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Determining a component of a wave field 

Technical field 

5 The present invention relates to determining a wave field or a component of a wave 

field in the Earth's subsurface, in particular an anisotropic subsurface.  

Background 

10 Propagation of a wave through a medium can be described by a "wave equation." The 

wave equation can typically be solved to determine the magnitude or other property of 

the wave as a function of time and space.  

Geophysical surveys may be performed to explore the subsurface of the Earth. For 

15 example, seismic or electromagnetic surveys may be performed where an acoustic or 

electromagnetic (EM) wave is transmitted from a source into the subsurface and 

detectors are used to detect a response. Based on the detected response, properties 

of the earth may be determined. For example, the response may comprise time-series 

data with features associated with interfaces in the subsurface.  

20 

In seismic reflection surveying, high amplitude events in seismic data may be related to 

interfaces across which rock properties change abruptly and reflect a significant 

amount of energy back to the detectors. Therefore the high amplitudes in the data may 

be indicative of subsurface interfaces.  

25 

In typical processing of seismic data, the time between the transmission of the seismic 

wave and the detection of the high-amplitude event is often regarded to be the travel 

time of a seismic wave to the interface and back due to a reflection at the midpoint 

between source and receiver. Travel time is therefore typically considered a proxy for 

30 depth, and plotting of seismic data as a function of travel time may therefore indicate 

the depth relationship of amplitude features and hence subsurface interfaces.  

In reality however, the seismic velocity of the subsurface layers through which the 

wave has passed is not constant (typically increases with depth), and therefore in order 

35 to obtain a more realistic impression of the location of interfaces, the data are depth
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converted, i.e. plotted as a function of depth, based on a pre-determined velocity profile 

or velocity model.  

Data for source-receiver pairs are plotted at a mid-point therebetween. The data from 

5 all such pairs can therefore appear in a time or depth record at that midpoint, with 

amplitude events appearing as though they derive from a normal incidence source

receiver arrangement. Whilst this can give a suitable representation of the Earth's 

structure where layers are horizontal and planar, it will be appreciated that a seismic 

wave may be refracted along its propagation path, be reflected from sloping interfaces 

10 and interact with different layers in the incident and reflected directions. Therefore, the 

travel time data and depth converted data records may suggest a false geometry. For 

example, a high amplitude event may occur in the data at a particular depth position 

where there is in reality no reflector at that depth position.  

15 This is a known issue in seismic data processing and in the interpretation of seismic 

reflection data, particularly in geologically complex structures. Correction of the data 

may be attempted by a process of migration. Seismic migration serves to reposition 

seismic data to their representative, geometrically faithful, positions in the data set.  

Migration algorithms have been developed for migrating seismic data. It is useful to 

20 understand the wave propagation of the seismic wave through the subsurface in order 

to perform migration. In simple terms, by tracing the route that the wave has taken 

from the source to the reflector and back to the surface, it is possible to identify the 

receivers at which the energy associated with that reflector has arrived and the time of 

arrival of that energy. In order to do this, a velocity model of the subsurface is required.  

25 This may be obtained from a model building package and may be based on well data 

or obtained in other ways, for example estimated, perhaps based on regional 

geological knowledge.  

A further complicating factor is anisotropy of the subsurface. For example, particular 

30 rock types may have a strong directionality of propagation. The seismic velocity in 

different (e.g. orthogonal) directions may be significantly different, and may differ 

between layers.  

Full wave-field migration techniques have been developed to model the development of 

35 the wave in time and at closely spaced positions spatially in 3D across a region of the
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subsurface. Such techniques may involve solving a wave equation of the kind 

mentioned above, to obtain the wave field at the different locations, with respect to time 

relative to a source signal emission at different locations.  

5 These migration algorithms have as an input standard seismic data. The seismic data 

could be organized as common shot gathers, or in some other domain, such as plane 

wave or delayed shot domains. The seismic data may be provided in a transformed 

domain (compared to the originally acquired seismic data), for example a combined 

domain of linear phase for shot location for delayed shot migration, in which the 

10 combination of the data is performed by tau-p transform to the shot location. The tau-p 

transform may also be performed for receiver location to perform a plane wave 

migration. The wavefield solution of the wave equation provides a set of complex 

values at each target location/point, providing for example amplitude, phase, wave 

number, etc. These value are a crucial input components for the migration algorithms.  

15 

Many different wave equation techniques have been developed, and it is of interest to 

develop a wave equation technique for use in seismic migration in the case of an 

anisotropic subsurface. Some known migration techniques are now described in more 

detail.  

20 

Nowadays, accurate seismic anisotropic models are recognized as key points in 

imaging deep challenge areas for complex structures, because they describe the 

discrepancy of directional propagation speed of seismic waves, which is much more 

realistic for overburden geological structure such as bedding sediments with fractures.  

25 The tilted transverse isotropic (TTI) or tilted orthorhombic anisotropy (TOA) are 

generally necessary for imaging such complicated anisotropic structures (Zhang and 

Zhang, 2008; Zhang and Zhang, 2011; Fowler and King, 2011). Given an accurate 

anisotropic model, migration algorithms are destined to provide the artifact-free 

subsurface images. This may require applications of least-squares migration algorithms 

30 (Lambare et al., 1992; Nemeth et al., 1999) and it may become even more complicated 

when working on imaging the elastic model (Jin et al., 1992). Current integral-based 

migration algorithms, such as Kirchhoff migrations, are known to be very effective as 

the ray tracing could be easily adapted to the anisotropic Eikonal equation (Han and 

Xu, 2012). These algorithms are developed applicable for a single mode of waves such 

35 as quasi-P wave, which allows the migration algorithms to be linearized so as to reduce
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computational cost. However, for wave-equation-based algorithms, an efficient and 

accurate simulation of a single mode wave, such as quasi-P or quasi-S wave, is 

essential to the development of successful migration algorithms, such as reverse time 

migration (RTM) (Baysal et al., 1983; McMechan, 1983; Whitmore, 1983).  

5 

Historically, there are different ways for numerical simulation of single mode of waves.  

First of these is to solve the full elastic wave equations and then to split the wavefields 

to separate out the quasi-P wave for further analysis. The wavefield separation may be 

effective for the isotropic case (Sun et al., 2004), but it is not an easy task for 

10 heterogeneous anisotropic cases and might be extremely computationally inefficient 

(Yan and Sava, 2009; Cheng and Fomel, 2013).  

Another way to reduce the computational cost while still maintaining the transverse 

isotropic (TI) anisotropic wave propagation is to apply an acoustic approximation 

15 (Alkhalifah, 2000) to the TI equation by setting the shear wave velocity along the 

symmetry axis to zero. This leads to a scalar fourth-order differential equation.  

However, Alkhalifah (2000) does not propose any workable numerical technique for 

obtaining the wave field from this fourth-order differential equation. Zhou et al. (2006) 

decompose this fourth-order differential equation into a coupled system of2x2second

20 order differential equations. This results in a more computationally efficient scheme 

than the original elastic equations. However, applications to the TTI media with variable 

TTI symmetric axis, especially with existence of abrupt changes on the TTI symmetric 

axis, demonstrate that this system is not numerically stable: the weak instabilities arise 

and the noises grow linearly in time (Liu et al., 2009, Zhang et al., 2011). These 

25 instabilities have been well analyzed and solutions have been proposed (Bakker and 

Duveneck, 2011; Zhang et al., 2011, Bube et al., 2012). Although the instabilities could 

be resolved, setting zero the shear wave velocity along the symmetry axis doesn't rule 

out the existence of the pseudo-shear waves, which are the intrinsic solutions of this 

couple system. People have tried various ways to attenuate them (Zhang et al., 2009; 

30 Guan et al. 2011); or simply ignore the presence of these shear wave artifacts as 

current industry practices of TTI RTM, with the expectation that they would be canceled 

out by imaging conditions and migration stack.  

Another way is to compute directly the decoupled quasi-acoustic P wave equation.  

35 Given constant anisotropic parameters c and6 , the decoupled equation could be
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solved with pseudo-spectral algorithm (Etgen and Brandsberg-Dahl, 2009). Therefore, 

it allows us to take a set of solutions of different constant c and 3, proceeding with an 

interpolation scheme, to numerically solve the quasi-P wave with anisotropic 

parameters that are mildly changing in spatial domain (Chu et al. 2013). For VTI 

5 (transverse isotropic with a vertical symmetry axis) media, the interpolation scheme is 

two dimensional with respect to s ando. But for TTI media, if the symmetrical axis 

also varies spatially, two additional dimensions are necessary for the interpolation.  

This pseudo-spectral plus interpolation method may need to compute a huge set of 

combination of anisotropic parameters and can be very inefficient when it is applied to 

10 a very complicated model. When the complexities of the anisotropic model are mild, the 

decoupled equation may be solved by approximately optimized separable method (Liu 

et al., 2009), which can be considered as a special case of low rank approximation 

(Fomel et al., 2012). The computational cost may be lower than pseudo-spectral plus 

interpolation method, but still very inefficient and inaccurate.  

15 

Any discussion of documents, acts, materials, devices, articles or the like which has 

been included in the present specification is not to be taken as an admission that any 

or all of these matters form part of the prior art base or were common general 

knowledge in the field relevant to the present disclosure as it existed before the priority 

20 date of each of the appended claims.  

Summary of the invention 

Throughout this specification the word "comprise", or variations such as "comprises" or 

25 "comprising", will be understood to imply the inclusion of a stated element, integer or 

step, or group of elements, integers or steps, but not the exclusion of any other 

element, integer or step, or group of elements, integers or steps.  

According to a first aspect, the present invention provides a method of determining a 

30 wave field in an anisotropic subsurface of the Earth, comprising: numerically solving a 

decoupled quasi-acoustic single wave mode wave equation based on spatially varied 

anisotropic parameters, to determine the wave field in the anisotropic subsurface, 

wherein the wave equation comprises a spatial differential operator, and wherein all 

terms of the wave equation that contain one or more of the anisotropic parameters are 

35 separated out from the spatial differential operator.
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According to a second aspect, the present invention provides a method of determining 

a wave field, or a component thereof, in an anisotropic subsurface of the Earth, the 

method comprising: 

providing an operator S having components based on subsurface anisotropy 

5 and wavefield phase direction, the phase direction being obtained from an estimated 

gradient of a predetermined wave field; and 

using the operator S to determine the wave field, or said component thereof.  

According to a third aspect, the present invention provides a method of processing 

10 data, comprising: 

(a) providing first data associated with an anisotropic subsurface of the 

Earth; 

(b) numerically solving a wave equation to determine a wave field or 

component thereof in the anisotropic subsurface; and 

15 (c) processing the first data using the determined wave field or component 

thereof to produce second data associated with said subsurface.  

Various aspects of the invention are provided as set out in the claims appended hereto.  

20 Any aspect may have further features as described in relation to any other aspect and 

features between aspects may be combined and interchanged.  

Embodiments of the invention provide, advantageously, techniques for numerically 

calculating the wave field of a wave propagating in an anisotropic medium. In 

25 particular, the techniques are advantageous in terms of reduced numerical or 

computational cost and simplicity of implementation.  

Existing technology typically uses coupled equation systems which describe wave 

propagation and provide wave field solutions for several wave modes together.  

30 Typically, coupled systems for the quasi-P wave and quasi-S modes are used. Such a 

system has, intrinsically, two eigenvalues associated with the quasi-P wave and quasi

S wave modes respectively. In existing coupled equation techniques, artifacts and 

noise in the wave field solutions are found to appear due to the inclusion of the quasi-S 

wave mode. Coupled equation solutions have generally high numerical cost.
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Techniques for numerically calculating the wave field of a seismic wave propagating in 

anisotropic regions of the earth have been lacking.  

Description and drawings 

5 

There will now be described, by way of example only, embodiments of the invention 

with reference to the accompanying drawings, in which: 

Figure 1 is a flow chart representation of a method of determining a wave field 

10 according to an embodiment of the invention; 

Figure 2 is a schematic representation of a computer device for use in determining 

wave field according to an embodiment of the invention; 

15 Figure 3 is a schematic representation of apparatus for acquiring data; 

Figure 4 is a contour plot of wave field magnitudes for a VTI model wave field solution; 

Figure 5 is a contour plot of magnitudes of an operator used to calculate the model 

20 wave field of Figure 4; 

Figure 6 is a contour plot of magnitudes of a composite operatorS Vu in the wave field 

of Figures 4 and 5; 

25 Figure 7 is a contour plot of wave field magnitudes for a TTI model wave field solution; 

Figure 8 is a contour plot of magnitudes of an operator used to calculate the model 

wave field of Figure 7; 

30 Figure 9 is a contour plot of magnitudes of a composite operatorS Vu in the wave field 

of Figures 7 and 8; 

Figure 10 is a contour plot of the velocity model for a SEAM TTI salt model;
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Figure 11 is a contour plot of wave field magnitudes for the model of Figure 10 at time 

t=1.6s, 

Figure 12 is a contour plot of wave field magnitudes for the model of Figure 10 at time 

5 t=2.4s, 

Figure 13 illustrates three dispersion curves, 

Figure 14 illustrates the amplitude of asymptotic correction terms, 

10 

Figure 15 illustrates two wave fields, and 

Figure 16 illustrates a calculation carried out with an elliptical model.  

15 Wave equation model 

We first propose a pure cinematically-accurate quasi-P wave equation for complex 

anisotropic models. This equation is obtained by decomposing the original pseudo

differential operator of Alkhalifah (2000) into two numerical solvable terms: a differential 

operator and a scalar operator. The resulted new quasi-P wave equation has 

20 separated the anisotropic model parameters from the spatial pseudo-differential 

operator and hence can be solved with traditional numerical schemes without 

sacrificing its accuracy, i.e., no approximations have been applied and therefore it 

maintains the same dispersion relation as that of the original pseudo-differential wave 

equation. The differential operators in the equation are designed to be self-adjoint and 

25 therefore can conserve the energy when the wave propagates. Then, we discuss a 

numerical implementation of the proposed algorithm. The proposed quasi-P wave 

equation has a similar form to an acoustic wave equation and can be implemented 

similarly. In our current implementation, we use pseudo-spectral algorithm for the 

spatial derivatives and second-order accuracy finite-difference scheme for the time 

30 derivative. Extensions of the new algorithm to TTI and TOA media are straightforward 

and have been briefly mentioned in the texts.  

We validate our approach with examples of the impulse responses of the VTI/TTI 

models and illustrate the functionalities of the terms in the new pure quasi-P wave
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equation. Finally, we demonstrate the effectiveness and robustness of our quasi-P 

equation with an example of the quasi P wave propagations in a SEAM TTI salt model.  

Decomposition of pseudo-differential operator 

5 In the following, for simplicity we will work on the VTI case first. This requires us to 

solve the following scalar pseudo-differential equation (Alkhalifah, 2000): 

a~2 82U V02 2 2 a2 2 2 2  2 
- - (1+ 2,)+ + (1 + 2c)+ - 8(c - ) u = 0 . (1) 

Ot2 2 Oh 2 az2 Oh 2 OZ2 Oh2 OZ2 

a 2  a2 

a2 

Where =a + is the horizontal Laplacian operator; vo is the velocity along Oh 2  a a2 ay 2 

the symmetry axis; c and 6 are the Thomsen (1986) anisotropic parameters, as 

10 defined in Thomsen (1986). The definitions of these parameters as provided in 

Thomsen (1986; see Reference section below) are incorporated in the present 

disclosure by reference. Note all of these parameters are spatially-varied. Eq. 1 

governs the quasi-P wave propagation, although the amplitude of its solution might be 

quite different from a real elastic quasi-P wave. This is because of the decoupling of 

15 full elastic equations after which all the interaction of different wave modes are omitted, 

including the conversion to and from other wave modes. However, eq. 1 shares the 

same dispersion to that of elastic quasi-P wave, indicating that its phase is accurate 

comparing with the elastic quasi-P wave. Although eq. 1 is very promising for single

mode wave propagation, unfortunately, it represents a pseudo-differential operator 

20 equation that cannot be solved with traditional finite difference numerical schemes.  

Alkhalifah (2000) does not numerically solve the equation 1 in complex media.  

The formulation of this pseudo differential operator suggests a numerical solution in 

which the spatial gradient components of the current wave field are determined first, 

25 forming the combination of the gradient components inside the square root, and then 

taking the square root of that combination. This does not work in traditional schemes.  

We re-write the equation, and replace the pseudo-differential operator with two 

operators which are not any more pseudo-differential operators.  

30 In order to describe our approach, we start with its corresponding dispersion relation of 

eq. 1, which is represented as follows:
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o2 VOk (1+2s)+k 2+ Vk(1+ 2c)+ k )2 -8(C -6)k2k 2u = 0. (2) 

Here co is the angular frequency. The spatial wavenumber vector k are as usual 

defined as k=(k Jk) Therefore, kh is the horizontal wave number with 

kh = k, + , k, is the vertical wave number. Eq. 2 can also be rewritten as: 

5 CO 2 - n (1+2c)+ 2 + n 2)2 -8(C -6)n2 nIu = 0, (3) 

in which i=(n,,n,,n2) is the unit vector of phase direction and is defined as 

n = k. (4) 

Let's define an auxiliary scalar operator S as 

S =-nI(1+ 2c)+ nZ ± +n(1 2c)+ nZ - 8(c . (5) 

10 Now, eq. 3 becomes 

0co -vilS 0 (6) 

In space domain, the operator - k 2 is expressed as V . V where symbol V. denotes 

divergence, and V denotes gradient. Transforming Eq.6 from frequency-wavenumber 

domain back to time-space domain results in the following equation: 

15 Ot
2 -V e(vO SVu)=0. (7) 

This equation represents the corresponding partial differential equations of eq. 6 in 

time-space domain. This defines a model for quasi P-wave propagation in an 

anisotropic medium, such as in the Earth's subsurface, solvable with easy to implement 

and efficient numerical methods to provide a wave field in space and time. It is not a 

20 pseudo-differential equation anymore because we have separated out the anisotropic 

terms from the derivatives. But this equation is a nonlinear wave equation since the 

scalar operator S depends also on the solution of the wavefields. This scalar operator 

can be calculated in the space domain as the vector ii has its physical meaning: phase 

direction of the wavefront. Because eq. 5 is not sensitive to the sign of components of 

25 ii (since all components have even number of powers), we could just use the
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Vu 
components of to replace the components of ii in eq. 5. The scalar operator S is 

Vu 

crucial in our approach; it actually plays the role of the dispersion relation for the whole 

wave propagation. It controls the propagation speed of quasi-P wave (an anisotropic 

propagation operator), it depends not only on the phase direction of the propagation at 

5 each spatial point, but also on the anisotropic parameters at each individual spatial 

location. And the computation of this operator needs only the anisotropic parameter 

which is varied spatially, and the gradient of the current wave field.  

It can be noted that wave propagation is calculated in time steps. In order to compute 

10 the next time step of the wavefield, the current wavefield is needed. A starting wave 

field is defined, providing a boundary condition or starting point for the calculations. A 

predefined source wavelet emitted at a source location can be defined and used to 

allow this starting wave field to be determined.  

15 The velocity model is pre-determined, e.g. estimated by other algorithms and/or 

provided in a model building package. The model building package can include many 

algorithms such as tomography inversion, full wave inversion, salt interpretation, etc.  

The velocity is a required input and supposed to be known for migration algorithms.  

The anisotropy parameters are parts of the model for wave propagation (input), and 

20 also contained in the velocity model. They could be estimated by the model building 

package.  

The differential operator in eq. 7 is a self-adjoint operator and therefore conserves the 

energy. This should guarantee the stability of the wave propagations even for the 

25 cases with abrupt spatial changes of the model and anisotropic parameters.  

The generalization from VTI to TTI or TOA is very simple in our approach. For TTI we 

need just to project the gradient vector of wavefield Vu to the local coordinates, in 

which the local z axis is the symmetrical axis of anisotropy, and then apply exactly the 

30 same procedure to eq. 5. Similar analysis can be generalized to TOA media.  

An alternative solution from eq. 6 can be implemented with its equation described 

as follows:
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82u 

t(8) 

Here, the pseudo-differential operator in eq. 1 is decomposed into two operators: a 

scalar operator and a Laplacian operator. This equation uses directly the Laplacian 

operator and has a form similar to an acoustic wave equation.  

5 

Decomposition into spherical terms 

The numerical calculation of scalar operator S in the wavenumber domain requires the 

anisotropic parameters in equation 7 to be constant, and may therefore be calculated in 

10 the space domain with the phase direction approximated asymptotically: 

ii=Vu/Vu.  

To analyse theoretically the effect of the asymptotic approximation term, we rewrite the 

scalar operator in equation 7 as: 

S=1+AS, AS= _(n2(1+ 2c)+ n - 8(C -)n2 n +2Cn -1 (9) 

15 Using this expression for the scalar operator, the wave equation becomes 

a2U 2 2 2 

v22V u+ voV -(ASVu) . (10) 

The first term of right hand side in equation 10 is the background wave equation. It may 

be considered as a differential operator - the Laplacian operator, which does not 

contain an approximation. The second term on the right hand side of equation 10 can 

20 be considered as a correction term. The calculation of AS depends on the wave 

propagation directions, which is an asymptotic approximation. Equation 10 may be 

considered as a spherical decomposition of the original wave equation 1.  

In Figure 13, dispersion curve 131 corresponds to a solution of equation 1, dispersion 

25 curve 132 is a background dispersion curve corresponding the first term of the right 

hand side of equation 10. Dispersion curve 133 will be discussed in relation to an 

elliptical model below. The background dispersion 132 is illustrated for constant 

anisotropic parameters c=0.25 and 6=0.1. The asymptotic correction is intended to 

correct the phase from curve 132 to curve 131.  

30
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In Figure 14, curve 141 shows the magnitude of the asymptotic correction AS 

between the angles 0~3600. It is noted that the correction is relatively large compared 

to the background dispersion: for this example, the maximum correction is about 50% 

of the background dispersion. Therefore, this approach requires very accurate 

5 estimation of direction of the wavefield. Lateral spatial sampling of computations larger 

than the Nyquist sampling may be used. Therefore, the high wavenumber part of the 

wavefields is aliased and might introduce errors in the calculation of the direction vector 

in lower wavenumber range of wavefields, which makes this approach vulnerable to the 

direction errors.  

10 

Decomposition into elliptical terms 

In order to enhance the tolerance of the numerical errors of the directional vector in the 

algorithm, we propose, instead of a spherical decomposition, an elliptic decomposition 

15 as defined in equation 11 below. In this equation, we still decompose the pseudo

differential operator into two operators: a differential operator and a scalar operator.  

However, the Laplacian operator in the original decomposition is replaced with an 

elliptic differential operator, while the scalar operator is also correspondingly modified 

to ensure the accurate phase of wave propagation. The purpose of the new 

20 decomposition is to reduce the magnitude of asymptotic term. This decomposition is: 

82U 2 82U 2 02u, 1 8(C -6)n2 n2 

Ot2 = vo az2 + (1+ 2c v 2 Se' Se 2 1+ 1- 2 n n 2 (11) 

in which S, is the elliptic scalar. The term v -+(1+2v may be written as 

25 vO 62 +(1+2e)v 02 u, and interpreted as a differential operator times u and this 

differential operator (the term within the large brackets) is an elliptic differential 

operator. To further analyse the asymptotic term in equation 5, we rewrite it explicitly 

as (equation 12):
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92U 2 a2u 2U 2 2 a2u 2 1 8( -8 On 2n2 =_ __ ___ ___ 9 _ I ( 6n _ X 

a 2 =0 az2 +(1+2c)v 0 + vo 2 +(1+2)v 0 AS,, AS, = 1 22 

a z2 oz 2x2 2 ((1+ 20n 2+ n2 

Figure 13 shows the comparisons of the of the dispersion curves between the spherical 

approach and the elliptical approach. For constant anisotropic parameters 6=0.25 and 

5 6=0.1, curve 133 shows the dispersion curve of the first term of the right hand side of 

equation 12. Comparing this curve with the spherical decomposition approach, we note 

that the elliptic decomposition background is much closer to the desired exact solution 

illustrated as curve 131. In Figure 14, the line 142 shows the magnitude of the 

asymptotic correction ASe in 0~360 . The maximum magnitude of ASe is 0.068, 

10 which is 7 times smaller than the spherical decomposition. Therefore, the elliptic 

decomposition has much better tolerance to the direction errors.  

First, we demonstrate the effects of this algorithm with an example of a simple impulse 

in figure 15. This example is a simple TTI (tilted transversely isotropic) model, which is 

15 homogeneous with the vertical velocity defined as 2000m/s and the Thomsen (1986) 

anisotropic parameters as c = 0.24 and 6 = 0.1 with a tilted angle of 300 and an 

azimuth angle of 1350. The source wavelet for this example is a Ricker wavelet with a 

maximum frequency of 24Hz. The computing grid is a 3D cube with lengths of 6.0km 

and the spatial sampling as 15m in all 3 directions. The point source is put in the 

20 middle of the grid. Figure 15a) plots a 2D seismic slice, located at middle of the Y 

direction, of the 3D wavefield snapshot at time t=1.Os from spherical decomposition 

approach; and Fig 15b) plots the same with elliptic decomposition approach. Both 

approaches generate only pseudo-P wave and no shear wave exists. Both wavefields 

yield the same propagation phase, but the elliptic decomposition approach gives a 

25 more balanced amplitude. We further note that the numerical costs for spherical 

decomposition and for elliptic decomposition are almost identical.
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The second example is a migration test with SEG SEAM model. We selected a shot 

line for this test. Figure 16, the left hand side, illustrates the location of this shot line, 

which contains 342 shots. We build a TTI RTM with the proposed pure quasi-P wave 

equation and migrated these shots. Figure 16, the right hand side, shows the image 

5 result by using the elliptical algorithm disclosed herein, which overlays with the density 

model. It is clear that the image generated with the new quasi-p wave equation 

matches the density model very well and presents clean and accurate result.  

Numerical method 

10 

Equation 7 is solved numerically to obtain wave field components for each predefined 

location within the subsurface at different wave propagation times. This is done by a 

numerical estimation process. The numerical process to solve Equation 7 is relatively 

straightforward to implement. The numerical solution of equations 10 and 11 is similar, 

15 but the value of the scalars will be different because the differential operator is different 

when compared to equation 7. The process has the steps S1 to S3 for determining the 

wave field, as set out below and illustrated in Figure 1: 

S1. Compute the gradient of the current wave field. The current wave field is for 

20 example the wave field determined for a previous time step. This is initially the wave 

field at a boundary time zero.  

S2. Compute the scalar operator S . This is done as indicated in eq. 5. The 

operator S is computed at each spatial location by using the gradient field from step S1 

25 to obtain the phase direction components (ignoring the sign after projection to local 

coordinate). Multiply the scalar operator and the square of the velocity with the gradient 

of wavefield. These are all numerical values.  

S3. Compute the divergence of the result from step 2, to determine the wave field at 

30 the given time step. A value of the rate of change in time from the current wave field is 

obtained, which in turn is used to give the field at the new time typically by using an 

integral method.  

The determined wave field of step S3 is used as the current wave field in step S1 of the 

35 following propagation time step, as indicated by the loop in Figure 1. The steps S1 to
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S3 are repeated at successive steps of propagation time, so that an accurate wave 

field with respect to time and space can be determined.  

As seen in Figure 1, an initial step SO in the process may be present for the provision 

5 of the initial wave field. A further step S4 is also shown in Figure 1, whereby the 

determined wave field is used to migrate seismic data. This is done once the 

calculation of the wave field at each spatial location for all of the time steps has been 

completed. Standard migration algorithms are arranged to use the wave field or 

components thereof. The appropriate wave field for a desired travel time and location 

10 of interest in the subsurface can be obtained from the solution method above.  

Similarly, Equation 8 can be solved by a numerical estimation process with steps T1 

and T2 as follows: 

T1. Compute the gradient of the current wave field. The current wave field 

15 is for example the wave field determined for a previous time step. This is initially the 

wave field at the boundary at time zero.  

T2. Compute the scalar operator S as seen in eq 5 for each spatial location 

by using the gradient field from step T1 to obtain the phase direction components 

(ignoring the sign after projection to local coordinate). Multiply the scalar operator and 

20 the square of the velocity with the Laplacian gradient of the wavefield. A value of the 

rate of change in time is obtained, which in turn is used to give the field at the new time 

typically by using an integral method.  

25 The gradient calculations within the relevant steps S1 to S3 or T1 to T2 of the above 

methods can be performed using standard finite difference algorithms, or alternatively, 

using standard Fast-Fourier Transform (FFT) methods.  

The determination of the wave field when using the finite difference numerical 

30 technique costs at most twice as much as that using the standard isotropic acoustic 

wave equation solution. This is much faster than other approaches in anisotropic wave 

propagation.  

In order to obtain the gradient and divergence in the steps S1 to S3 above, first 

35 derivatives (del and divergence) of the wave field need to be calculated, and an
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optimized numerical scheme could be used to calculate these simultaneously, which 

can be efficient. Likewise, in order to obtain the Laplacian (del squared) in Equation 

8, the first and second derivatives are needed and an optimized numerical scheme 

could be used where the first and second derivatives of the wave field could be 

5 calculated simultaneously and efficiently. For example, one may use the Fast Fourier 

Transform (FFT) to compute these spatial derivatives. In this case, it requires only one 

forward FFT and two inverse FFTs to obtain both first derivative and second derivative 

simultaneously. Again, standard FFT algorithms are suitable.  

10 When using the FFT numerical technique determination of the wave field is performed 

at an additional numerical cost of just 50% more than the solution of the standard 

acoustic wave equation for an isotropic medium. We notice that the numerical cost 

increases minimally when moving from VTI to TTI or to TOA media.  

15 Equation 8 uses the Laplacian operator directly. Therefore, an efficient numerical 

scheme could be an easier to implementation. Comparing to eq. 7, equation 8 has 

the same kinematic behaviour but different amplitude effects.  

The integral method used to obtain the wave field in steps S3 or T2 can be a 

20 standard time integral numerical method, for example a second-order accuracy of 

finite-difference scheme of temporal integration or rapid expansion method (REM) 

(Kosloff et al., 1989).  

a2U 2S2 In summary, the wave equation (equation 8) has the form _=v0 SV 2 u. Numerically, 
8t2 

25 the wave field depends on spatial point X and time t, as could be expressed as U(x,t).  

The task to solve the wavefield involves using the wavefield at a current time sample to 

compute the wavefield of the next time sample. So, for the left hand of the equation 

(second derivative on time) the method we use can be a standard scheme which we 

refer to as the Integral method. For the calculation of this integral, we need know the 

30 value of right hand of the equation, which contains spatial derivative of the wavefields 

(first order in eq.7, and second on eq. 8). The conventional numerical schemes could 

be used for this purpose, which is Finite Difference (FD) or FFT (FD is more efficient, 

and FFT is more accurate), whilst it will be noted that in general both FD and FFT are 

standard and are in their own right well-understood algorithms.
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Turning now to Figure 2, there is depicted a computer device for performing methods of 

determining the wave fields or components thereof, as set out above. The computer 

device 10 has an In/Out device 11, a microprocessor 12 and a memory 13. Computer 

5 programs 14a and 14b are stored in the memory 13. The wave field computer program 

14a has instructions for performing the numerical methods for solving the Equations 7 

and 8 to obtain the wave field at different propagation times and spatial locations. The 

microprocessor 12 is arranged to read and execute the instructions contained the wave 

field computer program to determine the wave field. The calculated wave field is 

10 preferably also stored in the memory, and is passed as input to a migration program 

also stored in the memory, also executable by the processor 12 so as to perform 

migration of seismic data using the calculated wave field. The device may also have a 

display for viewing data stored in memory and/or calculated via the programs. The 

migration may be performed as described above herein, including the background 

15 section.  

The In/Out device 11 is used for reading in or outputting data from the computer 

device. In particular, seismic data can be received through the In/Out device, as may 

be obtained in a seismic survey, and such data stored in the memory 13.  

20 

In Figure 3, apparatus is depicted comprising seismic survey apparatus 1. The 

apparatus includes a seismic survey vessel towing a seismic source 4 and seismic 

detectors 5 through a body of water. The seismic source is used to transmit a seismic 

wave through the subsurface 2. The wave interacts with an interface 3 and a portion of 

25 the energy is reflected back toward the detectors. The detectors are arranged to detect 

energy received at the detector. The detectors can typically be used to obtain data 

comprising records of amplitudes with respect to travel time relative to the source event 

which generates the seismic wave. High amplitude events may then be associated 

with reflections from interfaces in the subsurface. The data from the survey may be 

30 read by a computer device, and processed to provide an image of the subsurface to 

help reveal geological structure. For example, the apparatus may comprise a 

computer device described in Figure 2, and the data from the survey may be ready by 

that computer device and processed using the processor. The data may be then be 

migrated to provide migrated seismic survey data reports or images, e.g. migrated
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seismic sections. Such a system may be applied to provide data as describe 

elsewhere above herein.  

The computer device may be a distributed device in that any one or more of the In/Out 

5 device 11, microprocessor 12, memory 13 and display 15 can be distributed across 

different locations. Communication therebetween may take place as indicated, over a 

network, for example a wireless network. The programs, wave field data and/or 

migrated data may in certain embodiments be stored on removable storage medium, 

such as a memory stick or compact disk, executable by the computer device and/or 

10 processor upon connection therewith. A signal may be provided that is communicated 

over the network containing the programs, machine readable instructions thereof, the 

wave field data and/or migrated data produced as described above.  

The wave field solutions from the presently proposed wave equations 7 and 8 may be 

15 used in other applications which require use of a predicted wave field of a single mode 

of wave, e.g. seismic modelling, full waveform inversion, etc.  

Examples and results 

Various tests of the wave equation models of Equations 7 and 8 described above have 

20 been performed, results of which are seen in Figures 4 to 12. In all the following 

examples, we apply a pseudo-spectral technique for spatial derivatives and finite

difference scheme with second-order accuracy for time derivative. That is, FFT is used 

for the spatial derivatives (due to the higher accuracy) whilst an integral method with a 

second order finite difference scheme is used for the time derivative.  

25 

The numerical grid size is chosen to avoid spatial dispersion, i.e., up to the Nyquist 

wavenumber, and propagation time step is chosen to satisfy stability condition.  

The first example is a simple VTI model, which is homogeneous with the vertical 

30 velocity defined as 2000m/s and the Thomsen (1986) anisotropic parameters as 

c=0.2 and 6 =0.1. The source wavelet for this example is Ricker wavelet with 

maximum frequency of 24Hz. The computing grid is a 3D cube with length of 6.0km 

with the spatial sampling as 15m in all 3 directions. The point source is put in the 

middle of the grid. Figure 4 plots a 2D seismic slice, located at middle of the Y 

35 direction, of the 3D wavefield snapshot at time t=0.8s. Obviously, only pseudo-P wave



WO 2015/104386 PCT/EP2015/050352 

19 

appears and there exists no shear wave. Fig. 5 shows the corresponding image of 

operator S at the same snapshot time. This operator plays a crucial role in our 

algorithm. We observe that the picture is not as smooth and clean as the wave field.  

Vu 
This is because the propagation direction represented by loses its accuracy 

Vu 

5 around the locations where the gradient function tends to zero. Fortunately, this lost 

accuracy can be brought back by the composite operatorS Vu , which is the magnitude 

of the term inside the divergence operator before application of velocity model as 

defined in Equation 7. The combined effect of the product of two quantitiesS Vu is 

shown in Figure 6. The smooth and clean image demonstrates that the inaccuracy of 

10 the direction introduces little noticeable errors to the wavefield calculation.  

To validate our approach for a TTI case, we utilize the same computing parameters as 

that of the VTI model in the first example and extend it into a simple TTI model.  

Therefore, besides the same VTI anisotropic parameters, we introduce also the dip 

15 angle as 450 and the azimuth angle as 00, i.e. the anisotropic symmetry axis is tilted, 

the tilt being defined by dip and azimuth angles (In the case of VTI, the symmetry axis 

is vertical (non-tilted)). Figure 7 shows the 2D slice of snapshot wavefields at the same 

location and time slice as the first example. Note the rotations of the wavefront that is 

the result of TTI parameters. Similarly, Figure 8 is the corresponding output of operator 

20 S . Figure 9 plots the combined effects of the products of the two operatorsS Vu .  

We have also tested our approach on a SEAM TTI salt model. The model dimensions 

are known to be: nx=ny=864 and nz=768. The grid sampling rate is 10 m in all three 

directions. We put the source location at the position of (x,y,z)= (17, 23.0, 0.0) km. We 

25 again use Ricker wavelet as the source wavelet but this time with a maximum 

frequency of 75Hz. The propagation time step is 0.5 ms. Figure 10 plots the centre line 

of the 3D velocity model; and Figure 11 shows the centre inline slice of the 3D time 

snapshot at t=1.6s, and Figure 12 shows the time snapshot at t=2.4s. Note that the 

propagator handles the complex wavefields very well. It generates the transmission 

30 waves, reflection waves, and head waves, but no shear-waves.  

Advantages
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Comparing with traditional wave equations, our approach has some obvious 

advantages. First is the simplicity of the equations 7 and 8. They keep the same form 

for VTI, TTI, and TOA. Second is the numerical efficiency. Comparing with the wave 

propagation in TTI medium, conventional schemes generally require 3-5 times more 

5 computer resources than that for simulations of isotropic waves while our proposed 

scheme only introduce 50% additional cost. This is a much more efficient scheme than 

existing ones. In addition its numerical performance is almost the same for transverse 

isotropy, tilted transverse isotropy, orthorhombic anisotropy, or tilted orthorhombic 

anisotropy. Third is the stability of the equation. Similar to the acoustic cases, the weak 

10 instabilities of TTI in conventional 2x2second order differential equations system does 

not appear in our new equation. Our solution is numerically stable for very complicated 

models, e.g. model with complex salt structures and over-thrust structures with abrupt 

changes of anisotropic symmetry axis. Since only one differential equation is used, the 

new proposed scheme is more efficient than that of conventional algorithms.  

15 

In summary, the present approach to determining the seismic wave field in an 

anisotropic sub-surface is: 

* More efficient 

* More accurate 

20 0 No shear noise 

* Simple to implement 

* Numerically stable 

Although we have only discussed the algorithm for quasi-P wave, the proposed 

25 approach can be easily generalized to solve quasi-SV wave propagation problem or 

even the elastic attenuation problems etc. This may have value in the future for S

wave imaging or converted wave imaging.  

This present solution of provides a way to solve a pseudo-differential equations. The 

30 attenuation equation is one example of another such equation.  

The abbreviation "eq." is used to mean "equation" and the terms are used 

interchangeably herein.
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Various modifications and improvements may be made without departing from the 

scope of the invention herein described.  

5
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CLAIMS: 

1. A method of determining a wave field in an anisotropic subsurface of the Earth, 

comprising: numerically solving a decoupled quasi-acoustic single wave mode wave 

5 equation based on spatially varied anisotropic parameters, to determine the wave field 

in the anisotropic subsurface, wherein the wave equation comprises a spatial 

differential operator, and wherein all terms of the wave equation that contain one or 

more of the anisotropic parameters are separated out from the spatial differential 

operator.  

10 

2. A method as claimed in claim 1, wherein the quasi-acoustic single wave mode 

wave equation is spherically decomposed.  

3. A method according to claim 2, wherein the decomposed equation comprises a 

15 spherical differential operator and a spherical scalar operator.  

4. A method as claimed in claim 1, wherein the quasi-acoustic single wave mode 

wave equation is elliptically decomposed.  

20 5. A method according to claim 4, wherein the decomposed equation comprises 

an elliptical differential operator and an elliptical scalar operator.  

6. A method according to claim 1, wherein the wave equation is 

U 2 2+2 

at2v--V uvV} ASVu), 

25 whereinS=l+AS, AS=_ (nj (1+2c)+n)2 8(E-)n2 n2 +2n7 -1 

wherein u is the wave field, t is time, S is a scalar operator, vo is the velocity in the 

subsurface along the axis of symmetry of anisotropy, nh is the horizontal phase 

direction, nz is the vertical phase direction, and wherein E and 6 are anisotropic 

30 parameters.  

7. A method according to claim 1, wherein the wave equation is



25 

=v +(1+2v + v + 2 1 8(s-c+)nn 121+c ASe, AS,,I i v 

at2 =VO 2z 2 + ±2V)vaZCU __ 
2y ~1 2 2n 8t 8z 8 ( 8z(I 2 (12e n + n 

wherein u is the wave field, t is time, S is a scalar operator, vo is the velocity in the 

subsurface along the axis of symmetry of anisotropy, n, and ny are the horizontal phase 

direction, nz is the vertical phase direction, and wherein E and 6 are anisotropic 

5 parameters.  

8. A method of determining a wave field, or a component thereof, in an anisotropic 

subsurface of the Earth, the method comprising: 

providing an operator S having components based on subsurface anisotropy 

10 and wavefield phase direction, the phase direction being obtained from an estimated 

gradient of a predetermined wave field; and 

using the operator S to determine the wave field, or said component thereof.  

9. A method as claimed in claim 8, which further comprises any of: 

15 - estimating a wave field; 

- determining a gradient of the wave field; 

- providing pre-defined anisotropy parameters; 

- using the gradient and anisotropy parameters to compute the operator 

S; 

20 - combining the operator with the square of the velocity and the gradient 

of the wave field to obtain a combined result; and 

- using the combined result, determining the component of the wave 

field.  

25 10. A method as claimed in claim 8 or 9, wherein the operator S is a scalar quantity.  

11. A method of processing data, comprising: 

(a) providing first data associated with an anisotropic subsurface of the 

Earth; 

30 (b) numerically solving a wave equation to determine a wave field or 

component thereof in the anisotropic subsurface; and 

(c) processing the first data using the determined wave field or component 

thereof to produce second data associated with said subsurface.  

35
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12. A method as claimed in claim 1 or claim 11, wherein the wave equation has the 

form of 

0 2u 
2 = scalarV2 u 

at 2 

5 or 

alu 
_2u = V * (scalarVu).  
at2 

13. A method as claimed in claim 1 or claim 11, wherein the wave equation is either 

- V e(v SVu)=0 
at2 

10 or 

2U 
-vSV2u=0, 

at 

wherein u is the wave field, t is time, S is a scalar operator, and vo is the velocity in the 

subsurface along the axis of symmetry of anisotropy.  

15 14. A computer program comprising machine readable instructions for performing 

the method as claimed in any of the preceding claims.  

15. A computer device comprising processor arranged to execute the computer 

program of claim 14 to perform said method.  

20
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