

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-528988
(P2004-528988A)

(43) 公表日 平成16年9月24日(2004.9.24)

(51) Int.Cl.⁷

B22C 9/04

B22C 1/00

B22C 1/08

F 1

B22C 9/04

B22C 1/00

B22C 1/08

テーマコード(参考)

4 E 092

4 E 093

A

審査請求 未請求 予備審査請求 有 (全 22 頁)

(21) 出願番号 特願2003-503378 (P2003-503378)
 (86) (22) 出願日 平成14年4月3日 (2002.4.3)
 (85) 翻訳文提出日 平成15年10月29日 (2003.10.29)
 (86) 國際出願番号 PCT/US2002/010467
 (87) 國際公開番号 WO2002/100571
 (87) 國際公開日 平成14年12月19日 (2002.12.19)
 (31) 優先権主張番号 09/876,613
 (32) 優先日 平成13年6月7日 (2001.6.7)
 (33) 優先権主張国 米国(US)

(71) 出願人 503270032
 オンデオ ナルコ カンパニー
 ON DEO NALCO COMPANY
 アメリカ合衆国, 60563 イリノイ州
 , ネイパーウィル, オンデオ ナルコ セ
 ンター
 O n d e o N a l c o C e n t e r ,
 N a p e r v i l l e , I L 6 0 5
 6 3 , U n i t e d S t a t e s o
 f A m e r i c a
 (74) 代理人 100108800
 弁理士 星野 哲郎
 (74) 代理人 100101203
 弁理士 山下 昭彦

最終頁に続く

(54) 【発明の名称】精密鋳造シェルの製造方法

(57) 【要約】

少なくとも1種のマイクロシリカをシェルに混ぜることにより、精密鋳造シェルの強度と固形分含量を増加させる。

【特許請求の範囲】**【請求項 1】**

シェル中に、効果的な量の少なくとも一種のマイクロシリカを加える工程を含む、精密鋳造シェルの強度と固形分含量を増加させる方法。

【請求項 2】

前記マイクロシリカが、シリカフューム、フュームドシリカ、ポゾラン、およびこれらの混合物からなる群から選択されるものである請求項 1 記載の方法。

【請求項 3】

前記ポゾランが、ケイソウ土、オパラインチャート、オパラインシェール、凝灰岩、火山灰、軽石、フライアッシュからなる群から選択されるものである請求項 2 記載の方法。 10

【請求項 4】

前記マイクロシリカがシリカフュームである請求項 2 記載の方法。

【請求項 5】

前記マイクロシリカが前記シェルに、前記シェルの約 0.1 ~ 15.0 質量 % 添加される請求項 1 記載の方法。

【請求項 6】

前記マイクロシリカが前記シェルに、前記シェルの約 0.2 ~ 10.0 質量 % 添加される請求項 1 記載の方法。

【請求項 7】

前記マイクロシリカが前記シェルに、前記シェルの約 0.5 ~ 5.0 質量 % 添加される請求項 1 記載の方法。 20

【請求項 8】

シェル中に、シェルの約 0.5 ~ 5.0 質量 % のシリカフュームを加える工程を含む、精密鋳造シェルの強度と固形分含量を増加させる方法。

【発明の詳細な説明】**【技術分野】****【0001】**

本発明は、概して精密鋳造に関し、さらに詳しくは、精密鋳造シェルの強度と固形分含量を増加させる方法に関する。 30

【背景技術】**【0002】**

ロストワックス、ロストパターン、プレシジョンキャスティングともよばれる精密鋳造（インベストメントキャスティング）は、比較的小さな寸法許容差が要求される、高品質な金属製品の製造に使用されてきた。一般的に、精密鋳造は、精密鋳造シェルとして知られ、その中に溶融金属が入れられる、薄壁のセラミックモールドを最初に作成することによって行われる。

【0003】

シェルは、たいてい最初に、精密鋳造によってつくられる金属製品の複製あるいは原型を、溶融可能基材から作ることによって作成される。好適な溶融可能基材としては、例えば、ワックス、ポリスチレン、あるいはプラスチックが含まれる。 40

【0004】

次に、セラミックシェルが原型の周りに形成される。これは、コロイダルシリカやエチルシリケートのような液状耐熱バインダーに、石英、フューズドシリカ、ジルコン、アルミナ、あるいはアルミノシリケートのような耐熱粉を加えた混合物を含むスラリーの中に原型を浸漬し、それから浸漬されたばかりの原型上に乾燥耐熱粒子をふるいかけることによって得られる。最も広く使用されている乾燥耐熱粒子としては、石英、フューズドシリカ、ジルコン、アルミナ、そしてアルミノシリケートが挙げられる。

【0005】

原型を耐熱スラリーの中に浸漬し、それから浸漬されたばかりの原型上に乾燥耐熱粒子をふるいかける工程は、所望の厚さのシェルが得られるまで繰り返される。しかし、もしそ 50

れぞれのスラリーと耐熱粒子の層が、次の層が付けられる前に風乾できたら、好ましいことである。

【0006】

シェルは、厚さが約1/8~1/2インチの範囲(約0.31~1.27cm)になるように作られる。最後の浸漬とふるいかけが終わった後、シェルは十分に風乾される。この方法で作られたシェルは、そのシェル表面の外見のために、「スタッコ状(stuccoed)」シェルと呼ばれてきた。

【0007】

シェルは、それから少なくとも使用した溶融可能基材の融点まで加熱される。この段階で原型は、シェルと、若干の溶融可能基材の残渣だけを残して溶けてなくなる。それからシェルは、溶融可能基材の残渣がシェルから揮散するのに十分な位の高温に加熱される。通常この高温加熱から冷却される前に、シェルには溶融金属が詰められる。シェルに溶融金属を入れるために、重力、圧力、減圧、遠心分離をはじめ、様々な方法が使用されてきた。鋳造モールド中の溶融金属が固化して十分に冷えたとき、シェルから鋳物が取り除かれる。

【0008】

精密鋳造は何千年もの間知られ、使用されてきたが、より入り組んだ、複雑な部品の需要の増加につれて、精密鋳造市場は成長し続けている。高品質かつ精密な鋳物に対する多大な要求のために、より能率的で、コスト効率が良く、欠陥のない精密鋳造シェルを作る新規な方法を発展させる必要性が継続的に存在している。例えば、もし精密鋳造シェルの強度が増加できれば、必要な原料は少なくてすむことになる。強度の大きいシェルは、耐クラック性も増し、それによって欠陥が少ない鋳物になる。さらに、もし精密鋳造シェルの固形分含量が増加したら、シェルは速く乾燥するであろうし、余計な時間、材料、コストの節約のために少ない層で作られるであろう。

【0009】

したがって、精密鋳造シェルの強度と固形分含量を増加させる改良した方法を提供することが望まれる。

【発明の開示】

【課題を解決するための手段】

【0010】

本発明の方法においては、精密鋳造シェルに、少なくとも1種のマイクロシリカを入れることを必要とする。マイクロシリカの添加は、精密鋳造シェルの強度と固形分含量を効果的に増加させる。

【発明を実施するための最良の形態】

【0011】

本発明は、精密鋳造シェルの強度と固形分含量を増加させる方法に関する。本発明に基づき、少なくとも1種のマイクロシリカがシェルの中に入れられる。マイクロシリカは、当業者によく知られた従来の方法でスラリー中にマイクロシリカを添加することによって、精密鋳造シェルの中に入れることができる。

【0012】

本発明の実施に使用されるマイクロシリカとしては、シリカフュームやフュームドシリカのような人工マイクロシリカ、ポゾランとして知られる天然マイクロシリカ、そしてこれらの混合物等が挙げられる。好適なポゾランの例としては、ケイソウ土、オパラインチャート、オパラインシェール、凝灰岩、火山灰、軽石、フライアッシュ等が挙げられる。精密鋳造シェルの強度と固形分含量の増加に有用な好ましいマイクロシリカは、シリカフュームである。定義によれば、「シリカフューム」は、シリコン、フェロシリコン、あるいはフューズドシリカ製造における副生成物である。

【0013】

マイクロシリカは、精密鋳造シェルの強度と固形分含量を効果的に増加させる濃度で使用される。シェルに添加されるマイクロシリカの量は、シェルの質量に対し、約0.1~1

10

20

30

40

50

5.0質量%の範囲であることが好ましい。さらに好ましくは、マイクロシリカの量は約0.2~10.0%の範囲であり、約0.5~5.0%の範囲が最も好ましい。

【0014】

本発明者は、少なくとも1種のマイクロシリカを精密鋳造シェルに入れることができ、シェルの強度と固形分含量の増加に効果的であることを発見した。発明者は、マイクロシリカの添加が、少ない欠陥の鋳物を製造できる高品質のモールドだけでなく、原料の節約と生産性の向上につながる、少ない層からなる強いシェルを作り出すことも見出した。

【実施例】

【0015】

以下の実施例は、本発明の具体例であり、当業者に本発明の作り方と使用の仕方を教示することを意図するものである。これらの例は、決して本発明やその保護範囲を限定するものではない。

【0016】

(実施例1)

スラリーは、以下の処方を使用して作成された。:

【0017】

【表1】

スラリー成分	濃度(割合)
コロイダルシリカ ¹	1576g
脱イオン水	315g
Latrix [®] 6305 ポリマー ²	189g
Nalcast [®] P1(-200メッシュ) フューズドシリカ ³	1105g
Nalcast [®] P2(-120メッシュ) フューズドシリカ ⁴	3315g
Nalco [®] 8815 アニオン性潤滑剤 ⁵	1.5g
Dow Corning [®] Y-30 消泡剤 ⁶	4.2g
Stealth [®] 1/8"ポリプロピレンファイバー ⁷	19.5g
シリカフューム ⁸	260g

¹Nalcoag[®] 1130(8ナノメーター、ナトリウム安定化)25%シリカに希釈(オンデオナルコカンパニーより入手可能)

²希釈コロイダルシリカ基準で10%のスチレンブタジエンラテックス(オンデオナルコカンパニーより入手可能)

³オンデオナルコカンパニーより入手可能

⁴オンデオナルコカンパニーより入手可能

⁵70%ジオキチルスルホカハク酸ナトリウム(オンデオナルコカンパニーより入手可能)

⁶30%シリコーンエマルジョン(ミシガン州、ミッドランドのダウコーニングコーポレーションより入手可能)

⁷ジョージア州、チカモーガのシンセティックインダストリーズ株式会社より入手可能

⁸オハイオ州、ビバリーのグローブメタラジカルからの、標準グレード(マイクロシリカ)

【0018】

72時間の混合の後、スラリーの粘度は、No.5ザーンカップを使用して測定および調節された。粘度は9~12秒の範囲であった。バインダーの副添加物(コロイダルシリカ+水+ポリマー)が、所望の流動性を得るために少量添加された。ひとたび調節されると、スラリーは浸漬可能な状態となった。

【0019】

ワックス原型は、Nalco(登録商標)6270パターンクリーナーを使用して洗浄、エッティング処理された後、水洗された。ワックス棒は各々のスラリー中へ浸漬され、その後にNalcast(登録商標)S2(30×50メッシュ)フューズドシリカスタッコを付けた(レインフォール法による)。乾燥時間は1.5時間から始めて、層が増加するにつれて3.5時間まで増やしていく。最後のシェルは、Nalcast(登録商標)S2スタッコ4つの層と、1つのシール層(スタッコなし)を有していた。全ての層は73~75°F、相対湿度35~45%、200~300フィート毎分の気流中で乾燥された。24時間の最後の乾燥の後、シェルはテストのためさらに24時間デシケーター中に置かれた。

10

20

30

40

50

【0020】

実施例のスラリーから作成された曲げ破壊係数 (MOR) 棒を使用して、いくつかのシェル特性が評価された。棒は、ATS万能試験機の3点曲げフィクスチャ (ペンシルバニア州、バトラーのアプライドテストシステムズ株式会社より入手可能) で破壊した。アナログの出力 (電圧) は、アナログ・デジタル変換基板と、データ収集ソフトを備えたパーソナルコンピューターに送られた。データは荷重対時間、あるいは荷重対変位プロットとして保存された。計算と分析は、データ収集ソフトあるいは表計算プログラムを使用して行われた。以下の物理的特性が、MOR試験片について決定された。

【0021】

破壊荷重

10

破壊荷重は、試験片が支持することのできる最大荷重である。荷重が大きい程、試験片が頑丈である。それは、シェルの厚さ、スラリーとシェルの組成に影響を受ける。この特性は、シェルの亀裂と、それと相関する鋳物欠陥を予測するのに重要である。破壊荷重は、試験片について、グリーン状態 (空気乾燥)、ファイアード状態 (1800°Fで1時間保持し、室温に冷却)、およびホット状態 (1800°Fで1時間保持し、同温度で破壊) で測定、記録された。結果は標準化され、修正破壊荷重 (Adjusted Fracture Load, AFL) として表される。AFLは、単に2インチの試験長での破壊荷重を、試験片の幅で割ったものである。

【0022】

20

シェル厚さ

シェル厚さは、シェル形成工程と相まって、スラリーとシェルの組成に影響を受ける。厚さのはらつきは、工程の不安定性を示す。不均一なシェルの厚さは、乾燥、脱ろう、予熱、流し込みにおいて、シェルの中にストレスを作る。ひどい場合には、モールドの不具合につながる。モールドは冷却金属を取り囲み、隔離する。厚さの変化は鋳物の微細構造、縮み、充填量、固化速度に影響を与える。

【0023】

30

曲げ破壊係数

原型として長方形のワックス棒を使用して、平面状セラミック板が作成される。標準的寸法は、1×8×1/4インチである。棒は、望ましいシェルシステムを使用して鋳造された。乾燥後、エッジはベルトサンダーで取り除かれる。2つの残った板は、ワックスから離され、2つの試験片が作られる。試験片はATS万能試験機の3点荷重装置を使用して破壊される。MORがグリーン状態、ファイアード状態、ホット状態について計算される。

【0024】

40

【数1】

$$MOR = \frac{3PL}{2bh^2}$$

ここで、P = ポンド単位の破壊荷重

40

L = インチ単位の試験片長 (支え間の距離)

b = インチ単位の破壊点における試験片幅

h = インチ単位の破壊点における試験片厚さ

である。

【0025】

MORは破壊応力である。これは、破壊荷重と試験片寸法に影響される。応力はシェル厚さの値の二乗に反比例するので、シェル厚さは、特に重要である。シェル表面がむらのある性状であると、寸法を正確に測ることができなくなり、結果として大きな標準偏差となってしまうこととなる。この欠点は、十分な数の試験片を破壊、測定することによって克服することができる。

【0026】

50

曲がり、あるいはたわみ

試験片は、負荷がかけられるにつれて曲がる。最大たわみは試験片の破壊の時に記録される。柔軟性とポリマー濃度にともない曲がりは増加する。柔軟なシェルは、シェル形成工程の間の、ワックス原型の膨張と収縮に耐えることができる。曲がりはグリーン状態における棒で測定した。

【0027】

割れ指数 (fracture index)

割れ指数 (fracture index) は、グリーン状態でのシェルの破壊に必要な仕事あるいはエネルギーを測定するものである。これはシェルの「強靭性」の指標となるものである。すなわち、指数が高いほど材料が強靭である。例えば、ポリプロピレン瓶は、ガラス瓶より「強靭」であり、それゆえ高い割れ指数を有する。この指数はクラック耐性の指標となる。高い指数のシェルは低い指数の系に比べて、それらを破壊するのにより多くのエネルギーを要する。

【0028】

割れ指数は、スラリーとシェルの組成に影響を受ける。ポリマー添加物は指数を増加させる。軟らかいポリマーは、固いものより高い指数のシェルを作る。この指数はシェルの柔らかさに比例する。曲がることのできるシェルは、固く、もろいものと比較してより多くのエネルギーを吸収する。

【0029】

割れ指数は、MOR試験片の荷重 / 变位曲線の下部領域を積分することにより決定される。指数は、変位を観測するときの(力) × (距離)を、あるいは荷重時間を観測するときの(力) × (時間)を測定する。(力) × (時間)から(力) × (距離)に変換するために、荷重率 (loading rate) が使用される。試験結果は、単純に指数値を 2 インチの試験長の試験片幅で割ることによって標準化される。

【0030】

下の表 2 に示すように、シリカヒュームはファイアードの強度を減少させるが、強度と硬さを増加させる。最良の系 (P1 / P2 / ヒューム) では、ヒュームなしの P1 / P2 の繊維強化系と比較して、割れ指数が 65 %、MOR が 29 %、強靭さが 67 % の増加を示した。

【0031】

【表 2】

グリーン結果					
系	A. F. 荷重(lbs)	MOR(psi)	MOR(kpsi)	曲がり(mils)	A. F. 指数
P1 / P2	10.71	483	181	7.03	48.5
P1 / P2 / ヒューム	17.70	621	205	7.10	80.5
ホット結果					
系	A. F. 荷重(lbs)	MOR(psi)	MOR(kpsi)	曲がり(mils)	A. F. 指数
P1 / P2	24.61	1067	400	7.03	48.5
P1 / P2 / ヒューム	35.82	1287	480	7.10	80.5
ファイアード結果					
系	A. F. 荷重(lbs)	MOR(psi)	MOR(kpsi)	曲がり(mils)	A. F. 指数
P1 / P2	13.41	600	220	7.03	48.5
P1 / P2 / ヒューム	14.38	538	200	7.10	80.5

【0032】

(実施例 2)

スラリーは、以下の処方を使用して作成された。：

【0033】

【表 3】

10

20

30

40

50

スラリー成分	濃度(割合)
コロイダルシリカ	1477g
脱イオン水	296g
TX-11280 ポリマー ¹	0.0g(0%), 88.7g(5.0%), 177.0g(10.0%)
フューズドシリカブレンド(-270/-200/-120 メッシュ) ²	4550g
Nalco [®] 8815アニオン性潤滑剤	1.5g
Dow Corning [®] Y-30 消泡剤	4.2g
Stealth [®] 1/8"ポリプロピレンファイバー	16.3g
シリカフューム	0.0g(0%), 130g(2.0%), 260g(4.0%), 325g(5.0%), 390g(6.0%)

10

¹希釈コロイダル基準で0-10%のステレンブタジエンラテックス(オンデオナルコカンパニーより入手可能)

²-270メッシュのフューズドシリカ(ペンシルバニア州, キングオブブルシアのC-Eミネラルズより入手可能)、Nalcast[®]P1(-200メッシュ)、そしてNalcast[®]P2(-120メッシュ)(Nalcast[®]製品はオンデオナルコカンパニーより入手可能)のブレンド物。おおよそのブレンド比率は20/20/60。

【 0 0 3 4 】

スラリーとシェルの作成は、上記実施例1で述べた手順と同じである。シェルテストもまた同じである。

【 0 0 3 5 】

下の表4に示すように、シリカフュームの添加は、スラリーの粘度を下げ、固体分とシェル強度を増加させた。高い固体分含量は、乾燥時間を短縮させ、シェルの強度を上げ、生産性を改良させることにつながる。ポリプロピレンファイバーと組み合わせて使用したときに、最小限度の層で高性能のモールドが作られる。シリカフューム添加ありなしでのスラリーの、それぞれグリーン、ホット、ファイアードのMOR結果は、以下のとおりである：

【 0 0 3 6 】

【表4】

0% TX-11280 ポリマー

	グリーンMOR	ホットMOR	ファイアードMOR	%固体
0.0%シリカフューム	449psi	1335psi	467psi	76.00
4.0%シリカフューム	589psi	1730psi	708psi	79.45

20

5% TX-11280 ポリマー

	グリーンMOR	ホットMOR	ファイアードMOR	%固体
2.0%シリカフューム	671psi	1646psi	506psi	77.71
6.0%シリカフューム	745psi	1808psi	801psi	80.12

30

10% TX-11280 ポリマー

	グリーンMOR	ホットMOR	ファイアードMOR	%固体
0.0%シリカフューム	783psi	1398psi	711psi	77.44
4.0%シリカフューム	848psi	1914psi	805psi	79.24
5.0%シリカフューム	918psi	1821psi	745psi	79.81

40

【 0 0 3 7 】

本発明では好ましいあるいは具体的な形態に関して上で説明してきたが、これらの形態は、本発明を網羅あるいは限定するものではない。それどころか、本発明は、添付の特許請求の範囲に定義されるように、本発明の趣旨および範囲に入る全ての代替物、変形物、均等物を網羅するものである。

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
19 December 2002 (19.12.2002)

PCT

(10) International Publication Number
WO 02/100571 A1(51) International Patent Classification⁵: B22C 9/04

(81) Designated States (national): A1, AG, A1, AM, AT, AU,

(21) International Application Number: PCT/US02/10467

AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU,

(22) International Filing Date: 3 April 2002 (03.04.2002)

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GI,

(25) Filing Language: English

GM, IIR, IIU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

(26) Publication Language: English

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(30) Priority Data: 09/876,613 7 June 2001 (07.06.2001) US

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

(71) Applicant: ONDEO NALCO COMPANY (US/US); On-

deo Nalco Center, Naperville, IL 60563-1198 (US).

(72) Inventor: DOLES, Ronald, S.; 900 North Spring Avenue,

1st Grange Park, IL 60526 (US).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(74) Agent: KEEFER, Timothy, J.; Wildman, Harrold, Allen & Dixon, 225 West Wacker Drive, Chicago, IL 60606 (US).

WO 02/100571 A1

(54) Title: METHOD OF FORMING INVESTMENT CASTING SHELLS

(57) Abstract: The strength and solids level of an investment casting shell is increased by incorporation at least one microsilica into the shell.

WO 02/100571

PCT/US02/10467

METHOD OF FORMING INVESTMENT CASTING SHELLS

FIELD OF THE INVENTION

5 This invention relates generally to investment casting and, more particularly, to a method of increasing the strength and solids level of investment casting shells.

BACKGROUND OF THE INVENTION

10 Investment casting, which has also been called lost wax, lost pattern and precision casting, is used to produce high quality metal articles that meet relatively close dimensional tolerances. Typically, an investment casting is made by first constructing a thin-walled 15 ceramic mold, known as an investment casting shell, into which a molten metal can be introduced.

Shells are usually constructed by first making a facsimile or pattern from a melttable substrate of the metal object to be made by investment casting. Suitable 20 melttable substrates may include, for example, wax, polystyrene or plastic.

Next, a ceramic shell is formed around the pattern. This may be accomplished by dipping the pattern into a slurry containing a mixture of liquid refractory binders 25 such as colloidal silica or ethyl silicate, plus a refractory powder such as quartz, fused silica, zircon, alumina or aluminosilicate and then sieving dry refractory grains onto the freshly dipped pattern. The most commonly used dry refractory grains include quartz, 30 fused silica, zircon, alumina and aluminosilicate.

The steps of dipping the pattern into a refractory slurry and then sieving onto the freshly dipped pattern dry refractory grains may be repeated until the desired thickness of the shell is obtained. However, it is

WO 02/100571

PCT/US02/10467

2
preferable if each coat of slurry and refractory grains
is air-dried before subsequent coats are applied.

The shells are built up to a thickness in the range
of about $\frac{1}{8}$ to about $\frac{1}{4}$ of an inch (from about 0.31 to
5 about 1.27 cm). After the final dipping and sieving, the
shell is thoroughly air-dried. The shells made by this
procedure have been called "stuccoed" shells because of
the texture of the shell's surface.

The shell is then heated to at least the melting
10 point of the melttable substrate. In this step, the
pattern is melted away leaving only the shell and any
residual melttable substrate. The shell is then heated to
a temperature high enough to vaporize any residual
melttable substrate from the shell. Usually before the
15 shell has cooled from this high temperature heating, the
shell is filled with molten metal. Various methods have
been used to introduce molten metal into shells including
gravity, pressure, vacuum and centrifugal methods. When
the molten metal in the casting mold has solidified and
20 cooled sufficiently, the casting may be removed from the
shell.

Although investment casting has been known and used
for thousands of years, the investment casting market
continues to grow as the demand for more intricate and
25 complicated parts increase. Because of the great demand
for high quality, precision castings, there continuously
remains a need to develop new ways to make investment
casting shells more efficiently, cost-effective and
defect-free. For instance, if the strength of investment
30 casting shells could be increased, less material would be
required. The stronger shells would also be more crack
resistant, thereby resulting in castings with fewer
defects. Furthermore, if the solids level of investment
casting shells could be increased, the shells would dry

WO 02/100571

PCT/US02/10467

3

faster and be made with fewer coats for additional time, material and cost savings.

Accordingly, it would be desirable to provide an improved method of increasing the strength and solids 5 level of investment casting shells.

SUMMARY OF THE INVENTION

The method of the invention calls for incorporating at least one microsilica into an investment casting 10 shell. The addition of the microsilica effectively increases the strength and solids level of the investment casting shell.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to a method of 15 increasing the strength and solids level of investment casting shells. In accordance with the invention, at least one microsilica is incorporated into the shell. The microsilica can be introduced into the investment casting shell by adding the microsilica to the slurry via any 20 conventional method generally known to those skilled in the art.

The microsilicas which may be used in the practice of the invention include man-made microsilicas such as 25 silica fume and fumed silica, naturally-occurring microsilicas, known as pozzolans, and mixtures thereof. Examples of suitable pozzolans include diatomaceous earth, opaline cherts and shales, tuffs, volcanic ashes, pumicites and fly ash. The preferred microsilica for use in increasing the strength and solids level of 30 investment casting shells is silica fume. By definition, "silica fume" is a by-product of silicon, ferrosilicon or fused silica manufacture.

The microsilica is used at a concentration which will effectively increase the strength and solids level

WO 02/100571

PCT/US02/10467

4
of an investment casting shell. It is preferred that the amount of microsilica which is added to the shell be in the range of about 0.1 to about 15.0% by weight of the shell. More preferably, the amount of microsilica is 5 from about 0.2 to about 10.0%, with about 0.5 to about 5.0% being most preferred.

The present inventor has discovered that incorporating at least one microsilica into an investment casting shell effectively increases the strength and 10 solids level of the shell. The inventor has also found that microsilica additions create stronger shells with fewer coats, thus providing for material savings and productivity enhancement, as well as higher quality molds to produce castings with fewer defects.

15

EXAMPLES

The following examples are intended to be illustrative of the present invention and to teach one of ordinary skill how to make and use the invention. These 20 examples are not intended to limit the invention or its protection in any way.

5
Example 1

Slurries were prepared using the following formulas:

Table 1

5	<u>Slurry Ingredients</u>	<u>Concentrations (ratios)</u>
10	Colloidal silica ¹	1576g
	Deionized water	315g
	Latrix [®] 6305 polymer ²	189g
	Nalcast [®] P1 (-200 mesh) fused silica ³	1105g
	Nalcast [®] P2 (-120 mesh) fused silica ⁴	3315g
	Nalco [®] 8815 anionic wetting agent ⁵	1.5g
	Dow Corning [®] Y-30 antifoam ⁶	4.2g
	Stealth [®] 1/8" polypropylene fiber ⁷	19.5g
15	Silica fume ⁸	260g

¹Nalcoag[®] 1130 (8 nanometer, sodium stabilized) diluted to 25% silica (available from ONDEO Nalco Company)²Styrene butadiene latex at 10% based on diluted colloidal silica (available from ONDEO Nalco Company)³Available from ONDEO Nalco Company⁴Available from ONDEO Nalco Company⁵70% sodium dioctyl sulfosuccinate (available from ONDEO Nalco Company)⁶30% silicone emulsion (available from Dow Corning Corporation of Midland, Michigan)⁷Available from Synthetic Industries, Inc. of Chickamauga, Georgia⁸Regular grade (microsilica) from Globe Metallurgical of Beverly, Ohio

30 After seventy-two hours of mixing, the viscosities of the slurries were measured and adjusted using a number five Zahn cup. The viscosities ranged from 9-12 seconds. Minor binder additions (colloidal silica + water + polymer) were made to obtain the desired rheology. Once 35 adjusted, the slurries were ready for dipping.

Wax patterns were cleaned and etched using Nalco[®] 6270 pattern cleaner followed by a water rinse. Wax bars were dipped into each slurry followed by Nalcast[®] S2 (30x50 mesh) fused silica stucco (applied by the rainfall 40 method). Dry times started at 1.5 hours and progressed up to 3.5 hours as coats were added. The final shells had four coats with Nalcast[®] S2 stucco plus one seal coat (no stucco). All coats were dried at 73-75° F, 35-45% relative humidity and air flows of 200-300 feet per

WO 02/100571

PCT/US02/10467

minute. After a twenty-four hour final dry, the shells were placed into a desiccator for an additional twenty-four hours prior to testing.

Several shell properties were evaluated using 5 modulus of rupture (MOR) bars prepared from the experimental slurries. The bars were broken with a three point bending fixture on an ATS universal test machine (available from Applied Test Systems, Inc. of Butler, PA). The analog output (voltage) was fed into a personal 10 computer containing an analog-to-digital conversion board and data acquisition software. The data was stored as a load versus time, or load versus displacement plot. Calculations and analyses were performed using data 15 acquisition software or spreadsheet programs. The following physical properties were determined for the MOR specimens:

Fracture Load

The fracture load is the maximum load that the test 20 specimen is capable of supporting. The higher the load, the stronger the test specimen. It is affected by the shell thickness, slurry and shell composition. This property is important for predicting shell cracking and related casting defects. The fracture load is measured 25 and recorded for test specimens in the green (air dried), fired (held at 1800° F for one hour and cooled to room temperature) and hot (held at 1800° F for one hour and broken at temperature) condition. Results are normalized and expressed as an Adjusted Fracture Load (AFL). The AFL is simply the fracture load divided by the specimen 30 width for a two inch test span.

Shell Thickness

Shell thickness is influenced by slurry and shell 25 composition, combined with the shell building process. Thickness fluctuations are indicative of process

WO 02/100571

PCT/US02/10467

7
instability. Non-uniform shell thickness creates
stresses within the shell during drying, dewaxing,
preheating and pouring. Severe cases lead to mold
failure. The mold surrounds and insulates the cooling
5 metal. Changes in thickness can affect casting
microstructure, shrinkage, fill and solidification rates.
Modulus of Rupture

A flat ceramic plate is prepared using a rectangular
10 wax bar as the pattern. Typical dimensions are 1 x 8 x $\frac{1}{4}$
inches. The bar is invested using the desired shell
system. After drying, the edges are removed with a belt
sander. The two remaining plates are separated from the
wax, yielding two test specimens. The specimens are
broken using a three point loading apparatus on an ATS
15 universal test machine. MORs are calculated for bars in
the green, fired and hot conditions.

$$\text{MOR} = \frac{3PL}{2bh^2}$$

20 where P = Fracture load in pounds
L = Specimen length in inches
(distance between supports)
b = Specimen width at point of
failure in inches
25 h = Specimen thickness at point
of failure in inches

The MOR is a fracture stress. It is influenced by
fracture load and specimen dimensions. Shell thickness
is of particular importance since the stress is inversely
30 proportional to this value squared. The uneven nature of
the shell surface makes this dimension difficult to
accurately measure, resulting in large standard
deviations. This deficiency is overcome by breaking and
measuring a sufficient number of test specimens.

WO 02/100571

PCT/US02/10467

8

Bending or Deflection

The test specimen bends as the load is applied. The maximum deflection is recorded as the specimen breaks.

Bending increases with flexibility and polymer

5 concentration. A flexible shell is capable of withstanding the expansion and contraction of a wax pattern during the shell building process. Bending is measured for bars in the green condition.

Fracture Index

10 The fracture index is a measure of the work or energy required to break a shell in the green condition. It is indicative of shell "toughness", i.e., the higher the index, the tougher the material. For example, a polypropylene bottle is "tougher" than a glass bottle and 15 therefore has a higher fracture index. The index is an indicator of crack resistance. High index shells require more energy to break them than low index systems.

16 The fracture index is influenced by slurry and shell composition. Polymer additives increase the index. Soft 20 polymers produce higher index shells than stiff ones. The index is proportional to shell flexibility. A shell that is capable of yielding absorbs more energy than a rigid, brittle one.

25 The fracture index is determined by integrating the area beneath the load/displacement curve for a MOR test specimen. The index measures (force) x (distance) when monitoring displacement or (force) x (time) when monitoring load time. To convert from (force) x (time) to (force) x (distance), the loading rate is used. Test 30 results are normalized by simply dividing the index value by the specimen width for a two inch test span.

As shown below in Table 2, silica fume increased strength and toughness while reducing fired strength. The best system (P1/P2/Fume) shows a 65% increase in

WO 02/100571

PCT/US02/10467

fracture load, ⁹ 29% increase in MOR and 67% increase in toughness compared with the P1/P2 fiber enhanced system without fume.

Table 2

5 Green Results

System	A.F. Load (lbs)	MOR (psi)	MOR (kpsi)	Bending (mils)	A.F. Index
P1/P2	10.71	483	181	7.03	48.5
P1/P2/Fume	17.70	621	205	7.10	80.5

10 Hot Results

System	A.F. Load (lbs)	MOR (psi)
P1/P2	24.61	1067
P1/P2/Fume	35.82	1287

15 Fired Results

System	A.F. Load (lbs)	MOR (psi)
P1/P2	13.41	600
P1/P2/Fume	14.38	538

20 Example 2

Slurries were prepared using the following formulas:

Table 3

25	<u>Slurry Ingredients</u>	<u>Concentrations (ratios)</u>
	Colloidal silica	1477g
	Deionized water	296g
30	TX-11280 polymer ¹	0.0g (0%), 88.7g (5.0%), 177.0g (10.0%)
	Fused silica blend (-270/-200/-120 mesh) ²	4550g
	Nalco [®] 8815 anionic wetting agent	1.5g
	Dow Corning [®] Y-30 antifoam	4.2g
	Stealth [®] 1/4 polypropylene fiber	16.3g
35	Silica fume	0.0g (0%), 130g (2.0%), 260 (4.0%), 325g (5.0%), 390g (6.0%)

¹ styrene-butadiene (SBR) latex at 0-10% based on diluted colloidal silica (available from OMDG Nalco Company)

² Blend of -270 mesh fused silica (available from C-E Minerals of King of Prussia, PA), Nalcast[®] P1(-200 mesh) and Nalcast[®] P2 (-120 mesh) (the Nalcast[®] products are available from OMDG Nalco Company). The approximate ratio of the blend is 30/20/60.

WO 02/100571

PCT/US02/10467

10

The slurry and shell preparation procedures were the same as described above in Example 1. The shell test methods were also the same.

As shown below in Table 4, the addition of the 5 silica fume reduced slurry viscosities, increased solids content and increased shell strength. Higher solids contents lead to shorter dry times, stronger shells and improved productivity. When used in combination with the polypropylene fiber, high performance molds are produced 10 with a minimum of coats. The green, hot and fired MOR results for slurries with and without silica fume additions were as follows:

Table 4

15 0% TX-11280 Polymer	Green MOR	Hot MOR	Fired MOR	% Solids
0.0% silica fume	449 psi	1335 psi	467 psi	76.00
4.0% silica fume	589 psi	1730 psi	708 psi	79.45
20 5% TX-11280 Polymer				
	Green MOR	Hot MOR	Fired MOR	% Solids
2.0% silica fume	671 psi	1646 psi	506 psi	77.71
6.0% silica fume	745 psi	1808 psi	801 psi	80.12
25 10% TX-11280 Polymer				
	Green MOR	Hot MOR	Fired MOR	% Solids
0.0% silica fume	783 psi	1398 psi	711 psi	77.44
4.0% silica fume	848 psi	1914 psi	805 psi	79.24
30 5.0% silica fume	918 psi	1821 psi	745 psi	79.81

While the present invention is described above in connection with preferred or illustrative embodiments, 35 these embodiments are not intended to be exhaustive or

WO 02/100571

PCT/US02/10467

11
limiting of the invention. Rather, the invention is intended to cover all alternatives, modifications and equivalents included within its spirit and scope, as defined by the appended claims.

WO 02/100571

PCT/US02/10467

12
CLAIMS

1. A method of increasing the strength and solids level of an investment casting shell which comprises the step of incorporating into the shell 5 an effective amount of at least one microsilica.
2. The method of claim 1 wherein the microsilica is selected from the group consisting of silica fume, fumed silica, pozzolans and mixtures thereof.
- 10 3. The method of claim 2 wherein the pozzolans are selected from the group consisting of diatomaceous earth, opaline cherts and shales, tuffs, volcanic ashes, pumicites and fly ash.
- 15 4. The method of claim 2 wherein the microsilica is silica fume.
5. The method of claim 1 wherein the microsilica is added to the shell in an amount from about 0.1 to about 15.0% by weight of the shell.
- 20 6. The method of claim 1 wherein the microsilica is added to the shell in an amount from about 0.2 to about 10.0% by weight of the shell.
7. The method of claim 1 wherein the microsilica is added to the shell in an amount from about 0.5 to about 5.0% by weight of the shell.
- 25 8. A method of increasing the strength and solids level of an investment casting shell which comprises the step of incorporating silica fume into the shell in an amount from about 0.5 to about 5.0% by weight of the shell.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International application No. PCT/US02/10467
A. CLASSIFICATION OF SUBJECT MATTER		
IPC(7) : B22C 9/04 US CL : 164/519		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) U.S. : 164/35, 361, 519, 529		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EAST		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5,303,762 A (CHANDLEY) 19 April 1994 (19.04.1994), col.4, lines 26-43.	1
X	US 4,019,558 A (SZABO) 26 April 1977 (26.04.1977), abstract, col. 3, lines 63-68 and col.8, lines 32-37.	1, 2
Y		3-8
X	JP 51-72922 B (KUBOTA LTD) 24 June 1976 (24.06.1976), abstract.	1
Y		2, 3, 5-7
<input type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "B" earlier application or patent published on or after the international filing date "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family		
Date of the actual completion of the international search 16 May 2002 (16.05.2002)	Date of mailing of the international search report 05 JUN 2002	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks for PCT Washington, D.C. 20231 Facsimile No. (703)305-3230		
Authorized officer Kuang Y. Lin Jean Proctor Paralegal Telephone No. 703-308-0661		

Form PCT/ISA/210 (second sheet) (July 1998)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT, BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN, TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE, GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,OM,PH,P L,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,UZ,VN,YU,ZA,ZM,ZW

(74)代理人 100104499

弁理士 岸本 達人

(72)発明者 ドールス, ロナルド, エス.

アメリカ合衆国, 60523 イリノイ州, ラ グランジ パーク, ノース スプリング アヴェ
ニュー 900

F ターム(参考) 4E092 AA04 AA06 AA07 BA04 CA03

4E093 MC01