is also
coupled to server tables 924 to allow a user to view and
modify information in the tables.
0117) TCP module 916 receives calls from redirector 914
to open and communicate using the TCP protocols. TCP
module 916 receives requests from redirector 914 using the
Winsock SPI. When the TCP module 916 receives a request
from redirector 914, the redirector is essentially transparent.
A call to the TCP module is essentially identical to the call
that would have occurred in a typical installation of Win
dows 95 or Windows NT in which all TCP requests are
passed directly to the TCP module rather than to redirector
914.

Nov. 29, 2001

0118 TCP module 916 maintains socket data 931 which
is used to Store information about Sockets it creates on behalf
of applications Such as proxy application 613. The Socket
data is used, for instance, to map a Socket handle with an
open data connection to a local port indeX and a remote host
address and port index. In addition, TCP module 916
includes data buffers 933 for connected inbound and out
bound channels, and receiver and transmitter modules 936,
948 used to implement the TCP protocol independently for
each inbound or outbound connection. TCP module 916
communicates with Raw IP module 950, which implements
the IP protocol layer, and which in turn communicates with
a link and physical layer module 952. The link and physical
layer modules is responsible for the communicating over the
physical connections including those to client computer 610
and to router 615 at POP 614.

0119). In addition to forwarding requests to TCP module
916, redirector 914 can also forward requests received from
proxy application 613 to XTP module 956 and to HTTP
Engine 920. Redirector 914 passes to XTP module 956
requests to open communication channels to and commu
nicate with Specially-configured Server Sites in the case that
the data Stream on that channel does not necessarily use the
HTTP application layer protocol. Redirector 914 uses HTTP
Engine 920 for HTTP based connections to specially con
figured Server Sites. Along with a TCP request, redirector
914 provides HTTP Engine 920 the TCP socket handle used
by the client application and the address of a remote com
munication server that will receive the XTP communication.

0120 XTP module 956 implements the XTP protocol.
Logical data Streams associated with XTP Sockets are asso
ciated with XTP contexts. The logical structure of the XTP
module is very similar to that of TCP module 916 except that
all logical data Streams to or from a particular host are
multiplexed into a Single data Stream communicated using
the XTP protocol whereas in the TCP module, each logical
stream uses a separate instance of the TCP protocol. XTP
module 956 includes data buffers 965 for connected inbound
and outbound channels, and receiver and transmitter mod
ules 966,976 used to implement the XTP protocol for each
multiplexed data stream to a remote computer. XTP module
956 communicates with Raw IP module 950, which imple
ments the IP network protocol layer, and which in turn
communicates with a link and physical layer module 952.
The link and physical layer module is responsible for the
communicating over the physical connections including
those to client computer 610 and to router 615 at POP 614.
XTP module 956 maintains Socket data 957 which is used to
store information related to sockets created by the XTP
module. Communication for multiple Sockets between gate
way computer 612 and a remote computer is multiplexed
and demultiplexed by receiver and transmitter modules 966,
976 in XTP module 956 into a single inbound and a single
inbound data Stream and uses a Single instance of the XTP
protocol for each such stream. Socket data 957 is used to
asSociate a Socket handle with the local and remote port
indices, as well as a key associated with the data Stream
associated with the Socket. XTP module 956 includes a rate
control module 977 for negotiating the data rate and then
limiting the data rate to Server Systems.
0121 An XTP based communication path between gate
way computer 612 and a remote communication Server is
maintained for a period of time after all contexts are closed.

US 2001/0047421 A1

If the client application tries to open a new connection to the
remote communication Server during this period, the con
nection is open with very little overhead. The period of time
the connection persists, the "keep-alive time,” can be a fixed
interval or can be determined adaptively based on past
communication characteristics.

0122) Redirector 914 can also send a request to HTTP
Engine 920 if it determines that a TCP request received from
proxy application 613 corresponds to HTTP-based commu
nication to a specially-configured Server Site. HTTP Engine
920 interprets the application layer HTTP protocol used on
a data connection. The HTTP Engine performs two func
tions in addition direct translation of TCP requests into XTP
requests. First, the information in multiple HTTP data
Streams passing between the gateway computer and a par
ticular remote communication Server are multiplexed in
HTTP multiplexor 982 for communicating using a single
XTP context. Second, the HTTP Engine maintains prefetch
buffers 984 which are used to service some HTTP requests
for data. The HTTP multiplexor fills the prefetch buffers
with data that has not yet been requested and provides the
buffered data when a request can be Satisfied with that data.
0123 Redirector 914 maintains two additional data struc
tures used in redirecting requests from proxy application 613
to the appropriate communication modules. When proxy
application 613 requests creation of a TCP based socket, a
TCP Socket is indeed created for the proxy application and
its handle is returned to the proxy application. At later point
when proxy application 613 requests connection to a par
ticular server computer, a second XTP based socket may be
created at the request of redirector 914 if indirect commu
nication with the Server computer through a remote com
munication server is to be established. Redirector 914 main
tains Socket association table 915 which associates the TCP
socket handle known to the proxy application and the XTP
Socket handle used for communicating with a remote com
munication server. Socket association table 915 also
includes information needed to determine which communi
cation module should handle requests for that Socket.
0124) Redirector 914 also includes a tracing buffer 927
used to record (trace) certain requests from proxy applica
tion 613 that are passed on to TCP module 916. In particular,
after the proxy application requests creation of a TCP Socket,
other requests related to that Socket may be made by the
proxy application prior to receiving a request to listen for an
inbound connection or to connect to a particular remote
computer. It is not until a request to establish a connection
is received by redirector 914 that a determination can be
made that the communication should use XTP rather than
TCP. Therefore, these initial TCP requests are recorded in
tracing buffer 927. If redirector 914 determines that an XTP
Socket should be created and associated with a previously
created TCP socket, the recorded requests related to the TCP
socket are “replayed” to the XTP socket. In this way, the
XTP socket will be initialized such that proxy application
cannot recognize that further requests directed to the TCP
Socket are now redirected to the new XTP Socket. Alterna
tively, prior to determining whether XTP or TCP will be
used, the requests can be processed in parallel using both
protocols until a determination is made. Redirector 914
opens both a TCP and an XTP socket and sends communi
cation requests to both Sockets. Once the protocol is
selected, the Socket that will not be used further is destroyed.

Nov. 29, 2001

0125 FIGS. 10 and 11 illustrate the detailed operation of
redirector 914 and HTTP Engine 920. A detailed description
of remote communication server 626 of this first embodi
ment follows the description of module operation in gateway
computer 612.
0126 Referring to FIG. 10, redirector 914 responds to a
variety of requests proxy application 613. A request to create
a TCP socket (1002) is passed to TCP module 916. A socket
data handle is created by the TCP module and passed to the
proxy application (step 1004).
0127. If the request is to connect (that is, to open for
writing) a TCP socket to a remote computer (1010), the
redirector first looks up the TCP socket handle in Socket
association table 915 (step 1011). If an XTP socket handle
is associated with the TCP socket handle, the request is
passed to the Software module handling communication for
that TCP socket (step 1013). If the TCP socket handle is not
listed in the Socket association table, the redirector looks up
the host address in in table 926 (step 1012). The in table
contains the addresses of Servers that are known to be served
by remote communication Servers. If the address is not
found (step 1014), then the request is forwarded to the TCP
module (step 1016). Separately, either during or some time
after the call to the TCP module, the redirector looks up the
address in out table 928 (step 1018). If the address is found
(step 1020), then the addressed host is known to not be
Served by a remote communication Server and no more
processing is performed. If the address is not found in either
the in table or the out table, the redirector accesses direc
tory server 640 to update in table and out table (step 1022).
If the address was found in the in table (step 1014), then a
remote communication Server is Servicing requests for the
addressed host. The next step is to determine whether the
addressed port on the addressed host is associated with an
HTTP server (step 1024). This information is also stored in
in table along with the remote communication server
address. If the connect request is to an HTTP server, a
request to create a socket is passed to HTTP Engine 920. The
HTTP Engine obtains an XTP socket handle from XTP
module 956 and returns the Socket handle to redirector 914.
The redirector records the Socket handle in Socket associa
tion table 915 with the TCP Socket handle used for the
request by the proxy application, along with an indication
that HTTP Engine 920 is now handling requests for that TCP
Socket. If the addressed host is not an HTTP server, redi
rector 914 requests XTP module 956 to create a XTP socket
(step 1027) and the TCP socket handle and the new XTP
Socket handle are recorded in Socket association table 915.
In the cases that a XTP socket is created by XTP module 956
or indirectly by HTTP Engine 920, requests recorded in
tracing buffer 927 are replayed (step 1029) to the software
module (XTP module 956 or HTTP Engine 920) now
handling communication for the Socket.
0128 If the redirector receives a request other than one to
create or connect a socket (1030) the redirector first looks up
the TCP socket handle in socket association table 915 (step
1031). If an XTP socket handle is associated with the TCP
Socket handle, the request is passed to the Software module
handling communication for that TCP socket (step 1032)
otherwise the request is sent to the TCP module (step 1034).
Note that communication between proxy application 613
and client application 611 is established by the proxy
application issuing a listen request using a TCP Socket that

US 2001/0047421 A1

the proxy application has associated with (bound to) a
predefined port. This listen is passed to TCP module 916
according to step 1036.

0129 Referring to FIG. 11, when HTTP Engine 920
receives a request to create an XTP Socket to a remote
communication Server in order to Service requests for a TCP
Socket to communicate with a server computer (Step 1210),
the HTTP Engine may use an already open XTP connection
and multiplex communication for the TCP socket on the
open connection. If there is no active XTP connection to the
remote communication server (step 1212), HTTP Engine
920 requests creation of an XTP socket and connects to the
remote communication server (step 1214). When the HTTP
Engine receives a write request (Step 1240), it parses the
HTTP content of the request (step 1242). If the request is to
retrieve a remote object from the server (step 1244), the
HTTP Engine first checks to see if the object is already in
prefetch buffers 984 (step 1246). If it is, the HTTP Engine
records the association of the TCP socket handle and the
object requested (Step 1248) So that Subsequent listen and
read requests can retrieve the appropriate buffered data. If
the object is not buffered, the request is forwarded over the
multiplexed data Stream to the remote communication Server
(step 1250). If the write was not a request for an object (step
1244) the data is sent to the remote communication server
(step 1252). When the HTTP Engine receives a request to
listen on a connection that previously was used to Send or
record a request (step 1220), no further processing is nec
essary. When the HTTP Engine receives a request to read
(step 1230), the object previously requested is determined
from HTTP context 986. If all or some of the object is in
prefetch buffer 984, that data is provided in response to the
read request (step 1234). If there is no more data in the
prefetch buffer (step 1232), for example if the transfer of the
object was initiated before the request from the client, but is
still in progress, the HTTP engine requests data from the
XTP module using the appropriate XTP socket handle (step
1236). If the received data is for another object (step 1238),
that data is stored in prefetch buffer 984 (step 1240), and
another XTP read is requested (step 1236). If the received
data is for the requested object, the data provided in response
to the read request (Step 1242).

0130. In related embodiments, redirector 914 can also
Select a transport layer protocol based on other criteria. For
example, a request to open a TCP connection to a port that
is associated with a streaming audio Server can be handled
using a protocol different from TCP or XTP that is well
Suited to the data being transferred. For example, a protocol
with additional forward error correction can be used for
Streaming audio while a protocol with error control which
relies on retransmission can be used for a non-Streaming
data Source. The Selection criterion can also be based on
knowledge of the content type of the data. The content type
can be determined in Some cases by monitoring the initial
portion of the data transmission.

0131 The description above has concentrated on the
functionality at gateway computer 612 which is part of the
client communication System. At the Server Site, remote
communication server 626 forms the endpoint of XTP-based
communication with the gateway computer. Referring again
to FIG. 6, remote communication server 626 acts as a
gateway between gateway computer 612 and Servers 618,

Nov. 29, 2001

620. Together, remote communication server 626 and server
computers 618, 620 form a single server communication
System.

0132 Referring to FIG. 12, call handler application 674
and communication modules 673 execute on a representa
tive remote communication server 626. In the first embodi
ment, remote communication Server 626 is a computer
running a Windows NT or Unix based operating system. A
standard TCP protocol stack including a TCP module 1314,
an IP module 1316, and a link and data layer module 1318
are used to communicate to server computers 618, 620. An
XTP module 1320 communicates directly with the IP mod
ule. Call handler application 674 communicates with com
munication modules 673 to handle communication between
a gateway computer and Server computers. In addition, the
HTTP object prefetching function is implemented in call
handler application 674.
0.133 Call handler application 674 includes a context
handler module 1328 which directs communication between
gateway computers and Server computers, html parser 1326
used to interpret html format data passing from a Server
computer to a gateway computer, local table 1322 which
includes information about Server computerS Served by the
remote communication server, and TCP buffers 1324 used to
hold data passing between Server computers and gateway
computers.

0134) Context handler 1328 initially creates an XTP
context and makes a listen request of the XTP module to
accept a connection from a gateway computer. When a
gateway computer connects an XTP context and requests to
establish TCP communication with a destination network
address, context handler 1328 looks up the destination
network address for a server computer in a local table 1322
and, if it finds the destination network address, initiates an
execution thread to handle communication with that gate
way computer and the Server computer. There is typically
one execution thread per XTP context. The execution thread
opens a TCP channel to the Server application. A context
thread may open multiple concurrent TCP channels to one or
more Server computers to handle multiplexed requests from
its corresponding gateway computer. When the context
handler is notified that a listen on a port has been requested
by the client, a TCP listen is requested through TCP module
1314 and begins to read data that it buffers in TCP buffer
1324.

0.135 Context handler 1328 can optimally restrict con
nections between client and Server computers. In one
instance, context handler 1328 determines whether accept
ing a connection request from a client System would exceed
a total communication capacity for the communication
Server computer. The communication capacity can be based
on a variety of factors including the number of client
systems, the number of TCP streams to server computers, or
the maximum total data communication rate as calculated by
Summing the negotiated maximum data rates of all the XTP
connections or as calculated by averaging past actual data
rates. If the communication capacity would be exceeded by
accepting a connection, the connection is refused and the
client System must connect to the Server computer directly
using TCP.
0.136 Alternatively, context handler 1328 can restrict
connections between client and Server computers based on

US 2001/0047421 A1

the Server computer identified in the communication request
from the client computer. For instance, only Server comput
ers listed in local table 1322 can be accessed by a client
computer. In this way, the remote communication functions
as a firewall.

0137 Context handler 1328 is also responsible for the
server end of the modified HTTP protocol. As a Web (html
format) page is retrieved from a Web server by a context
handler through the TCP/IP stack, the page is parsed by html
parser 1326. References to objects are extracted. The context
handler then makes requests for the objects on Servers also
Served by the remote communication Server and forwards
the results to the gateway computer which Stores them in its
prefetch buffer anticipating a request for them from the
client application. Context handler 1328 also includes com
pression module 1329 and security module 1327 for pro
Viding compression and encryption Services, respectively,
for data Streams passing between the remote communication
Server and the gateway computer.
0138 Local table 1322 containing served hosts addresses
is periodically communicated to a directory server 640 so
that a gateway computer can locate an appropriate remote
communication server for a TCP address. A table update
module 1325 receives information from server computers to
update local table 1322. For instance, the Server computers
can periodically Send broadcast messages that are received
by table update module 1325, or the server computers can
Send a message to the table update module when they are
initially configured. Alternatively, the addresses of the Server
computers can be entered manually through a user interface.
Local table 1322 can also be updated manually through a
graphical user interface (GUI) 1323 coupled to an input/
output device 1324.
0139 XTP module 1320 includes a rate control module
1321. Rate control module 1321 limits the total data rate to
each client System rather than limiting the data rate of
individual XTP connections. The rate limit for a particular
client System is maximum of the negotiated maximum data
rates of individual XTP connections to that client system. In
this way, even if a client system opens multiple XTP
Streams, rate control module 1321 avoids exceeding the
capacity of data links that may be shared by the multiple
StreamS.

0140. In a variant of the first embodiment, software
modules that are hosted on a communication Server com
puter and those hosted on a Server computer are hosted
together on a single computer. In this variant, communica
tion passing between a call handler application and a server
application does not flow acroSS a local network. Instead,
data is sent to communication Services hosted on the Single
computer, and passed directly to the destination application
by those communication Servers.
0.141. A second embodiment of the invention implements
the same functionality at the Server System from the point of
View of a client application and the same functionality at the
client System from the point of view of a Server application
as in the first embodiment. However, in the second embodi
ment, Software modules are hosted directly on a client
computer or a Server computer. In addition, Since a gateway
computer is not used, no proxy application is needed. The
arrangement of Software modules on a client computer is
shown in FIG. 9a. This arrangement is substantially the

Nov. 29, 2001

Same as that shown for a proxy computer as shown in FIG.
9 with the exception that proxy application 613 is replaced
with a client application 613.a. Client application 613a can
be a browser application which includes a user interface
module 905 coupled to an input/output device 906 for
accepting requests for information from a user and display
ing information Sent from Server computers in response to
the requests.

0142. At the server system, in the second embodiment,
the functionality of the Server computer and the remote
communication Server are combined on a Single computer
which uses the Microsoft Windows 95, Windows NT, or
Unix operating System. A Server application 1412 configured
to use TCP and HTTP executes on the server computer.
0.143 Referring to FIG. 13, the arrangement of software
modules is similar to that shown in FIG. 9. Server applica
tion 1412 requests TCP services from layered communica
tion services 1402. Redirector 1414 handles the request and
communicates with transport services 1404, including TCP
module 1416 and XTP module 1456, or HTTP Engine 1460
to handle Services requested by Server application 1412.
Redirector maintains a socket association table 1415 that
asSociates TCP Socket handles created for the Server appli
cation and XTP sockets created by the redirector.
0144. Redirector 1414 initially receives a request from
Server application 1412 to listen on a predefined port for a
TCP connection from a client system. Redirector 1414
determines using local table 1424 whether that port corre
sponds to a server application for which an XTP-based
connection can also be accepted, and if So, it also determines
whether the port is a server port for HTTP based commu
nication. Based on this determination, redirector 1414 either
forwards a request to listen only TCP module 1416, or in
addition requests either XTP module 1456 or HTTP Engine
1460 to also listen for an XTP based connection on an XTP
Socket. If a connection is received on an XTP-based Socket,
the association of the TCP socket handle known to the server
application and the XTP socket handle known to the redi
rector is recorded in Socket association table 1415.

0145 When redirector 1414 receives any other request
using a TCP Socket handle, that handle is looked up in Socket
association table 1415 and if found, the request is forwarded
to the module handling that socket (XTP module 1456 or
HTTP Engine 1460), otherwise it is sent to TCP module
1416.

0146 When HTTP Engine 1460 receives a request to
send information to a client computer, HTTP Engine mul
tiplexes the outbound data using HTTP multiplexor 1482. If
the data Stream corresponds to an html format Web page, the
information in that page is interpreted in html parser 1483
and references to embedded data are recorded by HTTP
context handler 1481. If the referenced data is available from
server application 1412, HTTP context notes that this data
should be prefetched from server application 1412.
0147 When HTTP Engine 1460 receives a request to
listen for a connection, that request can be Satisfied in three
different ways. First, if HTTP context handler 1481 has
previously noted that data should be prefetched from server
application 1412, a HTTP request is simulated by HTTP
context handler 1481 and the listen is satisfied by this
simulated request. Second, XTP module 1456 may accept a

US 2001/0047421 A1

new XTP socket from a new client computer. Third, HTTP
Multiplexor 1482 may satisfy the request using multiplexed
communication on a XTP communication channel with a
current client computer. HTTP Engine 1460 records the
association of the TCP socket handle known to the server
application and the Source of the data that Satisfied the listen
request.

0148 When HTTP Engine 1460 receives a request to
read data, the read is either satisfied by HTTP context
handler 1481 which simulates a HTTP request, or is handled
by HTTP multiplexor 1482 depending on how the corre
sponding listen request was handled. Since multiple data
Streams may be multiplexed on a Single XTP context, the
read request handled by HTTP multiplexor 1482 is either
satisfied by previously read data in HTTPbuffer 1484, or by
data read from an inbound XTP Socket. Data read but that is
not used to satisfy the read request is buffered in HTTP
buffer 1484 until data that does satisfy the read request is
found on the inbound Stream.

0149. In other embodiments, a various types of client and
Server communication Systems can be used. Some client
communication Systems can include client computers com
municating through a gateway computer while other client
computers communicate directly to Server communication
Systems using XTP. Some Server communication Systems
can include one or more remote communication Servers
while others can use Server computers that include the
functionality of a remote communication Server. In addition,
the functionality hosted on a gateway computer in the first
embodiment can be hosted on a proxy server at a POP such
as proxy server 140 at POP 110b shown in FIG. 1 in which
case the client communication System is hosted on comput
ers both at the client site and at the POP. In addition,
communication between a client computer and the proxy
Server can use a variety of protocols, including proprietary
protocols that are particular to communication between
certain clients and certain proxy servers.

0150. Other embodiments of the invention use alternative
methods to determine whether communication between a
client computer and a Server computer can use an alternative
transport layer protocol, and to determine an alternative
network address to which a client computer should address
Such communication using the alternative transport layer
protocol. One approach is for the alternative network
address to be a known transformation of the network address
of the Server application itself, for example, a different port
indeX on the same addressed host. In this approach, a
gateway computer or a specially enabled client computer
tries to make a connection to a remote communication Server
(which may not exist) and if there is no response, assumes
that the Server computer is not served by a remote commu
nication Server and, instead, proceeds to establish a TCP
connection.

0151 Referring to FIG. 14, a third illustrative embodi
ment makes use of directory information which is distrib
uted, in part, at Server computers themselves. A client
computer uses this distributed information to determine
whether a Server computer can accept communication using
an alternative communication protocol at an alternative
address. In FIG. 14, server computer 1410 is associated with
a remote communication server 1420 which receives com
munication for server computer 1410 at an alternative

Nov. 29, 2001

address using the alternative communication protocol. Note
that in related embodiments, the functionality of remote
communication server 1420 and server computer 1410 could
be provided by a single computer, and in Such embodiments
the alternative address is then on the same host as an
originally requested TCP address.

0152 Remote communication server 1420 is coupled to
one or more server computers 1410 over LAN 1430 which
is in turn coupled to a client computer 1451 over Internet
1440. Client computer 1451 includes a processor 1453,
non-volatile data Storage 1457, Such as a magnetic disk, and
program Storage 1454, Such as a fixed or removable disk. A
communication interface 1459 couples processor 1453 to
Internet 1440. Server computer 1410 similarly has a pro
ceSSor 1413, non-volatile data Storage 1416, program Stor
age 1414 and a communication interface. Also coupled to
Internet 1440 is a list server 1462, which serves a similar
function to the directory servers described in the first and
Second embodiments. List server 1462 includes a nonvola
tile data Storage Such as a magnetic disk.

0153. Also coupled to Internet 1440 is a domain name
service (DNS) 1470 that provides a name resolution service
for other computers coupled to it over the Internet. DNS
1470 can accept a host name and provide an IP address
associated with that host name. List server 1462, also
coupled to Internet 1440, maintains a database including
asSociations of Server computers and IP addresses of remote
communication Servers associated with those Server com
puters. This database is Stored on non-volatile Storage 1461.
0154 Referring to FIG. 15, when a client application
1510, such as a Web browser, executing on client computer
1451 (FIG. 14) attempts to communicate using TCP/IP with
an IP address on server computer 1410 (FIG. 14), commu
nication passes through a set of Software modules also
executing on client computer 1451. FIG. 15 shows an
arrangement of Software modules for a client computer
using the Microsoft Windows95 or Windows NT operating
Systems.

0155 Client application 1510 communicates with a Win
sock2 module 1520 which provides an interface to commu
nication services, including TCP/IP services needed to com
municate with remote computers. Winsock2 1520 includes
interfaces to name Service providers and to transport Service
providers. A name Service provider is a Software module that
translates host names, in the form of character Strings, into
a lower-level address that are then used by transport Service
providers, Such as a TCP Service provider. A name Service
provider may rely on Services provided by another com
puter, Such as an Internet DNS. A transport Service provider
is a Software module that implements transport layer com
munication Services to allow a client application to commu
nicate with remote applications. In FIG. 15, layered service
module (LSM) 1540 provides standard transport protocol
services, such as TCP-based transport services, to Winsock2
1520 according to the Microsoft Winsock2 Service Provider
Interface (SPI) and therefore behaves as a transport service
provider. Directory module 1550 provides IP-based name
services to Winsock2 1520. Together, directory module 1550
and layered service module 1540 are part of a redirector
1530 which determines whether an alternative communica
tion protocol can be used on a particular TCP/IP connection
request from client application 1510 to a Server computer,

US 2001/0047421 A1

and provides an interface to transport services 1590 used to
pass data to and from that server computer. Raw IP module
1595, in turn provides lower-level services to modules in
transport services 1590. Transport services 1590 also pro
vides communication services to directory module 1550. A
user interface (UI) application 1535 is also coupled to
directory module 1550. UI application 1535 provides an
interface to a user of the client computer to acceSS informa
tion maintained in directory module 1550, and to update that
information.

0156 Referring to FIG. 16, transport services 1590
include TCP module 1660 and XTP module 1662, which
provide transport services directly to LSM 1540. As in the
previously described embodiments, XTP module 1662 is
used to provide transport layer communication Services for
enhanced communication between a client application 1510
and a remote Server application.
0157 Continuing to refer to FIG. 16, directory module
1550 includes several Submodules. A name resolution Ser
vice 1650 receives name resolution requests from Winsock2
1520 and uses a database 1620 to attempt to resolve those
requests. A directory manager 1610 receives requests from
LSM 1540 to determine whether a remote communication
Server is associated with the address of a Server computer.
Directory manager 1610 uses database 1620 and possibly a
network lookup module 1640 in responding to those
requests.

0158 Database 1620 includes an address database 1624
which includes associations of Server host names, Server IP
addresses, and IP address of remote communication Servers,
if any, associated with those Server hosts. Address database
1624 also includes additional information particular to spe
cific Server Sites. Address database 1624 is maintained on
non-volatile data storage 1457 (FIG. 14) using multiple
files. In addition, database 1620 includes a memory cache
1622, stored in volatile working storage 1458 (FIG. 14),
used to maintain copies of portions of the database for rapid
access. Database 1620 also includes ageing information
1629 which is used to record information related to data
access and is used to delete data, for example, data that was
least recently accessed or has been least frequently accessed,
in order to free Space on working Storage 1458 or non
volatile storage 1457.

0159. Address database 1624 is stored on non-volatile
Storage 1457 using a separate binary file for each Server
computer. Referring to FIG. 17a, for a particular server, the
file contains binary fields delimited by field separators 1795.
The fields in a record include the IP address of a remote
communication server (SS IP) 1770, and a name entry for
the server computer (WS NAME) 1780. The record also
includes site-specific information (SITE INFO) 1790. Each
of the individual files of address database 1624 are stored in
a single directory, and have file names derived from the IP
address of the server computer (WS IP). In particular, the
WS IP field is interpreted as a unsigned 32-bit number, and
expressed in base 36 using the symbols 0-9 and A-Z. A
common prefix, for example "SN', and a common exten
Sion, for example, “.SFF", is used for all the files. For
example, the IP address “199.103.141.58” is associated with
the file name “SNG8V2RRSSF'.

0160 Referring again to FIG. 16, directory manager
1610 makes use of network lookup module 1640 to access

Nov. 29, 2001

distributed directory information that it uses to determine
whether a remote communication Server is associated with
the address of a Server computer. If, in response to a request
from LSM 1540, directory manager 1610 cannot satisfy a
request for remote communication Server information using
database 1620 alone, the directory manager issues a request
to network lookup 1640. Network lookup 1640 uses path
resolver 1642 and web server access 1646 modules, which
in turn uses transport services 1590, to attempt to retrieve the
needed information from the server computer itself. If
successful, network lookup 1640 provides the retrieved
remote communication Server information to directory man
ager 1610, which then both updates database 1620 and
provides a response to LSM 1540.
0.161 UI application 1535 is also coupled to directory
manager 1610. UI application 1535 provides an interface for
a user of the client computer to access information in
database 1620, and to update that information. A user may
update information in database 1620 by explicitly providing
that information to UI application 1535. For example, a user
may know the address of a remote communication Server
asSociated with a particular Server computer. The user may
also know information needed to establish a connection to
the remote communication Server, Such as a password, that
he provides to the UI application for Storage in database
1620.

0162 Rather than explicitly providing information for
database 1620, the user can also request that information be
obtained from a server computer 1410 or from a list server
computer 1462 (FIG. 14). UI application 1535 requests
from directory manager 1610 that a particular Server com
puter or list Server, or a default list Server known to directory
manager 1610, be accessed to obtain information to be
stored in database 1620. An explicit location on the list
server may be provided by UI application 1535, or a default
location known to directory manager 1610 may be used.
Directory manager 1610 passes the request to path resolver
1642, which uses list server access module 1644 to retrieve
the information from a list server, or which uses web server
access 1646 module to retrieve the information from a server
computer. The information is passed back to directory
manager 1610 which uses the information to populate data
base 1620.

0163 The user may also use UI application 1535 to
acceSS information in database 1620. For example, Site
descriptions of Server computers, lists of Server computers in
a particular category, or other information about the Servers
can be displayed. This information may be used by the user
to Select a particular Server computer.
0.164 Network lookup 1640 accesses data on a server
computer, or on a list Server, by retrieving a data file from
that computer. Web server access 1646 uses a predetermined
pathname for the data file on the Server computer. The data
file is known as a “site file.” The file is kept in a secret
directory that is not normally accessible to remote users. In
this embodiment, the pathname is of the form
* <WEBROOTS/<DIRNAMEs/<FILENAMEs.dat, for
example “<WEBROOTS/.sitara/sitara.dat', where
“<WEBROOTS” is the pathname of the root directory
accessed by a Web server. List server access 1644 by default
uses the same file name when retrieving information,
although an explicit path name may be provided by the user
through UI application 1535.

US 2001/0047421 A1

0.165 A site file includes information used to populate
database 1620. In this embodiment, the site file is a text file.
Referring to FIG. 17b, the site file has one or more lines as
shown. Each line, associated with a particular Server com
puter, contains tab delimiters 1710 separating the IP address
of the server computer (WSIP) 1730, the IP address of a
remote communication server (SS IP) 1740, which is a null
entry if there is no remote communication Server associated
with the Server computer, and a name entry for the Server
computer (WS NAME) 1750. The record also includes
site-specific information (SITE INFO) 1760, and is termi
nated by a newline 1720. A site file, both on a server
computer and on a list Server, may have multiple lines
corresponding to multiple associations of Server computers
with remote communication Servers.

0166 Operation of various software modules is illus
trated in the flowcharts in FIGS. 18-22. In the following
description of the flowcharts, unless otherwise indicated in
parentheses, elements involved in the Steps appear in FIG.
16. A request by client application 1510 to Winsock2 1520
to connect a TCP Socket (communication channel) to the
Server computer is handled in Several StepS.
0167 Referring to FIG. 18, after client application 1510
provides the name of the Server computer in the form of a
character string, Winsock2 1520 determines an IP address
associated with this host name. Winsock2 1520 later passes
that IP address to transport Services that actually connect the
communication channel. In determining the IP address,
Winsock2 1520 first requests resolution of the server host
name from name resolution module 1650 (step 1810). If
name resolution module 1650 cannot find an IP address for
the host (step 1812), Winsock2 1520 requests resolution of
the host name from a default name Service provider (Step
1920) which accesses DNS 1470 (FIG. 14) to resolve the
server host name. If name resolution module 1650 cannot
provide the IP address (step 1812) and DNS 1470 cannot
provide an IP address for the server host (step 1822),
Winsock2 1520 reports a name lookup failure to client
application 1510 (step 1824).
0168 Assuming that Winsock2 1520 successfully
resolves the Server host name, using either name resolution
service 1650 or DNS 1470, it then requests that LSM 1540
connect the Socket to the IP address of the server computer
(WSIP).
0169. Referring to FIG. 19, LSM 1540 receives a request
to connect to a server at address WS IP. LSM 1540 requests
from directory manager 1610 the address of a remote
communication Server associated with the Server computer's
IP address (step 1920). Directory manager 1610 accesses
database 1620 by first searching memory cache 1622 and, if
no record is found, Searching address database 1624. If it
finds a record for the Server computer, it returns the value of
the SS IP field, which is the address of a remote commu
nication Server for the Server computer. If the record was
found in address database 1624, directory manger 1610
stores a copy of the record in memory cache 1622. If there
is no record for the server computer in database 1620,
directory manager 1610 returns a null address. If directory
manager 1610 returns a null remote communication Server
address (step 1922), LSM 1540 attempts to connect to the
server computer directly using TCP (step 1910). If directory
manager 1610 returns the address of a communication

Nov. 29, 2001

server, LSM 1540 connects to the remote communication
Server using the appropriate enhanced communication pro
tocol (step 1926). In particular, the enhanced protocol
involves communication using XTP module 1662 in a
manner presented above in the descriptions of the first and
Second embodiments. If LSM 1540 connects to the server
computer using TCP (step 1910), it subsequently issues a
request to directory manager 1610 to update its entry for that
server computer (step 1915).
0170 Referring to the flowchart of FIG. 20, when LSM
1540 requests from directory manager 1610 that it update
the entry for a server computer, directory manager 1610 first
determines whether a record for the Server computer is
stored in database 1620 (step 2010). If there is a record,
directory manager 1610 does not need to perform any
further update. If directory manager 1610 determines that
there is no record in address database 1620 associated with
the server IP address (step 2010), it attempts to obtain a site
file from the server computer (step 2020). Directory man
ager 1610 requests the site file information from network
lookup 1640 (FIG. 16) which accesses the site file from the
server computer at address WS IP, in this embodiment,
using the HTTP protocol. If network lookup 1640 success
fully returns the information in the site file (step 2022),
directory manager 1610 updates both memory cache 1622
and address database 1624 of database 1610 (step 2024). If
the site file is not successfully retrieved (step 2022), for
instance because the Server computer is not associated with
a remote communication Server in which case the Server
computer returns a "file not found' message when the client
computer requests the Site file, directory manager 1610
updates memory cache 1622 (but not address database 1624)
of database 1620 by creating a record for the server com
puter, and Storing a null in the field for the remote commu
nication Server address associated with the Server address
(step 2026). Note that memory cache 1622 is deleted when
client application 1510 exits, and therefore a record which
indicates that a Server computer is not associated with a
remote communication Server persists only as long as the
application that accessed the Server computer is active.
0171 A fourth embodiment extends the functionality of
the third embodiment, described above, to include loadable
Software modules for use in communication with particular
remote communication servers. Referring back to FIG. 17,
the SITE INFO field of a record of database 1620 can now
include a reference to a loadable Software module that is
required for communicating with the remote communication
server at address SS IP. A reference includes a URL of the
Software module. Directory manager 1610 is responsible for
retrieving and keeping the Software module up to date. LSM
1540 is responsible for dynamically loading the module, and
for branching to available entry points in the module at
appropriate times while communicating with the remote
communication Server. A loadable module is kept up to date
using a trigger mechanism. Specifically, for each loadable
module that has previously been retrieved, directory man
ager 1610 maintains records the latest date the module was
retrieved or that it checked to determine whether a newer
version was available. Each loadable module is also asso
ciated with a maximum interval that the module can be used
before directory manager 1610 must check that a newer
version is available. If more than the maximum interval for
a module has elapsed Since the module was loaded or a
check was made, directory manager 1610 checks whether a

US 2001/0047421 A1

newer version is available, and if one is available, the newer
version is retrieved by directory manager 1610 and loaded
by LSM 1540 without the necessity of user intervention.

0172 Referring to FIG. 21, after directory manager 1610
retrieves a record from database 1610, or from a newly
retrieved site file, (step 2110), directory manager 1610
determines from the SITE INFO field whether a loadable
module is required for communication with the indicated
remote communication server (step 2112). If a loadable
modules is not needed, the remote communication Server IP
address is returned to LSM 1540 as in the third embodiment.
If a loadable modules is required (step 2112), then directory
manager 1610 determines whether it is currently Storing a
local copy of the required module (step 2114). If not, the
directory manager retrieves the module (Step 2120) and
stores it in a local file. The IP address of the remote
communication Server and the pathname of a local copy of
the retrieved module are returned to LSM 1540. If the
module has been previously retrieved (step 2114), then it
may have already expired. Expiration is checked (Step
2116), and if it the module has not expired, then the IP
address of the communication Server and the local pathname
of the loadable module are passed to LSM 1540. If, on the
other hand, the module has expired (step 2116), directory
manager 1610 checks whether a newer version is available
by accessing the date of the version at the referenced
location over the Internet (step 2118). If a newer version is
available, that version is retrieved and Stored in a local file
(step 2120). The IP address of the communication server and
the local pathname of the loadable software module are then
passed to LSM 1540.

0173 Referring to FIG. 22, LSM 1540 includes basic
layered services 2220 and possibly one or more loaded
modules 2230. In this embodiment, which is implemented
using the Windows95 or Windows NT operating system, a
loadable software module is a Dynamically Linked Library
(DLL). When LSM 1540 receives a local pathname of a
loadable module, that is, the pathname of a DLL, LSM 1540
loads the DLL. The DLL uses an agreed-upon API, and
includes a module descriptor which allows basic layered
services 2220 to determine what routines that DLL provides.
The module descriptor is also used to allow proper chaining
of modules if more than one routine needs to be used in
Sequence. For example, a decompression routine and a
decryption routine both may need to be used on an inbound
data Stream, and the order of applying those routines is
Significant to their proper operation. Using the module
descriptor, LSM 1540 determines under what circumstances
a routine in the loadable module should be invoked.

0.174. Use of such a loadable module can be understood
by an example in which the module is used for decompres
Sion of data flowing from the communication Server to the
client computer. In this case, loadable module 2230 associ
ated with the communication Server includes an entry point
used to filter an incoming data Stream. Each input buffer read
by basic layered services 2220 from transport services 1590
is passed to the inbound filtering routine in loadable modules
2230. The result of applying the routine is then passed to
Winsock2 1520 and then to client application 1510. Entry
points can also be associated with and invoked by LSM 1540
in a variety of Situations, for instance, when connecting,
closing, reading from, and writing to a Socket.

Nov. 29, 2001

0175 Referring still to FIG. 22, loadable modules com
municate with basic layered services 2220. In the example
introduced above in which a loadable module is used for
decompression of data, compressed data received by the
client computer is passed from basic layered Services 2220
to loadable module 2230, where it is decompressed, and
decompressed data is passed back from loadable module
2230 to basic layered services 2220. The decompressed data
is then sent to client application 1510. Similar data flow is
used for a loadable module that provides decryption rou
tines.

0176). A loadable module may also communicate directly
with transport services 1590. For example, a loadable mod
ule may multiplex multiple Socket connections over a single
TCP connection. In this case, basic layered services 2220
would provide outbound data to loadable module 2230, and
loadable module 2230 would provide that data, after mul
tiplexing it with data from other connections, to TCP module
1660.

0177. A loadable module may also essentially implement
a transport Service, for instance, if a proprietary transport
layer protocol is used with a particular Server computer.
Such a protocol may be used, for example, to provide
Streaming audio data in an efficient manner. In this case, a
loadable module 2230 communicates directly with Raw IP
1595.

0.178 A loadable module may also communicate with an
application interface 2210 which is a separate application
from client application 1510 which initiated the connection.
In this way, a customized client Server application may be
initiated. For example, a customized user interface, particu
lar to a Server computer, can be launched by a loadable
module. The loadable module then provides an interface for
application interface 2210 and communication Services
needed by application interface.
0179 The description of the third and fourth embodi
ments referred to a single database entry in database 1620
being associated with a server computer. Several remote
communication Server computerS may in fact be associated
with a particular Server computer. In this case, the file in
address database 1622 associated with that Server computer
will have multiple records of the format shown in FIG. 17b.
In the third embodiment, directory manager 1610 imple
ments a Selection of which communication Server address to
provide to LSM 1540. For instance, directory manager 1610
may implement a round-robin Scheme in which each request
by LSM 1540 to connect to the server computer results in a
different remote communication Server being used than in
the previous connection. Directory manager 1610 may also
implement another Selection method, for example based on
other information recorded in the site information field of
the database. For instance, the Site information field may
indicate that one remote communication Server is appropri
ate for clients with a high data rate connection to the remote
communication Server, while another communication Server
is appropriate for clients with Slow or high-latency connec
tions.

0180. Also in the description of the third and fourth
embodiments, the System was described in terms of a local
computer establishing an enhanced communication path to a
Server computer. In the first two embodiments, an enhanced
communication path used an enhanced transport layer pro

US 2001/0047421 A1

tocol, that is the XTP protocol, or multiplexing of socket
connections from a client application using a single TCP or
XTP. In the third and fourth embodiments, communication
between a local computer and a remote Server may be
enhanced in a wide variety of ways, not necessarily involv
ing transport layer communication protocols. For example,
application layer enhancements to the communication
between the client computer and the remote computer may
be used. For instance, if a Server computer Supports a catalog
Shopping Service, communication passing between the local
computer and the Server computer may involve relatively
low level data requests, for example for product descrip
tions, prices, etc. The user, however,-may be presented a
full-featured user interface within a standard Web browser.
Software in the layered service module, or in a loadable
module, provides the interface between the Web browser
and the low level communication passed between the client
computer and the Server computer. Other enhanced commu
nication approached implemented at various layers, from the
data link layer to the application layer, may be used in the
described, or related, embodiments.
0181. In the fourth embodiment, if multiple remote com
munication Servers are available for a Server computer, the
entire list is provided to LSM 1540. A loadable module is
then be used to Select the appropriate communication Server
for each connection.

0182 Also in the fourth embodiment, other forms of
loadable modules may be used. For instance, rather than
DLLS, Java applets may be used.
0183) In the third and fourth embodiments, database 1620

is implemented using text files Stored on the client comput
er's file System to Store database records and loadable
Software modules. An object database may alternatively be
used. For instance, each record may be Stored as a binary file
including a tag and length for each field, multiple records
may be Stored in a single file, or relational tables may be
used. Furthermore, if loadable Software modules are used,
database 1620 may be used to store the modules themselves,
rather than using the local computer's file System.

0184. Also in the third and fourth embodiments, use of
the cooperating name resolution service 1650 and layered
service module 1540 allows a client application to use host
names that would not be resolved by an Internet DNS. For
instance, referring to FIG. 15, a "friendly' name can be
passed from client application 1510 to Winsock2 1520. The
friendly name is passed to directory module 1550 which
returns a data Structure which includes the address in the
form needed by the appropriate transport Services.
0185. An alternative approach to determining whether a
Server computer can be accessed through a remote commu
nication server involves a client computer (or proxy com
puter) initially retrieving information from a server com
puter using TCP. Then, based on application layer data
transferred over the TCP connection, the client computer
determines the address of a remote communication Server. In
the case of http-based data connections, the address of the
remote communication Server is provided as part of the
response to a HTTP request. The server address can be
embedded in the stored files on the server computer, thereby
being provided to the client computer as part of a normal
retrieval of data by a standard Web server application.
Alternatively, the remote communication Server address can

Nov. 29, 2001

be added by the Web server application prior to sending a
response to the client. If the client receives a remote com
munication Server address in the data, it updates its local
tables and uses the remote communication Server for Sub
Sequent communication with the Server computer.
0186 Referring to FIG. 23, in an alternative arrange
ment, remote communication Servers 2340 can be used to
balance load on a Set of Server computer in conjunction with
a network address translator (NAT) 2310. NAT 2310 is
connected between the Internet and a LAN 2350. Network
addresses of computers on LAN 2350 are not necessarily
known to computers, Such as client computers, on the
Internet. In order to communicate with a computer on LAN
2350, a computer on the Internet directs communication to
a network address to which NAT 2310 responds and NAT
2310 forwards communication between the computer on the
Internet and the computer on LAN 2350. Internally, NAT
2310 maintains an address association table 2312 which
maps Internet network addresses to local network addresses
which are valid on LAN 2350. In the simplest case, the table
has a one-to-one correspondence between Internet network
addresses and local network addresses. Address association
table 2312 can also have multiple local network addresses
asSociated with a single Internet network address. In this
case, NAT 2310 chooses one of the multiple local network
addresses to match to the Internet network address when it
receives communication from a remote computer. For
example, NAT 2310 can use a round-robin selection
approach to choose a particular local network address. NAT
2310 can therefore balance the load of requests to commu
nicate with a Single Internet network address by passing
different requests to different computers on LAN 2350. Once
NAT 2350 has connected a remote computer on the Internet
to a particular local computer on LAN 2350, it connects
Subsequent requests from that remote computer to the same
local computer on LAN 2350 until a minimum time has
elapsed since the remote computer has closed all its com
munication paths to the local computer.
0187. Referring still to FIG. 23, LAN 2350 couples two
or more remote communication servers 2340 and two or
more server computers 2330 to NAT2310. Server computers
2330 share a common network address and remote commu
nication servers 2340 share anther network address.
Requests from a client System to communicate directly with
a server computer 2330 are handled by NAT 2310 in the
manner described above. Requests from a client System to
communicate with a remote communication Server are also
handled by NAT 2340. NAT 2340 handles these requests by
choosing one of the remote communication ServerS2340 and
passing communication between the client System and the
remote communication Server. This communication includes
the XTP communication over which the client system sends
requests to communicate with Server computers.

0188 When a remote communication server 2340
receives a requests to communicate with a Server computer,
the request identifies the Server computer using a network
address that would be valid from the Internet, that is, using
an address that would be translated by NAT 2340 if the client
System were to try to contact the Server computer directly.
Therefore, remote communication Server maintains a Server
asSociation table 2342 containing the Internet network
address for the Server computers associated with their local
network addresses. When remote communication Server

US 2001/0047421 A1

2340 receives a requests to communicate with a server with
a particular Internet network address, the remote communi
cation Server accesses its Server association table to deter
mine whether it provides communication Services for that
Server computer and, if So, to determine a local network
addresses correspond to that Server. Server association table
2342 also includes a record of the particular Server comput
erS matched to requests from particular client Systems in
order that the same Server computer can be uses for a Series
of requests to communicate.
0189 In the arrangement shown in FIG. 23, address
translation therefore occurs at two levels. First, NAT 2310
translates an Internet network address for a remote commu
nication Server into one of the local network addresses of
remote communication Servers. Then, when a client requests
to communicate with a Server computer, the remote com
munication Server translates the Internet network address of
the requested Server computer into one of the local addresses
of the server computers on the LAN.
0190. Referring to FIG. 24, an alternative embodiment
uses standard Internet Domain Name Servers (DNSs) to
provide information to client computerS related to remote
communication Servers which provide communication Ser
vices for particular Server computers. Information related to
operation and configuration of standard DNSS is found in
Requests For Comments (RFCs) 1034, and 1035.
0191). In FIG. 24, client computer 1451 is coupled to
remote communication Server 1420 and Server computers
1410 via Internet 1440 in an arrangement similar to that
shown in FIG. 14. For illustration, the host names of server
computers 1410 are A1.B.C, A2.B.C, and A3...B.C and have
Ip addresses 1.2.3.20, 1.2.3.30, and 1.2.3.4.0, respectively,
and the host name and IP address of remote communication
Server 1420 is AO.B.C and 1.2.3.10.

0192 A domain name server (DNS) 2410 is coupled to
LAN 1430 and provides name resolution services for the
domain B.C which corresponds to a range of IP addresses of
the form 1.2.3.* and provides address resolution services for
the domain 3.2.1.IN-ADDR.ARPA. A DNS 2420 is coupled
to Internet 1440 and provides name resolution services for
the domain C. Another DNS 2442 is coupled to Internet
1440 and provides name resolution services for the domain
IN-ADDR.ARPA, the standard top-level domain used for
reverse name resolution (host lookup by IP address rather
than host name). Client computer 1451 is configured to use
a DNS 2424 as its default DNS.

0193 Referring to FIG. 25, the arrangement of software
modules executing on client computer 1451 is similar to that
shown in FIG. 16. In this embodiment, network lookup
module 1640a includes a DNS resolver 2510 that is used to
access server information from DNS 2424. Both directory
manager 1610a and name resolution service 1650a are
coupled to network lookup 1640a.
0194 In operation, when client application 1510 requests
resolution of a host name from Winsock2 1520, Winsock2
1520 passes the name resolution request to a name resolu
tion service. In this embodiment, Winsock2 is configured to
use name resolution service 1650a as the first service to use
when attempting to resolve a host name.
0.195 As an illustrative example, client application 1510
requests resolution of host name A1.B.C. Name resolution

Nov. 29, 2001

service 1650a receives the request from Winsock2 1520 and
first examines database 1620 to see whether the information
related to host A1.B.C is already stored. If the information,
including the host’s IP address (1.2.3.20) is available, name
resolution service 1650a returns the host's IP address to
WinSock2 1520.

0196. If information related to host A1.B.C is not already
stored in database 1620, name resolution service 1650a
attempts to retrieve information about the host from an
Internet DNS. In particular, name resolution service 1650a
initiates a query to DNS resolver 2510 to obtain the infor
mation.

0197) DNS resolver 2510 makes a standard query to DNS
2424 (its default DNS) to obtain the IP address associated
with the host name A1.B.C (QNAME=A1.B.C, QTYPE=A;
see RFC 1035). DNS 2424 either has cached the information
from a previous request and provides the information imme
diately, or requests the information from another DNS, such
DNS 2410, the DNS for the B.C domain. DNS 2424 returns
the IP address 1.2.3.20 in response to the query. Following
standard operation of an Internet DNS, if DNS 2424 did not
know of a DNS for the B.C domain, it could locate a DNS
for the B.C domain recursively, for instance, by first que
rying a DNS 2420 that serves the C domain.
0198 If client application 1510 instead specifies a host in
a communication request directly by its IP address, then
DNS resolver 2510 does not have to perform name resolu
tion since the IP address is known.

0199 When client application 1510 attempts a connec
tion through Winsock2 1520 to a resolved host (a host whose
IP address is known, for instance, as a result of a prior name
resolution by DNS resolver 2510), Winsock2 passes the
request directly to LSM 1540. LSM 1540 uses directory
manager 1610a to determine whether a remote communi
cation Server is associated with that Server address. For
example, client application 1510 can request to communi
cate with Ip address 1.2.3.20. LSM 1540 passes the IP
address to directory manager 1610a which looks up that IP
address in database 1620. If the database already contains
information related to a host with IP address 1.2.3.10 (that
is host A1.B.C) it returns the IP address of its remote
communication server (1.2.3.10).
0200. If directory manager 1610a does not locate the
server address in database 1620, it initiates a DNS request by
DNS resolver 2510 to obtain information related to the
server computer with IP address 1.2.3.20.
0201 In obtaining information related to the server com
puter with IP address 1.2.3.20, DNS resolver 2510 makes a
query for information related to the host with that IP address
using standard reverse DNS conventions. In particular, DNS
resolver 2510 makes a query to DNS 2424 for the name
20.3.2.1.IN-ADDR.ARPA and records of type “TXT"
(QNAME-20.3.2.1.IN-ADDRARPA, QTYPE=TXT).
DNS 2424 either has cached the information from a previous
request which it provides immediately, or requests the
information from another DNS, such as DNS 2410, the DNS
for the 3.2.1.IN-ADDR.ARPA domain. In standard opera
tion of Internet DNS, DNS 2424 can locate a DNS for the
3.2.1.IN-ADDR.ARPA domain recursively by starting at
DNS 2422 that serves as the top-level DNS for the IN
ADDR.ARPA domain.

US 2001/0047421 A1

0202) After DNS 2424 returns one or more records of the
TXT type to DNS resolver 2510, network lookup module
1640 parses the TXT records to determine whether any have
the Syntax of a record which contains information related to
a remote communication Server associated with host
1.2.3.20. In this case, one or the records identifies host
A0.B.C with IP address 1.2.3.10 as being a remote commu
nication Server for the Server computer with address
1.2.3.20. Network lookup provides this information to direc
tory manager 1610 which stores the information in database
1620 and provides the address of the remote communication
to LSM 1540.

0203 Referring to FIG. 26, DNS 2410 is a standard
domain name Server that includes a name Server application
2630 and an administration application 2620 both coupled to
a host database 2610. An administrator of DNS 2410 uses
administration application 2620 to add and update records
associated with server computers 1410 (FIG. 24). Other
computers (such as other DNS computers) access informa
tion in host database 2610 over Internet 1440 through name
server application 2630.
0204 Referring to FIG. 27, host database 2610 includes
multiple records for each computer in its domain. For
instance, records associated with Server computer A1.B.C
include a host name record 2710, which associates host
name A1.B.C with IP address 1.2.3.20, and a TXT record
2720 which associates the host with name A1.B.C with the
remote communication server with host name A0.B.C. The
data field begins with the string “SSS:” which signifies that
the record identifies a remote communication server. This
syntax allows network lookup 1640a (FIG. 25) to distin
guish this type of record from other TXT records that are not
related to remote communication Servers.

0205 Host database 2610 also includes a record that
allows access to the name of the remote communication
server via the IP address of the server computer. For
instance, record 2730 is a pointer record which associates
the name 20.3.2.1.IN-ADDRARPA with the host name
A1.B.C. A DNS uses this association to then retrieve TXT
record 2720 for the host. Host database 2610 can alterna
tively include a TXT record 2740 that directly associates the
name 20.3.2.1.IN-ADDR.ARPA with remote communica
tion server AO.B.C.

0206. In other embodiments, additional information can
be stored in the data field of the TXT record. For instance,
in one alternative embodiment, the protocol and porte indeX
on the remote communication Server to which communica
tion should be initiated is explicitly identified in the TXT
record. Also, remote communication Servers can be specified
using their IP addresses rather than their host names, thereby
avoiding the additional host name lookup required to trans
late the host name of a remote communication Server to its
IP address.

0207. In another alternative embodiment, the TXT record
for a server computer includes a “time to live” (TTL) field
that Specifies the duration that a client computer can use the
record. After the TTL interval expires, measured from the
time that the client computer obtained the record from a
DNS server, the client computer requests a new copy of the
record to determine the remote communication Server to use
to communicate with a the server computer. The new TXT
record may identify a different remote communication

20
Nov. 29, 2001

Server for the Server computer. In an arrangement in which
multiple remote communication Servers are configured to
communicate with a particular Server computer, the DNS
server that provides the TXT record may identify a different
remote communication Server in response to different
requests, for instance, to distribute the load on the available
remote communication Servers. A client computer that
receives a particular TXT record will use the remote com
munication server identified in that record for the TTL
interval, and then will request a new TXT record, which may
identify a different remote communication server. Note that
the TXT record itself may have a separate time to live
quantity associated with the time that a DNS server servic
ing a client, such as DNS 2424, keeps a TXT record before
it expires. The TTL field in the TXT record is associated with
the interval measured from the time that a client receives the
record from a DNS, Such as DNS 2424, not the time interval
measured from the time the original DNS, such as DNS
2410, provided the record in the first place.
0208. In another alternate embodiment, at the time that
DNS resolver 2510 makes a query to determine the IP
address associated with a particular host name, DNS
resolver 2510 also makes a query for additional information
related to the host A1.B.C. In particular, it requests all
records of type “TXT" (QTYPE=TXT) that are associated
with that host. DNS 2424 returns Zero or more records of this
type to DNS resolver 2510 using the same mechanism by
which it provided the host address records. Network lookup
module 1640 parses the TXT records to determine whether
any have the Syntax of a record which contains information
related to a remote communication Server associated with
host A1.B.C. In this case, one of the records has the proper
Syntax and identifies host A0.B.C as being a remote com
munication server for server computer A1.B.C. Network
lookup 1640a provides this information to name resolution
Service 1650a which stores the information in database
1620.

0209. Other combinations of elements described in the
above embodiments may alternatively be used. For instance,
the first embodiment uses a client computer which accesses
the Internet through a gateway computer. Other described
embodiments combine the functionality of the client com
puter and the gateway computer into a single computer. In
embodiments that combine the functions, Separate comput
erS could equivalently be used. Similarly, the functions of a
remote communication Server and a Server computer may be
hosted on Separate computers, or hosted on a single com
puter. If their function is hosted on a Single computer, the
communication passing between the remote communication
Server and the Server computer does not have to pass over a
data network.

0210. In the described embodiments, information related
to a Server computer, and in particular information associ
ating a Server computer with a remote communication
Server, is Stored in Some combination of a directory Server,
a list Server, or on the Server computer itself. Other Storage
locations for the information may equivalently be used. For
example, information related to loadable modules may be
Stored on a centralized directory Server. Also, the function of
a DNS may be extended so that, in addition to providing a
translation of a host name to its associated IP address,
additional information, including an address of a remote
communication Server, may be provided. In the case that

US 2001/0047421 A1

additional information is stored on the DNS computers and
retrieved along with the IP address of a server computer,
there is no explicit request for the information. The addi
tional information is provided in response to the request for
the server computer's IP address. The address of a remote
communication Server associated with a server computer
may also be provided without an explicit request in other
Situations. For example, the information may be provided in
the header of information retrieved from a server computer.
If the server computer is a Web server, the address of a
remote communication Server associated with it may be
provided in the header of HTML documents retrieved from
the server. The client computer is then responsible for
detecting and extracting the information from those HTML
documents as they are passed to an application.

0211) If the function of a remote communication server
and a server computer are combined on a Single computer,
the host portion of the address of a Server computer and the
remote communication Server would, in general, be the
Same. Communication can be delivered to the System on the
Single computer by using different port indices for the
function of the server computer and the function of the
remote communication Server. Alternatively, or in addition
to, using a different port index, communication from the
client computer to the Server computer can use a different
protocol indeX than communication from the client com
puter to the remote communication Server. Communication
can be routed to the appropriate System on the Single
computer based on the protocol index.

0212. In the above embodiments, there may be some
remote communication Servers that do not advertise their
address in a directory Server, in a list Server, or in a Site file.
For example, access to a particular remote communication
Server may be limited to particular Subscribers of a Service
while others use the standard TCP interface. In Such a case,
a manual entry of the remote communication Server infor
mation may be possible. Also, in the cases that a directory
Server is used, requests from a gateway computer may be
batched and communication between a gateway computer
and a directory Server can occur less frequently thereby
reducing the load on the directory Server.

0213. In other related embodiments, multiple alternative
protocols can be Supported. Instead of passing all non-TCP
communication through an XTP module, a matrix Switch
feeding multiple protocol modules can be used. The redi
rector then also determines which protocol module to use.
Software modules, including the “hook,” the redirector, or
the HTTP Engine, may be incorporated into a layered
Winsock protocol under the Windows 95 or Windows NT
operating System.

0214) Additional application protocol spoofing can be
performed. For example, an FTP module can be inserted
between a redirector and the XTP module to spoof FTP
communication in the same way that a HTTP Engine is used
to spoof the HTTP application protocol. Various techniques
may be used to initialize a Socket using an alternative
protocol. Rather than recording requests in a tracing buffer,
the Socket may be initialized directly into a desired State.

0215. In addition to adding alternative transport protocols
which use IP, replacing the IPlayer as well may be feasible
in some situations. For example, if IP is layered on an ATM

Nov. 29, 2001

network, both TCP and IP can be bypassed in a similar
arrangement to that used to bypass TCP in the described
embodiments.

0216 Embodiments of this invention can make use of
multiple TCP segments rather than using XTP or some other
alternative transport protocol. In Such embodiments, appli
cation protocol Spoofing, multiplexing, and Server Site
aggregation (Service of multiple server computers using a
Single remote communication server) can be used over TCP
channels. In addition, the parameters of the TCP connections
on different Segments may be different resulting in improved
end-to-end characteristics.

0217. Other embodiments may address channel charac
teristics other than throughput and latency, or address
throughput and latency using different types of communi
cation techniques. For example, achieving low latency over
high capacity but high delay channels may best be achieved
by using an alternative transport protocol that makes use of
forward error correction rather than error detection and
retransmission. In addition, the alternative protocols can be
used to control a quality of Service on certain data Streams
while still allowing the application to use TCP without
modification.

0218 Software used to implement various components of
the invention may be Stored on a variety of computer
readable media, including fixed or removable magnetic or
optical disks. Alternatively, it may be Stored remotely from
the computer on which the modules execute, and accessed
using a data network.
0219. It is to be understood that while the invention has
been described in conjunction with the detailed description
thereof, the foregoing description is intended to illustrate
and not limit the scope of the invention, which is defined by
the Scope of the appended claims. Other aspects, advantages,
and modifications are within the Scope of the following
claims.

What is claimed is:
1. A method for communicating between a client com

munication System and a plurality of Server communication
Systems over a data communication network comprising:

accepting a request to communicate with one of the Server
communication Systems including receiving an identi
fication of Said Server communication System;

using the identification of Said Server communication
System, determining a set of one or more transport layer
protocols for which the Server communication System
is configured to communicate and Selecting one of the
Set of transport layer protocols for communicating with
the Server communication System; and

communicating with the Server communication System
Over the data communication network using the
Selected transport layer protocol.

2. The method of claim 1 wherein determining the set of
transport layer protocols includes retrieving information
related to the Server communication System from a directory
Service computer over the data communication network, and
wherein the address of the directory Service computer is
related to the identification of the Server communication
System.

US 2001/0047421 A1

3. The method of claim 2 wherein the identification of the
Server communication System includes a network address of
the Server communication System, and determining the Set of
transport layer protocols includes determining the address of
the directory Service computer from the network address of
the Server communication System.

4. The method of claim 3 wherein the network address of
the Server communication System includes an Internet Pro
tocol address of Said System, and the directory Service
computer provides an Internet Domain Name Service.

5. The method of claim 3 wherein the network address of
the Server communication System includes a host name of
Said System, and the directory Service computer provides an
Internet Domain Name Service.

6. The method of claim 1 wherein determining the set of
protocols further includes monitoring prior communication
with the Server communication System and updating the Set
of transport layer protocols based on the monitored com
munication.

7. The method of claim 6 wherein monitoring the prior
communication includes detecting portions of application
layer communication between an application and the Server
communication System.

8. A method for communicating between a client com
munication System and a plurality of Server communication
Systems over a data communication network comprising:

accepting a request to communicate with one of the Server
communication Systems, including accepting a request
to communicate with a Server computer at a first
network address over the data communication network;

Selecting a Second network address for communicating
with the Server communication System; and

communicating with the Server communication System
over the data communication network, including com
municating with a computer at the Second network
address.

9. The method of claim 8 wherein the second network
address is different from the first network address.

10. The method of claim 8 wherein selecting the second
network address includes retrieving information related to
the Server communication System from a directory Service
computer over the data communication network, and
wherein the address of the directory Service computer is
related to the first network address.

11. A client communication System coupled to a data
network for communicating with a plurality of Server com
munication Systems each configured to communicate with
the client communication System using at least one of a
plurality of transport layer protocols, comprising:

a transport layer module implementing the plurality of
transport layer protocols for communicating with the
Server communication Systems,

a layered communication module coupled to the transport
layer module and including a protocol Selector for
receiving a request to communicate with a requested
one of the plurality of Server communication Systems
and, using the request to communicate, choosing one
the plurality of transport layer protocols for communi
cation with the requested Server System;

a directory Service module coupled to the layered com
munication module for accessing over the data network

22
Nov. 29, 2001

information related to the transport layer protocols with
which the requested Server communication System is
configured to communicate.

12. The communication system of claim 11 wherein the
directory Service module includes a module for retrieving
the information related to the transport layer protocols from
a directory Service computer over the data network.

13. The communication system of claim 12 wherein the
directory Service module is an Internet domain name reso
lution module, and the directory Service computer is an
Internet domain name Server.

14. A Server communication System coupled over a data
communication network to a plurality of client communi
cation Systems, comprising:

a transport layer module for communicating with the
client communication Systems and one or more Server
application modules,

a communication application module coupled to the trans
port layer module for maintaining a transport layer
communication Stream with each of a number of client
communication Systems, for accepting requests over
the communication Streams from client communication
Systems to communicate with the one or more Server
application modules, and for passing information
between the client communication Systems and the
Server application modules over the communication
Streams,

an address translation table for associating network
addresses provided by client communication systems
as identifiers of Server application modules with local
network addresses used for communicating between
the communication application module and the Server
application modules, wherein the address translation
table is configured to associate more than one local
network address with each network address provided
by a client communication System, and the Server
communication System further includes a Server Selec
tion module for Selecting one of the local addresses in
response to a request to communicate from a client
communication System.

15. The communication system of claim 14 wherein the
Server Selection module includes a table for Storing an
asSociation between a client communication System and a
Selected local network address.

16. Software stored on a computer readable medium for
causing a computer to perform the functions of

accepting a request to communicate with one of a plural
ity of Server communication Systems, including receiv
ing an identification of Said Server communication
System;

using the identification of Said Server communication
System, determining a set of one or more transport layer
protocols for which the Server communication System
is configured to communicate and Selecting one of the
Set of transport layer protocols for communicating with
the Server communication System; and

communicating with the Server communication System
Over the data communication network using the
Selected transport layer protocol.

17. The software of claim 16 wherein determining the set
of transport layer protocols includes retrieving information

US 2001/0047421 A1

related to the Server communication System from a directory
Service computer over the data communication network, and
wherein the address of the directory Service computer is
related to the identification of the Server communication
System.

18. Software stored on a computer readable medium for
causing a computer to perform the functions of

accepting a request to communicate with one of a plural
ity of Server communication Systems, including accept
ing a request to communicate with a Server computer at
a first network address over the data communication
network;

Nov. 29, 2001

Selecting a Second network address for communicating
with the Server communication System; and

communicating with the Server communication System
Over the data communication network, including com
municating with a computer at the Second network
address.

19. The Software of claim 18 wherein selecting the second
network address includes retrieving information related to
the Server communication System from a directory Service
computer over the data communication network, and
wherein the address of the directory Service computer is
related to the first network address.

