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TECHNIQUES FOR PROCESSING IMAGING DATA
HAVING SENSOR-DEPENDENT NOISE

CROSS-REFERENCE TO RELATED APPLICATIONS
This Application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional
Application Serial No. 61/786,796, filed March 15, 2013, which is hereby incorporated

by reference to the maximum extent allowable by law.

BACKGROUND

TECHNICAL FIELD

The techniques described herein relate generally to image processing. Some

embodiments relate to processing imaging data contaminated by sensor-dependent noise.

DISCUSSION OF THE RELATED ART

Complementary metal-oxide semiconductor (CMOS) cameras convert optical
signals (e.g., visible light) into electrical signals, which can be processed to form images
or to determine attributes of an imaged region. CMOS cameras typically include an
array of pixel sensors (“pixels”), each of which includes a photosensitive region for
converting optical signals to electrical signals, and a readout structure for amplifying the
converted electrical signals and/or supplying the converted electrical signals to data
processing components.

CMOS cameras can introduce some noise into the electrical signals
corresponding to an imaged region. One type of noise introduced by CMOS cameras is
“readout noise.” Readout noise, which refers to noise introduced by a camera’s readout
circuitry (e.g., the amplification circuitry, the analog-to-digital conversion circuitry, and
the circuitry that couples a pixel’s signal to data processing components), may also be
modeled as a random variable with a Gaussian probability distribution. Readout noise is
said to be “pixel-dependent” because the characteristics of a CMOS camera’s readout
noise may vary from pixel to pixel.

Another type of noise introduced by CMOS cameras is “photon shot noise” or
“shot noise.” Shot noise, which arises from the photon detection process and may be
significant when the number of photons incident on a pixel’s photosensitive region is

small (e.g., under low-light conditions), may be modeled as a random variable with a
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Poisson distribution. Shot noise depends on the number of incident photons and is
therefore correlated with the input signal.

Some quantitative imaging techniques, such as single-molecule localization
techniques (e.g., localization-based nanoscopy and/or single-particle tracking), rely on
accurate and precise localization of single molecules. As just one example, single-
molecule switching nanoscopy (SMSN) techniques are used to localize single molecules
(e.g., with precisions on the order of approximately 10 nm) by stochastically switching
single molecules on and off. A plurality of camera frames (e.g., hundreds, thousands, or
even tens of thousands of camera frames) of blinking subsets of molecules may be
recorded to obtain a single image with a resolution of approximately 25 nm to 40 nm.
The temporal and spatial resolutions of such images are limited by several factors,
including the number of photons emitted by a single molecule per frame, the sensitivity

(e.g., quantum efficiency) of the camera, and the readout speed of the camera.

Summa

According to an aspect of the present disclosure, a processor-implemented
imaging method is provided, comprising obtaining imaging data corresponding to an
imaged region and acquired by at least first and second sensor elements, and, using a
processor, fitting a parameterized model to the imaging data. The parameterized model
includes a first sensor-dependent model of noise generated by the first sensor element in
a first portion of the imaging data acquired by the first sensor element, and a second
sensor-dependent model of noise generated by a second sensor element in a second
portion of the imaging data acquired by the second sensor element. The first sensor-
dependent noise model differs, at least in part, from the second sensor-dependent noise
model.

In some embodiments, fitting the parameterized model to the imaging data
comprises using statistical estimation to fit the parameterized model to the imaging data.

In some embodiments, the imaging method further comprises determining one or
more values of one or more respective parameters of each of the first and second sensor-
dependent noise models, and using at least one parameter value of each of the first and
second sensor-dependent noise models to identify at least one subset of the imaging data

for further processing, wherein using statistical estimation to fit the parameterized model
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to the imaging data comprises estimating one or more values of one or more respective
parameters of the parameterized model, and characterizing a quality of a fit between the
at least one subset of the imaging data and the parameterized model having the one or
more parameters with the one or more respective estimated values.

In some embodiments, using statistical estimation to fit the parameterized model
to the imaging data comprises using maximum likelihood estimation (MLE) to fit the
parameterized model to the imaging data, and characterizing a quality of a fit between
the at least one subset of the imaging data and the parameterized model comprises using
the first and second noise models to determine a log-likelihood ratio and/or to determine
a Cramer-Rao lower bound (CRLB).

In some embodiments, using MLE to fit the parameterized model to the imaging
data comprises estimating one or more values of one or more respective parameters
according to the expression

6= arg;nln{—ln[l_[?i1 P(x = [(D; — 0))/9; + vari/gi1|u;(6),bg,var;, gi,0)]}
wherein D; is an observed analog-to-digital unit (ADU) count of pixel i, u; is a number of
expected photoelectrons of pixel 7, g; is an amplification gain of pixel 7, o, is an offset of
readout noise of pixel i, var; is a variance of the readout noise of pixel 7, and bg is the
expected background ADU count of pixel 7.

In some embodiments, using statistical estimation to fit the parameterized model
to the imaging data comprises combining the first sensor-dependent noise model with a
parameter-dependent photon shot noise model to obtain an estimate of sensor-dependent
noise and photon shot noise in a first portion of the imaging data corresponding to the
first sensor, and combining the second sensor-dependent noise model with a parameter-
dependent photon shot noise model to obtain an estimate of sensor-dependent noise and
photon shot noise in a second portion of the imaging data corresponding to the second
sensor, wherein the parameter-dependent photon shot noise model depends, at least in
part, on the one or more estimated parameter values of the parameterized model.

In some embodiments, combining the first sensor-dependent noise model with the
parameter-dependent photon shot noise model comprises determining a convolution of
the first sensor-dependent noise model with the parameter-dependent photon shot noise

model.
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In some embodiments, combining the first sensor-dependent noise model with the
parameter-dependent photon shot noise model comprises analytically approximating a
convolution of the first sensor-dependent noise model with the parameter-dependent
photon shot noise model.

In some embodiments, analytically approximating the convolution of the first
sensor-dependent noise model with the parameter-dependent photon shot noise model
comprises analytically approximating a probability distribution P;(x) of an ADU count of
a pixel 7 using an expression including a term e ~*2*.

In some embodiments, the probability distribution of the ADU count of pixel i is
given by

2
o~ (itvary/g] )(#i+va7’i/gi2)x

['(x+1) i

P,(x = [(D; — 0)/g; + var;/gi|u;, var;, g;, 0;) =
wherein D; is an observed ADU count of pixel 7, #; is a number of expected
photoelectrons of pixel 7, g; is an amplification gain of pixel 7, o, is an offset of readout
noise of pixel i, var; is a variance of the readout noise of pixel 7, and I'(x) =
Jy ettt

In some embodiments, using at least one parameter value of the first and second
sensor-dependent noise models to identify at least one subset of the imaging data for
further processing comprises using one or more parameter values of the first sensor-
dependent noise model to filter noise in the first portion of the imaging data acquired by
the first sensor, and using one or more parameter values of the second sensor-dependent
noise model to filter noise in the second portion of the imaging data acquired by the
second sensor.

In some embodiments, using one or more parameter values of the first sensor-
dependent noise model to filter noise in the first portion of the imaging data comprises

filtering the first portion of the imaging data using a filter kernel defined by

Z 3 (Di_oi)
i€Cnxn gvar;

—1 »
Ziecnxn var;

unif (D;,n) =

wherein D; is an observed ADU count of pixel 7, g; is an amplification gain of pixel i, o;
is an offset of readout noise of pixel 7, var; is a variance of the readout noise of pixel i, n

is a kernel size, and C,,,, is a kernel region including pixel i.



10

15

20

25

30

WO 2014/144443 PCT/US2014/028856

-5.

In some embodiments, estimating one or more values of one or more respective
parameters of the parameterized model comprises estimating one or more locations of
one or more respective molecules and/or particles.

In some embodiments, the imaging method further comprises using the imaging
data and the one or more estimated values of the one or more respective parameters to
perform molecular localization, particle tracking, and/or super-resolution microscopy.

In some embodiments, the imaging method further comprises using at least the
first and second sensor elements to acquire the imaging data, wherein using at least the
first and second sensor elements to acquire the imaging data comprises using at least first
and second pixels to acquire the imaging data, and each of the first and second pixels
includes a photosensitive region of a semiconductor and a portion of the semiconductor
configured to read out data from the pixel.

In some embodiments, using at least first and second pixels to acquire the
imaging data comprises using at least first and second CMOS pixels to acquire the
imaging data.

In some embodiments, using at least first and second pixels to acquire the
imaging data comprises using at least first and second sSCMOS pixels to acquire the
imaging data.

In some embodiments, the imaging method further comprises determining one or
more values of one or more respective parameters of each of the first and second sensor-
dependent noise models, wherein the one or more parameter values of the first sensor-
dependent noise model differ, at least in part, from the one or more parameter values of
the second sensor-dependent noise model.

In some embodiments, each of the first and second sensor-dependent noise
models comprises a Gaussian probability distribution function, and determining the one
or more parameter values of each of the first and second sensor-dependent noise models
comprises determining, as one or more parameter values of the Gaussian probability
distribution function of the first sensor-dependent noise model, an offset of noise
generated by the first sensor element, a variance of noise generated by the first sensor
clement, and/or a gain of the first sensor element, and determining, as one or more
parameter values of the Gaussian probability distribution function of the second sensor-

dependent noise model, an offset of noise generated by the second sensor element, a
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variance of noise generated by the second sensor element, and/or a gain of the second
sensor element.

According to an aspect of the present disclosure, an imaging device is provided,
comprising one or more processing circuits and at least one computer-readable storage
medium storing processor-executable instructions which, when executed by the one or
more processing circuits, cause the imaging device to perform a method. The method
comprises obtaining imaging data corresponding to an imaged region and acquired by at
least first and second sensor elements, and fitting a parameterized model to the imaging
data. The parameterized model includes a first sensor-dependent model of noise
generated by the first sensor element in a first portion of the imaging data acquired by
the first sensor element, and a second sensor-dependent model of noise generated by a
second sensor element in a second portion of the imaging data acquired by the second
sensor element. The first sensor-dependent noise model differs, at least in part, from the
second sensor-dependent noise model.

In some embodiments, fitting the parameterized model to the imaging data
comprises using statistical estimation to fit the parameterized model to the imaging data.

In some embodiments, the method further comprises determining one or more
values of one or more respective parameters of each of the first and second sensor-
dependent noise models, and using at least one parameter value of each of the first and
second sensor-dependent noise models to identify at least one subset of the imaging data
for further processing, wherein using statistical estimation to fit the parameterized model
to the imaging data comprises estimating one or more values of one or more respective
parameters of the parameterized model, and characterizing a quality of a fit between the
at least one subset of the imaging data and the parameterized model having the one or
more parameters with the one or more respective estimated values.

In some embodiments, the method further comprises determining one or more
values of one or more respective parameters of each of the first and second sensor-
dependent noise models, and the one or more parameter values of the first sensor-
dependent noise model differ, at least in part, from the one or more parameter values of
the second sensor-dependent noise model.

In some embodiments, each of the first and second sensor-dependent noise

models comprises a Gaussian probability distribution function, and determining the one
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or more parameter values of each of the first and second sensor-dependent noise models
comprises determining, as one or more parameter values of the Gaussian probability
distribution function of the first sensor-dependent noise model, an offset of noise
generated by the first sensor element, a variance of noise generated by the first sensor
element, and/or a gain of the first sensor element, and determining, as one or more
parameter values of the Gaussian probability distribution function of the second sensor-
dependent noise model, an offset of noise generated by the second sensor element, a
variance of noise generated by the second sensor element, and/or a gain of the second
sensor element.

In some embodiments, the method further comprises: using one or more
parameter values of the first sensor-dependent noise model to filter noise in the first
portion of the imaging data acquired by the first sensor, and using one or more parameter
values of the second sensor-dependent noise model to filter noise in the second portion
of the imaging data acquired by the second sensor.

In some embodiments, using statistical estimation to fit the parameterized model
to the imaging data comprises combining the first sensor-dependent noise model with a
parameter-dependent photon shot noise model to obtain an estimate of sensor-dependent
noise and photon shot noise in a first portion of the imaging data corresponding to the
first sensor; and combining the second sensor-dependent noise model with a parameter-
dependent photon shot noise model to obtain an estimate of sensor-dependent noise and
photon shot noise in a second portion of the imaging data corresponding to the second
sensor, wherein the parameter-dependent photon shot noise model depends, at least in
part, on the estimated parameter values of the parameterized model.

In some embodiments, the imaging device further comprises at least the first and
second sensor elements, wherein the first and second sensor elements comprise pixels,
and wherein each of the first and second pixels includes a photosensitive region of a
semiconductor and a portion of the semiconductor configured to read out data from the
pixel.

In some embodiments, the imaging device is integrated with, included in, and/or
disposed on a mobile electronic device.

According to an aspect of the present disclosure, there is provided a computer-

readable storage medium storing processor-executable instructions which, when
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executed by one or more processing circuits, cause the processing circuits to perform a
method. The method comprises obtaining imaging data corresponding to an imaged
region and acquired by at least first and second sensor elements, and fitting a
parameterized model to the imaging data. The parameterized model includes a first
sensor-dependent model of noise generated by the first sensor element in a first portion
of the imaging data acquired by the first sensor element, and a second sensor-dependent
model of noise generated by a second sensor element in a second portion of the imaging
data acquired by the second sensor element. The first sensor-dependent noise model
differs, at least in part, from the second sensor-dependent noise model.

According to an aspect of the present disclosure, a processor-implemented
imaging method is provided, comprising obtaining imaging data corresponding to an
imaged region and acquired by at least one sensor element, and using a processor, fitting
a parameterized model to the imaging data. Fitting the parameterized model to the
imaging data comprises analytically approximating a combination of at least one sensor-
dependent noise model with a parameter-dependent photon shot noise model. The at
least one sensor-dependent noise model models noise generated by the at least one sensor
element in the imaging data. The parameter-dependent photon shot noise model models
photon shot noise based, at least in part, on at least one parameter of the parameterized
model.

In some embodiments, analytically approximating the combination of the at least
one sensor-dependent noise model with the parameter-dependent photon shot noise
model comprises analytically approximating the convolution of the at least one sensor-
dependent noise model with the parameter-dependent photon shot noise model.

In some embodiments, analytically approximating the combination of the at least
one sensor-dependent noise model with the parameter-dependent photon shot noise
model comprises analytically approximating a probability distribution P;(x) of a value of
a pixel 7 using an expression including a term e ~*2*.

In some embodiments the value of the pixel i comprises an ADU count of the
pixel 7.

In some embodiments, the probability distribution of the value of pixel i is given

by
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e_(uiwari/ylz)(#i+va7‘i/gi2)x
['(x+1) ’

P,(x = [(D; — 0)/g; + var;/gi|u;, var;, g;, 0;) =
wherein D; is an observed value of pixel i, u; is a number of expected photoelectrons of

pixel i, g; is an amplification gain of pixel 7, o; is an offset of readout noise of pixel 7, var;
is a variance of the readout noise of pixel 7, and I'(x) = | OOO e~tt*1de.

In some embodiments, fitting the parameterized model to the imaging data
comprises using statistical estimation to fit the parameterized model to the imaging data.

In some embodiments, using statistical estimation to fit the parameterized model
to the imaging data comprises estimating one or more values of one or more respective
parameters of the parameterized model, and characterizing a quality of a fit between the
at least one subset of the imaging data and the parameterized model having the one or
more parameters with the one or more respective estimated values.

In some embodiments, estimating the one or more values of the one or more
respective parameters of the parameterized model comprises analytically approximating
the combination of the at least one sensor-dependent noise model with the parameter-
dependent photon shot noise model.

In some embodiments, using statistical estimation to fit the parameterized model
to the imaging data comprises using maximum likelihood estimation (MLE) to fit the
parameterized model to the imaging data, using MLE to fit the parameterized model to
the imaging data comprises analytically approximating the combination of the at least
one sensor-dependent noise model with the parameter-dependent photon shot noise
model, and characterizing a quality of a fit between the at least one subset of the imaging
data and the parameterized model comprises using the first and second noise models to
determine a log-likelihood ratio and/or to determine a Cramer-Rao lower bound (CRLB).

In some embodiments, using MLE to fit the parameterized model to the imaging
data comprises estimating one or more values of one or more respective parameters

according to the expression

~

argmin
0 = g@ {—In[ITL, P(x = [(D; — 0)/g; + var;/gF1|u;(0),bg, var;, g;,0)]},
wherein D; is an observed ADU count of pixel 7, #; is a number of expected

photoelectrons of pixel 7, g; is an amplification gain of pixel 7, o; is an offset of readout

noise of pixel 7, var; is a variance of the readout noise of pixel i, bg is the expected
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background ADU count of pixel 7, and analytically approximating the combination of the
at least one sensor-dependent noise model with the parameter-dependent photon shot
noise model comprises analytically approximating a probability distribution P(x) of a
value of a pixel 7 using an expression including a term e ~*2*.

In some embodiments the probability distribution P(x) of the value of pixel 7 is
o (nitvary/g?)

X
(ui+vari/g?)
r'(x+1) )

given by P(x = [(D; — 0;)/g; + var;/g?1|ui, var, gi, 0)) =

In some embodiments, estimating one or more values of one or more respective
parameters of the parameterized model comprises estimating one or more locations of
one or more respective molecules and/or particles.

In some embodiments, the imaging method further comprises using the imaging
data and the one or more estimated values of the one or more respective parameters to
perform molecular localization, particle tracking, and/or super-resolution microscopy.

In some embodiments, the imaging method further comprises using the at least
one sensor element to acquire the imaging data, wherein using the at least one sensor
element to acquire the imaging data comprises using at least one pixel to acquire the
imaging data, and wherein each of the at least one pixel includes a photosensitive region
of a semiconductor and a portion of the semiconductor configured to read out data from
the at least one pixel.

In some embodiments, using the at least one pixel to acquire the imaging data
comprises using at least one CMOS pixel to acquire the imaging data.

In some embodiments, using the at least one pixel to acquire the imaging data
comprises using at least one SCMOS pixel to acquire the imaging data.

In some embodiments, fitting the parameterized model to the imaging data yields
an estimate of sensor-dependent noise and photon shot noise in the imaging data and/or
an estimate of the imaging data with sensor-dependent noise and photon shot noise

removed from the imaging data.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and embodiments will be described with reference to the
following figures. It should be appreciated that the figures are not necessarily drawn to

scale. Items appearing in multiple figures are indicated by the same reference number in
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all the figures in which they appear. For purposes of clarity, not every component may
be labeled in every drawing. In the drawings:

FIG. 1 is a flowchart of an imaging method, in accordance with some
embodiments;

FIG. 2 is a flowchart of a method of fitting a parameterized model to imaging
data, according to some embodiments; and

FIG. 3 is a block diagram illustrating a computer system which may be
configured to perform one or more aspects of an imaging method, in accordance with

some embodiments.

DETAILED DESCRIPTION

Introduction

Some CMOS cameras perform poorly under low-light conditions, in part because
pixel-dependent readout noise introduces artifacts and interferes with quantitative
imaging analysis. Thus, some CMOS cameras may perform poorly when used for
applications in which low-light imaging is important, such as single-molecule
localization. However, CMOS cameras offer many advantages over other types of
cameras (e.g., electron-multiplying charge-coupled devices (EMCCDs)) typically used
for imaging under low-light conditions. For example, CMOS cameras (e.g., newly
developed scientific CMOS (sCMOS) cameras) may be less expensive to manufacture,
may exhibit higher effective quantum efficiency, may have a larger field of view, and/or
may support much higher readout speeds than conventional low-light cameras. Thus,
data processing techniques which improve the accuracy of CMOS cameras under low-
light conditions would be beneficial in any context where low-light imaging may be
performed, including quantitative image analysis, single-molecule localization,
localization-based nanoscopy, single-particle tracking, machine vision, medical imaging,
image reconstruction, and consumer electronics (e.g., digital still cameras and digital
video cameras, smartphone cameras, etc.).

The inventors have appreciated that the performance of CMOS cameras under
low-light conditions may improve significantly when appropriate data processing

techniques are used to correct for the pixel-dependent readout noise introduced into the
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imaging data by the camera’s pixels. As just one example, the data processing
techniques disclosed herein may enhance the quality of images acquired under low-light
conditions using CMOS cameras. As another example, when single-molecule
localization techniques are applied to imaging data acquired using CMOS cameras, the
data processing techniques described herein may significantly enhance the accuracy
and/or precision of the molecule positions estimated from such imaging data. The
inventors have also recognized and appreciated that the performance of other sensor-
based techniques may improve significantly when appropriate data processing techniques
are used to correct for sensor-dependent noise introduced into the sensed data by the
sensors. For example, the data processing techniques described herein may improve the
performance of non-optical imaging techniques such as X-ray imaging, magnetic
resonance imaging (MRI), nuclear magnetic resonance (NMR), positron emission
tomography (PET), and computed tomography (CT).

Disclosed herein are data processing techniques which may enhance the
reliability, accuracy, and/or precision of information derived from data acquired using
sensor elements that introduce sensor-dependent noise into the acquired data. In some
embodiments, the imaging techniques described herein may include a calibration
technique suitable for determining parameter values for sensor-dependent noise models
of noise generated by sensor elements during acquisition of imaging data. In some
embodiments, the imaging techniques described herein may include a filtering technique
suitable for filtering at least some sensor-dependent noise from acquired imaging data.
In some embodiments, the imaging techniques described herein may include a model-
fitting technique suitable for fitting a parameterized model to the acquired imaging data.

In some embodiments, reliable position estimates for single-molecule localization
applications may be obtained from noisy imaging data by applying suitable data
processing techniques to correct for pixel-dependent readout noise in the imaging data.
Single-molecule localization techniques typically involve fitting a parameterized model
to imaging data to determine the parameter values (e.g., molecule positions) that are
likely to correspond to the acquired imaging data. The fitting of the parameterized
model to the imaging data is typically performed using a statistical estimation technique
(e.g., maximum likelihood estimation (MLE), Bayesian estimation, method of moments,

least-squares estimation, etc.), whereby one or more parameter values which yield a
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suitable fit between the actual imaging data and the results predicted by the
parameterized model are estimated.

Noise in imaging data tends to interfere with the accuracy of statistical estimation
based on that imaging data. In conventional single-molecule localization techniques,
Poisson-distributed shot noise has been the primary expected source of noise. Readout
noise has been ignored because single-molecule localization typically has been
performed using EMCCD cameras, for which the error introduced by readout noise is
typically within the tolerances of the localization precision. However, the inventors have
recognized and appreciated that when CMOS cameras (e.g., sSCMOS cameras) are used,
failure to correct for pixel readout noise may significantly degrade the accuracy and
precision of single-molecule localization techniques.

The various aspects described above, as well as further aspects, will now be
described in detail below. It should be appreciated that these aspects may be used alone,
all together, or in any combination of two or more, to the extent that they are not
mutually exclusive.

As used herein, “imaging” may refer to the acquisition, processing, and/or
presentation of information relating to one or more attributes of a region. Attributes of a
region may include, but are not limited to, physical attributes (e.g., position, shape,
contour, color, orientation, etc.), chemical attributes (e.g., density, chemical composition,
etc.), anatomical attributes, biological attributes, functional attributes, and/or any other
suitable attributes of objects, materials, cells, and/or particles in the region. The
acquisition of imaging information may be performed using any suitable technique,
including, but not limited to, optical techniques (e.g., photodetection), acoustical
techniques (e.g., ultrasound), and/or electromagnetic techniques (e.g., X-ray, magnetic
resonance, positron emission tomography (PET), computed tomography (CT)). In some
embodiments, the processing and presentation of imaging information may include

formation and display of an image representing one or more attributes of the region.

Modeling Sensor-Dependent Noise

When multiple sensor elements are used to acquire data for a data set, and two or
more of the sensor elements introduce noise having different characteristics into the

acquired data, the data set is said to include or be contaminated by sensor-dependent
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noise. In some embodiments, modeling the sensor-dependent noise introduced into a
data set by the sensors used to acquire the data may facilitate data processing techniques
whereby the sensor-dependent noise is identified, distinguished from the underlying data,
removed from the data set, and/or subjected to processing which improves the reliability,
precision, and/or accuracy of information derived from the data set. This section
describes a technique for modeling sensor-dependent noise generated by the pixels of a
CMOS camera (e.g., pixel-dependent readout noise).

In some embodiments, the readout noise distribution for a pixel may be modeled
as a Gaussian probability distribution. This distribution may describe the temporal
analog-to-digital unit (ADU) count fluctuation of the pixel under dark conditions (e.g.,
with zero expected incident photons). In some embodiments, a pixel’s readout noise
distribution may be characterized by the distribution’s mean (“offset”), the distribution’s
variance, and/or the pixel’s gain (“amplification gain”), each of which may vary from
pixel to pixel.

In some embodiments, the ADU count output of a pixel follows a probability
distribution which may be described as a combination (e.g., convolution) of the signal-
dependent, Poission-distributed shot noise corresponding to the photon detection process
and the pixel-dependent, Gaussian-distributed readout noise corresponding to the pixel’s
readout circuitry. The probability distribution function (PDF) for an individual pixel i

may, in some embodiments, be described by

) 21 , 1 _(D—g'gi—oi)z
P,(D) = Az—e_“iu. —e var;
l q:Oq! ' [2mvar,

(1).

Here, P() represents the pixel’s PDF, D represents the pixel’s ADU count, 4 is a
normalization constant, u; is the number of expected photoelectrons (¢) of pixel 7, g; is
the amplification gain (ADUs/¢") for pixel i, o; is the mean (offset) of the readout noise

of pixel 7, and var; is the variance of the readout noise of pixel 7.

Data-Processing Techniques

Figure 1 illustrates an imaging method 100, in accordance with some
embodiments. In some embodiments, applying imaging method 100 to noisy imaging

data may yield reliable position estimates for single-molecule localization applications.
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At step 102 of imaging method 100, parameter values are determined for sensor-
dependent noise models of sensor-dependent noise generated by sensor elements in
imaging data acquired using the sensor elements. The processing performed in step 102
may be referred to herein as “calibration” processing. In some embodiments, the sensor
elements may be pixels (e.g., CMOS pixels). In some embodiments, the sensor-
dependent noise models may include Gaussian distributions representing the sensor-
dependent noise characteristics of the respective sensor elements (e.g., pixel-dependent
readout noise). In some embodiments, the parameters of a noise model may include the
sensor-dependent mean (offset) of the Gaussian distribution of the sensor element’s
noise, the sensor-dependent variance of the Gaussian distribution of the sensor element’s
noise, and/or the sensor element’s gain.

In some embodiments, the offset of the Gaussian distribution of a pixel’s readout
noise may be determined using imaging data acquired while the pixel is dark. For
example, a pixel’s readout noise offset may be calculated as the average ADU count of
the pixel over a set of frames acquired while the pixel is dark. A pixel may be dark when
the number of incident photons on the pixel is expected to be zero or negligible. In some
embodiments, a dark environment may be established by placing a camera in a dark
room or by covering the camera’s lens with a lens cap.

The offset values of a camera’s pixels may be determined using any suitable
technique, including, but not limited to, the following process. In one step of the
process, the camera’s pixels may be exposed to a dark environment. In another step of
the process, a set of M image frames may be acquired while the pixels are exposed to the
dark environment. In another step of the process, the offset o; for any pixel i may be

calculated as
M
LY g
0; = M i
m=1
(2).

Here, ST is the ADU count at frame m for pixel i, and M is the total number of dark
frames acquired.

In some embodiments, the variance of the Gaussian distribution of a pixel’s
readout noise may be determined using imaging data acquired while the pixel is in a dark

environment. For example, a pixel’s readout noise variance may be calculated as the
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variance of the pixel’s ADU count over a set of frames acquired while the pixel is dark.
The variance values of a camera’s pixels may be determined using any suitable
technique, including, but not limited to, the following process. In one step of the
process, the camera’s pixels may be exposed to a dark environment. In another step of
the process, a set of M image frames may be acquired while the pixels are exposed to the
dark environment. In another step of the process, the variance var; for any pixel i may be

calculated as

L&
var, =2 ) (S - of
m=1
3).

In some embodiments, the same set of M image frames may be used to determine
the offset and variance values of the readout noise distributions of a camera’s pixels. In
some embodiments, a large number M of image frames (e.g., thousands, tens of
thousands, approximately 60,000, or hundreds of thousands) may be obtained to estimate
the variance and offset values with suitable precision.

In some embodiments, a pixel’s gain may be determined using imaging data
acquired while the pixel is exposed to a specified number of photons. The gain values of
a camera’s pixels may be determined using any suitable technique, including, but not
limited to, the following process. In one step of the process, a series of image sequences
may be acquired. During each image sequence, the pixels of interest may be illuminated
at a specified intensity level (e.g., at an average intensity level ranging from
approximately 20 photons per pixel to approximately 200 photons per pixel). For
example, the pixels of interest may be illuminated with quasi-uniform stationary
intensity patterns. The intensity levels may vary among the different image sequences.
In some embodiments, the number of images acquired during each image sequence may
be large (e.g., hundreds of images, thousands of images, tens of thousands of images,
approximately 20,000 images, or hundreds of thousands of images).

In another step of the process, the series of image sequences may be used to
calculate the gains of one or more pixels of interest. For the intensity levels described
above, the total variance of the camera output in pixel 7 at a specified illumination
intensity may be approximated as the sum of the photon shot noise-induced variance and

the Gaussian variance of the pixel, var;. Thus, the gain of pixel i may be estimated using
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K

_ 2
g = argminz ((vlk — var) — g;(DF - Oi))

k=1

4,
where K is the total number of illumination levels acquired for the gain calibration
process, k is the k™ illumination sequence, D_l" stands for the mean ADU count obtained
from temporal averaging of all frames acquired during illumination sequence £ in pixel i,
o; and var; are the mean and variance values for pixel 7, and v{‘ stands for the temporal
variance of the ADU counts for illumination sequence £ in pixel i. The units of gain g;
may be ADU/e".

The linear least square minimization problem represented by Eq. (4) may be
simplified into the form

g = (BB ) 'BA]

4,

where
A ={w! - varl-),---,(vik —vary), -, (K —var)},

B, ={(Dl - 0;),- (DF = 0,), -+ (DF = 0,)}

At step 104 of imaging method 100, imaging data corresponding to an imaged
region and acquired by the sensor elements is obtained. In some embodiments, obtaining
the imaging data may comprise producing the imaging data (¢.g., using the sensor
elements to sense signals associated with the imaged region), loading the imaging data
(e.g., from a computer-readable storage medium), and/or receiving the imaging data
(e.g., via a network). The imaging data may relate to one or more attributes of the
imaged region.

In steps 106-108 of imaging method 100, sensor-dependent noise models may be
used to enhance the quality of image processing performed on the imaging data. In some
embodiments, the sensor-dependent noise model of Eq. (1) may be used to enhance the
accuracy and/or precision of a single-molecule localization process.

At step 106 of imaging method 100, the parameter values of the sensor-dependent
noise models (e.g., the means of the sensor elements’ Gaussian-distributed readout noise,
the variances of the sensor elements’ Gaussian-distributed readout noise, and/or the gains

of the sensor elements) may be used to identify at least one subset of the imaging data
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obtained in step 104 for further processing. In some embodiments, the identified
subset(s) may comprise portions of the imaging data satisfying one or more criteria,
wherein satisfying the one or more criteria indicates that the subset of imaging data may
contain information of interest. The processing performed in step 106 may be referred to
herein as “image segmentation” or “segmentation’ processing.

Identification of subset(s) of the imaging data for further processing may be
performed using any suitable segmentation technique, including, but not limited to, the
following process. At one step of the process, portions of the imaging data may be
statistically weighted according to the sensor-dependent gain, variance, and/or offset
values associated with the sensor element that acquired the respective portion of imaging
data. This smoothing technique may reduce noise which might otherwise be interpreted
as meaningful data. For example, in the context of single-molecule localization, this
smoothing technique may reduce noise which might otherwise be interpreted as single
molecules.

In some embodiments, one or more smoothing filters may be applied to the
imaging data to reduce or eliminate noise. The filtered noise may include, for example,
Poisson-distributed shot noise, noise arising from heterogeneous background
fluorescence, noise arising from non-uniform gains of sensor elements, and/or readout
noise introduced by the sensor elements. In some embodiments, the one or more
smoothing filters may comprise one or more uniform filters and/or Gaussian filters. In
some embodiments, the one or more smoothing filters may use one or more parameters
of the sensor-dependent noise models to filter sensor-dependent noise, such as readout

noise. In some embodiments, the filter kernel may be defined as

e ]

unif (D;,n) = 9ivaT;

YicCo, vary !

(6),

where D; is the ADU count for pixel 7, g; is the gain for pixel i, var; is the variance for
pixel i, and C,, represents the kernel region. In some embodiments, the kernel region
may comprise an n X n square region centered around pixel i. In some embodiments,
smoothed imaging data may be obtained by performing a pixel-wise subtraction between
two sets of imaging data resulting from two filter applications with different kernel sizes

n:
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Sy = unif (D,|20psr + 1)) — unif (D, |40pgr + 1])
(7,
where |x] describes the largest integer less than or equal to x, and D represents the entire
set of acquired imaging data.

At another step of the process, the smoothed imaging data may be processed to
identify one or more subsets of imaging data for further processing. In some
embodiments, subsets of the smoothed imaging data containing local maxima may be
suitable for further processing. For example, in single-molecule localization
applications, the subsets of imaging data containing local maxima may be the subsets of
imaging data likely to contain information relating to single molecules. In some
embodiments, local maxima may be identified using a maximum filter and a binary
operation.

At step 108 of imaging method 100, a parameterized model may be fitted to the
imaging data (or to one or more subsets of the imaging data). In some embodiments, the
parameterized model may be a model of the imaged region, a model of one or more
attributes of the imaged region, and/or a model of one or more conditions relating to the
imaged region. The parameterized model may include at least one parameter. In the
context of single-molecule localization, the parameters of the parameterized model may
include, for example, the positions of one or more molecules in the imaged region. The
parameterized model may include sensor-dependent noise models. Fitting the
parameterized model to the imaging data may comprise determining value(s) of the
parameter(s) for which the parameterized model sufficiently fits the imaging data.

In some embodiments, one or more statistical estimation techniques may be used
to fit the parameterized model to the imaging data. Any suitable statistical estimation
technique may be used to fit the parameterized model to the imaging data, including, but
not limited to, maximum likelihood estimation (MLE), Bayesian estimation, method of
moments, and/or least-squares estimation. In some embodiments, using statistical
estimation to fit a parameterized model to imaging data may comprise performing an
iterative fitting process as illustrated in Figure 2.

At step 202 of the fitting process illustrated in Figure 2, one or more parameter
values of the parameterized model are estimated. In some embodiments, estimating one

or more parameter values of the parameterized model may comprise evaluating the
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probability distribution of noise in the imaging data to which the parameterized model is
being fitted. In some embodiments, the noise in the imaging data may include signal-
dependent, Poisson-distributed photon shot noise and pixel-dependent, Gaussian-
distributed readout noise. Thus, in some embodiments, evaluating the probability
distribution of noise in the imaging data to which the parameterized model is being fitted
may comprise evaluating a probability distribution that is a combination (e.g.,
convolution) of the shot noise Poisson distribution and the readout noise Gaussian
distribution. In some embodiments, such a combined probability distribution may be
evaluated for one or more pixels (e.g., all pixels) of the imaging data (or subset of
imaging data) to which the parameterized model is being fitted during each fitting
iteration of the statistical estimation process.

In some embodiments, the combined probability distribution of the ADU count of
a pixel may be evaluated by evaluating Eq. (1). In some embodiments, the combined
probability distribution of the ADU count of a pixel may be evaluated using an analytical
approximation of Eq. (1). For example, the probability distribution of Eq. (1) may be
analytically approximated as

e~(utver /o) (. + var, /g?)*
I'(x+1)

P(x=[(D; —0)/g; + Vari/giz]|ui'va7"i'gi'0i) =
(8),
where u; stands for the number of expected photons from the fitting model at pixel 7, and

where the complete Gamma function I'(x) is defined as I'(x) = [ OOO e 't*1dt. The

fitting model may, in some embodiments, be a single 2D Gaussian model (e.g., for single
emitter fitting) or a multiple Gaussian model (e.g., for multi-emitter fitting). In some
embodiments, statistical estimation based on the analytical approximation of the
probability distribution may provide optimal accuracy and precision at the theoretical
limit. Since the analytical approximation of the likelihood function of Eq. (8) resembles
a Poisson distribution (e.g., the likelihood function of Eq. (8) includes a term of the form
e~ Q¥ where L = u; + var;/g?), conventional statistical estimation techniques for
single-molecule localization and/or multi-emitter fitting may be adapted to incorporate
sensor-dependent noise models by substituting the probability distribution of Eq. (8) for

the conventional Poisson-distributed noise models.
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In some embodiments, maximum likelihood estimation (MLE) may be used to
estimate the one or more parameter values of the parameterized model. The MLE for the

parameterized model of Eq. (8) may be expressed as

6= gmm {

ﬂp(x = [0, ~ 0)/g; + vari/g?1|u,(6), by, var, gi.o»]}
(10),

where 8 is the maximum likelihood estimate for the one or more parameter values 6,
where M is the total number of pixels in the fitting sub-region, and where bg represents
the expected background ADU count of pixel i.

At steps 204 and 206 of fitting process 200, the quality of the fit between the
acquired imaging data (or subset of acquired imaging data) and the parameterized model
is characterized. If the quality of fit is sufficient, fitting process 200 ends. If the quality
of fit is not sufficient, another iteration of fitting process 200 may be performed.

Conceptually, characterizing the quality of fit between the acquired imaging data
and the parameterized model may be regarded as a process of (1) using the
parameterized model to generate an estimate of the imaging data that the sensor elements
would have acquired if the estimated parameter values accurately described the
conditions relevant to the imaging region at the time the actual imaging data was
acquired, and (2) determining how closely the estimated imaging data matches the actual
imaging data. Any suitable technique may be used to characterize the quality of fit
between the parameterized model and the imaging data, including, but not limited to,
goodness-of-fit filtering (“rejection’) and/or uncertainty estimation.

In some embodiments, goodness-of-fit filtering may be used to identify non-
converging fits and/or unacceptable fit errors (e.g., fit errors that exceed an error
threshold). In some embodiments, performing goodness-of-fit filtering may comprise
determining the value of a Log-likelihood ratio (LLR) metric. In some embodiments, the

LLR metric may be expressed as

P(x = [(D; — 0,)/g; + var;/gi ]ht(H)bg.va D,

LLR = =2In (D
1 P (= [0 — 00/gi + var/g71| P

bg,varl,gl, )
(11),
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where 0 represents the estimated parameter values. The LLR metric may approximately
follow a chi-squared distribution with M-K degrees of freedom where M is the number of
pixels in the fitting sub-region and K is the total number of parameters estimated in the
fitting process.

In some embodiments, performing goodness-of-fit filtering may further comprise
using the LLR metric to calculate a p-value for the fit. In some embodiments, the p-
value for a fit may be compared to a threshold, and fits with p-values below the threshold
may be rejected.

In some embodiments, uncertainty estimation may be performed. The
uncertainty (or precision) of the estimated values of the parameters of the fitted
parameterized model may be estimated using any suitable technique. In some
embodiments, the uncertainty may be estimated using the Cramer-Rao lower bound

(CRLB) with the likelihood function of Eq. (8).

Additional Embodiments

It should be appreciated that, in some embodiments, an imaging method may
comprise fewer than all the steps illustrated in Figure 1. In some embodiments, an
imaging method may include a step 104 of obtaining imaging data corresponding to an
imaged region and acquired by sensor elements, and a step 108 of fitting a parameterized
model to the imaging data, wherein the parameterized model includes sensor-dependent
models of noise generated by the sensor elements in portions of the imaging data
acquired by the respective sensor elements.

Such an imaging method may be suitable for identifying sensor-dependent noise
in a data set (e.g., pixel-dependent readout noise in imaging data acquired by CMOS
pixels, sensor-dependent noise in X-ray data, MRI data, NMR data, PET data, CT data,
etc.), distinguishing sensor-dependent noise from the underlying data, removing (e.g.,
filtering) the sensor-dependent noise from the data set, and/or subjecting the data set to
any suitable processing which improves the reliability, precision, and/or accuracy of
information derived from the data set. Such an imaging method may be suitable for
removing artifacts from images acquired by CMOS pixels under low-light conditions,
and/or for improving the resolution of images acquired by CMOS pixels under low-light

conditions.
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Although embodiments and examples relating to single-molecule localization
have been described, some embodiments are not limited to single-molecule localization.
Embodiments of the data processing techniques described herein may be applied to any
suitable application, including, but not limited to quantitative imaging applications,
qualitative imaging applications, single-particle tracking (e.g., at temporal resolutions up
to approximately 20 kHz), multi-emitter fitting, screening of cells by super-resolution
imaging, medical imaging, X-ray imaging, magnetic resonance imaging (MRI), nuclear
magnetic resonance (NMR), positron emission tomography (PET), computed
tomography (CT), machine vision, image reconstruction, low-light imaging, and/or
consumer electronics.

In some embodiments, the data processing techniques described herein may be
performed “online” or “in real-time.” For example, the data processing techniques
described herein may performed on low-light images acquired by CMOS cameras in
real-time, such that the processed image may be viewed at substantially the same time
the imaging data is acquired. As another example, the data processing techniques
described herein may be used to perform online molecular localization. As another
example, the data processing techniques described herein may be used to perform
screening of fixed or living cells with a frame rate of up to approximately 32
reconstructed images per second.

The benefits of the data processing techniques described herein may be realized
in any context where (1) noise characteristics of different sensor elements are different,
and (2) sensor-dependent noise is not dominated by other forms of noise.

In some embodiments, an analytical approximation of the probability distribution
of Eq. (1) (including, but not limited to, the analytical approximation given in Eq. (8))
may be used to model a combination of sensor-dependent noise and signal-dependent
photon shot noise, even when the same sensor-dependent noise model is used for
different sensor elements. A common model for noise generated by multiple sensors
may be obtained using any suitable technique. As just one example, values of
parameters of a common noise model may be estimated for a set of two or more sensor
clements (e.g., based on data acquired by the set of sensor elements or by some subset of
the sensor elements), and these same parameter values may be used to model the noise

contributed by each of the sensor elements in the set. In this way, the computational
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benefits of the analytical approximation of the combination of the sensor-dependent
noise model and the signal-dependent photon shot noise model may be obtained even in
circumstances where distinct noise models are not used to model the noise generated by
distinct sensor elements.

An imaging system or apparatus in accordance with the techniques described
herein may take any suitable form, as embodiments are not limited in this respect.
Figure 3 illustrates a computer system which may be configured to perform one or more
aspects of an imaging method, in accordance with some embodiments. One or more
computer systems such as computer system 300 may be used to implement any of the
functionality described above. The computer system 300 may include one or more
processors 306 and one or more computer-readable storage media 302 (i.e., tangible,
non-transitory, computer-readable media), .g., one or more volatile storage media
and/or one or more non-volatile storage media. The one or more processors 306 may
control writing of data to and reading of data from the storage 302 in any suitable
manner. The one or more processors 306 may control movement of data on
interconnection network 310 in any suitable manner.

To perform any of the functionality described herein, the one or more processors
306 may execute one or more instructions stored in one or more computer-readable
storage media (e.g., storage 302), which may serve as tangible, non-transitory, computer-
readable media storing instructions for execution by one or more processors 306. In
some embodiments, one or more processors 306 may include one or more processing
circuits, including, but not limited to, a central processing unit (CPU), a graphics
processing unit (GPU), a field-programmable gate array (FPGA), an accelerator, and/or
any other suitable device (e.g., circuit) configured to process data.

In some embodiments, computer system 300 may include sensors 304. In some
embodiments, the sensors 304 may introduce sensor-dependent noise into sensor data
acquired using the sensors, at least under some sensing conditions. In some
embodiments, the sensors 304 may include sensors of any suitable type(s), including, but
not limited to, acoustical sensors, optical sensors, and/or electromagnetic sensors. In
some embodiments, the sensors 304 may include pixels (e.g., CMOS pixels, such as
sCMOS pixels). In some embodiments, the sensors may be sensors integrated with,

included in, and/or disposed on an electronic device, including, but not limited to, a
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mobile electronic device, a mobile phone, a smartphone, a laptop computer, a camera
(e.g., a still camera, web camera, video camera, etc.), and/or any other suitable electronic
device.

In some embodiments, computer system 300 may include a network interface 308
suitable for processing communication between computer system 300 and a network
(e.g., a computer network). In some embodiments, computer system 300 may be
configured to use network interface 308 to obtain imaging data. Such imaging data may,
for example, have been acquired using sensors that are external to computer system 300
or not controlled by computer system 300.

It should be appreciated from the foregoing that some embodiments are directed
to imaging methods, as illustrated in Figure 1. Such methods may be performed, for
example, by one or more components of a computer system 300, although other
implementations are possible, as the methods are not limited in this respect.

Also, the technology described may be embodied as a method, of which at least
one example has been provided. The acts performed as part of the method may be
ordered in any suitable way. Accordingly, embodiments may be constructed in which
acts are performed in an order different than illustrated, which may include performing
some acts simultancously, even though shown as sequential acts in illustrative
embodiments.

The above-described embodiments can be implemented in any of numerous
ways. For example, the embodiments may be implemented using hardware, software or
a combination thereof. When implemented in software, the software code can be
executed on any suitable processor (e.g., processing circuit) or collection of processors,
whether provided in a single computer or distributed among multiple computers. It
should be appreciated that any component or collection of components that perform the
functions described above can be generically considered as one or more controllers that
control the above-discussed functions. The one or more controllers can be implemented
in numerous ways, such as with dedicated hardware, or with general purpose hardware
(e.g., one or more processors) that is programmed using microcode or software to
perform the functions recited above.

In this respect, various aspects may be embodied and/or implemented at least in

part as at least one computer-readable storage medium (i.e., at least one tangible, non-
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transitory computer-readable medium) encoded with a computer program (a plurality of
instructions), which, when executed on one or more processors, cause the above-
discussed steps or acts to be performed. Examples of a computer-readable storage
medium may include, but are not limited to, a computer memory, a floppy disk, a
compact disc, an optical disc, a magnetic tape, a flash memory, a circuit configuration in
a Field Programmable Gate Array (FPGA) or other semiconductor device, or other
tangible, non-transitory computer-readable medium. As is apparent from the foregoing
examples, a computer readable storage medium may retain information for a sufficient
time to provide computer-executable instructions in a non-transitory form. The
computer-readable storage medium may be transportable, such that the program or
programs stored thereon can be loaded onto one or more different computers or other
processors to implement various aspects of the present technology as discussed above.
In some embodiments, processing of data and aspects of system operation may be
implemented entirely, or at least in part, in FPGAs as hard-wired computer-executable
instructions.

Computer-executable instructions may be in any one or combination of several
forms, such as program modules, executed by one or more computers or other devices.
Generally, program modules may include routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement particular abstract data types.
Typically the functionality of the program modules may be combined or distributed as
desired in various embodiments.

Computer-executable instructions may be executable on one or more processors
that employ any one of a variety of operating systems or platforms. Additionally, such
instructions may be written using any of a number of suitable programming languages
and/or programming or scripting tools, and also may be compiled as executable machine
language code or intermediate code that is executed on a framework or virtual machine.

Processors may be implemented as circuits (e.g., integrated circuits), including
commercially-available circuits known in the art by names such as CPU chips, GPU
chips, microprocessors, microcontrollers, or co-processors. Alternatively, a processor
may be implemented in custom circuitry, such as an ASIC, or semicustom circuitry
resulting from configuring a programmable logic device. As yet a further alternative, a

processor may be a portion of a larger circuit or semiconductor device, whether
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commercially-available, semi-custom, or custom-built. As a specific example, some
commercially-available microprocessors have multiple cores such that one or a subset of
those cores may constitute a processor suitable for implementing functionality described
above. Though, a processor may be implemented using logic circuitry in any suitable
format.

A data-processing device may be embodied in any of a number of forms, such as
a rack-mounted computer, a desktop computer, a laptop computer, or a tablet computer.
Additionally, a data-processing device may comprise embedded data-processing circuitry
in a device not generally regarded as a computer but with suitable processing
capabilities, including a Personal Digital Assistant (PDA), a smart phone, or any other
suitable portable or fixed electronic device.

The terms “program” or “software” are used in a generic sense to refer to
computer code or set of computer-executable instructions that can be employed to
program a computer or other processor to implement various aspects of the present
technology as discussed above. Additionally, in some embodiments, one or more
computer programs that when executed perform methods of the present technology need
not reside on a single computer or processor, but may be distributed in a modular fashion
amongst a number of different computers or processors to implement various aspects of
the present technology.

The phraseology and terminology used herein is for the purpose of description
and should not be regarded as limiting.

The indefinite articles “a” and “an,” as used in the specification and in the claims,
unless clearly indicated to the contrary, should be understood to mean “at least one.”

The phrase “and/or,” as used in the specification and in the claims, should be
understood to mean “either or both” of the elements so conjoined, i.¢., elements that are
conjunctively present in some cases and disjunctively present in other cases. Multiple
elements listed with “and/or” should be construed in the same fashion, i.e., “one or
more” of the elements so conjoined. Other elements may optionally be present other
than the elements specifically identified by the “and/or” clause, whether related or
unrelated to those elements specifically identified. Thus, as a non-limiting example, a
reference to “A and/or B”, when used in conjunction with open-ended language such as

“comprising” can refer, in one embodiment, to A only (optionally including elements
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other than B); in another embodiment, to B only (optionally including elements other
than A); in yet another embodiment, to both A and B (optionally including other
clements); etc.

As used in the specification and in the claims, “or” should be understood to have
the same meaning as “and/or” as defined above. For example, when separating items in
a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least
one, but also including more than one, of a number or list of elements, and, optionally,
additional unlisted items. Only terms clearly indicated to the contrary, such as “only one
of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the
inclusion of exactly one element of a number or list of elements. In general, the term
“or” as used shall only be interpreted as indicating exclusive alternatives (i.e. “one or the

2% &<

other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,”
“only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims,
shall have its ordinary meaning as used in the field of patent law.

As used in the specification and in the claims, the phrase “at least one,” in
reference to a list of one or more elements, should be understood to mean at least one
clement selected from any one or more of the elements in the list of elements, but not
necessarily including at least one of each and every element specifically listed within the
list of elements and not excluding any combinations of elements in the list of elements.
This definition also allows that elements may optionally be present other than the
elements specifically identified within the list of elements to which the phrase “at least
one” refers, whether related or unrelated to those elements specifically identified. Thus,
as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A
or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at
least one, optionally including more than one, A, with no B present (and optionally
including elements other than B); in another embodiment, to at least one, optionally
including more than one, B, with no A present (and optionally including elements other
than A); in yet another embodiment, to at least one, optionally including more than one,
A, and at least one, optionally including more than one, B (and optionally including other

clements); etc.

"non "o 99 s

The use of "including," "comprising," "having," “containing,” “involving,” and

variations thereof, is meant to encompass the items listed thereafter and additional items.
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Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a
claim element does not by itself connote any priority, precedence, or order of one claim
element over another or the temporal order in which acts of a method are performed.
Ordinal terms are used merely as labels to distinguish one claim element having a certain
name from another element having a same name (but for use of the ordinal term), to
distinguish the claim elements.

Having described several embodiments of the invention in detail, various
modifications and improvements will readily occur to those skilled in the art. Such
modifications and improvements are intended to be within the spirit and scope of the
invention. Accordingly, the foregoing description is by way of example only, and is not
intended as limiting. The invention is limited only as defined by the following claims
and the equivalents thereto.

What 1s claimed is:
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CLAIMS

1. A processor-implemented imaging method, comprising:

obtaining imaging data corresponding to an imaged region and acquired by at
least first and second sensor elements; and

using a processor, fitting a parameterized model to the imaging data, wherein the
parameterized model includes a first sensor-dependent model of noise generated by the
first sensor element in a first portion of the imaging data acquired by the first sensor
element, and a second sensor-dependent model of noise generated by a second sensor
element in a second portion of the imaging data acquired by the second sensor element,

wherein the first sensor-dependent noise model differs, at least in part, from the

second sensor-dependent noise model.

2. The method of claim 1, wherein fitting the parameterized model to the imaging
data comprises using statistical estimation to fit the parameterized model to the imaging

data.

3. The imaging method of claim 2, further comprising:
determining one or more values of one or more respective parameters of each of
the first and second sensor-dependent noise models; and
using at least one parameter value of each of the first and second sensor-
dependent noise models to identify at least one subset of the imaging data for further
processing,
wherein using statistical estimation to fit the parameterized model to the imaging
data comprises:
estimating one or more values of one or more respective parameters of the
parameterized model, and
characterizing a quality of a fit between the at least one subset of the
imaging data and the parameterized model having the one or more parameters

with the one or more respective estimated values.

4. The imaging method of claim 3, wherein using statistical estimation to fit the

parameterized model to the imaging data comprises using maximum likelihood
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estimation (MLE) to fit the parameterized model to the imaging data, and wherein
characterizing a quality of a fit between the at least one subset of the imaging data and
the parameterized model comprises using the first and second noise models to determine

a log-likelihood ratio and/or to determine a Cramer-Rao lower bound (CRLB).

5. The imaging method of claim 4, wherein:
using MLE to fit the parameterized model to the imaging data comprises
estimating one or more values of one or more respective parameters 4 according to the

expression
6 = arg;nln{—ln[l_[?i1 P(x = [(D; — 0))/g; + var;/g?1|u;(6),bg, vari, g;, 0]}
D; is an observed ADU count of pixel 7,
u; 18 a number of expected photoelectrons of pixel i,
g: 18 an amplification gain of pixel i,
0; 1s an offset of readout noise of pixel i,

var; 1s a variance of the readout noise of pixel 7, and

bg is the expected background ADU count of pixel 7.

6. The imaging method of claim 3, wherein using statistical estimation to fit the
parameterized model to the imaging data comprises:

combining the first sensor-dependent noise model with a parameter-dependent
photon shot noise model to obtain an estimate of sensor-dependent noise and photon shot
noise in a first portion of the imaging data corresponding to the first sensor; and

combining the second sensor-dependent noise model with a parameter-dependent
photon shot noise model to obtain an estimate of sensor-dependent noise and photon shot
noise in a second portion of the imaging data corresponding to the second sensor,

wherein the parameter-dependent photon shot noise model depends, at least in

part, on the one or more estimated parameter values of the parameterized model.

7. The imaging method of claim 6, wherein combining the first sensor-dependent

noise model with the parameter-dependent photon shot noise model comprises
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determining a convolution of the first sensor-dependent noise model with the parameter-

dependent photon shot noise model.

8. The imaging method of claim 6, wherein combining the first sensor-dependent
noise model with the parameter-dependent photon shot noise model comprises
analytically approximating a convolution of the first sensor-dependent noise model with

the parameter-dependent photon shot noise model.

9. The imaging method of claim 8, wherein analytically approximating the
convolution of the first sensor-dependent noise model with the parameter-dependent
photon shot noise model comprises analytically approximating a probability distribution

P,(x) of an ADU count of a pixel i using an expression including a term e ~*1*,

10. The imaging method of claim 9, wherein:

the probability distribution of the ADU count of pixel i is given by

2
o~ (itvary/g] )(#i+va7’i/gi2)x
['(x+1) ’

P,(x = [(D; — 0)/g; + var;/gi|u;, var;, g;, 0;) =
D; is an observed ADU count of pixel 7,
u; 18 a number of expected photoelectrons of pixel i,
g: 18 an amplification gain of pixel i,
0; 1s an offset of readout noise of pixel i,

var; 1s a variance of the readout noise of pixel 7, and

I'(x) = foooe‘ttx‘ldt.

11.  The imaging method of claim 3, wherein using at least one parameter value of the
first and second sensor-dependent noise models to identify at least one subset of the
imaging data for further processing comprises using one or more parameter values of the
first sensor-dependent noise model to filter noise in the first portion of the imaging data
acquired by the first sensor, and using one or more parameter values of the second
sensor-dependent noise model to filter noise in the second portion of the imaging data

acquired by the second sensor.
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12.  The imaging method of claim 11, wherein:

using one or more parameter values of the first sensor-dependent noise model to
filter noise in the first portion of the imaging data comprises filtering the first portion of
the imaging data using a filter kernel defined by

Z' (Di_oi)
i€ECnxn givar;

u’nif(DlJn) = ZiEC var-_l s
nxn i

D; is an observed ADU count of pixel 7,

g: 18 an amplification gain of pixel i,

0; 1s an offset of readout noise of pixel i,

var; 1s a variance of the readout noise of pixel i,
n is a kernel size, and

Cyn 18 a kernel region including pixel 7.

13.  The imaging method of claim 3, wherein estimating one or more values of one or
more respective parameters of the parameterized model comprises estimating one or

more locations of one or more respective molecules and/or particles.

14.  The imaging method of claim 13, further comprising using the imaging data and
the one or more estimated values of the one or more respective parameters to perform

molecular localization, particle tracking, and/or super-resolution microscopy.

15.  The imaging method of claim 2, further comprising using at least the first and
second sensor elements to acquire the imaging data, wherein using at least the first and
second sensor elements to acquire the imaging data comprises using at least first and
second pixels to acquire the imaging data, and wherein each of the first and second
pixels includes a photosensitive region of a semiconductor and a portion of the

semiconductor configured to read out data from the pixel.

16.  The imaging method of claim 15, wherein using at least first and second pixels to
acquire the imaging data comprises using at least first and second CMOS pixels to

acquire the imaging data.
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17.  The imaging method of claim 15, wherein using at least first and second pixels to
acquire the imaging data comprises using at least first and second sCMOS pixels to

acquire the imaging data.

18.  The imaging method of claim 1, further comprising determining one or more
values of one or more respective parameters of each of the first and second sensor-
dependent noise models, wherein the one or more parameter values of the first sensor-
dependent noise model differ, at least in part, from the one or more parameter values of

the second sensor-dependent noise model.

19.  The imaging method of claim 18, wherein each of the first and second sensor-
dependent noise models comprises a Gaussian probability distribution function, and
wherein determining the one or more parameter values of each of the first and second
sensor-dependent noise models comprises:

determining, as one or more parameter values of the Gaussian probability
distribution function of the first sensor-dependent noise model, an offset of noise
generated by the first sensor element, a variance of noise generated by the first sensor
element, and/or a gain of the first sensor element; and

determining, as one or more parameter values of the Gaussian probability
distribution function of the second sensor-dependent noise model, an offset of noise
generated by the second sensor element, a variance of noise generated by the second

sensor element, and/or a gain of the second sensor element.

20.  Animaging device, comprising:
one or more processing circuits; and
at least one computer-readable storage medium storing processor-executable
instructions which, when executed by the one or more processing circuits, cause the
imaging device to perform a method comprising:
obtaining imaging data corresponding to an imaged region and acquired
by at least first and second sensor elements; and
fitting a parameterized model to the imaging data, wherein the

parameterized model includes a first sensor-dependent model of noise generated
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by the first sensor element in a first portion of the imaging data acquired by the
first sensor element, and a second sensor-dependent model of noise generated by
a second sensor element in a second portion of the imaging data acquired by the
second sensor element,

wherein the first sensor-dependent noise model differs, at least in part, from the

second sensor-dependent noise model.

21.  The imaging device of claim 20, wherein fitting the parameterized model to the
imaging data comprises using statistical estimation to fit the parameterized model to the

imaging data.

22.  The imaging device of claim 21, wherein the method further comprises:
determining one or more values of one or more respective parameters of each of
the first and second sensor-dependent noise models; and
using at least one parameter value of each of the first and second sensor-
dependent noise models to identify at least one subset of the imaging data for further
processing,
wherein using statistical estimation to fit the parameterized model to the imaging
data comprises:
estimating one or more values of one or more respective parameters of the
parameterized model, and
characterizing a quality of a fit between the at least one subset of the
imaging data and the parameterized model having the one or more parameters

with the one or more respective estimated values.

23.  The imaging device of claim 21, wherein:
the method further comprises determining one or more values of one or more
respective parameters of each of the first and second sensor-dependent noise models, and
the one or more parameter values of the first sensor-dependent noise model
differ, at least in part, from the one or more parameter values of the second sensor-

dependent noise model.
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24.  The imaging device of claim 23, wherein each of the first and second sensor-
dependent noise models comprises a Gaussian probability distribution function, and
wherein determining the one or more parameter values of each of the first and second
sensor-dependent noise models comprises:

determining, as one or more parameter values of the Gaussian probability
distribution function of the first sensor-dependent noise model, an offset of noise
generated by the first sensor element, a variance of noise generated by the first sensor
element, and/or a gain of the first sensor element; and

determining, as one or more parameter values of the Gaussian probability
distribution function of the second sensor-dependent noise model, an offset of noise
generated by the second sensor element, a variance of noise generated by the second

sensor element, and/or a gain of the second sensor element.

25.  The imaging device of claim 23, wherein the method further comprises:
using one or more parameter values of the first sensor-dependent noise model to
filter noise in the first portion of the imaging data acquired by the first sensor, and
using one or more parameter values of the second sensor-dependent noise model

to filter noise in the second portion of the imaging data acquired by the second sensor.

26.  The imaging device of claim 21, wherein using statistical estimation to fit the
parameterized model to the imaging data comprises:

combining the first sensor-dependent noise model with a parameter-dependent
photon shot noise model to obtain an estimate of sensor-dependent noise and photon shot
noise in a first portion of the imaging data corresponding to the first sensor; and

combining the second sensor-dependent noise model with a parameter-dependent
photon shot noise model to obtain an estimate of sensor-dependent noise and photon shot
noise in a second portion of the imaging data corresponding to the second sensor,

wherein the parameter-dependent photon shot noise model depends, at least in

part, on the estimated parameter values of the parameterized model.

27.  The imaging device of claim 20, further comprising at least the first and second

sensor elements, wherein the first and second sensor elements comprise pixels, and
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wherein each of the first and second pixels includes a photosensitive region of a
semiconductor and a portion of the semiconductor configured to read out data from the

pixel.

28.  The imaging device of claim 20, wherein the imaging device is integrated with,

included in, and/or disposed on a mobile electronic device.

29. A computer-readable storage medium storing processor-executable instructions
which, when executed by one or more processing circuits, cause the processing circuits
to perform a method comprising:

obtaining imaging data corresponding to an imaged region and acquired by at
least first and second sensor elements; and

fitting a parameterized model to the imaging data, wherein the parameterized
model includes a first sensor-dependent model of noise generated by the first sensor
element in a first portion of the imaging data acquired by the first sensor element, and a
second sensor-dependent model of noise generated by a second sensor element in a
second portion of the imaging data acquired by the second sensor element,

wherein the first sensor-dependent noise model differs, at least in part, from the

second sensor-dependent noise model.

30. A processor-implemented imaging method, comprising:

obtaining imaging data corresponding to an imaged region and acquired by at
least one sensor clement; and

using a processor, fitting a parameterized model to the imaging data,

wherein fitting the parameterized model to the imaging data comprises
analytically approximating a combination of at least one sensor-dependent noise model
with a parameter-dependent photon shot noise model,

wherein the at least one sensor-dependent noise model models noise generated by
the at least one sensor element in the imaging data, and

wherein the parameter-dependent photon shot noise model models photon shot

noise based, at least in part, on at least one parameter of the parameterized model.
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31.  The imaging method of claim 30, wherein analytically approximating the
combination of the at least one sensor-dependent noise model with the parameter-
dependent photon shot noise model comprises analytically approximating the
convolution of the at least one sensor-dependent noise model with the parameter-

dependent photon shot noise model.

32.  The imaging method of claim 30, wherein analytically approximating the
combination of the at least one sensor-dependent noise model with the parameter-
dependent photon shot noise model comprises analytically approximating a probability

distribution P;(x) of a value of a pixel 7 using an expression including a term e *A*.

33.  The imaging method of claim 32, wherein the value of the pixel i comprises an
ADU count of the pixel i.
34, The imaging method of claim 32, wherein:

the probability distribution of the value of pixel 7 is given by

2
e—(#i’r"ari/‘gi )(Hi+va7‘i/gi2)x
b

I'x+1)

P,(x = [(D; — 0)/g; + var;/gi|u;, var;, g;, 0;) =
D; is an observed value of pixel i,
u; 18 a number of expected photoelectrons of pixel i,
g: 18 an amplification gain of pixel i,
0; 1s an offset of readout noise of pixel i,

var; 1s a variance of the readout noise of pixel 7, and

I'(x) = foooe"ttx"ldt.

35.  The method of claim 30, wherein fitting the parameterized model to the imaging
data comprises using statistical estimation to fit the parameterized model to the imaging

data.

36.  The method of claim 35, wherein using statistical estimation to fit the

parameterized model to the imaging data comprises:
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estimating one or more values of one or more respective parameters of the
parameterized model, and

characterizing a quality of a fit between the at least one subset of the imaging
data and the parameterized model having the one or more parameters with the one or

more respective estimated values.

37.  The method of claim 36, estimating the one or more values of the one or more
respective parameters of the parameterized model comprises analytically approximating
the combination of the at least one sensor-dependent noise model with the parameter-

dependent photon shot noise model.

38. The imaging method of claim 35, wherein using statistical estimation to fit the
parameterized model to the imaging data comprises using maximum likelihood
estimation (MLE) to fit the parameterized model to the imaging data, wherein using
MLE to fit the parameterized model to the imaging data comprises analytically
approximating the combination of the at least one sensor-dependent noise model with the
parameter-dependent photon shot noise model, and wherein characterizing a quality of a
fit between the at least one subset of the imaging data and the parameterized model
comprises using the first and second noise models to determine a log-likelihood ratio

and/or to determine a Cramer-Rao lower bound (CRLB).

39. The imaging method of claim 38, wherein:
using MLE to fit the parameterized model to the imaging data comprises
estimating one or more values of one or more respective parameters 4 according to the

expression

6 = arg;nln{—ln[l_[?i1 P(x = [(D; — 0))/g; + var;/g?1|u;(6),bg, vari, g;, 0]}
D; is an observed ADU count of pixel 7,
u; 18 a number of expected photoelectrons of pixel i,
g: 18 an amplification gain of pixel i,
0; 1s an offset of readout noise of pixel i,

var; 1s a variance of the readout noise of pixel i,
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bg is the expected background ADU count of pixel 7, and

analytically approximating the combination of the at least one sensor-dependent
noise model with the parameter-dependent photon shot noise model comprises
analytically approximating a probability distribution P(x) of a value of a pixel i/ using an

expression including a term e ~*1%.

40. The imaging method of claim 39, wherein the probability distribution P(x) of the
value of pixel i is given by

e_(uiwari/glz)(#i+va7‘i/gi2)x
(x+1) '

P(x = [(D; — 0))/9; + var;/gf1|uw;, var;, g;, 0,) =

41.  The imaging method of claim 36, wherein estimating one or more values of one
or more respective parameters of the parameterized model comprises estimating one or

more locations of one or more respective molecules and/or particles.

42.  The imaging method of claim 41, further comprising using the imaging data and
the one or more estimated values of the one or more respective parameters to perform

molecular localization, particle tracking, and/or super-resolution microscopy.

43.  The imaging method of claim 35, further comprising using the at least one sensor
element to acquire the imaging data, wherein using the at least one sensor element to
acquire the imaging data comprises using at least one pixel to acquire the imaging data,
and wherein each of the at least one pixel includes a photosensitive region of a
semiconductor and a portion of the semiconductor configured to read out data from the at

least one pixel.

44.  The imaging method of claim 43, wherein using the at least one pixel to acquire

the imaging data comprises using at least one CMOS pixel to acquire the imaging data.

45.  The imaging method of claim 43, wherein using the at least one pixel to acquire

the imaging data comprises using at least one SCMOS pixel to acquire the imaging data.
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46.  The imaging method of claim 30, wherein fitting the parameterized model to the
imaging data yields an estimate of sensor-dependent noise and photon shot noise in the
imaging data and/or an estimate of the imaging data with sensor-dependent noise and

photon shot noise removed from the imaging data.
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