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Determining a component of a wave field

Technical field

The present invention relates to determining a wave field or a component of a wave

field in the Earth’s subsurface, in particular an anisotropic subsurface.

Background

Propagation of a wave through a medium can be described by a “wave equation.” The
wave equation can typically be solved to determine the magnitude or other property of

the wave as a function of time and space.

Geophysical surveys may be performed to explore the subsurface of the Earth. For
example, seismic or electromagnetic surveys may be performed where an acoustic or
electromagnetic (EM) wave is transmitted from a source into the subsurface and
detectors are used to detect a response. Based on the detected response, properties
of the earth may be determined. For example, the response may comprise time-series

data with features associated with interfaces in the subsurface.

In seismic reflection surveying, high amplitude events in seismic data may be related to
interfaces across which rock properties change abruptly and reflect a significant
amount of energy back to the detectors. Therefore the high amplitudes in the data may

be indicative of subsurface interfaces.

In typical processing of seismic data, the time between the transmission of the seismic
wave and the detection of the high-amplitude event is often regarded to be the travel
time of a seismic wave to the interface and back due to a reflection at the midpoint
between source and receiver. Travel time is therefore typically considered a proxy for
depth, and plotting of seismic data as a function of travel time may therefore indicate

the depth relationship of amplitude features and hence subsurface interfaces.

In reality however, the seismic velocity of the subsurface layers through which the
wave has passed is not constant (typically increases with depth), and therefore in order

to obtain a more realistic impression of the location of interfaces, the data are depth
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converted, i.e. plotted as a function of depth, based on a pre-determined velocity profile

or velocity model.

Data for source-receiver pairs are plotted at a mid-point therebetween. The data from
all such pairs can therefore appear in a time or depth record at that midpoint, with
amplitude events appearing as though they derive from a normal incidence source-
receiver arrangement. Whilst this can give a suitable representation of the Earth’s
structure where layers are horizontal and planar, it will be appreciated that a seismic
wave may be refracted along its propagation path, be reflected from sloping interfaces
and interact with different layers in the incident and reflected directions. Therefore, the
travel time data and depth converted data records may suggest a false geometry. For
example, a high amplitude event may occur in the data at a particular depth position

where there is in reality no reflector at that depth position.

This is a known issue in seismic data processing and in the interpretation of seismic
reflection data, particularly in geologically complex structures. Correction of the data
may be attempted by a process of migration. Seismic migration serves to reposition
seismic data to their representative, geometrically faithful, positions in the data set.
Migration algorithms have been developed for migrating seismic data. It is useful to
understand the wave propagation of the seismic wave through the subsurface in order
to perform migration. In simple terms, by tracing the route that the wave has taken
from the source to the reflector and back to the surface, it is possible to identify the
receivers at which the energy associated with that reflector has arrived and the time of
arrival of that energy. In order to do this, a velocity model of the subsurface is required.
This may be obtained from a model building package and may be based on well data
or obtained in other ways, for example estimated, perhaps based on regional

geological knowledge.

A further complicating factor is anisotropy of the subsurface. For example, particular
rock types may have a strong directionality of propagation. The seismic velocity in
different (e.g. orthogonal) directions may be significantly different, and may differ

between layers.

Full wave-field migration techniques have been developed to model the development of

the wave in time and at closely spaced positions spatially in 3D across a region of the
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subsurface. Such techniques may involve solving a wave equation of the kind
mentioned above, to obtain the wave field at the different locations, with respect to time

relative to a source signal emission at different locations.

These migration algorithms have as an input standard seismic data. The seismic data
could be organized as common shot gathers, or in some other domain, such as plane
wave or delayed shot domains. The seismic data may be provided in a transformed
domain (compared to the originally acquired seismic data), for example a combined
domain of linear phase for shot location for delayed shot migration, in which the
combination of the data is performed by tau-p transform to the shot location. The tau-p
transform may also be performed for receiver location to perform a plane wave
migration. The wavefield solution of the wave equation provides a set of complex
values at each target location/point, providing for example amplitude, phase, wave

number, etc. These value are a crucial input components for the migration algorithms.

Many different wave equation techniques have been developed, and it is of interest to
develop a wave equation technique for use in seismic migration in the case of an
anisotropic subsurface. Some known migration techniques are now described in more

detail.

Nowadays, accurate seismic anisotropic models are recognized as key points in
imaging deep challenge areas for complex structures, because they describe the
discrepancy of directional propagation speed of seismic waves, which is much more
realistic for overburden geological structure such as bedding sediments with fractures.
The tilted transverse isotropic (TTI) or tilted orthorhombic anisotropy (TOA) are
generally necessary for imaging such complicated anisotropic structures (Zhang and
Zhang, 2008; Zhang and Zhang, 2011; Fowler and King, 2011). Given an accurate
anisotropic model, migration algorithms are destined to provide the artifact-free
subsurface images. This may require applications of least-squares migration algorithms
(Lambaré et al., 1992; Nemeth et al., 1999) and it may become even more complicated
when working on imaging the elastic model (Jin et al., 1992). Current integral-based
migration algorithms, such as Kirchhoff migrations, are known to be very effective as
the ray tracing could be easily adapted to the anisotropic Eikonal equation (Han and
Xu, 2012). These algorithms are developed applicable for a single mode of waves such

as quasi-P wave, which allows the migration algorithms to be linearized so as to reduce
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computational cost. However, for wave-equation-based algorithms, an efficient and
accurate simulation of a single mode wave, such as quasi-P or quasi-S wave, is
essential to the development of successful migration algorithms, such as reverse time
migration (RTM) (Baysal et al., 1983; McMechan, 1983; Whitmore, 1983).

Historically, there are different ways for numerical simulation of single mode of waves.
First of these is to solve the full elastic wave equations and then to split the wavefields
to separate out the quasi-P wave for further analysis. The wavefield separation may be
effective for the isotropic case (Sun et al., 2004), but it is not an easy task for
heterogeneous anisotropic cases and might be extremely computationally inefficient
(Yan and Sava, 2009; Cheng and Fomel, 2013).

Another way to reduce the computational cost while still maintaining the transverse
isotropic (Tl) anisotropic wave propagation is to apply an acoustic approximation
(Alkhalifah, 2000) to the Tl equation by setting the shear wave velocity along the
symmetry axis to zero. This leads to a scalar fourth-order differential equation.
However, Alkhalifah (2000) does not propose any workable numerical technique for
obtaining the wave field from this fourth-order differential equation. Zhou et al. (2006)
decompose this fourth-order differential equation into a coupled system of 2x 2 second-
order differential equations. This results in a more computationally efficient scheme
than the original elastic equations. However, applications to the TTI media with variable
TTI symmetric axis, especially with existence of abrupt changes on the TTl symmetric
axis, demonstrate that this system is not numerically stable: the weak instabilities arise
and the noises grow linearly in time (Liu et al., 2009, Zhang et al.,, 2011). These
instabilities have been well analyzed and solutions have been proposed (Bakker and
Duveneck, 2011; Zhang et al., 2011, Bube et al., 2012). Although the instabilities could
be resolved, setting zero the shear wave velocity along the symmetry axis doesn’t rule
out the existence of the pseudo-shear waves, which are the intrinsic solutions of this
couple system. People have tried various ways to attenuate them (Zhang et al., 2009;
Guan et al. 2011); or simply ignore the presence of these shear wave artifacts as
current industry practices of TTI RTM, with the expectation that they would be canceled

out by imaging conditions and migration stack.

Another way is to compute directly the decoupled quasi-acoustic P wave equation.

Given constant anisotropic parameters ¢ andd , the decoupled equation could be
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solved with pseudo-spectral algorithm (Etgen and Brandsberg-Dahl, 2009). Therefore,
it allows us to take a set of solutions of different constant £ and &, proceeding with an
interpolation scheme, to numerically solve the quasi-P wave with anisotropic
parameters that are mildly changing in spatial domain (Chu et al. 2013). For VTI
(transverse isotropic with a vertical symmetry axis) media, the interpolation scheme is
two dimensional with respect to € ando . But for TTI media, if the symmetrical axis
also varies spatially, two additional dimensions are necessary for the interpolation.
This pseudo-spectral plus interpolation method may need to compute a huge set of
combination of anisotropic parameters and can be very inefficient when it is applied to
a very complicated model. When the complexities of the anisotropic model are mild, the
decoupled equation may be solved by approximately optimized separable method (Liu
et al., 2009), which can be considered as a special case of low rank approximation
(Fomel et al., 2012). The computational cost may be lower than pseudo-spectral plus
interpolation method, but still very inefficient and inaccurate.

Any discussion of documents, acts, materials, devices, articles or the like which has
been included in the present specification is not to be taken as an admission that any
or all of these matters form part of the prior art base or were common general
knowledge in the field relevant to the present disclosure as it existed before the priority
date of each of the appended claims.

Summary of the invention

Throughout this specification the word "comprise", or variations such as "comprises" or
"comprising”, will be understood to imply the inclusion of a stated element, integer or
step, or group of elements, integers or steps, but not the exclusion of any other
element, integer or step, or group of elements, integers or steps.

According to a first aspect, the present invention provides a method of determining a
wave field in an anisotropic subsurface of the Earth, comprising: numerically solving a
decoupled quasi-acoustic single wave mode wave equation based on spatially varied
anisotropic parameters, to determine the wave field in the anisotropic subsurface,
wherein the wave equation comprises a spatial differential operator, and wherein all
terms of the wave equation that contain one or more of the anisotropic parameters are

separated out from the spatial differential operator.
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According to a second aspect, the present invention provides a method of determining
a wave field, or a component thereof, in an anisotropic subsurface of the Earth, the
method comprising:

providing an operator S having components based on subsurface anisotropy
and wavefield phase direction, the phase direction being obtained from an estimated
gradient of a predetermined wave field; and
using the operator S to determine the wave field, or said component thereof.

According to a third aspect, the present invention provides a method of processing
data, comprising:

(a) providing first data associated with an anisotropic subsurface of the
Earth;

(b) numerically solving a wave equation to determine a wave field or
component thereof in the anisotropic subsurface; and

(c) processing the first data using the determined wave field or component
thereof to produce second data associated with said subsurface.

Various aspects of the invention are provided as set out in the claims appended hereto.

Any aspect may have further features as described in relation to any other aspect and
features between aspects may be combined and interchanged.

Embodiments of the invention provide, advantageously, techniques for numerically
calculating the wave field of a wave propagating in an anisotropic medium. In
particular, the techniques are advantageous in terms of reduced numerical or

computational cost and simplicity of implementation.

Existing technology typically uses coupled equation systems which describe wave
propagation and provide wave field solutions for several wave modes together.
Typically, coupled systems for the quasi-P wave and quasi-S modes are used. Such a
system has, intrinsically, two eigenvalues associated with the quasi-P wave and quasi-
S wave modes respectively. In existing coupled equation techniques, artifacts and
noise in the wave field solutions are found to appear due to the inclusion of the quasi-S
wave mode. Coupled equation solutions have generally high numerical cost.
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Techniques for numerically calculating the wave field of a seismic wave propagating in

anisotropic regions of the earth have been lacking.

Description and drawings

There will now be described, by way of example only, embodiments of the invention

with reference to the accompanying drawings, in which:

Figure 1 is a flow chart representation of a method of determining a wave field

according to an embodiment of the invention;

Figure 2 is a schematic representation of a computer device for use in determining

wave field according to an embodiment of the invention;
Figure 3 is a schematic representation of apparatus for acquiring data;
Figure 4 is a contour plot of wave field magnitudes for a VTI model wave field solution;

Figure 5 is a contour plot of magnitudes of an operator used to calculate the model

wave field of Figure 4;

Figure 6 is a contour plot of magnitudes of a composite operatorS‘Vu‘ in the wave field

of Figures 4 and 5;
Figure 7 is a contour plot of wave field magnitudes for a TTI model wave field solution;

Figure 8 is a contour plot of magnitudes of an operator used to calculate the model

wave field of Figure 7;

Figure 9 is a contour plot of magnitudes of a composite operatorS‘Vu‘ in the wave field

of Figures 7 and 8;

Figure 10 is a contour plot of the velocity model for a SEAM TTI salt model;
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Figure 11 is a contour plot of wave field magnitudes for the model of Figure 10 at time
t=1.6s,

Figure 12 is a contour plot of wave field magnitudes for the model of Figure 10 at time
t=2.4s,

Figure 13 illustrates three dispersion curves,

Figure 14 illustrates the amplitude of asymptotic correction terms,

Figure 15 illustrates two wave fields, and

Figure 16 illustrates a calculation carried out with an elliptical model.

Wave equation model

We first propose a pure cinematically-accurate quasi-P wave equation for complex
anisotropic models. This equation is obtained by decomposing the original pseudo-
differential operator of Alkhalifah (2000) into two numerical solvable terms: a differential
operator and a scalar operator. The resulted new quasi-P wave equation has
separated the anisotropic model parameters from the spatial pseudo-differential
operator and hence can be solved with traditional numerical schemes without
sacrificing its accuracy, i.e., no approximations have been applied and therefore it
maintains the same dispersion relation as that of the original pseudo-differential wave
equation. The differential operators in the equation are designed to be self-adjoint and
therefore can conserve the energy when the wave propagates. Then, we discuss a
numerical implementation of the proposed algorithm. The proposed quasi-P wave
equation has a similar form to an acoustic wave equation and can be implemented
similarly. In our current implementation, we use pseudo-spectral algorithm for the
spatial derivatives and second-order accuracy finite-difference scheme for the time
derivative. Extensions of the new algorithm to TTI and TOA media are straightforward

and have been briefly mentioned in the texts.

We validate our approach with examples of the impulse responses of the VTI/TTI

models and illustrate the functionalities of the terms in the new pure quasi-P wave
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equation. Finally, we demonstrate the effectiveness and robustness of our quasi-P

equation with an example of the quasi P wave propagations in a SEAM TTI salt model.

Decomposition of pseudo-differential operator
In the following, for simplicity we will work on the VTI case first. This requires us to

solve the following scalar pseudo-differential equation (Alkhalifah, 2000):

2 2 2 2 2 2 \? 2 A2
Gu_¥ a_(l+28)+a_2+\/£a_(l+28)+a_j 8e-8) " hi=0. )

or 2| on’ oz on’ oz’ on® oz*
2 2 2
Where = + is the horizontal Laplacian operator; v,is the velocity along
on*  ax* oy* ’

the symmetry axis; € and 0 are the Thomsen (1986) anisotropic parameters, as
defined in Thomsen (1986). The definitions of these parameters as provided in
Thomsen (1986; see Reference section below) are incorporated in the present
disclosure by reference. Note all of these parameters are spatially-varied. Eq. 1
governs the quasi-P wave propagation, although the amplitude of its solution might be
quite different from a real elastic quasi-P wave. This is because of the decoupling of
full elastic equations after which all the interaction of different wave modes are omitted,
including the conversion to and from other wave modes. However, eq. 1 shares the
same dispersion to that of elastic quasi-P wave, indicating that its phase is accurate
comparing with the elastic quasi-P wave. Although eq. 1 is very promising for single-
mode wave propagation, unfortunately, it represents a pseudo-differential operator
equation that cannot be solved with traditional finite difference numerical schemes.

Alkhalifah (2000) does not numerically solve the equation 1 in complex media.

The formulation of this pseudo differential operator suggests a numerical solution in
which the spatial gradient components of the current wave field are determined first,
forming the combination of the gradient components inside the square root, and then
taking the square root of that combination. This does not work in traditional schemes.
We re-write the equation, and replace the pseudo-differential operator with two

operators which are not any more pseudo-differential operators.

In order to describe our approach, we start with its corresponding dispersion relation of

eq. 1, which is represented as follows:
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2

sz —%O(k;(nzgﬁ K2+ (k2 (1426 )+ k2] —8(e — 8 Wik jju -0. )

Here @ is the angular frequency. The spatial wavenumber vector k are as usual

defined as Ez(kx,ky,kz). Therefore, k,is the horizontal wave number with

k,f = kf +ky2, k, is the vertical wave number. Eq. 2 can also be rewritten as:

[@2_%; (n;<1+28>+n5+J(n;<1+28>+n§)2—8<s—6>n;n§j}u=o, ®)

in which n= (nx,ny,nz) is the unit vector of phase direction and is defined as

|Wl

n=

(4)

i

Let’'s define an auxiliary scalar operator S as
S = %(n,f(l + 28)+ n’+ \/(n,f(l + 28)+ nf)z - 8(8 —5)n,fn22 j . (5)

Now, eq. 3 becomes

(> —12K2S k=0 (6)
In space domain, the operator —k? is expressed as V ¢V where symbol V e denotes

divergence, and V denotes gradient. Transforming Eq.6 from frequency-wavenumber

domain back to time-space domain results in the following equation:
a—zzl—VO(ngVu)zO. (7)
ot

This equation represents the corresponding partial differential equations of eq. 6 in
time-space domain. This defines a model for quasi P-wave propagation in an
anisotropic medium, such as in the Earth’s subsurface, solvable with easy to implement
and efficient numerical methods to provide a wave field in space and time. It is not a
pseudo-differential equation anymore because we have separated out the anisotropic
terms from the derivatives. But this equation is a nonlinear wave equation since the

scalar operator S depends also on the solution of the wavefields. This scalar operator

can be calculated in the space domain as the vector n has its physical meaning: phase

direction of the wavefront. Because eq. 5 is not sensitive to the sign of components of

n (since all components have even number of powers), we could just use the
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Vu

components of to replace the components of N in eq. 5. The scalar operator S is

Vu
crucial in our approach; it actually plays the role of the dispersion relation for the whole
wave propagation. It controls the propagation speed of quasi-P wave (an anisotropic
propagation operator), it depends not only on the phase direction of the propagation at
each spatial point, but also on the anisotropic parameters at each individual spatial
location. And the computation of this operator needs only the anisotropic parameter

which is varied spatially, and the gradient of the current wave field.

It can be noted that wave propagation is calculated in time steps. In order to compute
the next time step of the wavefield, the current wavefield is needed. A starting wave
field is defined, providing a boundary condition or starting point for the calculations. A
predefined source wavelet emitted at a source location can be defined and used to

allow this starting wave field to be determined.

The velocity model is pre-determined, e.g. estimated by other algorithms and/or
provided in a model building package. The model building package can include many
algorithms such as tomography inversion, full wave inversion, salt interpretation, etc.
The velocity is a required input and supposed to be known for migration algorithms.
The anisotropy parameters are parts of the model for wave propagation (input), and
also contained in the velocity model. They could be estimated by the model building

package.

The differential operator in eq. 7 is a self-adjoint operator and therefore conserves the
energy. This should guarantee the stability of the wave propagations even for the

cases with abrupt spatial changes of the model and anisotropic parameters.

The generalization from VTI to TTI or TOA is very simple in our approach. For TTl we
need just to project the gradient vector of wavefield Vu to the local coordinates, in
which the local z axis is the symmetrical axis of anisotropy, and then apply exactly the

same procedure to eq. 5. Similar analysis can be generalized to TOA media.

An alternative solution from eq. 6 can be implemented with its equation described

as follows:
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o’u
— —VSVu=0 (8)
ot
Here, the pseudo-differential operator in eq. 1 is decomposed into two operators: a
scalar operator and a Laplacian operator. This equation uses directly the Laplacian

operator and has a form similar to an acoustic wave equation.
Decomposition into spherical terms

The numerical calculation of scalar operator § in the wavenumber domain requires the
anisotropic parameters in equation 7 to be constant, and may therefore be calculated in

the space domain with the phase direction approximated asymptotically:
n=Vu /‘Vu‘ .
To analyse theoretically the effect of the asymptotic approximation term, we rewrite the

scalar operator in equation 7 as:

1
S=1+AS, AS= 5(\/(;1,3(“ 2¢ )+ nz)2 —8(g =8 )njn? +2en} —1) _ ©)
Using this expression for the scalar operator, the wave equation becomes
52
a—?=V§V2u+V§V-(AWu) ) (10)
t

The first term of right hand side in equation 10 is the background wave equation. It may
be considered as a differential operator — the Laplacian operator, which does not

contain an approximation. The second term on the right hand side of equation 10 can
be considered as a correction term. The calculation of AS depends on the wave

propagation directions, which is an asymptotic approximation. Equation 10 may be

considered as a spherical decomposition of the original wave equation 1.

In Figure 13, dispersion curve 131 corresponds to a solution of equation 1, dispersion
curve 132 is a background dispersion curve corresponding the first term of the right
hand side of equation 10. Dispersion curve 133 will be discussed in relation to an
elliptical model below. The background dispersion 132 is illustrated for constant
anisotropic parameters £=0.25 and 8=0.1. The asymptotic correction is intended to

correct the phase from curve 132 to curve 131.
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In Figure 14, curve 141 shows the magnitude of the asymptotic correction AS
between the angles 0~360°. It is noted that the correction is relatively large compared
to the background dispersion: for this example, the maximum correction is about 50%
of the background dispersion. Therefore, this approach requires very accurate
estimation of direction of the wavefield. Lateral spatial sampling of computations larger
than the Nyquist sampling may be used. Therefore, the high wavenumber part of the
wavefields is aliased and might introduce errors in the calculation of the direction vector
in lower wavenumber range of wavefields, which makes this approach vulnerable to the

direction errors.

Decomposition into elliptical terms

In order to enhance the tolerance of the numerical errors of the directional vector in the
algorithm, we propose, instead of a spherical decomposition, an elliptic decomposition
as defined in equation 11 below. In this equation, we still decompose the pseudo-
differential operator into two operators: a differential operator and a scalar operator.
However, the Laplacian operator in the original decomposition is replaced with an
elliptic differential operator, while the scalar operator is also correspondingly modified
to ensure the accurate phase of wave propagation. The purpose of the new

decomposition is to reduce the magnitude of asymptotic term. This decomposition is:

0%u 5 0%u 5 0%u 1 8(e — & Jn’n?
;§3-=£v02;5+(1+2g)b2§3-5;, Se=7| 1+ [1- (11)

0%y o’ .
in which §, is the elliptic scalar. The term [vg 6—2+(1+2g)v§ O—ZJ may be written as
4 X

2

d d?
[vga—2+(1+23)v§ 8—2ju and interpreted as a differential operator times u and this
z X

differential operator (the term within the large brackets) is an elliptic differential

operator. To further analyse the asymptotic term in equation 5, we rewrite it explicitly

as (equation 12):
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T 20 a2 02O (142602 % |as, s, = 1] [i- 8e =8 Juzn
2 2 2 2 2
ot 0z o 0z Ox ((1 +2¢ )n f +n

f

Figure 13 shows the comparisons of the of the dispersion curves between the spherical

NN

approach and the elliptical approach. For constant anisotropic parameters ¢=0.25 and
8=0.1, curve 133 shows the dispersion curve of the first term of the right hand side of
equation 12. Comparing this curve with the spherical decomposition approach, we note
that the elliptic decomposition background is much closer to the desired exact solution

illustrated as curve 131. In Figure 14, the line 142 shows the magnitude of the

asymptotic correction AS@ in 0~360°. The maximum magnitude of AS, is 0.0868,

which is 7 times smaller than the spherical decomposition. Therefore, the elliptic

decomposition has much better tolerance to the direction errors.

First, we demonstrate the effects of this algorithm with an example of a simple impulse
in figure 15. This example is a simple TTI (tilted transversely isotropic) model, which is

homogeneous with the vertical velocity defined as 2000m/s and the Thomsen (1986)

anisotropic parameters as ¢ =024 and 0 =0.1 with a tilted angle of 30° and an
azimuth angle of 135°. The source wavelet for this example is a Ricker wavelet with a
maximum frequency of 24Hz. The computing grid is a 3D cube with lengths of 6.0km
and the spatial sampling as 15m in all 3 directions. The point source is put in the
middle of the grid. Figure 15a) plots a 2D seismic slice, located at middle of the Y
direction, of the 3D wavefield snapshot at time t=1.0s from spherical decomposition
approach; and Fig 15b) plots the same with elliptic decomposition approach. Both
approaches generate only pseudo-P wave and no shear wave exists. Both wavefields
yield the same propagation phase, but the elliptic decomposition approach gives a
more balanced amplitude. We further note that the numerical costs for spherical

decomposition and for elliptic decomposition are almost identical.
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The second example is a migration test with SEG SEAM model. We selected a shot
line for this test. Figure 16, the left hand side, illustrates the location of this shot line,
which contains 342 shots. We build a TTI RTM with the proposed pure quasi-P wave
equation and migrated these shots. Figure 16, the right hand side, shows the image
result by using the elliptical algorithm disclosed herein, which overlays with the density
model. It is clear that the image generated with the new quasi-p wave equation

matches the density model very well and presents clean and accurate result.

Numerical method

Equation 7 is solved numerically to obtain wave field components for each predefined
location within the subsurface at different wave propagation times. This is done by a
numerical estimation process. The numerical process to solve Equation 7 is relatively
straightforward to implement. The numerical solution of equations 10 and 11 is similar,
but the value of the scalars will be different because the differential operator is different
when compared to equation 7. The process has the steps S1 to S3 for determining the

wave field, as set out below and illustrated in Figure 1:

S1. Compute the gradient of the current wave field. The current wave field is for
example the wave field determined for a previous time step. This is initially the wave

field at a boundary time zero.

S2. Compute the scalar operator S . This is done as indicated in eq. 5. The
operator S is computed at each spatial location by using the gradient field from step S1
to obtain the phase direction components (ignoring the sign after projection to local
coordinate). Multiply the scalar operator and the square of the velocity with the gradient

of wavefield. These are all numerical values.

S3. Compute the divergence of the result from step 2, to determine the wave field at
the given time step. A value of the rate of change in time from the current wave field is
obtained, which in turn is used to give the field at the new time typically by using an

integral method.

The determined wave field of step S3 is used as the current wave field in step S1 of the

following propagation time step, as indicated by the loop in Figure 1.  The steps S1 to
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S3 are repeated at successive steps of propagation time, so that an accurate wave

field with respect to time and space can be determined.

As seen in Figure 1, an initial step SO in the process may be present for the provision
of the initial wave field. A further step S4 is also shown in Figure 1, whereby the
determined wave field is used to migrate seismic data. This is done once the
calculation of the wave field at each spatial location for all of the time steps has been
completed. Standard migration algorithms are arranged to use the wave field or
components thereof. The appropriate wave field for a desired travel time and location

of interest in the subsurface can be obtained from the solution method above.

Similarly, Equation 8 can be solved by a numerical estimation process with steps T1
and T2 as follows:

T1. Compute the gradient of the current wave field. The current wave field
is for example the wave field determined for a previous time step. This is initially the
wave field at the boundary at time zero.

T2. Compute the scalar operator S as seen in eq 5 for each spatial location
by using the gradient field from step T1 to obtain the phase direction components
(ignoring the sign after projection to local coordinate). Multiply the scalar operator and
the square of the velocity with the Laplacian gradient of the wavefield. A value of the
rate of change in time is obtained, which in turn is used to give the field at the new time

typically by using an integral method.

The gradient calculations within the relevant steps S1 to S3 or T1 to T2 of the above
methods can be performed using standard finite difference algorithms, or alternatively,

using standard Fast-Fourier Transform (FFT) methods.

The determination of the wave field when using the finite difference numerical
technique costs at most twice as much as that using the standard isotropic acoustic
wave equation solution. This is much faster than other approaches in anisotropic wave

propagation.

In order to obtain the gradient and divergence in the steps S1 to S3 above, first

derivatives (del and divergence) of the wave field need to be calculated, and an
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optimized numerical scheme could be used to calculate these simultaneously, which
can be efficient. Likewise, in order to obtain the Laplacian (del squared) in Equation
8, the first and second derivatives are needed and an optimized numerical scheme
could be used where the first and second derivatives of the wave field could be
calculated simultaneously and efficiently. For example, one may use the Fast Fourier
Transform (FFT) to compute these spatial derivatives. In this case, it requires only one
forward FFT and two inverse FFTs to obtain both first derivative and second derivative

simultaneously. Again, standard FFT algorithms are suitable.

When using the FFT numerical technique determination of the wave field is performed
at an additional numerical cost of just 50% more than the solution of the standard
acoustic wave equation for an isotropic medium. We notice that the numerical cost

increases minimally when moving from VTl to TTI or to TOA media.

Equation 8 uses the Laplacian operator directly. Therefore, an efficient numerical
scheme could be an easier to implementation. Comparing to eq. 7, equation 8 has

the same kinematic behaviour but different amplitude effects.

The integral method used to obtain the wave field in steps S3 or T2 can be a
standard time integral numerical method, for example a second-order accuracy of
finite-difference scheme of temporal integration or rapid expansion method (REM)
(Kosloff et al., 1989).

. . 0’ ,
In summary, the wave equation (equation 8) has the form a—zl =v; SV u. Numerically,
t

the wave field depends on spatial point X and time t, as could be expressed as U(x,t).
The task to solve the wavefield involves using the wavefield at a current time sample to
compute the wavefield of the next time sample. So, for the left hand of the equation
(second derivative on time) the method we use can be a standard scheme which we
refer to as the Integral method. For the calculation of this integral, we need know the
value of right hand of the equation, which contains spatial derivative of the wavefields
(first order in eq.7, and second on eq. 8). The conventional numerical schemes could
be used for this purpose, which is Finite Difference (FD) or FFT (FD is more efficient,
and FFT is more accurate), whilst it will be noted that in general both FD and FFT are

standard and are in their own right well-understood algorithms.
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Turning now to Figure 2, there is depicted a computer device for performing methods of
determining the wave fields or components thereof, as set out above. The computer
device 10 has an In/Out device 11, a microprocessor 12 and a memory 13. Computer
programs 14a and 14b are stored in the memory 13. The wave field computer program
14a has instructions for performing the numerical methods for solving the Equations 7
and 8 to obtain the wave field at different propagation times and spatial locations. The
microprocessor 12 is arranged to read and execute the instructions contained the wave
field computer program to determine the wave field. The calculated wave field is
preferably also stored in the memory, and is passed as input to a migration program
also stored in the memory, also executable by the processor 12 so as to perform
migration of seismic data using the calculated wave field. The device may also have a
display for viewing data stored in memory and/or calculated via the programs. The
migration may be performed as described above herein, including the background

section.

The In/Out device 11 is used for reading in or outputting data from the computer
device. In particular, seismic data can be received through the In/Out device, as may

be obtained in a seismic survey, and such data stored in the memory 13.

In Figure 3, apparatus is depicted comprising seismic survey apparatus 1. The
apparatus includes a seismic survey vessel towing a seismic source 4 and seismic
detectors 5 through a body of water. The seismic source is used to transmit a seismic
wave through the subsurface 2. The wave interacts with an interface 3 and a portion of
the energy is reflected back toward the detectors. The detectors are arranged to detect
energy received at the detector. The detectors can typically be used to obtain data
comprising records of amplitudes with respect to travel time relative to the source event
which generates the seismic wave. High amplitude events may then be associated
with reflections from interfaces in the subsurface. The data from the survey may be
read by a computer device, and processed to provide an image of the subsurface to
help reveal geological structure. For example, the apparatus may comprise a
computer device described in Figure 2, and the data from the survey may be ready by
that computer device and processed using the processor. The data may be then be

migrated to provide migrated seismic survey data reports or images, e.g. migrated



10

15

20

25

30

35

WO 2015/104386 PCT/EP2015/050352

18

seismic sections. Such a system may be applied to provide data as describe

elsewhere above herein.

The computer device may be a distributed device in that any one or more of the In/Out
device 11, microprocessor 12, memory 13 and display 15 can be distributed across
different locations. Communication therebetween may take place as indicated, over a
network, for example a wireless network. The programs, wave field data and/or
migrated data may in certain embodiments be stored on removable storage medium,
such as a memory stick or compact disk, executable by the computer device and/or
processor upon connection therewith. A signal may be provided that is communicated
over the network containing the programs, machine readable instructions thereof, the

wave field data and/or migrated data produced as described above.

The wave field solutions from the presently proposed wave equations 7 and 8 may be
used in other applications which require use of a predicted wave field of a single mode

of wave, e.g. seismic modelling, full waveform inversion, etc.

Examples and results

Various tests of the wave equation models of Equations 7 and 8 described above have
been performed, results of which are seen in Figures 4 to 12. In all the following
examples, we apply a pseudo-spectral technique for spatial derivatives and finite-
difference scheme with second-order accuracy for time derivative. That is, FFT is used
for the spatial derivatives (due to the higher accuracy) whilst an integral method with a

second order finite difference scheme is used for the time derivative.

The numerical grid size is chosen to avoid spatial dispersion, i.e., up to the Nyquist

wavenumber, and propagation time step is chosen to satisfy stability condition.

The first example is a simple VTl model, which is homogeneous with the vertical
velocity defined as 2000m/s and the Thomsen (1986) anisotropic parameters as
£=0.2 and 6=0.1. The source wavelet for this example is Ricker wavelet with
maximum frequency of 24Hz. The computing grid is a 3D cube with length of 6.0km
with the spatial sampling as 15m in all 3 directions. The point source is put in the
middle of the grid. Figure 4 plots a 2D seismic slice, located at middle of the Y

direction, of the 3D wavefield snapshot at time t=0.8s. Obviously, only pseudo-P wave
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appears and there exists no shear wave. Fig. 5 shows the corresponding image of
operator § at the same snapshot time. This operator plays a crucial role in our

algorithm. We observe that the picture is not as smooth and clean as the wave field.

\% :
This is because the propagation direction represented by Vu loses its accuracy
u

around the locations where the gradient function tends to zero. Fortunately, this lost

, which is the magnitude

accuracy can be brought back by the composite operatorS‘Vu

of the term inside the divergence operator before application of velocity model as

defined in Equation 7. The combined effect of the product of two quantities S|Vu| is

shown in Figure 6. The smooth and clean image demonstrates that the inaccuracy of

the direction introduces little noticeable errors to the wavefield calculation.

To validate our approach for a TTI case, we utilize the same computing parameters as
that of the VTI model in the first example and extend it into a simple TTl model.
Therefore, besides the same VTI anisotropic parameters, we introduce also the dip
angle as 45° and the azimuth angle as 0°, i.e. the anisotropic symmetry axis is tilted,
the tilt being defined by dip and azimuth angles (In the case of VTI, the symmetry axis
is vertical (non-tilted)). Figure 7 shows the 2D slice of snapshot wavefields at the same
location and time slice as the first example. Note the rotations of the wavefront that is

the result of TTI parameters. Similarly, Figure 8 is the corresponding output of operator

S . Figure 9 plots the combined effects of the products of the two operators S‘Vu‘ .

We have also tested our approach on a SEAM TTI salt model. The model dimensions
are known to be: nx=ny=864 and nz=768. The grid sampling rate is 10 m in all three
directions. We put the source location at the position of (x,y,z)= (17, 23.0, 0.0) km. We
again use Ricker wavelet as the source wavelet but this time with a maximum
frequency of 75Hz. The propagation time step is 0.5 ms. Figure 10 plots the centre line
of the 3D velocity model; and Figure 11 shows the centre inline slice of the 3D time
snapshot at t=1.6s, and Figure 12 shows the time snapshot at t=2.4s. Note that the
propagator handles the complex wavefields very well. It generates the transmission

waves, reflection waves, and head waves, but no shear-waves.

Advantages
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Comparing with traditional wave equations, our approach has some obvious
advantages. First is the simplicity of the equations 7 and 8. They keep the same form
for VTI, TTI, and TOA. Second is the numerical efficiency. Comparing with the wave
propagation in TTI medium, conventional schemes generally require 3-5 times more
computer resources than that for simulations of isotropic waves while our proposed
scheme only introduce 50% additional cost. This is a much more efficient scheme than
existing ones. In addition its numerical performance is almost the same for transverse
isotropy, tilted transverse isotropy, orthorhombic anisotropy, or tilted orthorhombic
anisotropy. Third is the stability of the equation. Similar to the acoustic cases, the weak
instabilities of TTI in conventional 2x2second order differential equations system does
not appear in our new equation. Our solution is numerically stable for very complicated
models, e.g. model with complex salt structures and over-thrust structures with abrupt
changes of anisotropic symmetry axis. Since only one differential equation is used, the

new proposed scheme is more efficient than that of conventional algorithms.

In summary, the present approach to determining the seismic wave field in an
anisotropic sub-surface is:

e More efficient

e More accurate

¢ No shear noise

e Simple to implement

o Numerically stable

Although we have only discussed the algorithm for quasi-P wave, the proposed
approach can be easily generalized to solve quasi-SV wave propagation problem or
even the elastic attenuation problems etc. This may have value in the future for S-

wave imaging or converted wave imaging.

This present solution of provides a way to solve a pseudo-differential equations. The

attenuation equation is one example of another such equation.

The abbreviation “eq.” is used to mean “equation” and the terms are used

interchangeably herein.
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Various modifications and improvements may be made without departing from the

scope of the invention herein described.
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CLAIMS:

1. A method of determining a wave field in an anisotropic subsurface of the Earth,
comprising: numerically solving a decoupled quasi-acoustic single wave mode wave
equation based on spatially varied anisotropic parameters, to determine the wave field
in the anisotropic subsurface, wherein the wave equation comprises a spatial
differential operator, and wherein all terms of the wave equation that contain one or
more of the anisotropic parameters are separated out from the spatial differential
operator.

2. A method as claimed in claim 1, wherein the quasi-acoustic single wave mode
wave equation is spherically decomposed.

3. A method according to claim 2, wherein the decomposed equation comprises a
spherical differential operator and a spherical scalar operator.

4, A method as claimed in claim 1, wherein the quasi-acoustic single wave mode
wave equation is elliptically decomposed.

5. A method according to claim 4, wherein the decomposed equation comprises
an elliptical differential operator and an elliptical scalar operator.

6. A method according to claim 1, wherein the wave equation is

22
% = véVzu +V§V-(AWM),

wherein S =1+AS, AS = %(\/(ni (1+2¢)+n2 ) —8(z —O)nin’ +2en] — 1)

B

wherein u is the wave field, t is time, S is a scalar operator, v, is the velocity in the
subsurface along the axis of symmetry of anisotropy, n, is the horizontal phase
direction, n, is the vertical phase direction, and wherein ¢ and & are anisotropic

parameters.

7. A method according to claim 1, wherein the wave equation is



2015205510 03 Jan 2018

10

15

20

25

30

35

25

2 ~2 2 2 )22
5_”=vga_§+(1+zg gO—Z+(v§a—Z+(l+2g)v§a—Z]ASe,ASe:l( | 8e=dhin:
6z o e ox 200 (1+2e)2+n2)

wherein u is the wave field, t is time, S is a scalar operator, v, is the velocity in the

/

subsurface along the axis of symmetry of anisotropy, n, and n, are the horizontal phase
direction, n, is the vertical phase direction, and wherein € and & are anisotropic

parameters.

8. A method of determining a wave field, or a component thereof, in an anisotropic
subsurface of the Earth, the method comprising:

providing an operator S having components based on subsurface anisotropy
and wavefield phase direction, the phase direction being obtained from an estimated
gradient of a predetermined wave field; and

using the operator S to determine the wave field, or said component thereof.

9. A method as claimed in claim 8, which further comprises any of:
- estimating a wave field;
- determining a gradient of the wave field;
- providing pre-defined anisotropy parameters;
- using the gradient and anisotropy parameters to compute the operator
S;
- combining the operator with the square of the velocity and the gradient
of the wave field to obtain a combined result; and
- using the combined result, determining the component of the wave
field.

10. A method as claimed in claim 8 or 9, wherein the operator S is a scalar quantity.

11. A method of processing data, comprising:

(a) providing first data associated with an anisotropic subsurface of the
Earth;

(b) numerically solving a wave equation to determine a wave field or
component thereof in the anisotropic subsurface; and

(c) processing the first data using the determined wave field or component
thereof to produce second data associated with said subsurface.
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12. A method as claimed in claim 1 or claim 11, wherein the wave equation has the

form of

2

O'u
— = scalarV’u
ot

or

—— =V e (scalarVu).

13. A method as claimed in claim 1 or claim 11, wherein the wave equation is either

q2

i_zl —~Ve (ngVu): 0
ct

or

~2

cu

?—\%szu =0 ,
t

wherein u is the wave field, t is time, S is a scalar operator, and v; is the velocity in the
subsurface along the axis of symmetry of anisotropy.

14. A computer program comprising machine readable instructions for performing
the method as claimed in any of the preceding claims.

15. A computer device comprising processor arranged to execute the computer
program of claim 14 to perform said method.
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Figure 12
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Figure 14
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