发明名称
具有数据改变/更新功能的无线通信系统

摘要
连接到控制器(200)的发送/接收部分(240)用于全面复合控制主通信单元(101)，接收从多个通信单元发送的信号，并还发送信号到从通信单元。发送/接收部分(240)接收的数据作为通信信号进行处理，被暂时地存储在信号缓冲器(250)并在信号接收部分(220)经受适当信号处理，耦合接收的数据到控制器(200)。作为来自控制器(200)的数据经受信号处理部分(220)的信号处理，从发送/接收部分(240)发送的数据形成通信信号(230)，并在发送/接收部分(240)中被变换传输并且经天线(260)发送到多个从通信单元。
1. 一种具有数据改变和更新功能的无线通信系统，用于在多个移动终端单元或多个具有附加无线通信单元的通信终端单元中利用包括无线电波、光的媒介进行语音和数据的互相通信，其中：所述多个移动终端单元或通信终端单元的每个包括：用于存储控制该单元的数据的存储装置、用于读出存储在存储装置中的控制数据并发送读出的控制数据到其它单元的发送装置、用于接收从其它单元发送的控制数据的接收装置、和用于根据由接收装置接收的控制数据来改变和更新存储在存储装置中的控制数据的重写装置，并且

在从多个移动终端单元或通信终端单元中的一个指定单元发送呼叫信号到多个移动终端单元或通信终端单元中的多个其它单元时，检测到所述呼叫信号的单元中的每一个单元返回一个应答信号给所述指定单元，并且当返回应答信号的单元的数量被提供时，根据该数量来确定多个其它单元的发送间隔时间，而在不能提供返回应答信号的单元的数量的情况下根据一个预定数量来确定所述发送间隔时间。

2. 一种具有数据改变和更新功能的无线通信系统，用于在多个移动终端单元或多个具有附加无线通信单元的通信终端单元中利用包括无线电波、光的媒介进行语音、数据的互相通信，其中：

在所述多个移动终端单元或通信终端单元中的一个主单元，包括用于存储控制其它单元的数据的存储装置、和用于读出存储在存储装置中的控制数据并发送读出的控制数据到其它单元的发送装置；和

在所述多个移动终端单元或通信终端单元中的多个从单元，每个从单元包括用于存储控制该从单元的数据的存储装置、用于接收从所述主单元发送的控制数据的接收装置，和根据由接收装置接收的控制数据来改变和更新存储在存储装置中的控制数据的重写装置；并且

在从所述主单元发送呼叫信号到所述多个从单元时，检测到所述呼叫信号的每个从单元都返回一个应答信号给所述主单元，并且当返回应答信号的从单元的数量被提供时，根据该数量来确定多个从单元的发送间隔时间，而在不能提供返回应答信号的从单元的数量的情况下根据一个预定数量来确定所述发送间隔时间。
送间隔时间。

3. 按照权利要求1到2之一的具有数据改变和更新功能的无线通信系统，其中存储装置存储用于控制的程序。

4. 按照权利要求1到2之一的具有数据改变和更新功能的无线通信系统，其中存储装置存储用于控制的程序的版本数据。

5. 按照权利要求1到2之一的具有数据改变和更新功能的无线通信系统，其中存储装置存储通信历史数据。

6. 按照权利要求5的具有数据改变和更新功能的无线通信系统，其中存储装置存储主叫历史数据。

7. 按照权利要求5的具有数据改变和更新功能的无线通信系统，其中存储装置存储被叫历史数据。
具有数据改变/更新功能的无线通信系统

5

技术领域
本申请要求于 2001 年 8 月 16 日申请的日本专利申请 No.2001-246867 的权益，其内容引为参考。

本发明涉及一种无线通信系统，该系统具有能对语音、数据等进行数据改变/更新功能，而通信是利用无线电波、光等在多个通信终端单元中的媒介进行的。

背景技术
通常，有希望改变或更新提供在使用于在运行服务中的无线通信系统中的通信终端单元中累积的程序内容的情况，这些终端例如是移动终端单元或连接到电话装置的预定的终端单元，或用于遥测系统的终端单元。另外，有部分地改变或更新提供在终端单元中的数据的情况。

在这些情况下，服务部门可以覆盖所有通信终端单元并通过替换安装在每个单元的电路板上的存储器单元和/或改变 ROM 和 RAM 数据替代存储的程序数据和其它数据。这种操作是非常低效率的。因此，在遥控下可能改变存储的程序数据和其它数据。

图 5 表示在通信终端单元在 PHS 电话系统中的情况下移动终端单元的一个特定例子。如图所示，该单元包括复合控制其全部的控制器 500。显示器 510 和键盘操作部分 511 连接到控制器 500。根据从键盘操作部分 511 输入的数据，控制器 500 可以提供各种操作命令和在显示器 510 上生成诸如主叫方电话号码、呼叫发送历史、呼叫接收历史、电话日志操作模式的显示内容。

连接到控制器 500 的发送/接收部分 540 具有经天线 560 发送数据到大量移动终端单元的功能。更具体地，单元 540 通过从其它通信单元接收发送的信号可以获得接收数据并且还可以发送数据到其它通信单元。

在发送/接收单元 540 获得的作为通信信号 530 处理的接收数据按照要求被临时存储在信号缓冲器 550，并且被变换为复合信号或在信号处理部分 520
经受适当信号处理作为接收数据输入到控制器 500。关于从发送/接收单元 540
待发送的数据，信号处理部分 520 对来自控制器 200 的数据执行编码或适当
信号处理以提供通信信号 530，该信号经受在发送/接收单元 540 的发送变
换，并然后经天线 560 发送到其它各通信单元。

另外，控制器 500 设有重写接口 570，该接口对这个开通单元是唯一的并
对其它单元不是通用的，并且用户到安装终端单元的地方，以便经重写接口 570
从唯一转移单元进行程序转移。另外一种方案，用户到安装任何其它终端单元
的地方，替换具有 ROM 的单元的存储装置（例如 ROM 或 RAM），在这些存
储装置中存储了改变和/或更新存储装置内容的程序。

上述单元要求改变和/或更新累积的程序或数据，当然具有能重写的存储
介质中存储程序等的装置。关于重写装置和程序，唯一重写接口 570 用于通过
利用附加单元把分别存储在特定的介质中的新内容分别进行转换。

在现有技术的具有改变和/或更新功能的无线通信系统中，为了在每个终
端单元改变和/或更新累积的程序等，需要设置特别的附加接口和附加单元。这
意味着，当在非常大数量的单元改变和/或更新程序等时，人们必须通过准备大
量特别的附加单元选择并行操作或者花费大量时间进行操作。即，通过操作附
加单元进行限制，否则需要大量时间和成本。

另外，虽然现有技术的系统要求各个唯一单元或者内置装置，但是在分离
的介质上存储数据的需要不仅导致内容出错的风险可能性，而且在转移到多个
目标的情况下还需要相当的时间。

发明内容

本发明的目的是提供一种具有数据改变和/或更新功能的无线通信系统，
该系统不要求任何唯一附加单元或重写接口，并允许有效地改变和/或更新程序
或者累积的数据，而即使在连接上许多终单元的情况下也不要求大量的人工
时间和成本。

根据本发明，提供了一种具有数据改变和更新功能的无线通信系统。用于
在多个移动终端单元或多个具有附加无线通信单元的通信终端单元中利用包
括无线电波、光的媒介进行语音和数据的互相信通，其中：所述多个移动终
端单元或通信终端单元的每个包括：用于存储控制该单元的数据的存储装置、用
于读出存储在存储装置中的控制数据并发送读出的控制数据到其它单元的发
送装置、用于接收从其它单元发送的控制数据的接收装置、和用于根据由接收装置接收的控制数据来改变和更新存储在存储装置中的控制数据的重写装置，并且在从多个移动终端单元或通信终端单元中的一个指定单元发送呼叫信号到多个移动终端单元或通信终端单元中的多个其它单元时，检测到所述呼叫信号的单元中的每一个单元返回一个应答信号给所述指定单元，并且当返回应答信号的单元的数量被提供时，根据该数量来确定多个其它单元的发送间隔时间，而在不能提供返回应答信号的单元的数量的情况下根据一个预定数量来确定所述发送间隔时间。

根据本发明，还提供了一种具有数据改变和更新功能的无线通信系统，用于在多个移动终端单元或多个具有附加无线通信单元的通信终端单元中利用包括无线电波、光的媒介进行语音、数据的互相通信，其中：在所述多个移动终端单元或通信终端单元中的一个主单元，包括用于存储控制其它单元的数据和存储装置、和用于读出存储在存储装置中的控制数据并发送读出的控制数据到其它单元的发送装置；和在所述多个移动终端单元或通信终端单元中的多个从单元，每个从单元包括用于存储控制该从单元的数据的存储装置、用于接收从所述主单元发送的控制数据的接收装置，和根据由接收装置接收的控制数据来改变和更新存储在存储装置中的控制数据的重写装置；并且在从所述主单元发送呼叫信号到所述多个从单元时，检测到所述呼叫信号的每个从单元都返回一个应答信号给所述主单元，并且当返回应答信号的从单元的数量被提供时，根据该数量来确定多个从单元的发送间隔时间，而在不能提供返回应答信号的从单元的数量的情况下根据一个预定数量来确定所述发送间隔时间。

按照本发明的一个方面，提供一种具有数据改变和/或更新功能的无线通信系统，该系统用于在多个移动终端之间利用无线电波、光等媒介进行语音、数据等的互相通信，其中多个移动终端的每个包括：用于存储有关自身单元控制的数据的存储装置、用于读出存储在存储装置中的数据并发送读出的数据到其它单元的发送装置、用于接收从其它单元发送的控制数据的接收装置、和用于
于根据由接收装置接收的控制数据改变和/或更新存储在自身单元的存储装置中的控制数据的重写装置。

按照本发明的另一个方面，提供一种具有数据改变和/或更新功能的无线通信系统，该系统用于在多个移动终端之间利用无线电波、光等媒介进行语音、数据等的互相通信，其中在多个移动终端单元中选择的一个单元包括用于存储控制自身单元的数据的存储装置，和用于读出存储在存储装置中的数据和发送读出数据到其它单元的发送装置；和在多个移动终端单元中选择的一个单元包括用于存储有关自身单元控制的数据的存储装置，和用于接收从其它单元发送的控制数据的接收装置，和用于根据由接收装置接收的控制数据改变和/或更新存储在自身单元的存储装置中的控制数据的重写装置。

按照本发明的另一个方面，提供一种具有数据改变和/或更新功能的无线通信系统，该系统用于在多个移动终端之间利用无线电波、光等媒介进行语音、数据等的互相通信，其中在多个移动终端单元中选择的一个单元包括用于存储控制自身单元的数据的存储装置，和用于读出存储在存储装置中的数据和发送读出数据到其它单元的发送装置；和在多个移动终端单元中选择的一个单元包括用于存储有关自身单元控制的数据的存储装置，和用于接收从其它单元发送的控制数据的接收装置，和用于根据由接收装置接收的控制数据改变和/或更新存储在自身单元的存储装置中的控制数据的重写装置。

在从多个移动通信终端单元中的一个规定单元或通信终端单元发送一个呼叫信号到多个其它单元时，多个其它单元利用应答信号接收这些呼叫信号，并当检测的数量与发送呼叫的数量相同时，多个其它单元的发送间隔时间是根据检测的数量确定的，同时在任何发送的呼叫数量的检测出故障情况下是根据预定数量确定的。
存储装置存储由自身单元执行的程序，由自身单元执行的程序的版本数据，自身单元的通信历史数据，自身单元的主叫历史数据和被叫历史数据。

从下面参照各个附图的描述其它目的和特点就变得十分清楚。

附图说明

1. 图 1 表示根据本发明实施例具有数据改变和/或更新功能的无线通信系统中的主通信单元的示意图；

2. 图 2 表示用于与图 1 所示的主通信单元互相同步的通信单元的示意图；

3. 图 3 表示用于解释如图 1 和 2 所示的具有数据改变和/或更新功能的无线通信系统的互相同步的序列图；

4. 图 4 表示按照本发明的另一个实施例的具有数据改变和/或更新功能的无线通信系统的主通信单元示意图；

5. 图 5 表示在通信终端元是 PHS 电话系统情况的移动终端的具体例子。

具体实施方式

现在将参照附图描述本发明的优选实施例。

在下面的各个实施例中，虽然使用了术语“无线电”，但是“光”或其他通信媒体也可以用于表示“无线”。

现将参照图 1 到 3 描述本发明的第一实施例。这个实施例是本发明在由一个主通信单元和多个通信单元构成的无线电（无线）通信系统是 PHS 电话系统的一种应用。主通信单元是程序转移源和从通信单元是每个程序转移目的地。两种单元都是 PHS 电话终端单元。

图 1 的框图表示主通信单元的示意图。如图所示，主通信单元 101 具有用于该单元的全面控制的控制器 200。显示器 210 和键盘操作部分 211 连接到控制器 200。控制器 200 可以提供各种操作命令并且还可以在显示器 210 显示下列内容：操作模式、主叫方电话号码、主叫发送历史、被叫接收历史、电话日志。

连接到控制器 200 的发送/接收部分 240 经天线 260 接收从大量从通信终端 111 到 117（见图 2）发送的接收数据。

在发送/接收部分 240 获得的接收数据作为通信信号 230 进行处理，并按照希望被暂时地存储在信号缓冲器 250，并且在信号处理部分 220 经受编码或适当的信号处理，作为接收数据被输入到控制器 200。至于从发送/接收部分 240
发送的发送数据，信号处理部分 220 对来自控制器 200 的数据执行编码或适当
信号处理，用于提供通信信号 230，该信号经受在发送/接收部分 240 中传送的
变换，并且然后经天线 260 发送到多个从通信单元 110 到 117。

因此，在无线电（无线）通信系统中，通过利用如无线电波或光这样的媒
体允许一个固定站与多个移动终端单元之间独立进行语音、数据等的通信，并
且还允许多个移动终端单元之间互相通信，一个具有数据改变/更新系统的无线
通信系统，通过在多个移动终端单元中的每个中提供下列构成：用于存储有关
自身单元的控制的数据的存储装置、用于接收有关对从其它单元发送的数据进
行控制的数据的接收装置，和用于根据接收装置接收的有关控制数据改变和/
或更新有关存储在自身单元的存储装置中的控制数据的重写装置。

将参照如图 3 所示的序列图描述在来自主通信单元 101 的命令的控制下从
通信单元 110 到 117 的改变程序数据的操作。主通信单元 101 称为“主 PS”，
和从通信单元 110 到 117 称为“从 PS”。在图 3 的序列图中，术语 “主 PS”
是指保持有待改变和/或更新的内容的单元，和术语 “从 PS” 是指经受改变和/
或更新的单元。在序列图中，示出了 3 个从 PS，但是当然可能如图 2 所示为 7
个从 PS，或者包括任何其它数量的从 PS。

当通过操作主 PS 中的键盘操作部分 211 开始远端控制程序转移后（步骤
301），执行下一个步骤 302，在该步骤中，来自主 PS 的呼叫 3 个从 PS 的连
续呼叫信号经天线 260 从主 PS 的发送/接收部分 240 发送。

可以通过引起在显示器 210 上显示或操作键盘操作部分 211 的提供的命令
开始。作为可供选择的方法，虽然没有表示出来，可以通过提供包含转移开始
数据的特殊呼叫到达的命令开始。在诸如数据通信 PC 卡之类的没有任何操作
部分的单元的情况下，可以通过从外部单元提供类似的命令实现开始。该方法
可以通过选择这些功能中的多个或一个来实现。

每个已经接收这种呼叫信号的各个从 PS，每个执行步骤 310 的从 PS 开始
操作，并前进到步骤 311，在步骤 311，每个接收了“遥控程序转移”命令的
从 PS 从主 PS 中检索呼叫信号，并且使无线部分建立同步。

在步骤 312，从主 PS 检测到呼叫信号的每个步骤 PS 返回一个应答信号到
主 PS。

接下来，执行步骤 303 和 313，其中主 PS 和从 PS 之间的呼叫/应答阶段
完成后，进行到通信阶段，并且开始从主 PS 的数据传输。

在 PHS 电话系统标准（RCRSTD-28）的各个 PS 之间的直接通信中，该标准是用于一对一通信的标准，在步骤 312 中连续发送应答信号，直至阶段转换到通信阶段。另外，一旦接收到应答信号主 PS 转换到通信阶段。但是，在这个实施例中，主 PS 每次应当与多个从 PS 通信，在步骤 312 中应答信号不连续发送，而间歇地发送。再有，即使接收到应答信号，主 PS 也不前进到下一个步骤 303，而继续发送呼叫信号一个预定时间周期。

在步骤 313 的下一个步骤的步骤 314，每个从 PS 在来自主 PS 的数据的基础上执行检查，看程序重写是否需要。虽然没有在图中表示出，从 PS 一确定非重写是需要的或可能的，就强迫序列中断。

接着步骤 314 执行的步骤 320 是由步骤 304 和 315 到 317 构成的。步骤 304 是由从主 PS 转移到从 PS 的程序数据的前转移阶段构成的。在步骤 316，从从 PS 向主 PS 发送应答信号，或者在步骤 315 执行的数据检查的结果的基础上从从 PS 向主 PS 发送重新转移请求。

类似于这种操作，执行步骤 317，其中每个从 PS 执行检查待转移的程序数据传输是否已经完成。当检查的结果是“是”（Y）时，序列操作跳到步骤 319，在每个从 PS 提供完成显示，因此引起序列操作结束。

由步骤 304 和 315 到 317 构成的步骤 320 被重复地执行一个时间周期，直至在步骤 305 主 PS 检测预定时间是否已过（即，当在步骤 305 的检查结果是“否”）。当检测到预定时间已过时（即，当检测结果变为“是”），使步骤 320 结束。

即使在步骤 320 期间，因为一到多通信在实施中，所以每个从 PS 间歇地发送传输信号。

当在步骤 305 中主 PS 确定预定时间已过时，序列操作前进到步骤 306，其中主 PS 发送中断信号到每个从 PS，在步骤 307 停止发送并且每个从 PS 执行呼叫信号检索的步骤 318。同时，在步骤 307 主 PS 进行空闲信道选择。在下一个步骤 308，主 PS 发送呼叫信号到每个从 PS，从而，恢复中断的序列。

当在步骤 320 确定所有重写数据已由各个从 PS 接收时，执行完成显示的步骤 319，从而完成该序列的操作。

还可能这样实施从 PS，在步骤 303 作为数据发送应答的 PS 的数量，以至
于限制从各从 PS 发送信号的间隔。在这个执行中，如果在步骤 303 提供显示的应答 PS 的数量，参照该数量确定传输到主 PS 的信号间隔，并且如果没有显示应答的 PS 数，则在预定数字值的基础上进行确定。

传输间隔的具体例子是（Y×4）脉冲串，其中 Y 是应答 PS 数。虽然没有在图 3 中表示出序列，但在步骤 312 中在预定期间周期中主 PS 可能未接收到任何应答信号，而通过显示程序转移故障导致非正常结束这样一种实施是可能的。

在步骤 313 中已经接收到上述数据的每个从 PS 根据模型数据和版本数据检查关于程序重写可能和需要。确定可能的例子是模型数据识别的故障和版本升级的故障。虽然没有在序列图中表示出，已作为在步骤 313 中判断为程序重写不可或者不重要的检查结果的从 PS，显示这个内容，并导致序列结束。

步骤 320 构成数据转移阶段。主 PS 每次发送一个写数据信号。在步骤 304 中，主 PS 发送含有存储地址的信号和作为写数据信号的数据。在每次发送中，从要转移的程序在最前部顺序地更新数据内容。当要转移的程序已经完全被发送时，该发送从最前部再次继续发送。

在步骤 315，每个从 PS 参照写数据信号的内容进行检查，是否可能已接收到具有连续地址的数据，并且存储有关正确接收的地址。在步骤 316 中，每个从 PS 发送应答信号或重新转移请求。当这个步骤为“是”时，从 PS 以步骤 313 确定的传输间隔发送应答信号。在“否”的情况下，从 PS 发送包含地址数据的重新转移请求信号。

已接收重新转移请求信号的主 PS 可能根据请求重新发送或者不重新发送这样实施。即使在主 PS 不重新转移的实施情况下，主 PS 进行自适应，使得全部要发送的数据发送以后，返回到最前部以便重复发送。从 PS 可以期望在下一个发送时间接收数据。

接着，每个从 PS 执行检查对应于在步骤 313 获得的地址的数据是否已经被全部接收到的步骤 317。当发现数据已经被完全接收到时，每个从 PS 执行完成显示的步骤 319。

当主 PS 已发送一个写数据包，它执行检查是否预定时间已过的步骤 305。当该时间尚未过时，主 PS 返回发送下一个数据的步骤 304。当时间已过时，主 PS 执行步骤 306 到 308。步骤 306 到 308 和 318 构成一个处理等效于在各个 PS
之间直接通信 3 分钟的连续通信的情况下进行的操作，正如在 PHS 电话系统标准 (RCR STD-28) 所描述的那样。

如所示，主 PS 通过重复执行“呼叫”、“进入通信状态”、“发送多个数据”和“中断”连续发送写数据。从 PS 重复执行“应答呼叫”、“进入通信状态”、“接收多个数据”和“中断”，直至写数据完全被接收，因此完成程序等的更新。

另外，除非主 PS 的操作被确实地中断，达到要发送的数据结束的主 PS 才返回到连续发送的最前部。因此，从 PS 进行自适应，使其然后可以接收开始操作前已经发送过的数据。

实施步骤 306 到 308 和 318，以便从上述“中断”和“呼叫状态”下允许写数据接收（在进程中执行转移），即使是从 PS 的开始操作是在开始转移以后。执行这种操作，当非常大量的从 PS 的开始操作进行时，以便允许使各个从 PS 的开始操作定时将按希望进行预设置。

可以实施步骤 305，以至于时间值可以是固定值或可以通过主 PS 的开始操作指定。虽然图 3 中从 PS 的开始操作是主 PS 开始操作（步骤 301）以后集体地进行的（步骤 310），但是利用相反的步骤 301 和 310 的执行次序可以获得相同的结果。

已经描述的第一实施例是由程序转移源主 PS（即，主通信单元 101）和程序/数据重写目标从 PS（即，从通信单元 110 到 117）构成的，并且不需要提供任何特殊附加无线通信单元。但是，本发明还可应用到无线通信系统，其中多个通信端每每个设置附加无线通信单元，可以利用无线电波和光这样的媒介互相进行语音、数据等通信。

这种形式的系统现在可以参照图 4 描述为第二实施例。如图 4 所示的通信单元包括如结合图 1 所描述的控制器 200、显示器 210、键盘操作部分 211、信号处理部分 220、通信信号 230、发送/接收部分 240、信号缓冲器 250 和天线 260 相同的电路部件，即控制器 400、显示器 410、键盘操作部分 411、信号处理部分 420、通信信号 430、发送/接收部分 440、信号缓冲器 450、天线 460，并且还包括连接到控制器 400 的附加发送/接收部分 470。

类似于便携电话装置，发送/接收部分 440 不能用与按照固有通信规范相同类型的单元执行互相通信。另一方面，附加发送/接收部分 470 设置有称为“蓝
牙”的附加无线通信装置，用于与外围单元通信。这种装置允许相同类型各个单元之间进行数据双向无线通信，并且发送/接收天线 460 连接到这个部分。

由于存在这个附加发送/接收部分 470，类似于上面实施例的情况，有可能允许在多个没有任何特殊单元能够进行互相无线通信的单元中，同时转移更新安装在没有任何特殊单元的单元中的软件程序。

虽然两个实施例都涉及作为诸如 PS 和便携电话设置之类的无线通信终端的例子。但是，无线通信终端一点也不意味着限制，而且本发明可以应用到能够在一个相同样品单元中互相通信的所有具有附加无线通信装置的单元。另外，虽然用于转移的通信媒体从狭义的来看是无线电波，但是当然可以应用到按照 IrDA 标准等的光通信装置。

在不超出本发明的范围的情况下，本专业的技术人员可以作出结构上的变化和各种明显修改和各种实施例。在前面说明书描述的内容和附图仅通过说明的方式提供的。因此我们的意图是，前面的说明书描述是关于非限制的说明。

正如再前面已经看到的那样，按照本发明的具有数据改变/更新功能的无线通信系统有可能同时转移安装在多个没有任何附加单元或工作的能够互相无线通信的单元中的单元上的软件程序的更新。因此，有可能大大地降低需要的时间和成本。

还可能避免现有技术的由于准备附加单元强加的限制，使可重写位置受到限制的不方便。

因此，按照本发明提供一种具有数据改变/更新功能的无线通信系统，该系统在无需任何唯一的附加单元或者特殊的重写接口的情况下允许程序、累积的数据等的改变和/或更新，即使在连接上大量的终端单元的系统的情况下也不需要很多时间和成本。