47003749 A2 | IV 0 Y 0

S

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

8 January 2004 (08.01.2004)

(10) International Publication Number

WO 2004/003749 A2

(51) International Patent Classification’: GO6F 11/07
(21) International Application Number:
PCT/US2003/018667

(74) Agents: MALLIE, Michael, J. et al.; Blakely Sokoloff
Taylor & Zafman, 12400 Wilshire Blvd., 7th Floor, Los
Angeles, CA 90025 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: 13 June 2003 (13.06.2003) AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(25) Filing Language: English GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(26) Publication Language: English MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.
(30) Priority Data:
10/184,774 29 June 2002 (29.06.2002) US
(84) Designated States (regional): ARIPO patent (GH, GM,
(71) Applicant: INTEL CORPORATION [US/US]; 2200 KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Mission College Boulevard, Santa Clara, CA 95052 (US). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, 1J, TM),
’ ’ European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
L. ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
(72) II%ventors: BENNETT, Steven; 6469 SE Sigrid Street, SE, SI, SK, TR), OAPI patent (BE, BJ, CF, CG, CI, CM,
Hillsboro, OR 97123' (US). ANDERSON, Andrew; 677 GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
SE 68th Avenue, Hillsboro, OR 97123 (US). JEYAS-
INGH, Stalinselvaraj; 16893 NW Tucson Street,
Beaverton, OR 97006 (US). KAGI, Alain; 2232 Nw Published:
Everett Street, #2’ POITlaIld, OR 97210 (US) NEIGER, - without international search report and to be republished
Gilbert; 2424 NE 11th Avenue, Portland, OR 97212 (US). upon receipt of that report
UHLIG, Richard; 1564 NE Orenco Station Parkway
West, Hillsboro, OR 97124 (US). ZOU, Xiang; 29 SW For two-letter codes and other abbreviations, refer to the "Guid-
Horton Way, Beaverton, OR 97006 (US). KOZUCH, ance Notes on Codes and Abbreviations” appearing at the begin-
Michael; 3515 Chapel Hill Court, Export, PA 15632 (US). ning of each regular issue of the PCT Gazette.
(54) Title: CONTROL OVER FAULTS OCCURRING DURING THE OPERATION OF GUEST SOFTWARE IN THE VIRTUAL-

& MACHINE ARCHITECTURE
o

O

(57) Abstract: In one embodiment, fault information relating to a fault associated with the operation of guest software is received.

Further, a determination is made as to whether the fault information satisfies one or more filtering criterion. If the determination is
positive, control remains with the guest software and is not transferred to the virtual machine monitor (VMM).

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

CONTROL OVER FAULTS OCCURRING DURING THE OPERATION OF
GUEST SOFTWARE IN THE VIRTUAL-MACHINE ARCHITECTURE

Field of the Invention

[0001] The present invention relates generally to virtual machines,
and more specifically to haAndIing faults associated with the operation of guest
software in the virtual-machine architecture.

Background of the Invention

[0002] A conventional virtual-machine monitor (VMM) typically runs
on a computer and presents to other software the abstraction of one or more
virtual machines. Each virtual machine may function as a self-contained platform,
running its own “guest operating system” (i.e., an operating system (OS) hosted
by the VMM) and other software, collectively referred to as guest software. The
guest software expects to operate as if it were running on a dedicated computer
rather than a virtual machine. That is, the guest software expects to control
various events and have access to hardware resources. The hardware resources
may include processor-resident resources (e.g., control registers), resources that
reside in memory (e.qg., descriptor tables) and resources that reside on the
underlying hardware platform (e.g., input-output devices). The events may
include interrupts, excepfions, platform events (e.g., initialization (INIT) or system
management interrupts (SMIs)), etc.

[0003] In a virtual-machine environment, the VMM should be able to
have ultimate control over these events and hardware resources to provide proper
operation of guest software running on the virtual machines and for protection
from and between guest software running on the virtual machines. To achieve
this, the VMM typically receives control when guest software accesses a protected
resource or when other events (such as interrupts or exceptions) occur.

[0004] For example, when a page fault (i.e., an exception associated
with an address-translation operation) occurs during the operation of guest
software, the control is transferred to the VMM which then determines whether the
guest software or the VMM itself needs to handle the page fault. If the page fault
needs to be handled by the guest software, the control is transferred back to the
guest software. Because page faults (as well as other exceptions and interrupts)

1

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

that do not need to be handled by the VMM occur rather frequently, there is a
significant performance cost associated with such transitioning of control between
the VMM and the guest software.

Brief Description of the Drawings

[0005] The present invention is illustrated‘ by way of example, and
not by way of limitation, in the figures of the accompanying drawings and in which
like reference numerals refer to similar elements and in which:

[0006] Figure 1 illustrates one embodiment of a virtual-machine
environment, in which the present invention may operate;

[0007] Figure 2 is a flow diagram of oné embodiment of a process
for filtering VM exits due to faults using control transfer filtering criteria;

[0008] Figures —-3-5 illustrate exemplary embodiments of a process
for filtering VM exits due to faults using control transfer filtering criteria;

[0009] Figure 6 is a flow diagram of one embodiment of a process
for filtering faults and VM exits due to faults using fault filtering criteria and control
transfer filtering criteria;

[0010] Figures 7 - 8 illustrate exemplary embodiments of a process
for filtering faults using fault filtering criteria; and

[0011] Figure 9 is a flow diagram of one embodiment of a process

for defining fault filtering criteria and control transfer filtering criteria.

Description of Embodiments

[0012] A method and apparatus for handling faults associated with
operation of guest software in a virtual-machine architecture are described. Inthe
following description, for purposes of explanation, numerous specific details are
set forth in order to provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art that the present invention can
be practiced without these specific details.

[0013] Some portions of the detailed descriptions that follow are
presented in terms of algorithms and symbolic representations of operations on
data bits within a computer system'’s registers or memory. These algorithmic

descriptions and representations are the means used by those skilled in the data
2

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

processing arts to most effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, conceived to be a self-
consistent sequence of operations leading to a desired result. The operations are
those requiring physical manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, elements, symbols,
characters, terms, numbers, or the like.

[0014] It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physical quantities and are
merely convenient labels applied to these quantities. Unless specifically stated
otherwise as apparent from the following discussions, it is appreciated that
throughout the present invention, discussions utilizing terms such as "processing"
or "computing” or "calculating” or "determining” or the like, may refer to the action
and processes of a computer system, or similar electronic computing device, that
manipulates and transforms data represented as physical (electronic) quantities
within the computer system's registers and memories into other data similarly
represented as physical quantities within the computer-system memories or
registers or other such information storage, transmission or display devices.

[0015] In the following detailed description of the embodiments,
reference is made to the accompanying drawings that show, by way of illustration,
specific embodiments in which the invention may be practiced. In the drawings,
like numerals describe substantially similar components throughout the several
views. These embodiments are described in sufficient detail to enable those
skilled in the art to practice the invention. Other embodiments may be utilized and
structural, logical, and electrical changes may be made without departing from the
scope of the present invention. Moreover, it is to be understood that the various
embodiments of the invention, although different, are not necessarily mutually
exclusive. For example, a particular feature, structure, or characteristic described
in one embodiment may be included within other embodiments. The following

detailed description is, therefore, not to be taken in a limiting sense, and the scope

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

of the present invention is defined only by the appended claims, along with the full
scope of equivalents to which such claims are entitled.

[0016] Figure 1 illustrates one embodiment of a virtual-machine
environment 100, in which the present invention may operate. In this
embodiment, bare platform hardware 116 comprises a computing platform, which
may be capable, for example, of executing a standard operating system (OS) or a
virtual-machine monitor (VMM), such as a VMM 112. The VMM 112, though
typically implemented in software, may emulate and export a bare machine
interface to higher level software. Such higher level software may comprise a
standard or real-time OS, may be a highly stripped down operating environment
with limited operating system functionality, may not include traditional OS facilities,
etc. Alternatively, for example, the VMM 112 may be run within, or on top of,
another VMM. VMMs and their typical features and functionality are well-known
by those skilled in the art and may be implemented, for example, in software,
firmware or by a combination of various techniques.

[0017] The platform hardware 116 can be of a personal computer
(PC), mainframe, handheld device, portable computer, set-top box, or any other
computing system. The platform hardware 116 includes a processor 118,
memory 120 and possibly other platform hardware (e.g. input-output devices), not
shown.

[0018] Processor 118 can be any type of processor capable of
executing software, such as a microprocessor, digital signal processor,
microcontroller, or the like. The processor 118 may include microcode,
programmable logic or hardcoded logic for performing the execution of method
embodiments of the present invention.

[0019] Memory 120 can be a hard disk, a floppy disk, random
access memory (RAM), read only memory (ROM), flash memory, any combination
of the above devices, or any other type of machine medium readable by processor
118. Memory 120 may store instructions or data for performing the execution of
method embodiments of the present invention.

[0020] The VMM 112 presents to other software (i.e., “guest”
software) the abstraction of one or more virtual machines (VMs). The VMM 112

may provide the same or different abstractions to the various guests. Figure 1
4

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

shows two such VMs, 102 and 114, though more or less than 2 VMs may be
supported by the VMM 112. The guest software running on each VM may include
a guest OS such as a guest OS 104 or 106 and various guest software
applications 108 and 110. Collectively, guest OS and software applications are
referred to herein as guest software 103 and 115. Guest software 103 and 105
expects to access physical resources (e.g., processor registers, memory and /O
devices) within the VMs 102 and 114 on which the guest software is running. The
VMM 112 facilitates access to resources desired by guest software while retaining
ultimate control over resources within the platform hardware 116.

[0021] Further, the guest software 103 and 115 expects to handle
various events such as exceptions, interrupts and platform events (e.g.,
initialization (INIT) and system management interrupts (SMIs)). Some of these
events are “privileged” because they must be handled by the VMM 112 to ensure
proper operation of VMs 102 and 114 and guest software 103 and 115 and for
protection from and between guest software 103 and 115. For the privileged
events, the VMM 112 facilitates functionality desired by guest software while
retaining ultimate control over these privileged events. The act of facilitating the
functionality for the guest software may include a wide variety of activities on the
part of the VMM 112. The activities of the VMM 112, as well as its characteristics,
should not limit the scope of the present invention.

[0022] In addition to the privileged events, there are a number of
“non-privileged events” that occur during the operation of guest software but do
not need to be handled by the VMM 112, and as such do not require a transfer of
control to the VMM 112. In one embodiment, a filtering mechanism is provided to
distinguish between privileged events and non-privileged events. With this
filtering mechanism, information associated with a current event (e.g., an
exception) is evaluated using one or more filtering criteria to determine whether
control over the current event remains with the guest software or is transferred to
the VMM 112. These filtering criteria are referred to herein as control transfer
filtering criteria. The information associated with the current event is referred to
herein as fault information.

[0023] In another embodiment, a filtering mechanism is provided to

identify certain non-privileged events that can be disregarded because other
5

10

15

20

25

30

WO 2004/003749 , PCT/US2003/018667

factors present at the time of the 6urrent event indicate that the guest software
can complete the desired operation without compromising security and proper
operation of the VMM 112 or other VMs. In this embodiment, fault information
associated with the current event is evaluated using one or more filtering criteria
to determine whether the current event may be disregarded (i.e., whether the
guest software is allowed to complete the desired operation). These filtering
criteria are referred to herein as fault filtering criteria.

[0024] In one embodiment, the filtering criteria (control transfer
filtering criteria and/or fault filtering criteria) are defined using data stored in one or
more designated fields in a virtual machine control structure (VMCS) 122.
Different VMs may use data from different VMCS memory images, though only
one such VMCS is shown in Figure 1. The VMCS 122 may reside in memory 120
and is maintained by the processor 118. It should be noted that any other data
structure (e.g., an on-chip cache, a file, a lookup table, etc.) may be used to store
the VMCS 122 or the fields associated with the filtering mechanism without loss of
generality. Various embodiments of the filtering mechanism will be described in
greater detail below.

[0025] In one embodiment, if the filtering mechanism determines that
the current event must be handled by the VMM 112, control is transferred to the
VMM 112. The VMM 112 may then handle the event and transfer control back to
guest software. In one embodiment, the transfer of control from the VMM 112 to
the guest software is achieved by executing a special instruction. The transfer of
control from the VMM to the guest software is referred to herein as a VM entry
and the transfer of control from the guest software to the VMM is referred to
herein as a VM exit, and potential causes of VM exits (e.g., privileged exceptions
and interrupts and privileged platform events) are referred to herein as
virtualization events.

[0026] In one embodiment, when a VM exit occurs, control is passed
to the VMM 112 at a specific entry point (e.g., an instruction pointer value)
delineated in the VMCS 122. In another embodiment, control is passed to the
VMM 112 after vectoring through a redirection structure (e.g., the interrupt-
descriptor table in the processor instruction set architecture (ISA) of the Intel®

Pentium® IV (referred to herein as the 1A-32 ISA)). Alternatively, any other
6

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

mechanism known in the art can be used to transfer control from the guest
software to the VMM 112.

[0027] Privileged and non-privileged events that include exceptions,
interrupts and platform events are referred to herein as faults. A fault may be
generated by the execution of an instruction on the processor. For example, an
operation that accesses mémory may cause a variety of faults due to paging and
segmentation protection mechanisms. Each fault is associated with fault
information. Fault information may be characterized as dynamic, static or semi-
dynamic fault information. Dynamic fault information is generated at or near the
time of the fault. Examples of the dynamic fault information include an error code
which is generated by an exception and depends directly on the characteristics of
the faulting operation or a data value which was intended to be written to memory
by a write memory operation causing a page fault.

[0028] Static or semi-static fault information is likely to have the
same value regardless of the timing of the fault. An example of semi-static fault
information is the settings of bits in various control registers which rarely change,
such as, for example, the cache disable (CD) or write-protect (WP) bits in the CRO
register in the IA-32 ISA. An example of static fault information is the version of
the processor implementation (as is, for example, reported through the CPUID
instruction in the IA-32 ISA).

[0029] Generally speaking, fault information may include a fault
identifier, an associated fault error code, additional data values associated with
the fault, or any combination of these data items. The fault identifier may be a
value that is used to differentiate this particular fault from other faults. The error
code may consist of a number of values, with each value being indicative of an
occurrence of a particular condition. The additional data values may represent
any other data connected to the faulting instruction or the fault triggering condition.
In addition, the additional data values may represent data that is calculated during
the generation of the fault. Some examples of the additional data values include
data requested to be written to a particular location at the time of the fault, the
address being accessed at the time of the fault, the address of the instruction that

caused the fault, the state of memory at the time of the fault, etc.

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

[0030] One example of fault information can be illustrated with
reference to a page fault in the 1A-32 ISA. In the IA-32 ISA, a page fault is
identified by a fault identifier equal to 14. Accordingly, when a page fault occurs,
control is passed to a fault handler by vectoring to the fault handler through an
interrupt descriptor table (IDT) at entry 14. The address being accessed (that
generates the page fault) is stored in a control register (CR2). In addition, prior to
passing control to the fault handler, the page fault generates an error code that is
pushed onto the stack for use by the fault handler. The error code includes four
bits that inform the fault handler what conditions caused the page fault.
Specifically, bit 0 in the error code indicates whether the fault was caused by a
non-present page in a page table used for address translation, bit 1 in the error
code indicates whether the faulting access was a write, bit 2 in the error code
indicates whether the access was originated when the processor was in user
mode, and bit 3 in the error code indicates whether the fault was caused by a
reserved bit set to 1 in a page directory.

[0031] Additional data values may be associated with the page fault.
Examples of the associated additional data values include the address being
accessed which caused the page fault (CR2), the address of the faulting
instruction, the data value that the guest software was attempting to write to a
non-writeable page in a page table hierarchy when a page fault occurs, the
address of the page tables in physical and guest linear memory, etc.

[0032] Some embodiments of a filtering mechanism that utilizes
control transfer filtering criteria will now be described. The control transfer filtering
criteria may be defined either manually or programmatically. The control transfer
filtering criteria vary depending on the specific fault, the form of the error code, the
ISA, the presence of additional data values, the characteristics of the VMM and
other factors. The complexity of the control transfer filtering criteria and the
number of elements required to express the criteria depend on the number of
values included in the error code, the number of additional data values, and the
number of possible combinations of the error code values and/or the additional
data values that need (and need not) to cause the transition to the VMM. For
example, when a large number of such combinations need to be taken into

account, the control transfer filtering criteria may require performing several
8

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

operations (e.g., arithmetic and/or Boolean logic operations) on the error code
and/or other fault information and a set of predefined data.

[0033] In some embodiments, the predefined data is stored in
designated fields of the VMCS, as described above. In other embodiments, the
predefined data may be hard-coded (e.g., in a computer program , programmable
logic, microcode or the hard-coded logic of the processor).

[0034] Figure 2 is a flow diagram of one embodiment of a process
200 for filtering VM exits due to faults using control transfer filtering criteria. The
process may be performed by processing logic that may comprise hardware (e.g.,
circuitry, dedicated logic, programmable logic, microcode, etc.), software (such as
run on a general purpose computer system or a dedicated machine), or a
combination of both.

[0035] Referring to Figure 2, process 200 begins with processing
logic receiving fault information (processing block 202). The fault information
may be related to a fault that has already occurred or will occur if an operation is
allowed to proceed to completion. The fault information includes a fault identifier
that identifies the fault. In some embodiments, the fault information also includes
an error code and/or additional data values associated with the fault.

[0036] At decision box 204, a determination is made as to whether
the fault information satisfies one or more control transfer filtering criteria. If the
determination made at decision box 204 is negative, i.e., the fault information
does not satisfy the control transfer filtering criteria, the control is transitioned to
the VMM (processing block 206) which handles the fault and may then transfer
the control back to the guest OS. Otherwise, if the determination made at
decision box 204 is positive, i.e., the fault information satisfies the control transfer
filtering criteria, then the control remains with the guest software. The guest
software can then be allowed to handle the fault.

[0037] In alternative embodiments, the control is transitioned to the
VMM if the fault information does not satisfy the control transfer filtering criteria
(and the control remains with the guest software if the fault information satisfies
the control transfer filtering criteria).

[0038] As described above, the complexity of the control transfer

filtering criteria depends on a variety of factors. In one embodiment, a control
9

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

transfer filtering criterion may only require that the fault information be compared
with a certain value (e.g., a VM exit will be generated if the error code is greater
than 10 or a VM exit will be generated if the error code equals 0x4 , etc.). In
another embodiment, the control transfer filtering criteria may require that the fault
information be compared with several values. For example, error code values that
need to cause a transition to the VMM may be determined in advance, and the
current error code may be compared to these predetermined values to identify a
match. The predetermined value(s) may be stored in designated field(s) (e.g., in
VMCS 122 of Figure 1) or hard-coded in a computer program, programmable
logic, microcode or the hard-coded logic of the processor. In yet other
embodiments, the filtering mechanism may be required to perform one or more
Boolean logic and/or arithmetic operations on the fault information and a set of
predetermined values.

[0039] Figures -3 5 illustrate exemplary embodiments of processes
for filtering VM exits due to faults using control transfer filtering criteria. The
processes may be performed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, microcode, etc.), software
(such as run on a general purpose computer system or a dedicated machine), or a
combination of both.

[0040] Referring to Figure 3, process 300 begins with processing
logic detecting the occurrence of a fault during operation of guest software
(processing block 301). At processing block 302, processing logic receives fault
information that identifies the fault and may include other information relating to
the fault. At decision box 303, processing logic determines whether the fault
information includes an error code associated with the fault. If the determination
is positive, processing logic determines (in processing block 304) the value (true
or false) of the following expression:

EC AND MASK == MATCH, (1)
where EC is the error code, AND is a bitwise Boolean logic operator, “=="is a
bitwise comparison operator, MASK is predefined data stored in a first field
referred to herein as a mask field, and MATCH is predefined data stored in a

second field referred to herein as a match field.

10

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

[0041] The size of each of the mask and match fields depends on
the size of the corresponding error code. In some embodiments, the widths of the
mask and match fields are the same as the size of the error code. In other
embodiments, the widths of the mask and match fields may not be the same as
the size of the error code. For example, the mask and match fields may be
smaller than the error code and may map only some bits into expression 1.

[0042] Further, in one embodiment illustrated in Figure 3,
processing logic also uses a corresponding control bit in a redirection map to
make a further determination as to whether to generate a VM exit. The redirection
map represents a set of control bits maintained by the VMM for configuring which
virtualization events will cause a VM exit. The control bit being consulted
corresponds to the virtualization event causing the current fault. For example, the
virtualization event may be a page fault, an external interrupt, or an access to a
debug register by guest software, each of which has an associated bit in the
redirection map. In one embodiment, the redirection map is contained in the
VMCS 122 of Figure 1. In one embodiment, the redirection map is a single field
in the VMCS 122. In other embodiments, multiple fields are required in the VMCS
122 to detail the redirection map.

[0043] If the determination made at decision box 303 is negative
(i.e., the fault information does not include an error code associated with this fault)
or processing logic determines at decision box 304 that the equality holds in
expression 1 (i.e., the error code combined with data stored in the mask field via
the bitwise AND operator matches data stored in the match field), then, in one
embodiment, the value of the corresponding control bit in the redirection map is
used to determine whether to generate a VM exit (processing block 306). For
example, if the control bit is set, processing logic will generate a VM exit
(processing block 313); otherwise, processing logic will deliver the fault to the
guest software (processing block 312).

[0044] If the equality in expression 1 does not hold, processing logic
inverts the value of the control bit in the redirection bitmap (processing block 308)
and uses this inverted value to determine whether to generate a VM exit
(processing block 310). If the inverted value is set, processing logic generates a

VM exit (processing block 314); otherwise, the fault is vectored to the guest
11

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

software (processing block 312). In another embodiment, processing logic can
use the actual value of the control bit if, as determined in decision box 304, the
equality does not hold, and the inverted value of the control bit if the equality
holds.

[0045] The use of the mask and match fields with the control bit in
process 300 of Figure 3 can be illustrated using various values of an error code
associated with the 1A-32 ISA page fault (referred to herein as a page fault error
code or PFEC) as an example. The following examples assume the presence of
the inversion of the control bit if the equality in expression 1 does not hold (as
shown in Figure 3).

[0046] As discussed above, a PFEC includes four bits. In order to
achieve the results desired for all possible combinations of PFEC values, each of
the mask field, match field and control bit should have a specific setting. For
example, to cause VM exits on all page faults, the control bit may be set to 1, the
value of the mask field bits will be set to 0x0, and the value of the match field will
be set to 0x0. Alternatively, to get the same behavior, the control bit may be set to
0, the mask field set to 0x0 and the match field set to OxF (note that there are
many settings of match, mask and control bit values that provide the same
functionality). In another example, in order to cause VM exits on page faults
resulting from supervisor writes to present pages, the control bit will be set to 1,
the value of the mask field will be set to OxF, and the value of the match field will
be set to 0x3. These values ensure that VM exits will occur only on page faults
that generate the error code equal to 0x3. In yet another example, in order to
cause VM exits on page faults resulting from not-present pages or reserved-bit
violations, the control bit will be set to 0, the value of the mask field will be set to
0x9 (i.e., only bits 0 and 3 are set to 1), and the value of the match field will be set
to Ox1. This will cause VM exits on all page faults except those that indicate a
present page (i.e., bit 0 is set to 1) and no reserved-bit violation (i.e., bit 3 cleared
to 0).

[0047] In another embodiment (not shown), the control bit is not
used. That is, processing logic determines whether to transition control to the
VMM (i.e., to generate a VM exit) based on the result of expression 1. If the

equality evaluated in expression 1 holds (i.e., the error code combined with data
12

10

15

20

25

WO 2004/003749 PCT/US2003/018667

stored in the mask field via the bitwise AND operator matches data stored in the
match field), then the control transfer filtering criteria is satisfied, and the fault
associated with the error code will be handled by the guest operating system.
Otherwise (i.e. the error code combined with data stored in the mask field via the
AND operator does not match the data stored in the match field), then the control
transfer filtering criteria is not satisfied, and a VM exit is generated to transition
control to the VMM.

[0048] The inversion of the control bit used in the embodiment
illustrated in Figure 3 adds flexibility in achieving desired results (i.e., a VM exit
result or a no-VM exit result) for various combinations of error code values. For
example, the following table illustrates the two possible desired results for various

combinations of values of an error code containing two bits:

ERROR CODE BITS | DESIRED RESULTS 1 | DESIRED RESULTS 2
0 0 Exit No exit
0 1 No exit Exit
1 0 Exit No exit
1 1 Exit No exit
[0049] The embodiment of process 300 illustrated in Figure 3 can

achieve the desired results 1 if the values of the mask field bits are equal to (1 1),
the values of the match field are equal to (0 1), and the control bit is equal to 0.
The desired resﬁlts 2 can be achieved if the values of the mask field bits are equal
to (1 1), the values of the match field are equal to (0 1), and the control bit is set
to 1.

[0050] It should be noted that the desired results 2 do not require the
use of the control bit (i.e., the desired results 2 only require that mask = (1 1) and
match = (0 1)). However, the desired results 1 cannot be achieved unless the
inversion of the control bit is used or more fields are involved in the process of
determining whether to generate a VM exit.

[0051] An embodiment of a control transfer filtering process that
uses four designated fields for determining whether to generate a VM exit is
illustrated in Figure 4. Referring to Figure 4, process 400 may be performed by
processing logic that may comprise hardware (e.g., circuitry, dedicated logic,

13

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

programmable logic, microcode, etc.), software (such as run on a general purpose
computer system or a dedicated machine), or a combination of both.

[0052] Process 400 begins with processing logic detecting the
occurrence of a fault during operation of guest software (processing block 401).
In the embodiment illustrated in Figure 4, it is assumed that all faults generate
error codes, which the processing logic receives in processing block 402. Next,
processing logic uses the bitwise AND operator to combine the error code with
data stored in a first mask field (processing block 404) and with data stored in a
second mask field (processing block 406). That is, the result of the first
combination INT1 = EC AND MASK1 and the result of the second combination
INT2 = EC AND MASK2.

[0053] Further, at decision box 408, processing logic determines
whether the first combination INT1 matches data stored in a first match field
(MATCH?1) or the second combination INT2 matches data stored in a second
match field (MATCH2). If any match is found, processing logic generates a VM
exit (processing block 410). Alternatively, if no match is found, the fault is injected
to the guest operating system (processing block 409).

[0054] The control transfer filtering criteria can use more complex
arithmetic or Boolean logic and/or additional fields to provide greater flexibility for
the desired results, as illustrated in Figure 5. Referring to Figure 5, process 500
may be performed by processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), software (such as run on a
general purpose computer system or a dedicated machine), or a combination of
both.

[0055] Process 500 begins with processing logic detecting the
occurrence of a fault during operation of guest software (processing block 501).
At processing block 502, processing logic receives fault information. If, as
determined by processing block 503, the fault information includes an error code,
processing logic uses the bitwise AND operator to combine the error code with
data stored in a first mask field (processing block 504) and with data stored in a
second mask field (processing block 506). That is, the result of the first
combination INT1 = EC AND MASK1 and the result of the second combination

INT2 = EC AND MASK?2.
14

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

[0056] Further, at decision box 508, processing logic determines
whether any bit is set in the first combination INT1 or if the second combination
INT2 matches data stored in a match field (MATCH). In one embodiment (not
shown in Figure 5), if either determination is positive, processing logic generates
a VM exit. Otherwise, the fault is injected to the guest OS.

[0057] In another embodiment (shown in Figure 5), the
determination regarding a VM exit further depends on a corresponding control bit
in a redirection map. Specifically, if the determination made at decision box 508 is
positive (or if the determination made at decision box 503 is negative, i.e., the fault
information does not include an error code), processing logic further determines at
decision box 510 whether the control bit specifies a VM exit (e.g., the control bit is
set to 1). If the control bit specifies a VM exit, processing logic generates the VM
exit (processing block 512). If the control bit does not specify a VM exit (e.g., the
control bit is clear), the fault is injected to the guest OS (processing block 518).

[0058] Otherwise, if the determination made at decision box 508 is
negative, processing logic inverts the value of the control bit (processing block
514). If the inverted value specifies a VM exit (decision box 516), processing logic
generates the VM exit (processing block 512). If the inverted value does not
specify a VM exit, the fault is injected to the guest OS (processing block 518).

[0059] Although the embodiments depicted in Figures 3 - 5 utilize
certain operators (i.e., bitwise AND, compare, etc.), a wide variety of other
operators can be used with filtering criteria without loss of generality. In addition,
various filtering criteria other than those discussed above in conjunction with
Figures 3 — 5 can be used to process faults occurred during the operation of
guest software. Further, additional data values discussed above can be used
instead of, or together with, an error code associated with the fault during the
filtering process.

[0060] In some embodiments, additional filtering criteria (referred to
herein as fault filtering criteria) are applied to fault information prior to the control
transfer filtering criteria. In other embodiments, the fault filtering criteria are
applied to the fault information after the control transfer filtering criteria. In yet
other embodiments, the fault filtering criteria but not the control transfer filtering

criteria are applied to the fault information. The fault filtering criteria are used to
15

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

determine whether a faulting condition occurring during the operation of guest
software can be disregarded. A faulting condition represents an event that would
normally cause a fault if the operation is allowed to complete. One example of
such a faulting condition is an attempt by guest software to write to a non-writable
page in a page table hierarchy. In some situations, a faulting condition can be
disregarded because other factors present at the time of the faulting condition
indicate that the faulting condition would not, for example, compromise the
performance, security or proper operation of the VMM or other virtual machines.
Examples of such situations will be described in more detail below in conjunction
with Figures 7 and 8.

[0061] Figure 6 is a flow diagram of one embodiment of a process
600 for filtering faults and VM exits due to faults using fault filtering criteria and
control transfer filtering criteria. The process may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as run on a general purpose computer
system or a dedicated machine), or a combination of both.

[0062] Process 600 begins with processing logic detecting an
occurrence of a faulting condition during the operation of guest software
(processing block 602) and analyzing fault information pertaining to the faulting
condition (processing block 604). Such fault information may include the fault
identifier, error code, faulting address, data to be written, page table address, etc.

[0063] Next, processing logic determines whether the fault
information satisfies fault filtering criteria (decision box 604). The fault filtering
criteria require evaluation of one or more elements of processor state, memory
state and/or the fault information using rules concerning the operation of guest
software. For example, the fault filtering criteria may require comparing data that
guest software attempts to write to a memory location with data that is currently
stored in this memory location. The fault filtering criteria may require a single
check of an element of processor state, memory state and/or the fault information
or multiple checks of various elements. The complexity of the fault filtering criteria
may vary depending on the specific faulting condition, the operation rules
pertaining to the faulting condition, the ISA, the characteristics of the VMM, the

16

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

application, and other factors. Exemplary filtering criteria are discussed in more
detail below in conjunction with Figures 7 and 8.

[0064] If the fault filtering criteria are satisfied, processing logic
ignores the faulting condition and permits the guest software to proceed as if the
faulting condition had not been detected (processing block 608). As a result, the
behavior of the operation initiated by the guest software is modified to allow its
completion despite the detection of the faulting condition.

[0065] If the fault filtering criteria are not satisfied, processing logic
determines a proper entity for handling the fault using control transfer filtering
criteria (decision box 610). If the fault information satisfies the control transfer
filtering criteria, then processing logic delivers the fault to the guest software and
permits the guest software to handle the fault (processing block 612). If the fault
information does not satisfy the control transfer filtering criteria, then processing
logic transitions control to the VMM (processing block 614).

[0066] In other embodiments, if the fault filtering criteria are not
satisfied, processing logic does not use the control transfer filtering criteria and
always transitions control the VMM.

[0067] In yet other embodiments, processing logic first determines a
proper entity for handling the fault using control transfer filtering criteria. Then, if
the proper entity is guest software, processing logic further determines whether
the fault filtering criteria is satisfied. If the fault filtering criteria are satisfied, the
guest is allowed to ignore the fault condition; if the fault filtering criteria is not
satisfied, the fault is delivered to the guest, as above.

[0068] The following discussions assume page table structures as in
the IA-32 ISA; however, it should be noted that similar page table structures exist
in a variety of ISAs and the invention is not limited by the use of the 1A-32 ISA.
Additionally, various simplifications are made to facilitate the following
discussions. For example, the effect of the physical address extension (PAE) and
page-size extension (PSE) flags are not included, ring based protection
mechanisms are not accounted for, requirements for alignment of memory
accesses are not tested, etc.

[0069] As well known in the art, page tables in the 1A-32 ISA are

composed of page directory entries (PDEs) and page table entries (PTEs). Each
17

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

PDE and PTE includes various bit fields that control the accessibility of memory
pages. For example, the “P” bit marks pages as present (1) or not present (0), the
“R/W" bit indicates whether pages are read only (0) or writable and readable (1),
the “U/S” bit indicates whether pages require supervisor privilege, the page frame
number (PFN) contains a portion of the physical address at which the logical page
is located, etc. CR3 is a control register in the ISA that contains the physical
address of the base of the page directory (and additional flags). The page
directory base physical address is equal to CR3[31:12] << 12 (i.e., the lower 12
bits of the page directory base address are 0 and the upper 20 bits are located in
the upper 20 bits of CR3).

[0070] In order to prevent erroneous or malicious code in one virtual
machine from compromising code executing in the VMM or another virtual
machine, it is necessary to limit the access of guest software to the physical
memory resources of the underlying physical machine. In some architectures, in
which separate page table hierarchies managed by guest OSes and the VMM
respectively are provided, one approach for limiting the access of guest software
to the physical memory resources includes the VMM modifying permissions of the
guest page table hierarchies to prevent read or write operations by guest software
to protected pages (e.g., pages which belong to the VMM or other VMs).
Additionally, the guest page tables are modified to prevent write operations to
some pages belonging to the VM which store the guest page tables. Once these
permission modifications have been made, attempts by guest software to alter the
page table will cause page fault events that the VMM can observe through VM
exits. The VMM can examine the attempted access and determine the
appropriate actions to be taken. For instance, it may permit, disallow or modify
the attempted access. For example, the guest software may not be allowed to
map a physical page that belongs to the VMM or another VM. As modifications to
page tables by the guest software occur frequently, the overhead associated with
exiting to the VMM for screening each attempted guest page table change may
impose a substantial performance burden.

[0071] In order to simplify the management of page tables, several
operating systems, as for example Microsoft Windows XP, employ a recursive

page directory. In other words, a page directory entry (PDE) will be set to
18

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

reference the page directory page as a page table page. This use of the same
page as both a page directory and a page table results in all of the page table
pages being accessible in the 4MB region of the linear address space accessed
through the self-referential PDE. Given the use of a self-referential PDE, the
linear address of the PTE or PDE which is used to map any particular linear
address may be calculated. In operating systems employing a self-referential
PDE, typical page table edits are made through this self mapped region (i.e., the
edits to the page table are done via writes to memory which use linear addresses
falling in the 4MB region using the self-mapping PDE). The edits of the page
tables that do not use this self-mapped PDE are few in number.

[0072] A page table in which a common page is used as both the
page directory page and page table page is referred to herein as a self-mapped
page table. It will be apparent to one skilled in the art that this invention also
applies to other approaches in which page table entries are mapped to linear
addresses in an organized fashion, whether such mapping is a result of the re-use
of structures at multiple levels in a page table hierarchy, or through OS
conventions.

[0073] In one embodiment of the invention, a filtering mechanism is
employed to identify page map edits that do not require an exit to the VMM. In
this embodiment, additional fields for filtering criteria are added to the VMCS.

[0074] In one embodiment, the page tables used by the guest
operating system are self-mapped, i.e., one of the page directory entries (PDESs)
in the page table hierarchy points back to the base of the page-directory (PD)
page. As discussed above, the concept of self-mapped page tables is well
understood in the art and is used by operating systems such as, for example,
Microsoft's Windows XP. In one embodiment, the self-mapping is supported by
ensuring that the linear address of the base of the page directories (referred to
herein as PTBASE) satisfies a set of conditions. The set of conditions may verify
that the PTBASE value is a 4-MB aligned, i.e., PTBASE[21:0] == 0, and the page
table contains the appropriate self-mapping entry, i.e., the PFN in the entry at
location ((CR3[31:12] << 12) + (PTBASE[31:22]<<2)) equals CR3[31:12]. In one
embodiment, the PTBASE value is stored in the VMCS for use by the filtering

mechanisms, as described below.
19

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

[0075] Given that a self-mapping page table is in use, it may be
determined if any given address falls within the page table (i.e., if ADDR[31:22]
== PTBASE[31:22], where ADDR is the address being accessed). Additionally, it
may be determined if the address is within a PDE (i.e., if the address is in the
page table and ADDR[21:12] == PTBASE[31:22]) or PTE (i.e., if the address is in
the page table and it is not within a PDE).

[0076] Figures 7 and 8 illustrate two exemplary embodiments of a
process for filtering page faults using fault filtering criteria. The process may be
performed by processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), software (such as run on a
general purpose computer system or a dedicated machine), or a combination of
both. In the embodiments illustrated in Figures 7 and 8, the VMM protects
physical memory by ensuring that the guest page table entries (guest PTEs) that
map the page table itself have the read-only access. As a result, when guest
software attempts to change the page table entries, a page fault condition occurs.
These embodiments may be used with the guest OS utilizing self-mapped page
tables, as described above, or with the guest OS that is not using this page table
structure, although the use of the guest OS utilizing self-mapped page tables
provides greater performance improvement.

[0077] In the embodiment shown in Figure 7, the set of fault filtering
criteria is illustrated that permits a write to a PTE to complete without delivering a
fault or causing a VM exit if the guest operating system is not attempting to set the
"P” bit to 1 while still protecting the physical memory space and refraining from
giving the guest software full control of the page table. The rationale for this rule
is that a PTE marked non-present (i.e., “P” bit is equal to 0) cannot map a physical
memory page. Therefore, the PTE being changed by the guest software cannot
map a physical memory page and as such cannot interfere with the operation of
the VMM or software running in another VM. Hence the VMM need not be notified
of the page table modification, and the page table write will be permitted to
proceed without causing a page fault or VM exit.

[0078] Referring to Figure 7, processing logic begins with detecting
a page fault condition during operation of guest software (processing block 702)

20

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

and receiving page fault information related to the page fault condition (processing
block 704).

[0079] Next, a set of fault filtering criteria is applied to the page fault
information. Specifically, processing logic determines whether the faulting
access is a write operation (decision box 706) to a PTE (decision box 708) and
not an attempt to set the “P” bit to 1 (i.e., DATA.P == 0, where DATA is the value
that the guest is trying to write) (decision box 710). If these determinations are
positive, the access of the guest operating system is allowed to complete (i.e., the
write is allowed to modify memory) without causing a fault or VM exit (processing
block 714). If any of the determinations in processing blocks 706, 708 and 710
are negative, control is transferred to processing block 712 to determine whether
a VM exit is to be generated or the fault is to be vectored to the guest software, as
described in more detail in conjunction with Figures 2 - 5.

[0080] In another embodiment (not shown in the figures), the
qualification that the write must be to a PTE may be removed or replaced with, for
example, a test that allows writes to a PTE or a PDE as long as the present bit is
not being set.

[0081] Referring to Figure 8, a more complicated set of fault filtering
criteria is illustrated that includes the fault filtering criteria described above in
conjunction with Figure 7 and some additional criteria. This set of fault filtering
criteria allows the guest operating system to modify bits in the PTE other than the
PFN, read/write and present bits without requiring a page fault or causing a VM
exit. Additionally certain modifications of the read/write and present bits are
allowed without requiring a page fault or causing a VM exit.

[0082] Processing logic begins with detecting a page fault condition
during operation of guest software (processing block 802) and receiving page fault
information related to the page fault condition (processing block 804). Next,
processing logic determines whether the faulting access is a write operation
(decision box 806) to a PTE (decision box 808) and not an attempt to set the “P”
bit to 1 (i.e., DATA.P == 0) (decision box 810). If these determinations are all
positive, the access of the guest operating system is allowed to complete (i.e., the
write is allowed to modify memory) without causing a fault or VM exit (processing

block 814). If the determinations in processing blocks 806 or 808 are negative,
21

10

15

20

25

30

WO 2004/003749 PCT/US2003/018667

control proceeds to processing block 812 to determine whether a VM exit is
required, as described with reference to Figures 2 - 5.

[0083] If the determination in processing block 810 is negative, the
additional fault filtering rules are applied. Specifically, processing logic determines
whether the PTE is already marked as present in the PTE (i.e. ADDR->P == 1,
where ADDR is the address to which the guest software is attempting to write and
ADDR->P represents the P bit if the data in memory located at ADDR is
interpreted as a PTE) (decision box 816), whether the PFN is not being changed
(i.e. ADDR->PFN == DATA.PFN) (decision box 818), and whether either the guest
is attempting to mark the page mapped by the PTE as read-only (DATA.R/W ==
0) or the page being mapped by the PTE was already marked writeable in the
PTE in memory (ADDR->R/W == 1) (decision box 820). If these determinations
are positive, the access of the guest operating system is allowed to complete (i.e.,
the write is allowed to modify memory) without causing a fault or VM exit
(processing block 814). If any of the determinations in processing blocks 816, 818
and 810 are negative, control is transferred to processing block 812 to determine
whether a VM exit is required.

[0084] It should be noted that the filtering mechanisms depicted in
Figures 7 and 8 will filter out accesses which attempt to modify the page tables
using the self-mapped PDE, as described above. Attempts to modify the page
tables that are not using the self-mapped PDE will not be filtered out by the fault
filtering criteria (i.e., the determination of whether the write is to a PTE in blocks
708 and 808 will fail). Control transfer filtering criteria will then be used to
determine if a VM exit is needed as described in Figures 2 - 5. This does not
pose problems from either a security or correct operation standpoint since the
VMM will be able to determine if a PTE is in fact being edited. The control transfer
filtering mechanism will be configured to cause VM exits on all write page faults
and evaluate the address and data being written to determine if a page table edit
is being attempted.

[0085] A variety of fault filtering criteria other than those described
above with reference to Figures 7 and 8 can be used to filter faults without loss of
generality. The form of the filtering may be controlled by various VMM controlled

fields (e.g. PTBASE) which, in an embodiment, may reside in the VMCS.
22

10

15

20

25

WO 2004/003749 PCT/US2003/018667

Alternatively, the filtering may be controlled by a single enable bit, may be hard-
coded into a processor implementation, etc.

[0086] Figure 9 is a block diagram of one embodiment of a process
900 for defining control transfer filtering criteria and/or fault filtering criteria.
Process 900 can be performed manually or automatically.

[0087] Referring to Figure 9, process 900 begins with identifying
which combinations of fault information (e.g. error code values, fault identifiers,
etc.) do not require a transition to the VMM or, alternatively, should be allowed to
complete, disregarding the fault (processing block 902). Then, the maximum
number of fields and the semantics of the fields that can be used for the VM exit
and/or fault filtering criteria is identified (processing block 904) and the available
operators (e.g. Boolean, arithmetic, etc.) are identified (processing block 906).
Further, based on the information identified at processing blocks 902 — 906, the
filtering criteria are created (processing block 908). The filtering criteria may
include one or more predefined values and one or more Boolean logic and/or
arithmetic operations to be performed on the predefined values and the error
code.

[0088] Thus, a method and apparatus for handling faults occurring
during the operation of guest software have been described. Itis to be
understood that the above description is intended to be illustrative, and not
restrictive. Many other embodiments will be apparent to those of skill in the art
upon reading and understanding the above description. The scope of the
invention should, therefore, be determined with reference to the appended claims,
along with the full scope of equivalents to which such claims are entitled.

23

10

10

15

20

25

WO 2004/003749 PCT/US2003/018667

CLAIMS
What is claimed is:

1. A method comprising:

receiving fault information relating to a fault associated with an operation of
guest software;

determining whether the fault information satisfies at least one filtering
criterion; and

refraining from transitioning control to a virtual machine monitor (VMM) if

the fault information satisfies the at least one filtering criterion.

2. The method of claim 1 wherein:

the at least one filtering criterion is at least one control transfer filtering
criterion; and

refraining from transitioning control to the VMM further comprises delivering
the fault to the guest software if the fault information satisfies the at least one

control transfer filtering criterion.

3. The method of claim 1 wherein the fault information is at least one of a fault
identifier, an error code associated with the fault and one or more additional data

values associated with the fault.

4. The method of claim 1 wherein the fault represents any one of an interrupt,
an exception, and a platform event.

5. The method of claim 1 wherein the fault information includes a number of
values, each of the number of values being indicative of an occurrence of a

particular condition.

6. The method of claim 5 wherein one or more combinations of values of the

fault information require a transition to the VMM.
24

10

15

20
20

25
25

WO 2004/003749 PCT/US2003/018667

7. The method of claim 1 further comprising:
transitioning control to the VMM if the fault information does not satisfy the

at least one filtering criterion.

8. The method of claim 1 wherein the at least one filtering criterion is defined

using data stored in one or more designated fields.

9. The method of claim 8 wherein the one or more designated fields include a

match field and a mask field.

10. The method of claim 8 wherein determining whether the fault information
satisfies the at least one filtering criterion comprises combining the fault
information with the data stored in one or more designated fields using one or

more Boolean logic operations.

11. A method comprising:

determining whether a fault associated with an operation of guest software
requires a transition of control to a virtual machine monitor (VMM) using fault
information relating to the fault and at least one control transfer filtering criterion;
and

delivering the fault to the guest software if the fault information satisfies the

at least one control transfer filtering criterion.

12. The method of claim 11 wherein the fault information is at least one of a
fault identifier, an error code associated with the fault and one or more additional
data values associated with the fault.

13. The method of claim 11 wherein the fault represents any one of an

interrupt, an exception, and a platform event.

14. The method of claim 11 wherein the at least one control transfer filtering

criterion is defined using data stored in one or more designated fields.

25

10
10

15

20

25

WO 2004/003749 PCT/US2003/018667

15. The method of claim 14 wherein the one or more designated fields include

a match field and a mask field.

16. The method of claim 15 wherein determining whether the fault associated
with the operation of the guest software requires a transition of control to the VMM
comprises:

combining the fault information with data stored in the mask field using a
bitwise AND operator; and

determining whether the result of the combination matches the data stored

in the match field.

17. The method of claim 16 wherein determining whether the fault associated
with the operation of the guest software requires a transition of control to the VMM
further comprises:

determining that the result of the combination matches the data stored in
the match field; and

identifying a value of a corresponding bit in a redirection map, the value of
the corresponding bit indicating whether the fault requires a transition of control to
the VMM.

18. The method of claim 16 wherein determining whether the fault associated
with the operation of the guest software requires a transition of control to the VMM
further comprises:

determining that the result of the combination does not match the data
stored in the match field,

identifying a value of a corresponding bit in a redirection map; and

inverting the value of the corresponding bit, the inverted value of the
corresponding bit indicating whether the fault requires a transition of control to the
VMM.

19. A system comprising:
a memory having stored therein guest software; and

26

10

15

20

25

WO 2004/003749 PCT/US2003/018667

a processor, coupled to the memory, to execute the guest software, to
determine whether fault information relating to a fault associated with an operation
of the guest software satisfies at least one filtering criterion, and to refrain from
transitioning control to a virtual machine monitor (VMM) if the fault information

satisfies the at least one filtering criterion.

20. The system of claim 19 wherein:

the at least one filtering criterion is at least one control transfer filtering
criterion; and

the processor is to refrain from transitioning control to the VMM by
delivering the fault to the guest software if the fault information satisfies the at

least one control transfer filtering criterion.

21. The system of claim 19 wherein the processor is further to transition control
to the VMM if the fault information does not satisfy the at least one filtering

criterion.

22. A system comprising:

a memory having stored therein guest software; and

a processor, coupled to the memory, to execute the guest software, to
determine whether a fault associated with an operation of guest software requires
a transition of control to a virtual machine monitor (VMM) using fault information
relating to the fault and at least one control transfer filtering criterion, and to
deliver the fault to the guest software if the fault information satisfies the at least

one control transfer filtering criterion.

23. The system of claim 22 wherein the at least one control transfer filtering
criterion is defined using data stored in one or more designated fields, the one or
more designated fields including a match field and a mask field.

24. The system of claim 23 wherein the processor is to determine whether the
fault associated with the operation of the guest software requires a transition of

control to the VMM by combining the fault information with data stored in the mask
27

10

15

20
20

25

30

WO 2004/003749 PCT/US2003/018667

field using a bitwise AND operator, and determining whether the result of the

combination matches the data stored in the match field.

25. A machine-readable medium containing instructions which, when executed
by a processing system, cause the processing system to perform a method, the
method comprising:

receiving fault information relating to a fault associated with an operation of
guest software;

determining whether the fault information satisfies at least one filtering
criterion; and

refraining from transitioning control to a virtual machine monitor (VMM) if

the fault information satisfies the at least one filtering criterion.

26. The machine-readable medium of claim 25 wherein:

the at least one filtering criterion is at least one control transfer filtering
criterion; and

refraining from transitioning control to the VMM comprises delivering the
fault to the guest software if the fault information satisfies the at least one control

transfer filtering criterion.

27. The machine-readable medium of claim 25 wherein the method further
comprises:
transitioning control to the VMM if the fault information does not satisfy the

at least one filtering criterion.

28. A machine-readable medium containing instructions which, when executed
by a processing system, cause the processing system to perform a method, the
method comprising:

determining whether a fault associated with an operation of guest software
requires a transition of control to a virtual machine monitor (VMM) using fault
information relating to the fault and at least one control transfer filtering criterion;

and

28

10

WO 2004/003749 PCT/US2003/018667

delivering the fault to the guest software if the fault information satisfies the

at least one control transfer filtering criterion.

29. The machine-readable medium of claim 28 wherein the at least one control
transfer filtering criterion is defined using data stored in one or more designated

fields, the one or more designated fields including a match field and a mask field.

30. The machine-readable medium of claim 29 wherein the processor is to
determine whether the fault associated with the operation of the guest software
requires a transition of control to the VMM by combining the fault information with
data stored in the mask field using a bitwise AND operator, and determining
whether the result of the combination matches the data stored in the match field.

WO 2004/003749

PCT/US2003/018667

100
/

103 15
~N %N 10~ Ve
App.1 App. 2 App. 1 App. 2
104 106
OS#1 oS #2
102 114
™ Virtual Machine Virtual Machine |~
Abstraction 1 Abstraction 2
,—112
Virtual-Machine Monitor (VMM)
—116
VMCS 122
Processor 118
Memory 120

Bare Platform Hardware

FIG. 1

WO 2004/003749

PCT/US2003/018667

2/9

200
/
(START)

202

RECEIVE INFORMATION RELATED TO A FAULT
ASSOCIATED WITH OPERATION OF GUEST
SOFTWARE

204

DOES THE
FAULT INFORMATION
SATISFY CONTROL
TRANSFER FILTERING
CRITERIA?

N 206
h 4

TRANSITION CONTROL TO VMM

END

FIG. 2

WO 2004/003749

PCT/US2003/018667

3/9

300
/

START

301
FAULT OCCURS IN GUEST SOFTWARE
302
RECEIVE FAULT INFORMATION

303

FAULT
INFORMATION
INCLUDES ERROR
CODE (EC)?

304

IS
INVERTED
VALUE OF CONTROL
BIT SET?

N EC AND MASK ==
MATCH? N
INVERT THE VALUE OF A
CORRESPONDING BIT IN 308
A REDIRECTIONMAP “v
306
310 IS

CONTROL BIT IN
REDIRECTION MAP
SET?

FIG. 3

312
INJECT FAULT [Y
TO GUEST 0S l
| 314
> GENERATE VM EXIT

A

END

[—

WO 2004/003749

4/9

(START

PCT/US2003/018667

400
/

FAULT IN GUEST SOFTWARE

RECEIVE ERROR CODE (EC)

| 402

INT1=EC AND MASK1

INT2 = EC AND MASK2

408

INT1 == MATCH1
OR

A

ALLOW GUEST TO
HANDLE FAULT

INT2 == MATCH2?

409 Y
* —~~

GENERATE VM EXIT

END

410

FIG. 4

WO 2004/003749

PCT/US2003/018667

5/9
500
-

FAULT OCCURS DURING OPERATION OF GUEST |, 501

SOFTWARE

RECEIVE FAULT INFORMATION
| 502

503

DOES FAULT
INFORMATION
INCLUDE ERROR
CODE (EC)?

Y
v 504

INT1 = EC AND MASK1

506

INT2 = EC AND MASK2

508

IS ANY BIT
SET IN INT1

INVERT THE VALUE
OF CONTROL BIT IN
REDIRECTION MAP

INVERTED
VALUE OF CONTROL
BIT SET?

OR
INT2 == MATCH?

510

IS
CONTROLBITIN
REDIRECTION MAP
SET?

N]
518
INJECT FAULT [Y
TO GUEST 0S l
512
GENERATE VM EXIT

END FIG.5

WO 2004/003749

PCT/US2003/018667
6/9 - 600
(START)
602
DEFECT OCCURRENCE OF FAULTING CONDITION
A
604

ANALYZE FAULT INFORMATION

606

DOES THE
FAULT INFORMATION
SATISFY FAULT FILTERING
CRITERIA?

DOES THE
FAULT INFORMATION

610

SATISFY CONTROL
TRANSFER FILTERING
CRITERIA? N
Y
Y
608 l 612 614
A}E;%VgE%L’DEfST lTFO ALLOW GUEST TO TRANSITION
NO FAULT HANDLE FAULT CONTROL TO VMM
(IGNORE FAULT)
|
END

FIG. 6

WO 2004/003749 PCT/US2003/018667

7/9

700
-

2
PAGE FAULT OCCURS DURING OPERATIONOF ™~ 70
GUEST SOFTWARE

'

RECEIVE PAGE FAULT INFORMATION (ERROR CODE, |, 704
FAULTING ADDRESS, PAGE TABLE ADDRESS, DATA
TO BE WRITTEN, ETC).

IS ACCESS A
WRITE?

IS
WRITE TO PTE?

DATAP==07?

(__J712

DETERMINE IF VM
EXIT IS REQIRED

ALLOW ACCESS TO 714
COMPLETEWIO [
FAULTING

» END

FIG.7

WO 2004/003749

8/9

START

PCT/US2003/018667

PAGE FAULT OCCURS DURING OPERATION OF GUEST

SOFTWARE

800
/

RECEIVE PAGE FAULT INFORMATION (ERROR CODE, FAULTING
ADDRESS, PAGE TABLE ADDRESS, DATA TO BE WRITTEN, ETC).

y

IS ACCESS
AWRITE?

IS WRITE
TOPTE?

ADDR->P ==1?

ADDR->PFN ==

DATA.PFN?

ADDR->R/W ==

ALLOWACCESS TO
COMPLETE WO

FAULTING

I

802
804
/-\/
806
808
810
N
816 N
818 N
N
820
N
l ‘ ‘ 812

DETERMINE IF VM
EXIT IS REQIRED

> END

FIG. 8

WO 2004/003749 PCT/US2003/018667

9/9

900
/
(START)

IDENTIFY COMBINATIONS OF FAULT INFORMATION |, 902
VALUES THAT DO NOT REQUIRE A TRANSITION TO
VMM AND/OR THAT MAY BE IGNORED

IDENTIFY THE MAXIMUM NUMBER OF FIELDS THAT 904
CAN BE USED FOR FILTERING CRITERIA

y

906
IDENTIFY AVAILABLE BOOLEAN OPERATORS r\/

908
CREATE FILTERING CRITERIA BASED ON THE ABOVE [~
INFORMATION
A
END

FIG. 9

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

