发明名称

一种加工高酸原油的催化裂化方法

摘要

本发明公开了一种加工高酸原油的方法，特别是利用双提升管催化裂化工艺脱除低酸原油中的石油酸的方法。本发明方法采用双提升管进料、催化剂动态再生工艺，高酸原油作为第二提升管进料与来自再生器第一段的再生催化剂接触，将常规催化裂化原料作为第一提升管进料与来自再生器第二段高温再生高活性催化剂接触。本发明中将高酸原油与常规催化裂化原料在单独的提升管内与来自不同含碳量的再生催化剂接触，在各自的优化的工艺条件下进行反应，改善了各种原料的反应历程，使原料和再生催化剂的活性匹配，加之反应停留时间短，减少二次反应发生等特点，使得产品分布更趋近于合理。
1. 一种加工高酸原油的方法，采用双提升管、催化剂两段再生的流化催化裂化工艺，包括如下步骤：

（1）第一提升管进料为常规催化裂化原料，与来自再生器第二段的高温再生高活性催化剂接触，进行催化裂化反应，所得产物在提升管上部的沉降器分离出油气和待生催化剂，油气进入分馏装置出产品，待生催化剂进入汽提段，经汽提后进入再生器第一段进行烧炭再生；

（2）经过预处理后的高酸原油，经预热至120℃ ~ 260℃后直接作为第二提升管的进料，与来自再生器第一段的再生催化剂接触进行，所得产物在提升管上部的沉降器分离出油气和待生催化剂，油气进入分馏装置出产品，待生催化剂进入汽提段，经汽提后进入再生器第一段进行烧炭再生；所述的经过预处理后的高酸原油总酸值大于0.5mgKOH/g；

（3）经再生器第一段再生后的催化剂部分返回第二提升管的底部循环使用，另一部分进入再生器第二段进一步烧炭再生，使催化剂含碳量降至0.05wt%以下。

2. 按照权利要求1所述的方法，其特征在于所述的第一提升管与第二提升管使用催化剂的重量比为7：3~3：7，高酸原油与常规催化裂化原料的重量比为2：8~8：2。

3. 按照权利要求1所述的方法，其特征在于所述的第一提升管与第二提升管使用催化剂的重量比为4：6~6：4，高酸原油与常规催化裂化原料的重量比为3：7~7：3。

4. 按照权利要求1所述的方法，其特征在于所述的第一提升管和第二提升管共用一个汽提器和一个产品分馏塔。

5. 按照权利要求1所述的方法，其特征在于经过预处理后的高酸原油预热到180℃~230℃。

6. 按照权利要求1所述的方法，其特征在于所述第二提升管的操作条件如下：反应温度400℃~580℃；反应压力（绝压）0.05MPa~0.80MPa；剂油重量比5~20，停留时间0.1s~5.0s；第一段再生催化剂含碳量为0.1~3.0wt%。

7. 按照权利要求1所述的方法，其特征在于所述第二提升管的操作条件如下：反应温度450℃~500℃；反应压力（绝压）0.10MPa~0.30MPa；剂油重量比8~15，停留时间0.5s~1.5s；第一段再生催化剂含碳量0.5~1.5wt%。

8. 按照权利要求1所述的方法，其特征在于所述的第一提升管采用常规催化裂化进料，其总酸值小于0.5mgKOH/g，选自直馏蜡油、焦化蜡油、加氢直馏蜡油、加氢焦化蜡油中的一种或多种，或者按部分催化渣油或加氢渣油。

9. 按照权利要求1所述的方法，其特征在于所述的再生器第一段取热，以维持装置热平衡操作。

10. 按照权利要求1所述的方法，其特征在于所述的经过预处理后的高酸原油总酸值大于1.0mgKOH/g。
一种加工高酸原油的催化裂化方法

技术领域
[0001] 本发明涉及一种加工高酸原油的方法，特别是利用提升管催化裂化工艺加工高酸原油的方法。
[0002] 发明背景
[0003] 近年来，世界高酸原油开采量逐年增加，据报道，2004年比1984年增加了72.7%。而且国际原油市场上高酸原油价格又普遍较低。因此，炼厂加工高酸原油将具有较好的经济效益。但高酸原油中的酸性化合物主要是以环烷酸的形式存在，环烷酸易与铁或硫化铁反应，造成对炼油设备的严重腐蚀，所以炼厂加工高酸原油所面临的问题在于如何脱酸减小设备腐蚀。
[0004] 石油中酸的浓度或含量使用总酸值来表示。总酸值 (TAN) 是指中和1克石油或石油馏分所含所有酸性成分所需要的氢氧化钾 (KOH) 的毫克数，单位是 mg KOH/g。
[0005] 目前，高酸原油的脱酸方法主要有加氢脱酸和热解脱酸。
[0006] 催化加氢脱酸工艺的原理是石油的石油酸和氢气反应生成烃和水。US5897769 报道了使用小孔加氢催化剂 (孔径 5～8.5mm) 加氢选择性脱除石油低分子量环烷酸的方法。US5910242 公开了在加氢脱酸过程中加入一定量的硫化氢有助于脱酸。US6063266 公开的原油加氢方法是在温和的条件 (1～50bar, 100 ~ 300 °C) 进行催化加氢以脱除环烷酸。US5914030 公开了一种降低原油总酸值的方法，向含酸原料油中添加至少 5ppm 的溶液性或在油中可分散的金属催化剂，在氢分压 15 ~ 1000psig (约 205 ~ 6996kPa) 下加热水到一定温度 400 ~ 800 °F (约 204 ~ 427 °C) 反应，并在沉淀过程中，用惰性气体吹扫反应体系，使水和 CO₂ 的分压之和保持在 50psig (约 344kPa) 以下。上述的加氢脱酸工艺需要有氢源和加氢催化剂，虽然脱酸效果好，但成本高。
[0007] 石油酸一般在 300°C 以上发生热裂解反应脱酸，转化成烃类物质。热解脱酸工艺就是利用石油酸高温裂解的原理脱酸。如 US5976360。该工艺也可加入催化剂以利于脱酸反应，如 US5928502、US5871636。催化热解脱酸工艺由于目前没有好的催化剂使脱酸率较低，脱酸效果差。
[0008] CN1827744A 提出了一种采用流化催化裂化工艺加工高酸原油的方法，该方法是将预处理后的高酸原油加热到 250°C 后直接进入催化裂化提升管下部，与再生高温热催化剂接触，进行催化裂化反应，脱除原油中的烯烃，达到脱酸的目的。一般认为，高酸原油的特点是密度大，酸值高，残炭高，因此在高温条件下，高酸原油中的沥青质、胶质、分离含量高，轻组分含量低，金属镍、钒含量高，基本上都大于 20 μg/g，铁、钙含量高。从组成上看，馏分油中的烷烃含量较组份含量高。由于高酸原油的性质很差，所以该方法选择直接将高酸原料进入催化裂化提升管下部，与再生高温热催化剂接触，高酸原油中的沥青质、残炭、重金属很快沉积在催化剂上，容易使催化剂瞬间失活。在催化剂失活的情况下，反应物流在向上提升过程中需要 2~3s (或更长的停留时间)，这段时间里所发生的反应属于非催化裂化的热裂化反应，使生成的轻质馏分油进一步发生非理想的热裂化反应，导致产品分布变差。由于高酸原油较重，残碳和重金属含量很高，高酸原油在提升管下部与高温催化剂接触时，原料汽化量不
足，容易使提升管入口发生堵塞。
[0009] 另外，将高酸原油与低酸原油混合后，进入提升管催化裂化加工处理，存在一个致命弱点就是混合油在同一反应器内进行反应，导致吸附和反应的恶性竞争。高酸原油中的沥青质、残碳、重金属等容易吸附沉积在催化剂上，导致催化剂失活，阻碍了常规催化裂化原料的吸附－反应。

发明内容
[0010] 针对现有技术的不足，本发明提供了一种利用催化裂化工艺加工高酸原油的方法。该方法可避免再生高温、高活性催化剂与高酸原油接触造成瞬间失活，还可改善产品分布。
[0011] 本发明采用流化催化裂化工艺加工高酸原油，该催化裂化装置包括双提升管、催化剂两段再生装置。该方法包括如下步骤：
[0012] （1）第一提升管进料为常规催化裂化原料，与来自再生器第二段的高温再生高活性催化剂接触，发生催化裂化反应，所得的产物在提升管上部的沉降器分离出油气和待生催化剂，油气进入分馏塔分离出产品，待生催化剂进入汽提段，经汽提后进入再生器第一段进行烧硫再生；
[0013] （2）经过预处理后的高酸原油，经预热至120～260℃后直接作为催化裂化第二提升管的进料，与来自再生器第一段的再生催化剂接触，所得产物在提升管上部的沉降器分离出油气和待生催化剂，油气进入分馏塔分离产品，待生催化剂进入汽提段，经汽提后进入再生器第一段进行烧硫再生；
[0014] （3）经再生器第一段再生后催化剂部分返回第二提升管的底部循环使用，另一部分进入再生器第二段进一步烧硫再生，使催化剂含碳量降至0.05wt%以下。
[0015] 其中，所述的第一提升管与第二提升管使用催化剂的重量比为7：3~3：7，最好为4：6~6：4。高酸原油与常规原料的重量比为2：8~8：2，最好为3：7~7：3。
[0016] 其中所述的第一提升管和第二提升管可共用一个汽提器和一个产品分馏塔，也可以分别用一个汽提器和一个产品分馏塔。
[0017] 高酸原油经过预处理后，预热到120~260℃，最好180℃~230℃，直接作为催化裂化装置第二提升管进料，在第二提升管下部与再生器一段再生催化剂接触，进行催化裂化反应，第二提升管的操作条件如下：反应温度400℃~580℃，最好在450℃~500℃；反应压力（绝压）0.05MPa~0.80MPa，最好在0.10MPa~0.30MPa；剂油重量比5~20，最好在8~15，停留时间0.1s~5.0s，最好0.5s~1.5s。一段再生催化剂含碳量优选0.1~3.0wt%，最好在0.5~1.5wt%。
[0018] 本发明与现有的脱酸技术相比有如下优点：
[0019] 1 与加氢脱酸工艺技术比，不需要氢源和加氢催化剂；所用催化裂化催化剂可以反复再生使用，成本低；无需将原料加热到反应所需温度，避免原料升温过程引起的腐蚀；脱酸效果相当。
[0020] 2 与催化热解脱酸工艺技术比，所用催化裂化催化剂可以反复再生使用，成本低，无需将原料加热到反应所需温度，避免原料升温过程引起的腐蚀，脱酸效果好。
[0021] 3 本发明由于高酸原油与常规催化裂化原料在单独的提升管内与来自不同含碳量
的再生催化剂接触，在各自的优化的工艺条件下进行反应，改善了各种原料的反应历程，使原料和再生催化剂的活性匹配，加之反应停留时间短，减少二次反应发生等特点，使得产品分布更趋近于合理。

[0022] 与CN1827744A的方法比，高酸原油进入第二提升管与来自第一段的再生催化剂接触，在催化剂活性较低，反应温度也较低的条件下，发生缓和裂化反应，易于生成中间馏分油；在此反应温度下，能使高酸原油中的环烷酸羧基转变成CO₂、CO₃和H₂O，烷基转变成烃类物质，从而达到脱酸的目的，不但能避免后续加工设备的腐蚀，而且产品的酸度符合要求；也避免了高酸原油与高温、高活性催化剂接触时产生的激烈反应而导致大量干气和焦炭的生成。

[0023] 本发明方法中第一提升管所进的常规原料与第二段再生催化剂接触，由于第二段再生催化剂再生温度较第一段再生温度高，催化剂含碳量很低，活性较高，与常规原料接触中能充分发挥催化剂的活性和选择性，有利于反应生成目的产品。

[0024] 本发明方法中，第一提升管和第二提升管的催化裂化工艺操作条件可根据各自进料的性质选定，操作弹性大，灵活、易于掌握，可以广泛使用。

[0025] 本发明脱酸率达99.5%以上。

附图说明
[0026] 图1为本发明双提升管、两段再生催化裂化装置处理高酸原油的流程示意图。

具体实施方式
[0027] 如图1所示，该方法包括如下步骤：

[0028] (1) 第一提升管1进料为常规催化裂化原料3，即总酸值小于0.5mgKOH/g 催化裂化原料，与来自再生器第二段12的高酸再生高活性催化剂5接触，发生催化裂化反应，生成气体、轻质馏分油和焦炭；然后在提升管上部的沉降器13分离油气和待生催化剂。油气15进入分馏塔分离产品，催化剂进入汽提段14，经汽提后进入再生器第一段11，与一段主风9接触烧炭，再生烟气通过16排出。

[0029] (2) 经预处理后的高酸原油4，经预热后直接作为催化裂化第二提升管2的进料，与来自再生器第一段11的再生催化剂6接触，经反应生成气体、轻质馏分油和焦炭，然后在提升管上部的沉降器13分离油气和催化剂。油气15进入分馏塔分离产品，催化剂进入汽提段14，经汽提后进入再生器第一段11，与一段主风9接触烧炭，再生烟气通过16排出。

[0030] (3) 再生器第一段11的再生催化剂部分返回第二提升管2的底部循环使用，一部分进入再生器第二段12与通入的新生空气10接触，进一步再生，使催化剂含碳量降至0.05wt%以下。

[0031] 另外，加热炉、换热器、高分、低分、分馏塔等均不需要进行改造。但考虑到高酸原油胶质、沥青质、残碳值、重金属含量高，经催化裂化后的焦炭产率要比常规原料催化裂化后的焦炭产率高，因此再生器第一段最好适当取热，以维持装置热平衡操作。

[0032] 本发明所述的经预处理后的原油总酸值大于0.5mgKOH/g，优选为大于1.0mgKOH/g。
[0033] 本发明所述的高酸原油预处理过程为常规的原油脱盐、脱水、脱钙等方式，除去原油中大部分盐类物质、水和钙等。

[0034] 本发明方法中，经预处理后的原油预热可采用常规的预热方法，优选采用换热器与其它高温介质换热。

[0035] 本发明方法中，所述的催化裂化装置第一提升管可采用常规的催化裂化进料，其总酸值小于 1.0mgKOH/g，最好选择小于 0.5mgKOH/g，可以是直馏蜡油、焦化蜡油、加氢直馏蜡油、加氢焦化蜡油中的一种或多种，或者掺兑部分常压渣油或加氢常渣等。第一段的操作条件可选择常规的工艺条件如：原料预热温度为 200℃-400℃，最好为 280℃-320℃；反应温度 400℃-600℃，最好在 480℃-520℃；反应压力（绝压）0.05MPa-0.80MPa，最好在 0.10MPa-0.30MPa；剂油比 2-20（wt），最好在 4-10（wt），停留时间 0.1s-5.0s，最好 0.5s-2.0s。

[0036] 双提升管所用的催化裂化催化剂为同一种催化剂。可采用任何适用于常规催化裂化工艺使用的催化剂，对于催化剂的活性组分没有任何要求，例如：各种改性的 Y 型沸石、ZSM-5 系列沸石等均可。对于催化剂载体和粘结剂也没有特殊限制。

[0037] 下面的实施例将对本发明方法进行详细说明，但本发明并不受实施例的限制。

[0038] 实施例 1-5

[0039] 实施例说明：本发明所提供方法的脱酸效果和产品分布。

[0040] 实施例 1-5 均在小型提升管流化催化裂化装置上进行的。第一提升管进料采用伊朗 VGO，第二提升管进料采用秦皇岛高酸原油，催化剂采用 LBO-16（为工业平衡剂）。旨在考察不同操作条件下的脱酸效果。伊朗 VGO 和秦皇岛高酸原油性质见表 1，催化剂性质见表 2；实施例 1-5 实验的主要工艺条件和产品分布及主要产品性质见表 3。

[0041] 脱酸率的计算方法如下：脱酸率＝（高酸原油原料的总酸值 - 所得液相产品的总酸值）/ 高酸原油原料的总酸值 ×100%。

[0042] 表 1 实施例采用的原料油性质

<table>
<thead>
<tr>
<th>项目</th>
<th>伊朗 VGO</th>
<th>秦皇岛高酸原油</th>
</tr>
</thead>
<tbody>
<tr>
<td>密度（20℃），kg/m³</td>
<td>913.4</td>
<td>958.6</td>
</tr>
<tr>
<td>酸值，mgKOH/g</td>
<td>0.30</td>
<td>4.25</td>
</tr>
<tr>
<td>凝点，℃</td>
<td>37</td>
<td>-2</td>
</tr>
<tr>
<td>氮，wt.%</td>
<td>0.15</td>
<td>0.32</td>
</tr>
<tr>
<td>硫，wt.%</td>
<td>1.34</td>
<td>0.29</td>
</tr>
<tr>
<td>胶质，wt.%</td>
<td>4.1</td>
<td>19.0</td>
</tr>
<tr>
<td>碳质，wt.%</td>
<td>0.08</td>
<td>8.0</td>
</tr>
<tr>
<td>铁 / μg/g</td>
<td>1.08</td>
<td>40.39</td>
</tr>
<tr>
<td>锰 / μg/g</td>
<td>0.01</td>
<td>13.72</td>
</tr>
<tr>
<td>< 350℃收率, wt%</td>
<td>0.0</td>
<td>9.8</td>
</tr>
<tr>
<td>350～500℃收率, wt%</td>
<td>90</td>
<td>26.7</td>
</tr>
<tr>
<td>≥500℃收率, wt%</td>
<td>10</td>
<td>63.5</td>
</tr>
</tbody>
</table>

表 2 新鲜剂性质

催化剂牌号	LBO-16
组成, wt%	12.3
灼减, wt%	45.7
Al₂O₃, wt%	0.18
Na₂O, wt%	0.24
Fe₂O₃, wt%	5.10
RE₂O₃, wt%	性质
孔体积, ml/g	0.38
表观密度, g/ml	0.75
粒度分布, wt%	微活
0-45.8 μm	82
45.8-111 μm	274
> 111 μm	1.4

表 3 主要工艺条件和产品分布及主要产品性质
<table>
<thead>
<tr>
<th>实施例</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>提升管操作条件</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一提升管进料，第二提升管进料，重量比</td>
<td>7:3</td>
<td>6:4</td>
<td>5:5</td>
<td>4:6</td>
<td>3:7</td>
</tr>
<tr>
<td>第一提升管催化剂，第二提升管催化剂，重量比</td>
<td>6:4</td>
<td>5:5</td>
<td>4.5:5.5</td>
<td>4:6</td>
<td></td>
</tr>
<tr>
<td>第一提升管反应温度，℃</td>
<td>500</td>
<td>515</td>
<td>510</td>
<td>490</td>
<td>480</td>
</tr>
<tr>
<td>第一提升管剂油重量比</td>
<td>9.0</td>
<td>7.5</td>
<td>6.5</td>
<td>5.5</td>
<td>6.0</td>
</tr>
<tr>
<td>第一提升管常规原料油预热温度，℃</td>
<td>290</td>
<td>310</td>
<td>280</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>第一提升管停留时间，s</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.7</td>
<td>2.0</td>
</tr>
<tr>
<td>第二提升管反应温度</td>
<td>480</td>
<td>470</td>
<td>480</td>
<td>490</td>
<td>500</td>
</tr>
<tr>
<td>第二提升管剂油重量比</td>
<td>9.0</td>
<td>8.5</td>
<td>8.0</td>
<td>8.5</td>
<td>12</td>
</tr>
<tr>
<td>第二提升管高酸原油预热温度，℃</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
</tr>
<tr>
<td>第二提升管停留时间，s</td>
<td>1.5</td>
<td>1.3</td>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>产品分布，wt.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>干气</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>液化气</td>
<td>8.6</td>
<td>9.3</td>
<td>8.9</td>
<td>7.2</td>
<td>6.2</td>
</tr>
<tr>
<td>C5~180℃</td>
<td>42.5</td>
<td>42.3</td>
<td>41.0</td>
<td>40.4</td>
<td>39.0</td>
</tr>
<tr>
<td>180℃~350℃</td>
<td>25.8</td>
<td>26.6</td>
<td>27.1</td>
<td>26.1</td>
<td>27.6</td>
</tr>
<tr>
<td>> 350℃</td>
<td>15.0</td>
<td>13.3</td>
<td>14.8</td>
<td>17.8</td>
<td>18.2</td>
</tr>
<tr>
<td>焦炭</td>
<td>6.8</td>
<td>7.1</td>
<td>6.9</td>
<td>7.5</td>
<td>8.2</td>
</tr>
<tr>
<td>轻油收率，wt.%</td>
<td>68.3</td>
<td>68.9</td>
<td>68.1</td>
<td>66.5</td>
<td>66.6</td>
</tr>
<tr>
<td>汽油主要性质：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>密度 (20℃)，g/cm³</td>
<td>0.7384</td>
<td>0.7383</td>
<td>0.7382</td>
<td>0.7380</td>
<td>0.7383</td>
</tr>
<tr>
<td>S, wt.%</td>
<td>0.15</td>
<td>0.12</td>
<td>0.13</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>N, wt.%</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>酸性，mgKOH/g</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>柴油主要性质：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9150</td>
<td>0.9152</td>
<td>0.9149</td>
<td>0.9153</td>
<td>0.9150</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>密度 (20℃)，g/cm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S，wt%</td>
<td>1.29</td>
<td>1.21</td>
<td>1.17</td>
<td>1.13</td>
<td>1.05</td>
</tr>
<tr>
<td>N，wt%</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>酸值，mgKOH/g</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>≥ 350℃重油主要性质</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>酸值，mgKOH/g</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>含硫率，%</td>
<td>99.82</td>
<td>99.82</td>
<td>99.78</td>
<td>99.78</td>
<td>99.73</td>
</tr>
</tbody>
</table>