

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2011-136841

(P2011-136841A)

(43) 公開日 平成23年7月14日(2011.7.14)

(51) Int.Cl.

B65H 45/18 (2006.01)

F 1

B 65 H 45/18

テーマコード(参考)

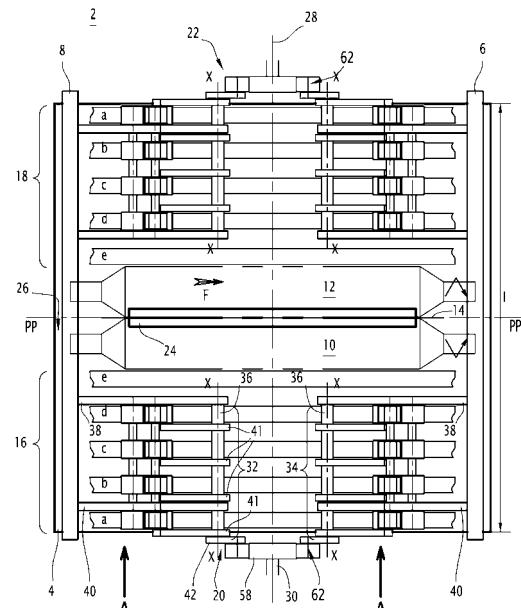
3 F 1 O 8

審査請求 未請求 請求項の数 15 O L 外国語出願 (全 29 頁)

(21) 出願番号 特願2010-290910 (P2010-290910)
 (22) 出願日 平成22年12月27日 (2010.12.27)
 (31) 優先権主張番号 0959652
 (32) 優先日 平成21年12月29日 (2009.12.29)
 (33) 優先権主張国 フランス (FR)

(71) 出願人 594141705
 ゴス インターナショナル モンターテール
 ソシエテ アノニム
 Goss International
 Montataire, S. A.
 フランス国 モンターテール スクウェア
 アシェ マリノーニ (番地なし)
 Square H. Marinoni, F
 -60761 Montataire, F
 rance
 (74) 代理人 100099483
 弁理士 久野 琢也
 (74) 代理人 100061815
 弁理士 矢野 敏雄

最終頁に続く


(54) 【発明の名称】 2つの位置の間での定時移動を行うことができる1つ又は複数のベルトを有する折り装置

(57) 【要約】

【課題】 折り畳まれる製品の改良された折りを保証する。

【解決手段】 折り部材14と、折り畳まれる製品を折り部材14と向き合って配置するために製品に前進平面26において作用する少なくとも第1のベルト(d)と、各第1のベルト(d)を前進平面に対し、第1のベルト(d)が折り畳まれる製品(S)に第1の圧力(P1)を加える第1の位置(Pb)と、第1のベルト(d)が折り畳まれる製品(S)に第1の圧力(P1)よりも小さい第2の圧力(P2)を加える第2の位置(Ph)との間で移動させるための移動手段20, 22とが設けられており、移動手段20, 22が、第1のベルト(d)を第1の位置と第2の位置とに交互に移動させる。

【選択図】図1

【特許請求の範囲】

【請求項 1】

折り装置(2, 3)において、
折り部材(14)と、
折り畳まれる製品(S)を前記折り部材(14)と向き合って配置するために前記製品に前進平面(26)において作用する少なくとも1つの第1のベルト(d)と、
各第1のベルト(d)を前進平面に対して、第1のベルト(d)が折り畳まれる製品(S)に第1の圧力(P1)を加える第1の位置(Pb)と、第1のベルト(d)が折り畳まれる製品(S)に第1の圧力(P1)よりも小さい第2の圧力(P2)を加える第2の位置(Ph)との間で移動させるための移動手段(20, 22)とが設けられている形式のものにおいて、

前記移動手段(20, 22)が、第1のベルト(d)を第1の位置と第2の位置との間で交互に移動させることを特徴とする、折り装置。

【請求項 2】

各第1のベルトの移動手段(20, 22)が、各第1のベルトのために、
周囲に前記第1のベルト(d)が案内された第1の案内部材(46)と、
該第1の案内部材(46)を支持する第1の可動支持部材(41)と、
第1のベルト(d)を第1の位置(Pb)と第2の位置(Ph)との間で移動させるための、第1の可動支持部材(41)の定時往復作動のための第1の定時作動手段(30)とを有している、請求項1記載の折り装置。

【請求項 3】

各第1のベルトの移動手段(20, 22)が、各第1のベルトのために、
周囲に前記第1のベルト(d)が案内された第2の案内部材(46)と、
該第2の案内部材(46)を支持する第2の可動支持部材(41)と、
第1のベルト(d)を第1の位置(Pb)と第2の位置(Ph)との間で移動させるための、第2の可動支持部材(41)の定時往復作動のための第2の定時作動手段(30; 64)とを有している、請求項2記載の折り装置。

【請求項 4】

各第1の、又は使用されるならば第2の、可動支持部材が、ベルトを前進平面に対して位置決めするための端部でありかつ関連する案内部材を支持する第1の端部(44)と、回動可能に支持された第2の端部(50)とを有する回動レバー(41)である、請求項2又は3記載の折り装置。

【請求項 5】

各第1のベルトを移動させるための移動手段(20, 22)が、各可動支持部材のために、関連する可動支持部材(41)に、該可動支持部材に対して回動しないように固定されかつ第1及び第2の関連する定時作動手段(30; 64)と協働する制御レバー(42)とを有している、請求項2から4までのいずれか1項記載の折り装置。

【請求項 6】

各第1又は第2の定時作動手段(30; 64)が、カム又は偏心シャフト、ジャッキ又は電磁石、使用されるならば制御レバー(42)に作用する定時作動手段を含む、請求項2から5までのいずれか1項記載の折り装置。

【請求項 7】

各第1及び第2の可動支持部材(41)が、第1のベルトの端部(49)を形成しており、第1及び第2の可動支持部材(41)が互いに向き合って配置されておりかつ、前進平面に対して垂直な方向(D)でのベルトの移動を生ぜしめるために個々に第1のベルト(d)の関連する端部(49)に作用する、請求項3記載の折り装置。

【請求項 8】

第1及び第2の定時作動手段(30)が、共有された作動部材、特に共有されたカムを含む、請求項3記載の折り装置。

【請求項 9】

10

20

30

40

50

第1及び第2の定時作動手段が、2つの別個の定時作動手段(30)、特に2つの別個のカムを含む、請求項3記載の折り装置。

【請求項10】

第2の位置(P_h)が、前進平面に対してベルトが傾斜した位置であり、第1の位置(P_b)が、ベルトが前進平面に対して平行になる位置である、請求項1から9までのいずれか1項記載の折り装置。

【請求項11】

折り畳まれる製品(S)を折り部材(14)に向き合って配置するために前記製品に前進平面において作用する第1の付加的なベルト(c)が設けられている、請求項1から10までのいずれか1項記載の折り装置。

10

【請求項12】

前記第1の付加的なベルト(c)を移動させるための移動手段(20, 22)が、第1の付加的なベルトの第1の可動支持部材を、第1のベルトの第1の可動支持部材に結合する同期化手段(36)を有しており、これにより、これらの2つの可動支持部材の同期した移動を提供し、第1のベルト及び第1の付加的なベルトを第1の位置と第2の位置との間で同期して駆動するようになっている、請求項11記載の折り装置。

【請求項13】

各第1のベルトが、折り畳まれる製品を前進させるための被動ベルトであり、第1の位置(P_b)が、折り畳まれる製品の前進位置であり、第2の位置(P_h)が、折り畳まれる製品の解放位置である、請求項1から12までのいずれか1項記載の折り装置。

20

【請求項14】

各第1のベルトが、折り畳まれる製品を制動するための静止したベルトであり、第1の位置(P_b)が、折り畳まれる製品の制動位置であり、第2の位置(P_h)が、各ベルトの後退した位置である、請求項1から12までのいずれか1項記載の折り装置。

【請求項15】

前進ベルト又は制動ベルトであり、かつ第1のベルトの移動手段(20, 22)に関連していない少なくとも1つの第2のベルト(e)が設けられている、請求項1から14までのいずれか1項記載の折り装置。

【発明の詳細な説明】

【技術分野】

30

【0001】

本発明は、

折り部材と、

折り畳まれる製品を折り部材に向き合って配置するように前進平面において前記製品に作用する少なくとも1つの第1のベルトとを有する折り装置に関し、該装置は、

第1のベルトが、折り畳まれる製品に第1の圧力を加える第1の位置と、

第1のベルトが、折り畳まれる製品に、第1の圧力よりも低い第2の圧力を加える第2の位置との間を、前進平面に対して第1のベルトをそれぞれ移動させるための手段を有している。

【背景技術】

【0002】

このような折り装置は、特に仏国特許出願公開第2676390号明細書から公知である。

【0003】

この文献には、上部及び下部コンベヤベルトの間に捕捉された折り丁が前記上部及び下部コンベヤベルトによって、折りブレードの作用により長手方向で折り畳まれるために折りテーブルに向かって前進させられる折り装置が記載されている。下部コンベヤベルトの上部ストランドは、共同で又は個々に水平方向に移動させられることができるストリッパロール16によって支持されている。ストリッパロール16を手動で移動させることにより、折りテーブルの表面に対する下部コンベヤベルトの上部ストランドの傾斜角度を変化

40

50

させることができ、その目的は、折り畳まれる折り丁の衝撃強さを変化させ、紙のタイプ及び折り丁の厚さに対する適応を行うことである。

【0004】

しかしながら、この公知の手段の場合、折り畳まれる製品の制動と、ストリッパロールによる製品の取り上げとが、常に満足できるものであるわけでなく、このことは、折りの質を低下させる。

【先行技術文献】

【特許文献】

【0005】

【特許文献1】仏国特許出願公開第2676390号明細書

10

【発明の概要】

【発明が解決しようとする課題】

【0006】

従って、本発明の1つの課題は、折り畳まれる製品の改良された折りを保証する折り装置を提供することである。

【課題を解決するための手段】

【0007】

前記課題を解決するために、本発明は、移動手段が、ベルトを第1の位置と第2の位置とに交互に移動させることを特徴とする前記形式の折り装置を提案する。

【0008】

ベルトを2つの位置に交互に移動させる移動手段を提供することにより、折り装置の運転中に折り畳まれる製品にベルトによって加えられる圧力を変化させることが可能になる。従って、特に、折りを行う間に折りローラによって折り畳まれる製品の取上げを容易にし、折りテーブルのストップにおける折り畳まれる製品の圧潰を低減し、折り畳まれる製品の制動を改良することが可能である。

20

【0009】

別の実施態様によれば、折り装置は、以下の特徴のうちの1つ又は複数を、単独で、又は全ての技術的に可能な組合せに従って有している。

【0010】

各第1のベルトの前進手段は、各第1のベルトのために、
周囲に第1のベルト(d)が案内されている第1の案内部材；
第1の案内部材を支持する第1の可動な支持部材；
第1のベルト(d)を第1の位置(Pb)と第2の位置(Ph)との間で移動させる、
第1の可動な支持部材の定時往復作動のための第1の手段；を有している。

30

【0011】

各第1のベルトの前進手段は、各第1のベルトのために、さらに、
周囲に第1のベルト(d)が案内されている第2の案内部材；
第2の案内部材を支持する第2の可動な支持部材；
第1のベルト(d)を第1及び第2の位置の間で移動させる、第2の可動な支持部材の定時往復作動のための第2の手段；を有している。

40

【0012】

各第1の、使用されるならば第2の、可動な支持部材が、前進平面に対してベルトを位置決めするための端部でありかつ関連する案内部材を支持する第1の端部と、回動可能に収容された第2の端部とを有する回動レバーである。

【0013】

各第1のベルトを移動させるための手段が、各可動な支持部材のために、第1又は第2の関連する定時作動手段と共同する、関連する可動な支持部材に、この可動な支持部材に対して回動しないように固定された制御レバーを有している。

【0014】

各第1又は第2の定時作動手段が、カム又は偏心軸、ジャッキ又は電磁石、適用可能で

50

あるならば制御レバーに作用する定時作動手段を含む。

【0015】

各第1及び第2の可動な支持部材が第1のベルトの端部を形成しており、第1及び第2の可動な支持部材は互いに向き合って配置されており、前進平面に対して垂直な方向でのベルトの移動を生ぜしめるように、個々に第1のベルトのそれぞれの関連する端部に作用する。

【0016】

第1及び第2の定時作動手段が、共有された作動部材、特に共有されたカムを有する。

【0017】

第1及び第2の定時作動手段が、2つの別個の作動手段、特に2つの別個のカムを有する。

10

【0018】

第2の位置が、前進平面に対するベルトの傾斜した位置であり、第1の位置が、ベルトが前進平面に対して平行である位置である。

【0019】

折り装置が、折り畳まれる製品を折り部材に向き合って配置するために、前進平面において、折り畳まれる製品に作用する第1の付加的なベルトを有している。

20

【0020】

第1の付加的なベルトを移動させるための手段が、第1の付加的なベルトの第1の可動な支持部材を、第1のベルトの第1の可動な支持部材に結合する同期化手段を有しており、この同期化手段は、これらの2つの支持部材の同期した移動を可能にし、第1の位置と第2の位置との間で第1のベルトを同期的に移動させる。

20

【0021】

各第1のベルトが、折り畳まれる製品を前進させるための被動ベルトであり、第1の位置が、折り畳まれる製品の前進位置であり、第2の位置が、折り畳まれる製品の解放位置である。

30

【0022】

各第1のベルトが、折り畳まれる製品を制動させるための静止ベルトであり、第1の位置が、折り畳まれる製品の制動位置であり、第2の位置が、各ベルトの後退した位置である。

30

【0023】

折り装置が、第1のベルトの移動手段に関連していない前進ベルト又は制動ベルトである第2のベルトを有する。

【0024】

第2の圧力が0Pa以上であり、好適には僅かに0Paより大きい。

【0025】

折り装置が、各可動な支持部材のためのカムフォロアを有しており、各カムフォロアが、共有されたカムと協働する。

【0026】

第1のカムフォロアが、2つの別個のカムの内の方と共同し、第2のカムフォロアが、2つの別個のカムの内の方と協働する。

40

【0027】

折り装置は、各定時作動手段を作動周波数Frに合わせて調節することができる制御手段を有し、Fr = Fa / nであるようにし、この場合、Faが折り畳まれる製品の前進周波数であり、nが整数である。

【0028】

移動手段は、折り畳まれた製品がストップに衝突する前に、解放位置を占めるように適応されている。

【0029】

第1及び第2の位置が、末端位置である。

50

【0030】

装置が、少なくとも1つの第2のベルト、特に被動前進ベルトを有しており、前記第2のベルトが、スロットに最も近いベルトである。

【0031】

一例としてのみ提供されかつ添付の図面を参照して提供される以下の説明を読むことにより、本発明はさらに理解されるであろう。

【図面の簡単な説明】

【0032】

【図1】本発明による折り装置の第1の実施態様を示す上面図である。

10

【図2】図1の装置を矢印A-Aの方向で見た、前進位置を示す正面図である。

【図3】図1の装置を矢印A-Aの方向で見た、解放位置を示す正面図である。

【図4】図2及び図3と同様の図であり、図1の折り一的な実施態様を示している。

【図5】図2及び図3と同様の図であり、図1の折り一的な実施態様を示している。

【図6】図1の装置の第2の折り一的な実施態様を示す、図2及び図3と同様の図である。

【図7】図1の装置の第2の折り一的な実施態様を示す、図2及び図3と同様の図である。

【図8】本発明による折り装置の第2の実施態様の上面図である。

【図9】図8の実施態様を矢印Aの方向で見た、後退した位置を示す正面図である。

【図10】図8の実施態様を矢印Aの方向で見た、制動位置を示す正面図である。

【発明を実施するための形態】

【0033】

20

図1は、本発明による折り装置2の第1の実施形態による、図2の矢印Bの方向で見た上面図である。折り装置2は、図示されていない印刷ユニット及び場合によって断裁装置の下流に配置されており、前記印刷ユニット及び断裁装置から、折り畳まれる印刷された折り丁を受け取る。

【0034】

折り装置2は、幅Iを備える折りテーブル4と、第1のフレーム6と、第2のフレーム8と、2つの折りローラ10及び12と、折りブレード14と、被動前進ベルトのセットと、ベルトの部分を折りテーブル4に対して移動させるための手段20, 22とを有している。

【0035】

30

折りローラ10及び12は、テーブル4に形成されたスロット24のそれぞれの側において折りテーブル4の下方に配置されている。折りブレード14はテーブル4の上方に配置されており、スロット24に挿入されるように下降させることができる。折りブレード14は、折りテーブル4に対して垂直に延びた折り平面PPを規定している。折り丁ストッパ(図示せず)は、第1のフレーム6の近傍に配置されている。

【0036】

被動前進ベルトのセットは、上部ベルトの第1のグループ16及び下部ベルトの関連するグループと、上部ベルトの第2のグループ18及び下部ベルトの関連するグループとを有している。移動手段20は第1のグループ16に結合されているのに対し、移動手段22は第2のグループ18に結合されている。

40

【0037】

上部ベルトのグループ16及び18の構成及び作動と、移動手段20及び22の構成及び作動とは、同じである。実際、折り装置20は折り平面PPに対して対称の構成である。その結果、上部ベルトのグループ16と、関連する移動手段20との構成及び作動のみを説明する。

【0038】

グループ16は、移動手段20が作用する複数の上部ベルトのセット、この場合にはa, b, c, dで示された4つのベルトと、移動手段を備えずに設けられた個々の上部ベルトeとを有している。

【0039】

50

ベルト a ~ e は、被動ベルトであり、駆動されて循環する。個々のベルト e は、スロット 2 4 に最も近いベルトである。

【0040】

従って、スロット 2 4 を通過する折り丁は、ベルト e によって案内され、"バックラッシュ"による折りの形成が回避される。

【0041】

各上部ベルト a ~ d は、フレーム 6 及び 8 に結合された支持体 3 8 及び 4 0 に取り付けられた 4 つのブーリ 4 8 と、2 つの可動ブーリ 4 6 とを含む合計で 6 つのブーリ によって支持されている（図 2 参照）。各可動ブーリ 4 6 は、関連する上部ベルトのセクション 4 9 に対して押し付けられている。以下、これらのセクション 4 9 は、上部ベルトの"端部" 10 という。

【0042】

図 2 及び図 3 は、上部ベルトのグループ 1 6 に結合された下部ベルトのグループの下部ベルト 10 を示している。各上部ベルト a ~ e はこのようないくつかの対応する下部ベルトに関連している。

【0043】

移動手段 2 0 は、上部ベルト a ~ d を、折りテーブル 4 によって規定された前進平面 2 6 に対して、第 1 の低い位置 P b (図 2 参照) と、第 2 の高い位置 P h (図 3 参照) との間で移動させる。移動手段 2 0 は、折り平面 P P と前進平面 2 6 とに対して垂直な鉛直方向中央平面 2 8 に対して対称に構成されている。移動手段 2 0 は、カム 5 8 が設けられた 1 つのカムシャフト 3 0 を有しており、前記カム 5 8 は、平面 2 8 のそれぞれの側において、回動アセンブリ 3 2 , 3 4 と協働する。 20

【0044】

カム 5 8 は、中心 O と、短軸 X と、長軸 Y とを備えたほぼだ円形である。カム 5 8 の表面は、中心 O に近い表面セクション 6 0 と、中心 O から遠い表面セクション 6 2 とに分割されている。

【0045】

各回動アセンブリ 3 2 , 3 4 は、2 つの支持体 3 8 及び 4 0 において回動軸線 X - X を中心にして回動するように収容されたロッド 3 6 を有している。各回動アセンブリ 3 2 , 3 4 は、4 つの支持レバー 4 1 のセットと、制御レバー 4 2 とを有している。 30

【0046】

各支持レバー 4 1 は、回動ロッド 3 6 に、この回動ロッド 3 6 に対して回動しないように固定された第 1 の端部 5 0 を有している。各支持レバー 4 1 は、回動軸線 X - X と一致する第 1 の端部 5 0 における回動軸線 5 4 を有している。各支持レバー 4 1 は、可動ブーリ 4 6 の内の 1 つが設けられた第 2 の端部 4 4 も有している（図 2 参照）。各可動ブーリ 4 6 は、関連する上部ベルト a , b , c , d を前進平面 2 6 に対して案内及び位置決めするため使用される。

【0047】

制御レバー 4 2 の向きは、支持レバー 4 1 の向きと異なる。制御レバー 4 1 は、支持レバー 4 1 に対して鈍角を形成している。 40

【0048】

制御レバー 4 2 は第 1 の端部 4 3 を有しており、この第 1 の端部 4 3 において制御レバー 4 2 はロッド 3 6 に、このロッド 3 6 に対して回動しないように固定されている。制御レバー 4 2 は、支持レバー 4 1 の回動軸線及び回動軸線 X - X と一致する第 1 の端部 4 3 における回動軸線 5 4 を有している。

【0049】

制御レバー 4 2 はカムシャフト 3 0 と協働する。具体的には、制御レバー 4 2 は、カムシャフト 3 0 のカム 5 8 と接触したカムローラ若しくはカムフォロア 5 6 が設けられた、第 1 の端部 4 3 とは反対側の第 2 の端部 5 2 を有している。

【0050】

10

20

30

40

50

各回動アセンブリ 3 2 , 3 4 の制御レバー 4 2 のローラ 5 6 は、同じカム 5 8 と協働する。従って、カム 5 8 は、2 つのローラ 5 6 によって共有されたカムである。

【0051】

各ローラ 5 6 は、ばねエレメント（図示せず）によってカム 5 8 の表面に向かって付勢されている。これらのばねエレメントは、特に圧縮ばね又はねじりロッドである。

【0052】

ここで本発明による折り装置 2 の第 1 の実施態様の作動を図 1 から図 3 までを参照して説明する。

【0053】

折り畳まれる製品、すなわち印刷された折り丁は、直角折りを受けるために、装置 2 に向かって前進させられる。折りテーブル 4 における折り丁の前進方向は、図 2 に矢印 F によって示されている。各折丁は、折りテーブル 4 の幅 I（図 1 参照）と実質的に等しい、幅、すなわち前進方向 F に対して垂直でかつ前進平面 2 6 に対して平行な横方向を有している。

【0054】

折り装置 2 の内部における、図 2 の左端に示された、折り丁 S の走行は、以下のとおりである。折り丁の幅に沿って、折り丁 S は、上部ベルト a ~ e のグループ 1 6 及び 1 8 と、下部ベルトの対応するグループとの間に掴まれる。折り丁 S を折りテーブル 4 上で、折りブレード 1 4 の下方にこの折りブレード 1 4 と向き合うように前進させるために、上部及び下部ベルトは前進方向 F に駆動される。折り丁 S は、フレーム側 6 に配置されたストップ（図示せず）を用いて折りテーブル 4 上で停止させられる。折り丁 S が停止させられると、折りブレード 1 4 は、図 2 に示された矢印 G に沿って下降させられる。折り丁 S の中央部は、折りブレード 1 4 のエッジの作用によりスロット 2 4 に押し込まれ、次いで、回転する折りローラ 1 0 及び 1 2 によって掴まれる。従って、折り丁 S は、いわゆる"直角折り"において折りが形成される。

【0055】

本発明による移動手段 2 0 , 2 2 により、折り丁 S が特にストップによって停止させられる前に、また、折り丁がテーブル 4 のスロット 2 4 においてブレード 1 4 によって係合される前に、折り丁 S がそれぞれ通過するとき、上部ベルト a ~ d は下部ベルトから数ミリメートルだけ離れる。

【0056】

図 2 は、折りテーブル 4 に向かってベルトによって前進させ始める段階の折り丁 S を示している。上部ベルトは低い位置 P b にあり、折り丁を矢印 F の方向に駆動するのに十分な第 1 の前進圧力 P 1 を折り丁 S に加えている。従って、折り丁 S は上部ベルト a と下部ベルト b との間に掴まれる。上部ベルト a の低い位置 P b は、カム 5 8 の短軸 X の寸法によって規定される。実際には、低い位置 P b において、制御レバー 4 2 のローラ 5 6 は、カム 5 8 の表面セクション 6 0 と接触している。従って、制御レバー 4 2 は、図 2 に示されたような引っ込められた位置にある。支持レバー 4 1 に取り付けられた可動ブーリ 4 6 は低い位置にあり、上部ベルト a を折り丁 S の表面に押し付ける。

【0057】

折り丁 S はベルトによって前進方向 F に折り位置に向かって前進させられる。この間、カム 5 8 は、図 2 に示された矢印 H に従って回転する。折り丁 S がストップ（図示せず）に衝突しようとする時、カム 5 8 は4分の1回転だけ回転しており、図 3 に示された位置に到達する。制御レバー 4 2 のローラ 5 6 はカム面において転動し（矢印 M 参照）、カム 5 8 の表面セクション 6 2 と接触している。カム 5 8 のこの回転運動は、カム 5 8 の長軸 Y によって規定された最大離間位置に向かって制御レバー 4 2 の離間を生じる。その結果、制御レバー 4 2 は、図 3 に示された矢印 J に従って、すなわち外方及び下方へ移動する。制御レバー 4 2 は、ロッド 3 6 及び支持レバー 4 1 を矢印 K によって示されているように駆動する。可動ブーリ 4 6 が追従して移動し、これにより、上部ベルト a を図 3 に示された方向 D へ上昇させる。これにより、上部ベルト a と下部ベルト b との間に、数ミリメートル

10

20

30

40

50

ートルの隙間 i が生じる。従って、上部ベルトは解放位置にあり、上部ベルトは、前進圧力 P_1 よりも小さい第 2 の圧力 P_2 を折り丁 S に加える。第 2 の圧力 P_2 は 0 Pa に等しいこともでき、これにより、上部ベルトは解放位置 P_h において、折り丁 S と接触しなくなる。

【0058】

概して、第 2 の圧力 P_2 は、 0 Pa よりも大きいか又は 0 Pa と等しく、好適には 0 Pa よりも僅かに大きい。

【0059】

従って、折り丁 S は、直角折りを生じる前には著しく解放されない。これは、ストッパにおける折り丁 S の圧潰を減じ、ローラ 10 及び 12 による折り丁 S の掴みを容易にするという利点を有する。実際には、隙間 i により、折り丁 S の端部は、前進ベルトのグループからより容易に引き出される。

【0060】

折り丁 S の解放は、好適には、前記折り丁 S がストッパに衝突する前に行われる。従って、ストッパにおける折り丁の圧潰が減じられる。

【0061】

カムシャフト 30 は、折り畳まれる各折り丁 S のための上部ベルトを持ち上げるように駆動される。従って、上部ベルト $a \sim d$ は、図 2 及び図 3 に示された 2 つの位置 P_b 及び P_h の間を交互に移動する。

【0062】

カムシャフト 30 の回転は、制御装置（図示せず）によって、折り丁 S の前進周波数の半分とほぼ等しい周波数 F_r に調節される。

【0063】

図 2 及び図 3 に示されたようなほぼ円形のカムの使用に限定されない。異なる形状のカム、又は偏心輪を考えることができ、回転の周波数 F_r は、選択されたカム又は偏心輪の形状に適応されなければならない。概して、周波数 F_r は、 F_r が F_a / n に等しくなっており、この場合、 F_a は折り丁 S の前進周波数、 n は正の整数である。

【0064】

図 4 及び図 5 は、折り装置の第 1 の実施態様の第 1 の変更例である。この変更例は、以下のように前述の折り装置と異なる。この変更例において、唯一のシャフト 30 の代わりに、それぞれ制御レバー 42 の 1 つに作用する 2 つのカム 66 及びカムシャフト 64 が用いられている。共有されたカム 58 が 2 つの制御レバー 42 の間に配置されている図 2 及び図 3 とは異なり、2 つのカム 66 の間に配置されているのは制御レバー 42 の端部 52 である。2 つのカム 66 は同じ周波数で回転し、つまり、矢印 H で示したように、互いに反対方向で同期させられている。図 4 は、図 2 と同様に、低い位置 P_b を示しており、図 5 は、図 3 と同様に、高い位置 P_h を示している。

【0065】

図 6 及び図 7 は、図 4 及び図 5 と同様の第 2 の折り例を示しており、2 つのカム 64 の内的一方が固定されている点のみが異なる。図 6 の低い位置 P_b は図 4 の位置と同じである。しかしながら、図 7 に示したように、1 つの回転カム 64 を用いて、上部ベルト a は、一方の側においてのみ折りテーブル 4 に対して角度 θ を成すように上昇する。従って、高い位置 P_h において、上部ベルト a は前進平面に対して傾斜させられている。

【0066】

図示の場合、ベルトは、ベルトが折り丁の前側において、つまり前進方向 F の下流に向かって上昇させられるように傾斜させられる。

【0067】

折り的に、位置 P_h において、ベルトは、折り丁の後側において、つまり前進方向 F の上流に向かって上昇させられるようにテーブル 4 に対して傾斜させられる。

【0068】

図 8 から図 10 までは、本発明による折り装置の第 2 の実施態様 3 を示している。この

10

20

30

40

50

第2の実施態様は、上部ベルトa～dの2つのセットを移動させるための手段20及び22に関して第1の実施態様と同じである。しかしながら、この実施態様において、定時に昇降させられる上部ベルトは、折り丁を前進させるためのベルトではなく、付加的な静止した制動ベルトである。付加的な上部ベルトa～dは、駆動されず、端部68においてねじ70を用いて支持体38, 40に固定されている。付加的な上部制動ベルトa～dは、上部前進ベルトe及び下部前進ベルトの間に収容されている。

【0069】

本発明による折り装置の第2の実施態様3は以下のように作動する。図9を参照すると、折り丁Sは、前進ベルトe, によって折りテーブル4上で矢印Fによって示された方向に前進させられる。前進の開始時には、上部制動ベルトaは高い位置Phにあり、前進ベルトeに対して約数ミリメートルの隙間iだけ高さがずれている。ローラ56はカム58の表面セクション62と接触しており、2つの制御レバー42は互いにより離れた位置にある。折り丁Sが折りテーブル4上で前進方向Fに移動し続けると、カム58は、図10に示された位置に達するまで回転し続ける。この位置において、カム表面に従動するローラ56はカム58の表面60と接触している。従って、矢印Jによって示されたように制御レバー42は互いに向かって上方へ回動し、より近づいた位置へ達し、上部制動ベルトaを下降させる。

【0070】

カムシャフト30の回転の周波数及び位相は、折り丁Sが折りテーブル4のスロット24において折りブレード14によって係合され、折りローラ10, 12によって掴まれる前に折り丁Sを制動するために、折り丁Sのそれぞれの通過時に上部制動ベルトa～dが下降するように、調節される。移動している折り丁Sに向かって下降することにより、上部制動ベルトa～dは折り丁Sと接触し、摩擦によって折り丁Sを制動する。制動の間、カム58は、図9に示された位置に再び達するまで回転し続ける。上部制動ベルトが上昇させられると、折り丁Sは折り畳まれ、前記サイクルは再び開始する。カムシャフト30の回転の周波数Frは、FrがFa/nに等しくなるように調節され、この場合、Faは折り畳まれる製品の前進周波数であり、nは正の整数である。

【0071】

2つの実施態様、すなわち前進ベルトを上昇させるための定時システムと、制動ベルトのグループの定時下降による制動システムとは、別個に説明された。しかしながら、これらの2つのシステムは組み合わされてもよい。

【0072】

さらに、上述のベルトの定時移動のための手段20, 22を、完全に折りテーブルの下方に配置することもできる。さらに、上で展開された原理を、下部前進ベルトに適用することもできる。その場合は、定時形式で移動させられるのは下部ベルトであり、上部ベルトではない。

【0073】

移動手段20, 22を、前記実施態様とは異なる数のベルトを移動させるように変更することもできる。図1を参照すると、例えば、ロッド36をベルトeまで延長し、ベルトa～dと一緒にベルトeの定時上昇を可能にする付加的な支持レバー41を提供することも可能である。それとは逆に、定時移動を例えばベルトa及びbだけに限定するために移動手段20, 22を変更することも可能である。所望の用途に応じてその他の折り一例も考えられる。

【0074】

もちろん、レバー41, 42を、カムシャフト以外の手段により作動させることができる。カムシャフトの代わりに例えばジャッキ又は電磁石を用いることができる。

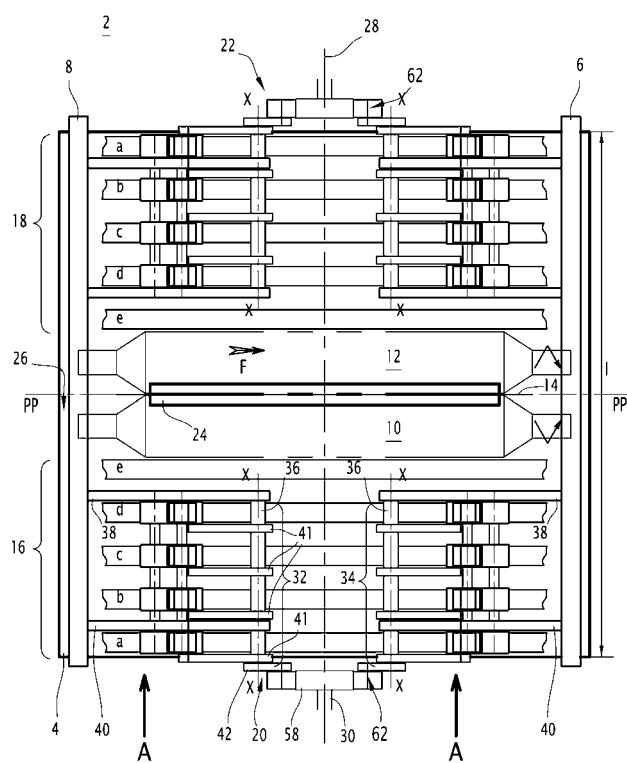
【符号の説明】

【0075】

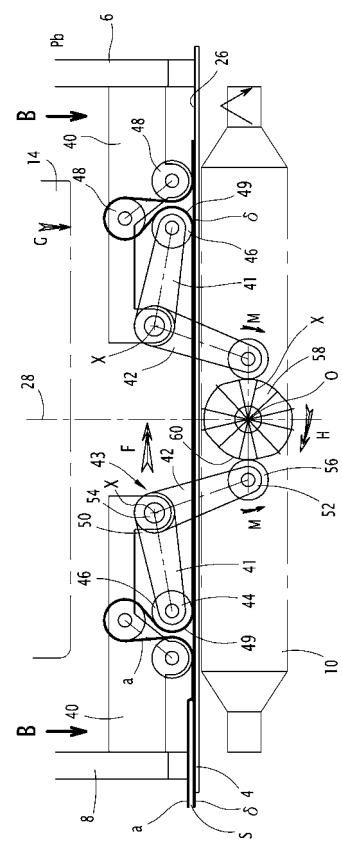
2 折り装置、 4 折りテーブル、 6 第1のフレーム、 8 第2のフレーム、
10, 12 折りローラ、 14 折りブレード、 16 第1のグループ、 18

10

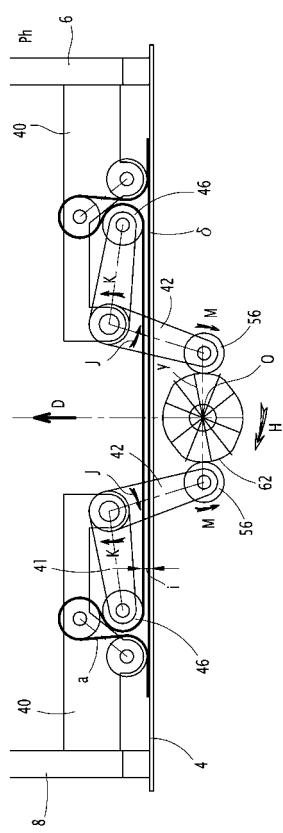
20

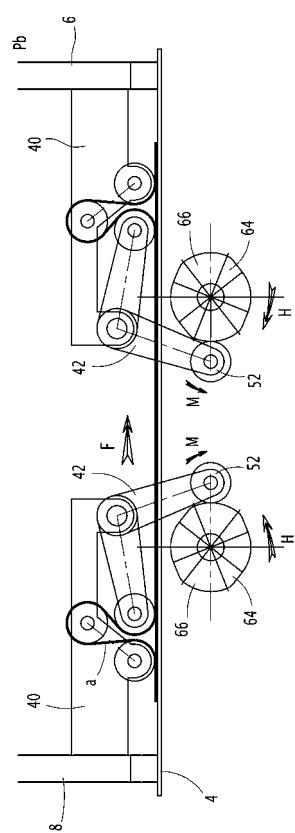

30

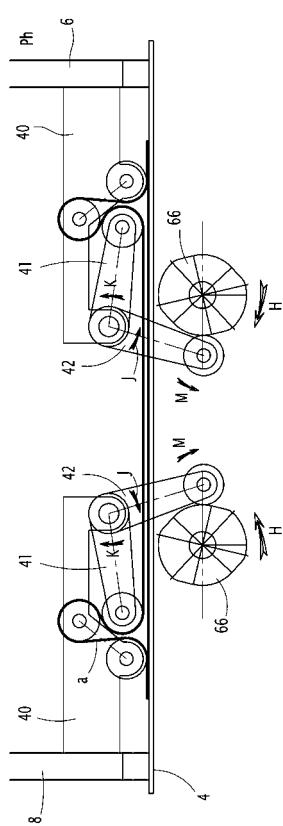
40

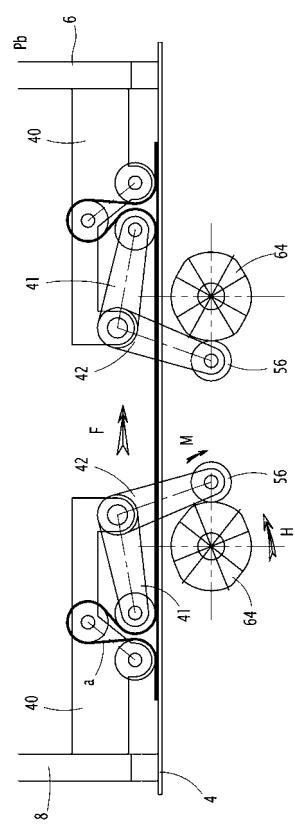

50

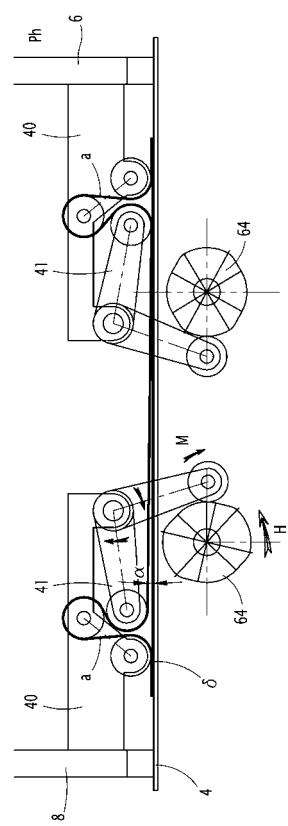
第2ングループ、20, 22 移動手段、24 スロット、26 前進平面、30 カムシャフト、32, 34 回動アセンブリ、36 ロッド、38, 40 支持体、41 支持レバー、42 制御レバー、43 第1の端部、44 第2の端部、46 可動ブーリ、48 ブーリ、49 セクション、50 第1の端部、56 カムフォロア、58 カム、60, 62 表面セクション、a~e 上部ベルト、下部ベルト、S 折り丁、P1 前進圧力、P2 第2の圧力、i 隙間

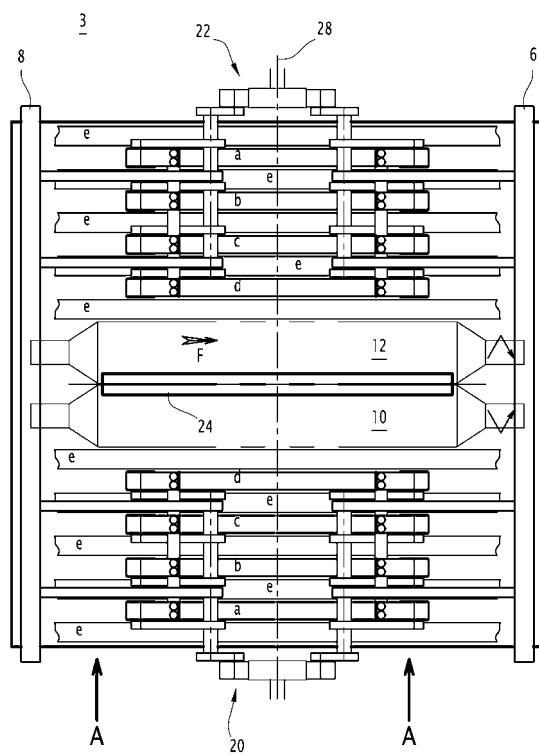

【図1】

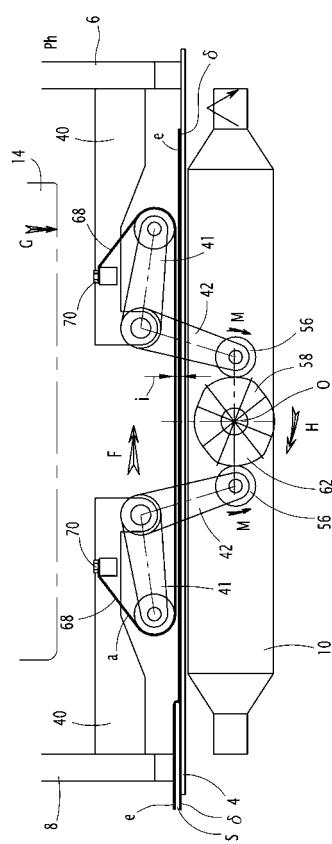

【図2】

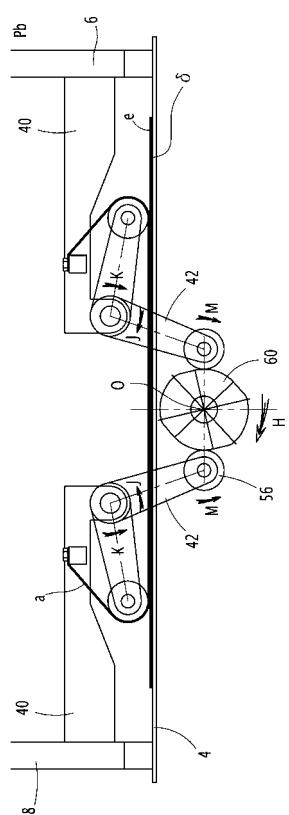

【図3】


【図4】


【図5】


【図6】


【図7】


【図8】

【図9】

【図10】

フロントページの続き

(74)代理人 100112793
弁理士 高橋 佳大

(74)代理人 100128679
弁理士 星 公弘

(74)代理人 100135633
弁理士 二宮 浩康

(74)代理人 100156812
弁理士 篠 良一

(74)代理人 100114890
弁理士 アインゼル・フェリックス=ラインハルト

(72)発明者 フィリップ フランソワ エルダ
フランス国 ノジェン スユル ワズ リュ デュ デボ 26

(72)発明者 ジェロム ジャン-ミシェル ペレス
フランス国 モンターテール リュ ロベール トリン 5 アパルトマン 1

(72)発明者 ティエリ-ベルナール ヴォシェル
フランス国 メニュレイ モンティニ リュ ジャック シヴォ 9

(72)発明者 ティエリ アンリ ムロン
フランス国 ブルイユ ル ヴェル アンパス デ マレ 102

(72)発明者 ジャン-フランソワ ロベール
フランス国 クレイル リュ デュ パルク マイエ 20

(72)発明者 エリック ピエルダ
フランス国 サン ル デセラン リュ アンペル 6

(72)発明者 フランク シャニヨン
フランス国 サン ル デセラン リュ アンリ デュナン 3

F ターム(参考) 3F108 AA01 AB01 BA03 BA09 CD01 CD06

【外國語明細書】

Title of Invention**Folding device including one or several belt(s) capable of performing a timed movement between two positions****Detailed Explanation of the Invention**

The present invention concerns a folding device including:

- a folding member, and
- at least a first belt adapted to act in a forwarding plane on a product to be folded in order to position it opposite the folding member,

the device including a means for moving the or each first belt relative to the forwarding plane between:

- a first position, in which the first belt exerts a first pressure on the product to be folded, and
- a second position, in which the first belt exerts a second pressure on the product to be folded that is less than the first pressure.

Such a folding device is known in particular from document FR-2 676 390 A1.

This document describes a folder in which signatures captured between the upper and lower conveyor belts are forwarded by the latter towards a folding table to be folded longways under the action of a folding blade. The upper strands of the lower conveyor belts are supported by stripper rolls 16 that can be jointly or individually moved horizontally. By manually moving the stripper rolls 16, it is possible to vary the incline angle of the upper strands of the lower conveyor belts relative to the surface of the folding table, the aim being to modify the impact intensity of the signatures to be folded and to establish an adaptation to the type of paper and the thickness of the signature.

Nevertheless, it has been noted that with this known solution, braking of the products to be folded and their taking in by the stripper rolls are not always satisfactory, which harms the quality of the folding.

One aim of the invention is therefore to produce a folding device ensuring improved folding of the products to be folded.

To achieve this aim, the invention proposes a folding device of the aforementioned type, characterized in that the movement means is adapted to make the belt alternate between the first and second positions.

By providing movement means making the belt alternate between the two positions, it becomes possible to vary the pressure exerted by the belt on the product to be folded during the operation of the folding device. Thus, it is in particular possible to facilitate taking in of the product to be folded by the folding rolls during performance of the fold, reduce

crushing of the products to be folded on the stops of the folding table, and improve braking of the products to be folded.

According to other embodiments, the folding device includes one or several of the following features, considered alone or according to all technically possible combinations.

- the forwarding means of the or each first belt comprises, for each first belt:
 - a first guide member around which the first belt (d) is guided;
 - a first mobile support member carrying the first guide member; and
 - a first means for timed to-and-fro actuation of the first mobile support member, which is adapted to move the first belt (d) between the first (Pb) and second (Ph) positions;
- the forwarding means of the or each first belt also comprises, for each first belt:
 - a second guide member around which the first belt (d) is guided;
 - a second mobile support member carrying the second guide member; and
 - a second means for timed to-and-fro actuation of the second mobile support member that is adapted to move the first belt (d) between the first and second positions;
- the or each first, or second if applicable, mobile support member is a pivoting lever having a first end, which is an end for positioning the belt relative to the forwarding plane and which carries the associated guide member, and a second end that is pivotably housed.
 - the means for moving the or each first belt comprises, for each mobile support member, a control lever fixed in rotation to the associated mobile support member and that cooperates with the first or second associated timed actuating means;
 - the or each first or second timed actuating means comprises a cam or eccentric shaft, a jack or an electromagnet, if applicable the timed actuating means acting on the control lever;
 - each of the first and second mobile support members forms an end of the first belt, the first and second mobile support members are arranged opposite each other, and acting on the associated end of the first belt, respectively, so as to allow or create a movement of the belt in a direction perpendicular to the forwarding plane;
 - the first and second timed actuating means comprise a shared actuating member, in particular a shared cam;
 - the first and second timed actuating means comprise two distinct actuating members, in particular two distinct cams;
 - the second position is an inclined position of the belt relative to the forwarding plane and the first position is a position where the belt is parallel to the forwarding plane;
 - the folding device comprises a first additional belt adapted to act in the forwarding plane on the product to be folded in order to position it opposite the folding member; and

- the means for moving the first additional belt comprises a synchronization means connecting the first mobile support member of the first additional belt to the first mobile support member of the first belt for a synchronous movement of these two support members for synchronous driving of the first belts between the first and second positions;

- the or each first belt is a driven belt for forwarding the product to be folded, and in which the first position is a forwarding position of the product to be folded and the second position is a released position of the product to be folded;

- the or each first belt is a static belt for braking the product to be folded, and in which the first position is a braking position of the product to be folded and the second position is a withdrawn position of the or each belt;

- the folding device comprises a second belt that is either a forwarding belt, or a braking belt, and which is not associated with the movement means of the first belts.

- the second pressure is greater than or equal to 0 Pa, and is preferably strictly greater than 0 Pa;

- the folding device comprises a cam follower for each mobile support member; each cam follower cooperates with the shared cam;

- a first cam follower cooperates with one of the two distinct cams, and a second cam follower cooperates with the other of the two distinct cams;

- the folding device comprises a control means capable of adjusting the or each timed actuating means to an actuating frequency Fr such that: $Fr = Fa / n$, where Fa is the forwarding frequency of the products to be folded, and n is a positive integer;

- the movement means is adapted to assume its released position before the folded product abuts against a stop;

- the first and second positions are extreme positions;

- the device comprises at least one second belt, in particular a driven forwarding belt, and said second belt is the belt closest to the slot.

The invention will be better understood upon reading the following description, provided solely as an example, and done in reference to the appended drawings.

Brief Explanation of the Drawings

- figure 1 is a top view of a first embodiment of a folding device according to the invention;

- figures 2 and 3 are front views of the device of figure 1 according to the arrows A illustrating the forwarding and released positions;

- figures 4 and 5 are views similar to those of figures 2 and 3, illustrating a first alternative embodiment of figure 1;

- figures 6 and 7 are views similar to figures 2 and 3 illustrating a second alternative embodiment of figure 1;

- figure 8 is a top view of a second embodiment of a folding device according to the invention; and

- figures 9 and 10 are front views of the embodiment of figure 8 according to the arrows A illustrating the withdrawn and braking positions.

Figure 1 is a top view according to arrows B of figure 2 of a first embodiment of a folding device 2 according to the invention. The folding device 2 is situated downstream from a printing unit and possibly a cutting device, which are not shown, from which it receives printed signatures to be folded.

The folding device 2 comprises a folding table 4 with a width l, first and second frames 6, 8, two folding rolls 10 and 12, a folding blade 14, a set of driven forwarding belts, and means 20, 22 for moving part of the belts relative to the folding table 4.

The folding rolls 10 and 12 are situated below the folding table 4, on either side of a slot 24 formed in the table 4. The folding table 14 is arranged above the table 4 and can be lowered to be inserted in the slot 24. The folding blade 14 defines a folding plane PP extending perpendicularly relative to the folding table 4. Signature stops (not shown) are arranged near the first frame 6.

The set of driven forwarding belts comprises a first bank 16 of upper belts and an associated bank of lower belts, as well as a second bank 18 of upper belts and associated bank of lower belts. The movement means 20 is connected to the first bank 16, while the movement means 22 is connected to the second bank 18.

The construction and operation of the banks 16 and 18 of upper belts and the movement means 20 and 22 are identical. Indeed, the folding device 2 is a symmetrical construct relative to the folding plane PP. As a result, we will provide a description only of the construction and operation of the bank 16 of upper belts and associated movement means 20.

The bank 16 comprises a set of several upper belts, in this case four belts, designated a, b, c, d, on which the movement means 20 acts, as well as an individual upper belt e provided without movement means.

The belts a to e are driven belts, i.e. driven in circulation. The individual belt e is the belt closest to the slot 24.

Thus, the signature passing in the slot 24 is guided by the belt e and the formation of folds by "backlash" is avoided.

Each upper belt a to d is carried by a total of six pulleys, including four pulleys 48 fastened to supports 38 and 40 connected to the frames 6 and 8, and two mobile pulleys 46

(cf. figure 2). Each mobile pulley 46 is pressed against a section 49 of the associated upper belt. Hereinafter, these sections 49 will be described as "ends" of the upper belt.

Figures 2 and 3 show a lower belt δ of the bank of lower belts connected to the bank 16 of upper belts. Each of the upper belts a to e is associated with such a corresponding lower belt.

The movement means 20 is adapted to move the upper belts a to d relative to a forwarding plane 26 defined by the folding table 4 between a first low position P_b (cf. figure 2) and a second high position P_h (cf. figure 3). The movement means 20 is built symmetrically relative to a vertical median plane 28 perpendicular to the folding plane PP and the forwarding plane 26. The movement means 20 comprises a single cam shaft 30 provided with a cam 58 that interacts, on each side of the plane 28, with a pivoting assembly 32, 34.

The cam 58 is generally elliptical in shape with a center O, a small axis x and a large axis y. The surface of the cam 58 is divided into surface sections 60 close to the center O and surface sections 62 far from the center O.

Each pivoting assembly 32, 34 includes a rod 36 housed around a pivot axis X-X pivoting in the two supports 38 and 40. Each pivoting assembly 32, 34 includes a set of four support levers 41 and a control lever 42.

Each support lever 41 has a first end 50 secured in rotation to the pivoting rod 36. Each support lever 41 has a pivot axis 54 at the first end 50 that coincides with the pivot axis X-X. Each support lever 41 also has a second end 44 provided with one of the mobile pulleys 46 (cf. figure 2). Each mobile pulley 46 is used to guide and position the associated upper belt a, b, c, d relative to the forwarding plane 26.

The control lever 42 differs from the support levers 41 by its orientation. The control lever 42 forms an obtuse angle with the support levers 41.

The control lever 42 includes a first end 43 with which it is rotatably secured to the rod 36. The control lever 42 has a pivot axis 54 at the first end 43 that coincides with that of the support levers 41 and with the pivot axis X-X.

The control lever 42 cooperates with the cam shaft 30. More specifically, the control lever 42 includes a second end 52 opposite the first end 43 that is provided with a cam roller or follower 56 in contact with the cam 58 of the cam shaft 30.

The roller 56 of the control lever 42 of each pivoting assembly 32, 34 cooperates with the same cam 58. The cam 58 is therefore a cam shared by the two rollers 56.

Each roller 56 is stressed towards the surface of the cam 58 by spring elements (not shown). These may in particular be compression springs or torsion rods.

We will now describe the operation of the first embodiment of the folding device 2 according to the invention in reference to figures 1 to 3.

Products to be folded, i.e. printed signatures, are forwarded towards the device 2 to undergo square folding. The forwarding direction of the signatures on the folding table 4 is indicated in figure 2 by the arrow F. Each signature has a width, i.e. a transverse direction perpendicular to the forwarding direction F and parallel to the forwarding plane 26, that is substantially equal to the width l (cf. figure 1) of the folding table 4.

The journey of a copy signature S, shown at the extreme left of figure 2, inside the folding device 2 is as follows. Along its width, the signature S is grasped between the banks 16 and 18 of upper belts a to e and the corresponding banks of lower belts. The upper and lower belts are driven in the forwarding direction F in order to forward the signature S on the folding table 4, below and opposite the folding blade 14. The signature S is immobilized on the folding table 4 using stops (not shown) situated on the frame side 6. Once the signature S is immobilized, the folding blade 14 lowers along the arrow G shown in figure 2. The median zone of the signature S is pushed through the slot 24 by the action of the edge of the folding blade 14 to then be taken in by the rotating folding rolls 10 and 12. The signature S thus undergoes a resulting folding in a so-called "square fold."

Owing to the cadenced movement means 20, 22 according to the invention, the upper belts a to d move several millimeters away from the lower belts upon each passage of the signature S before the signature S has been immobilized, in particular by the stops, and before it is engaged by the blade 14 in the slot 24 of the table 4.

Figure 2 shows a signature S at the beginning of forwarding by the belts towards the folding table 4. The upper belt is in the low position Pb and exerts a first forwarding pressure P1 on the signature S that is sufficient to drive it in the direction of the arrow F. The signature S is therefore gripped between the upper belt a and the lower belt δ. The low position Pb of the upper belt a is defined by the size of the small axis x of the cam 58. Indeed, in the low position Pb, the rollers 56 of the control levers 42 are in contact with the surface sections 60 of the cam 58. The control levers 42 are then in the retracted position as illustrated in figure 2. The mobile pulleys 46 attached to the support levers 41 are in the low position and press the upper belt a against the surface of the signature S.

The signature S is forwarded by the belts in the forwarding direction F towards the folding position. During that time, the cam 58 rotates following the arrow H indicated in figure 2. When the signature S is about to abut against the stops (not shown), the cam 58 has performed about a quarter revolution to arrive at the position indicated in figure 3. The rollers 56 of the control levers 42 have rolled on the cam surface (cf. arrows M) and are then in contact with the surface sections 62 of the cam 58. This rotational movement of the cam 58

creates a spacing of the control levers 42 towards a maximum spaced position defined by the large axis y of the cam 58. As a result, the control levers 42 move following the arrow J shown in figure 3, i.e. outwards and downwards. The control levers 42 drive the rods 36 and thus the support levers 41, as indicated by the arrows K. A movement of the mobile pulleys 46 follows, and thus a raising of the upper belt a in the direction D indicated in figure 3. A gap i of several millimeters is thus created between the upper belt a and the lower belt δ. The upper belt is then in a released position where it exerts a second pressure P2 on the signature S that is lower than the forwarding pressure P1. The second pressure P2 can even be equal to 0 Pa, the upper belts then being, in the released position Ph, not in contact with the signature S.

More generally, the second pressure P2 is greater than or equal to 0 Pa, and is preferably strictly greater than 0 Pa.

The signature S is thus not relieved much before producing the square fold. This has the advantage of reducing crushing of the signature S on the stops and facilitating taking in of the signature S by the rolls 10 and 12. Indeed, owing to the gap i, the ends of the signature S are more easily withdrawn from the banks of forwarding belts.

Releasing the signature S is preferably done before said signature S abuts against the stops. Thus the crushing of the signature on the stops is reduced.

The cam shaft 30 is driven so as to obtain lifting of the upper belts for each signature S to be folded. Thus, the upper belts a to d perform an alternating movement between the two positions Pb and Ph shown in figures 2 and 3.

The rotation of the cam shaft 30 is adjusted by a control means (not shown) to a frequency F_r that is substantially equal to half the forwarding frequency of the signatures S.

The use of a generally elliptical cam as shown in figures 2 and 3 is not limiting. A cam can be considered having a different shape, or even an eccentric, the frequency of rotation F_r , then having to be adapted to the shape of the cam or eccentric chosen. More generally, the frequency F_r can be such that F_r is equal to F_a / n where F_a is the forwarding frequency of the signatures S, and n is a positive integer.

Figures 4 and 5 show a first alternative of the first embodiment of the folding device. This alternative differs from the folding device previously described as follows. In this alternative, the sole shaft 30 has been replaced by two cam 66 shafts 64 each acting on one of the control levers 42. Unlike figures 2 and 3, where the shared cam 58 is situated between the two control levers 42, it is the ends 52 of the control levers 42 that are situated between the two cams 66. The two cams 66 rotate at the same frequency, i.e. are synchronized, in the opposite direction, as indicated by the arrows H. Figure 4, like figure 2, shows the low position Pb, while figure 5, like figure 3, shows the high position Ph.

Figures 6 and 7 illustrate a second alternative similar to that of figures 4 and 5, differing only in that one of the two shafts 64 is immobilized. The low position Pb of figure 6 is identical to that of figure 4. However, as illustrated in figure 7, with a single rotating shaft 64, the upper belt a only rises on a single side along an angle α relative to the folding table 4. Thus, in the high position Ph, the upper belt a is inclined relative to the forwarding plane.

In the illustrated case, the belt is inclined such that it is raised on a head side of the signature, therefore towards the downstream of the forwarding direction F.

Alternatively, in the position Ph, the belt is inclined relative to the table 4 such that it is raised on a tail side of the signature, therefore towards the upstream of the forwarding direction F.

Figures 8 to 10 show a second embodiment 3 of a folding device according to the invention. This second embodiment is identical to the first regarding its means 20 and 22 for moving two sets of upper belts a to d. However, in this embodiment, the upper belts, which are lowered and raised in a timed manner, are not belts for forwarding a signature, but additional static braking belts. The additional upper belts a to d are not driven and are fixed at their ends 68 using screws 70 to the supports 38, 40. The additional upper braking belts a to d are housed between upper e and lower δ forwarding belts.

The second embodiment 3 of the folding device according to the invention operates as follows. In reference to figure 9, a signature S is forwarded by the forwarding belts e, δ on the folding table 4 in the direction indicated by the arrow F. At the beginning of forwarding, the upper braking belt a is in a high position Ph and height offset relative to the forwarding belts e, by a gap i in the vicinity of several millimeters. The rollers 56 are in contact with the surface sections 62 of the cam 58 such that the two control levers 42 are in the separated position. While the signature S continues its path on the folding table 4, in the forwarding direction F, the cam 58 continues to rotate until it reaches the position illustrated in figure 10. In this position, the rollers 56 that follow the cam surface are in contact with the surface 60 of the cam 58. Thus, the control levers 42 pivot upwards and one towards the other as indicated by the arrows J to reach a retracted position, lowering the upper braking belt a.

The frequency of rotation of the cam shaft 30 as well as its phase are adjusted such that the upper braking belts a to d lower upon each passage of a signature S to brake it before it is engaged by the folding blade 14 in the slot 24 of the folding table 4, then taken in by the folding rolls 10, 12. By descending towards the signature S in motion, the upper braking belts a to d come into contact with the latter so as to brake it through friction. During braking, the cam 58 continues to rotate until it again reaches the position shown in figure 9. The upper braking belts are raised, the signature S is folded and the cycle starts again. The

frequency F_r of rotation of the cam shaft 30 is adjusted such that F_r is equal to F_a / n , where F_a is the forwarding frequency of the products to be folded, and n is a positive integer.

The two embodiments, i.e. a timed system for raising forwarding belts and a braking system through timed lowering of a bank of braking belts, have been described separately. However, these two systems may be combined.

Moreover, the means 20, 22 for timed movement of the belts described above can also be completely situated below the folding table. Moreover, the principles developed above can also be applied to the lower forwarding belts. It is then the lower belts δ that are moved in a timed manner and no longer the upper belts.

The movement means 20, 22 can also be modified to move a number of belts different from that of the described embodiments. In reference to figure 1, it is for example possible to lengthen the rods 36 up to the belts e and to provide additional support levers 41 enabling timed raising of the belts e together with the belts a to d. Conversely, it is also possible to modify the movement means 20, 22 in order to limit the timed movement for example only to belts a and b. Other alternatives can be considered depending on the desired application.

Of course, the levers 41, 42 can be actuated by means other than cam shafts. The cam shafts can for example be replaced by jacks or electromagnets.

Claims

1. A folding device (2, 3) including:

- a folding member (14), and
- at least a first belt (d) adapted to act in a forwarding plane (26) on a product to be folded (S) in order to position it opposite the folding member (14),

the device including a means (20, 22) for moving the or each first belt (d) relative to the forwarding plane between:

- a first position (Pb), in which the first belt (d) exerts a first pressure (P1) on the product to be folded (S), and
- a second position (Ph), in which the first belt (d) exerts a second pressure (P2) on the product to be folded (S) that is less than the first pressure (P1),

characterized in that the movement means (20, 22) is adapted to make the belt (d) alternate between the first and second positions.

2. The folding device according to claim 1, wherein the forwarding means (20, 22) of the or each first belt comprises, for each first belt:

- a first guide member (46) around which the first belt (d) is guided;
- a first mobile support member (41) carrying the first guide member (46); and
- a first means (30) for timed to-and-fro actuation of the first mobile support member (41), which is adapted to move the first belt (d) between the first (Pb) and second (Ph) positions.

3. The folding device according to claim 2, wherein the forwarding means (20, 22) of the or each first belt also comprises, for each first belt:

- a second guide member (46) around which the first belt (d) is guided;
- a second mobile support member (41) carrying the second guide member (46); and
- a second means (30; 64) for timed to-and-fro actuation of the second mobile support member (41) that is adapted to move the first belt (d) between the first and second positions.

4. The folding device according to claim 2 or 3, wherein the or each first, or second if applicable, mobile support member is a pivoting lever (41) having a first end (44), which is an end for positioning the belt relative to the forwarding plane and which carries the associated guide member, and a second end (50) that is pivotably housed.

5. The folding device according to any one of claims 2 to 4, wherein the means (20, 22) for moving the or each first belt comprises, for each mobile support member, a control lever (42) fixed in rotation to the associated mobile support member (41) and that cooperates with the first or second associated timed actuating means (30; 64).

6. The folding device according to any one of claims 2 to 5, wherein the or each first or second timed actuating means (30; 64) comprises a cam or eccentric shaft, a jack or an electromagnet, if applicable the timed actuating means acting on the control lever (42).

7. The folding device according to at least claim 3, wherein each of the first and second mobile support members (41) forms an end (49) of the first belt, the first and second mobile support members (41) are arranged opposite each other, and acting on the associated end (49) of the first belt (d), respectively, so as to allow or create a movement of the belt in a direction (D) perpendicular to the forwarding plane.

8. The folding device according to at least claim 3, wherein the first and second timed actuating means (30) comprise a shared actuating member, in particular a shared cam.

9. The folding device according to at least claim 3, wherein the first and second timed actuating means comprise (30) two distinct actuating members, in particular two distinct cams.

10. The folding device according to any one of the preceding claims, wherein the second position (Ph) is an inclined position of the belt relative to the forwarding plane and the first position (Pb) is a position where the belt is parallel to the forwarding plane.

11. The folding device according to any one of the preceding claims, also comprising a first additional belt (c) adapted to act in the forwarding plane on the product to be folded (S) in order to position it opposite the folding member (14).

12. The folding device according to claim 11, wherein the means (20, 22) for moving the first additional belt (c) comprises a synchronization means (36) connecting the first mobile support member of the first additional belt to the first mobile support member of the first belt for a synchronous movement of these two support members for synchronous driving of the first belts between the first and second positions.

13. The folding device according to any one of the preceding claims, wherein the or each first belt is a driven belt for forwarding the product to be folded, and in which the first position (Pb) is a forwarding position of the product to be folded and the second position (Ph) is a released position of the product to be folded.

14. The folding device according to any one of claims 1 to 12, wherein the or each first belt is a static belt for braking the product to be folded, and wherein the first position (Pb) is a braking position of the product to be folded and the second position (Ph) is a withdrawn position of the or each belt.

15. The folding device according to any one of the preceding claims, comprising at least one second belt (e) that is either a forwarding belt, or a braking belt, and that is not associated with the movement means (20, 22) of the first belts.

Abstract

A folding device including a folding member (14), and at least one first belt (d) adapted to act in a forwarding plane (26) on a product to be folded (S) in order to position it opposite the folding member (14), the device including means for moving the or each first belt (d) relative to the forwarding plane between a first position (Pb), in which the first belt (d) exerts a first pressure on the product to be folded (S), and a second position, in which the first belt (d) exerts a second pressure on the product to be folded (S) that is lower than the first pressure.

The movement means is adapted to make the belt (d) alternate between the first and second positions.

Fig. 1

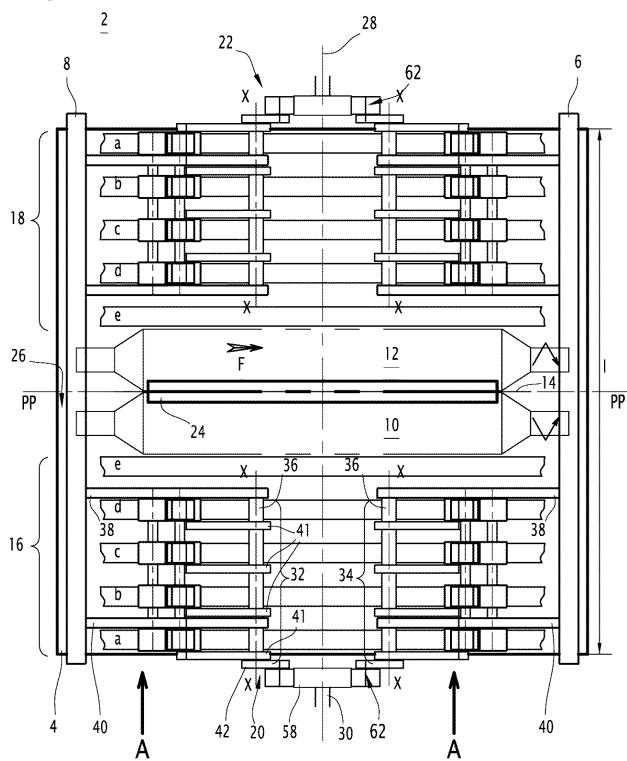


Fig. 3

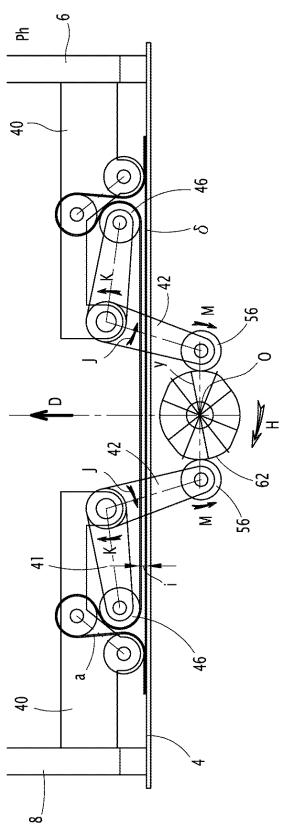


Fig. 2

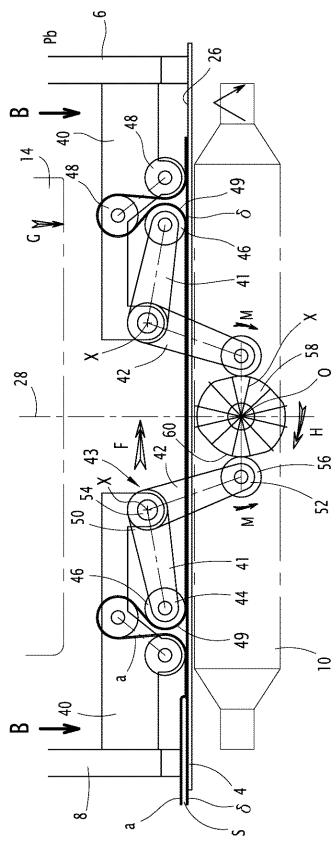
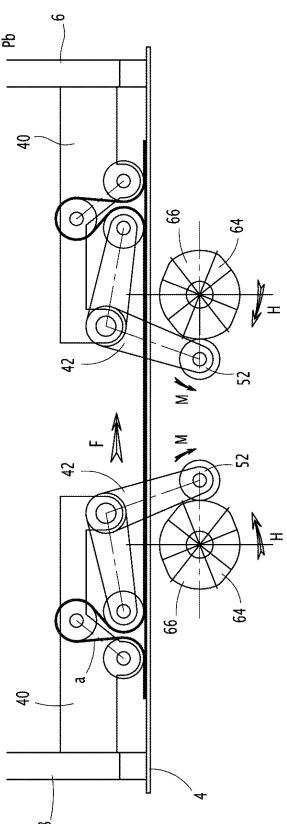



Fig. 4

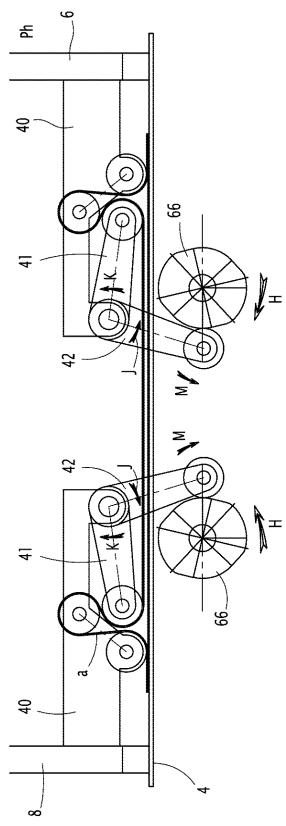
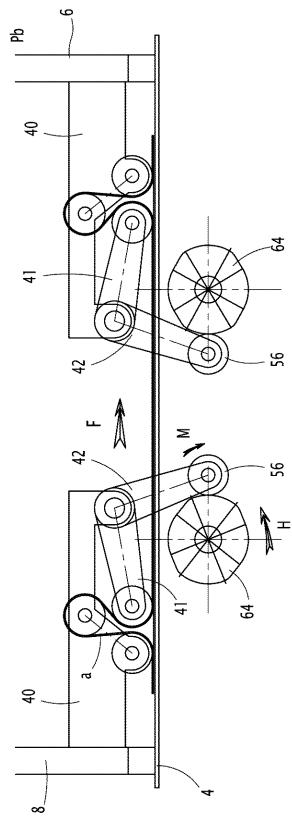
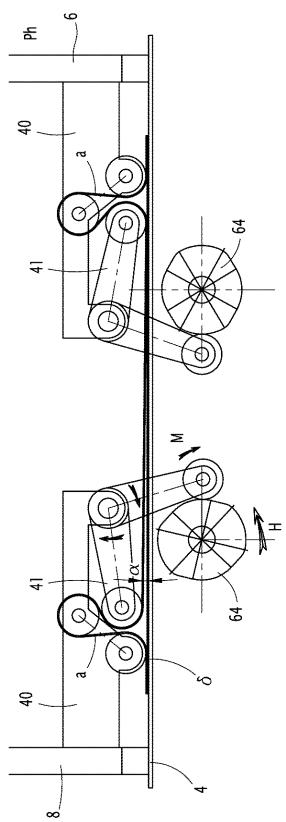
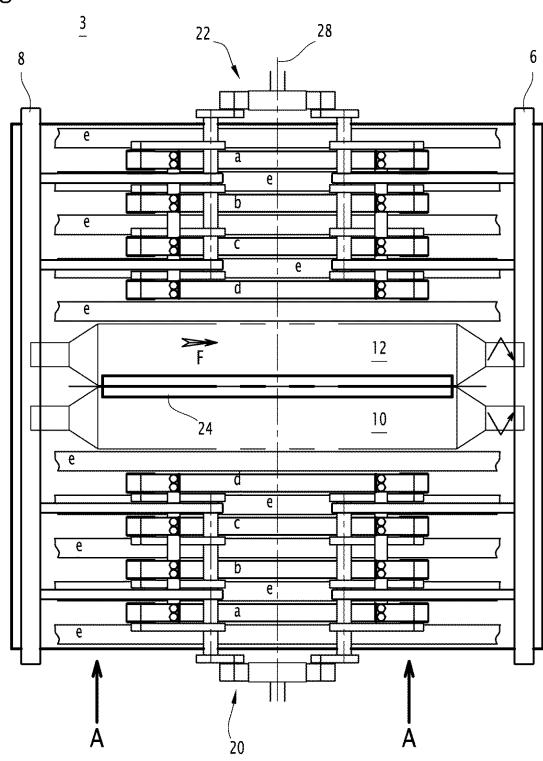




Fig. 5**Fig. 6****Fig. 7****Fig. 8**

Fig. 9

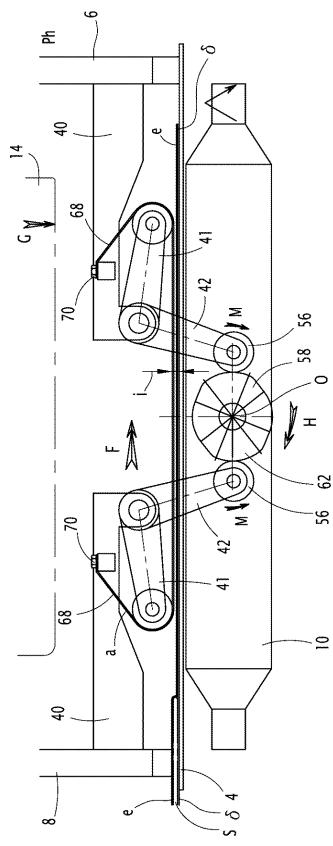
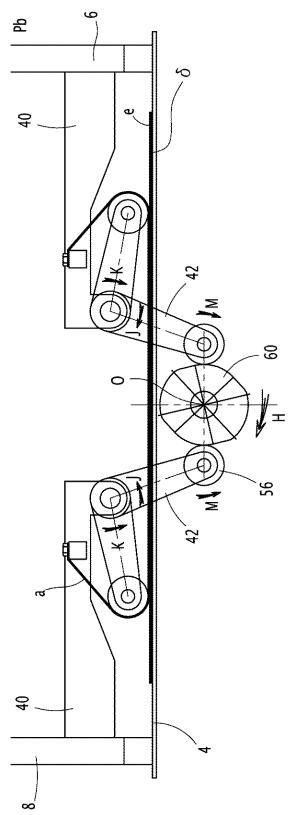



Fig. 10

