US008271745B2

a2 United States Patent 10) Patent No.: US 8,271,745 B2
Ware (45) Date of Patent: Sep. 18, 2012
(54) MEMORY CONTROLLER FOR 6,260,127 Bl 7/2001 Olarig et al.
NON-HOMOGENEOUS MEMORY SYSTEM 6,397,292 Bl 5/2002 Venkatesh et al.
6,578,127 Bl 6/2003 Sinclair
(75) Inventor: Frederick A. Ware, Los Altos Hills, CA g:gég:ggg gé ggggg FD(:;Zttzll"
(Us) 7,293,009 B2 11/2007 Jacobs etal.
2003/0061352 Al* 3/2003 Bohreretal. 709/226
(73) Assignee: Rambus Inc., Sunnyvale, CA (US) 2004/0133747 Al 7/2004 Coldewey
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
US.C. 154(b) by 0 days. OTHER PUBLICATIONS
Li-Pin Chang ‘Hybrid solid-state disks: Combining Heterogeneous
(21) Appl. No.: 13/149,792 NAND Flash in Large SSDs’, Design Automation Conference 2008,
ASPDAC 2008, Asia and South Pacific, Mar. 21-24, 2008, pp. 428-
(22) Filed: May 31, 2011 433 %
(65) Prior Publication Data (Continued)
US 2012/0005412 Al Jan. 5, 2012
Primary Examiner — Pierre-Michel Bataille
Related U.S. Application Data (74) Attorney, Agent, or Firm — Morgan, Lewis & Bockius
(63) Continuation of application No. 12/545,659, filed on LLP
Aug. 21, 2009, now Pat. No. 7,962,715, which is a
continuation of application No. 11/852,996, filed on 7 ABSTRACT
Sep. 10, 2007, now Pat. No. 7,581,078, which is a A memory controller includes at least one interface adapted to
continuation of application No. 10/828,900, filed on be coupled to one or more first memory devices of a first
Apr. 20, 2004, now Pat. No. 7,269,708. memory type having a first set of attributes, and to one or more
second memory devices of a second memory type having a
(1) Int. Cl. second set of attributes. The first and second sets of attributes
GOGF 12/06 (2006.01) have at least one differing attribute. The controller also
(52) US.CL . 711/154; 711/103; 711/202; 711/E12.001; includes interface logic configured to direct memory transac-
711/112 tions having a predefined first characteristic to the first
(58) Field of Classification Search 711/103, memory devices and to direct memory transactions having a
711/112, 118, 154, E12.001, 202, 203, E12.008 predefined second characteristic to the second memory
See application file for complete search history. devices. Pages having a usage characteristic of large volumes
of write operations may be mapped to the one or more first
(56) References Cited

U.S. PATENT DOCUMENTS

6,088,767 A 7/2000 Dan et al.
6,178,132 Bl 1/2001 Chen et al.
6,219,763 Bl 4/2001 Lentz et al.

System with Non-Homog
100

memory devices, while pages having a read-only or read-
mostly usage characteristic may be mapped to the one or more
second memory devices.

42 Claims, 4 Drawing Sheets

ensous Main Memory

First Portion / First Type of

‘Second Portlon / Second Typa of
Flash)

16
Block B
lock 8,1

WMamory Devics (o.g,, DRAM) Wamory Devics (6.4.,
104 108~ B
A Maln Memory :Et
hlul
Wite Read Memory Controller ReadY§\/ 136
102 WMemory
12 interface [1™
Wemory [‘
Interface - Prafotch)
‘Write Cache Buffer 138

137

ReadX

18
120

Address Address
Compare Logle
Endurance
Cache

WriteX

122

| Processor Interface Logic |

Processor

)
¥
108 126
Page Table Cache| ’:1\32 1101

S
124

1/ Controller

Gache I./'\

[Usage Fisld
134

103

Secondary Storage System
:ndurance 128
Table &
130
Page Tablo B

US 8,271,745 B2
Page 2

2004/0133757
2005/0177675
2008/0172520
2008/0209112
2008/0215800
2008/0301256
2010/0042773
2010/0122016
2010/0262755

U.S. PATENT DOCUMENTS

Al
Al
Al*
Al*
Al*
Al
Al*
Al*
Al*

7/2004
8/2005
7/2008
8/2008
9/2008
12/2008
2/2010
5/2010
10/2010

Rentschler et al.
Newman et al.

LEe oo 711/103
Yuetal. .oooovieivieiinn 711/103
Leeetal. ...coovvevenne, 711/103
McWilliams et al.

Yeh ..o, . 711/103
Marotta et al. . 711/103
Beckeretal. 711/103

OTHER PUBLICATIONS
Bhattacharya et al., “FET Gate Structure for Nonvolatile N-Channel
Read-Mostly Memory Devices,” IBM Technical Disclosure Bulletin,
US IBM Corp., vol. 18, No. 6, 2 pgs., 1976.
“4Mb Smart 3 Boot Block Flash Memory,” Micron Technology, Inc.
(2001).
“4 MEG x 16 SyncFlash Memory,” Micron Technology, Inc. (2001).
“SyncFlash and DRAM Mail Memory Subsystems in Pentium and
Windows Applications,” Micron Technology, Inc. (Mar. 2002).

* cited by examiner

U.S. Patent Sep. 18, 2012 Sheet 1 of 4 US 8,271,745 B2

System with Non-Homogeneous Main Memory

100
First Portion / First Type of Second Portion / Second Type of
Memory Device (e.g., DRAM) Memory Device (e.g., Flash)
o 104 106~ E
A Main Memory B
101
A A
Write Read Memory Controller ReadY g\~ 136
102 Memory
114
\ J 12 Interface J
Memory T
Interface p Prefetch
Write Cache
f I 137 Buffer f1 38
116 B, 7
Block B’1/ ReadX
WriteX
118 f
l Address Address
. e
Compare Logic
120 Endurance
—p
f Cache 122
\ J Y S
Processor Interface Logic

i
Y

¢ J 108 126 "\4 t S124

Processor /O Controller |
L~
Page Table Cache}] 132 1101
(A 1] Secondary Storage System
o0e — 128
/ Usage Field Endurance |{*
134 Table A
=2 1%
L~ Page Table B
Cache 1 103

Figure 1

U.S. Patent Sep. 18, 2012 Sheet 2 of 4 US 8,271,745 B2

Main Memory
Address Space
212
Processor DRAM
210
Virtual Physical
Virtual Address A ||Address . Address _|> w2
N Mapping - L -w@
~ i Module Pt | H
Virtual Address B ||----- > 200 <.
_-¥ S FLASH
Virtual Address C [~ T
[
¢ [3
®
- . Physical Address Usage Field
Virtual Address 206 208
. 1
Virtual Address A| Physical Address A (read only)
0
Virtual Address B| Physical Address B (read-write)
204
3 _dmq . 0
: : H

Figure 2

U.S. Patent Sep. 18, 2012 Sheet 3 of 4 US 8,271,745 B2
START
300
Initialize Page Table Usage f
Fields
* 302
Write Request Wait For Read Read Request
or Write
Transaction
v 310 Request v 304
DRAM | Translate | FLASH DRAM | Translate | FLASH
Address Address i
306 !
]
__________ 312 A J
: |Im===== t _--_-I
i Check Read data | Compare W/ !
' Endurance " From DRAM i Write Cache !
i Counter | Entries |
_________]
i 320 -
1 Write Block
i To FLASH & 316 2N
] ” \\
1 Update f ol AN
i Endurance i----=<_ Match?
i Counter i :}\\ /,u
]] _r’
| e 1 328 | 322 'N
]]
L . oyl VAR |
:—><” Write Cache ™. ___| Write data | ' i
~. Available? .~ ! To Cache ! : i
N ’, |
S - : : t v
AR ' | ;o-m-t---- I
’(N b ' 1 Read data | | Read data
1m= s mes 1 From ' From |«
I Swap 1 Cache | FLASH
L : ' A%
Y ~~— 1330 308
Remedial
Action
~— 332
_ U318
_ | Write Page
| To DRAM

Figure 3

U.S. Patent Sep. 18, 2012 Sheet 4 of 4 US 8,271,745 B2

System
100
\
\
> Memory 101 /110
108 ™
’ Operating System 410
CPU(s) Virtual Memory Management Module -~ 412
Page Table Management Module | 414
Usage Based Page Mapping |~ 416
124 —
400-. Application Programs 432
\\ Endurance Table 128
User interface Page Table .~ 130
Keyboard *
S04 406
(| Network
Interface

Figure 4

US 8,271,745 B2

1
MEMORY CONTROLLER FOR
NON-HOMOGENEOUS MEMORY SYSTEM

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/545,659, filed Aug. 21, 2009, now U.S. Pat.
No. 7,962,715, which is a continuation of U.S. patent appli-
cation Ser. No. 11/852,996, filed Sep. 10, 2007, now U.S. Pat.
No. 7,581,078, issued Aug. 25, 2009, which is a continuation
of U.S. application Ser. No. 10/828,900, filed Apr. 20, 2004,
entitled “Memory Controller for Non-Homogeneous
Memory System,” now U.S. Pat. No. 7,269,708, issued Sep.
11, 2007, which are incorporated herein by reference in their
entirety.

TECHNICAL FIELD

The disclosed embodiments relate generally to memory
systems and methods, and in particular to a memory control-
ler for a non-homogeneous memory system.

BACKGROUND

Computer program code and data needed for execution of
a process on a computer system typically resides in the com-
puter system’s main memory. The main memory of a com-
puter system (e.g., DRAM), however, may not be large
enough to accommodate the needs of the entire process. Vir-
tual memory is a commonly used technique that allows pro-
cesses that are not stored entirely within main memory to
execute by means of an automatic storage allocation scheme.
The term virtual memory refers to the abstraction of separat-
ing logical memory (i.e., memory as seen by the process) and
physical memory (i.e., memory as seen by the processor). The
virtual memory abstraction is implemented by using second-
ary storage to augment main memory in a computer system.
Pages of data and program code are transferred from second-
ary storage to main memory as the data and program is needed
by an executing process, and pages of data and program code
are evicted from main memory and written to secondary
storage when room is needed in main memory to store other
pages of data and program code. The process of moving pages
of data and program code back and forth between main
memory and secondary storage is called by a variety of
names, including swapping, paging, and virtual memory
management.

In a virtual memory system, a program generated address
or logical address, which typically includes a logical page
number plus the location within that page, is interpreted or
mapped onto an actual (i.e., physical) main memory address
by the operating system using an address translation function.
Ifthe page is present in main memory, the address translation
function substitutes the physical page frame number for the
logical number. If the address translation function detects that
the page requested is not present in main memory, a fault
occurs and the page is read into a main memory page frame
from secondary storage. This address translation function can
be accomplished by using a directly indexed table, commonly
referred to as a “page table,” which identifies the location of
the program’s pages in main memory. If the page table indi-
cates that a page is not resident in main memory, the address
translation function issues a page fault to the operating sys-
tem. This causes execution of the program which required the
page to be suspended until the desired page can be read from
secondary storage and placed in main memory. Further back-
ground regarding virtual memory management can be found

20

25

30

35

40

45

50

55

60

65

2

in Richard W. Carr, Virtual Memory Management, UMI
Research Press, Ann Arbor, Mich., 1984.

Portable computing devices typically use a single type of
memory device at each level in their memory hierarchy. For
example, portable computers (e.g., notebook computers)
typically have at three or more hierarchical levels of memory,
including secondary storage, main memory and cache
memory. Often there are two or more levels of cache memory.
Secondary storage is typically implemented with magnetic
disk storage (often called hard disk storage). Main memory is
typically implemented with Dynamic Random Access
Memory (DRAM), and cache is typically implemented using
Static Random Access Memory (SRAM). In some portable
computers, such as personal digital assistants (PDA’S), the
secondary storage is implemented using flash memory
instead of magnetic disk storage.

DRAM has a near-optimal combination of operational
attributes for implementing main memory. These attributes
include, without limitation, low cost (only magnetic disk
storage has a lower per-bit cost), low read time (the read
access time is within an order of magnitude of that of the
highest speed SRAM), low write time that is the same or
similar to the read access time, and unlimited endurance (i.e.,
the storage cell can be rewritten an unlimited number of
times).

SUMMARY

A memory controller for a non-homogeneous memory sys-
tem is configurable to facilitate page operations between a
virtual memory address space and physical pages of memory
devices in the memory system. The memory devices, which
collectively form the main memory of a computer or com-
puter controlled device, include two or more memory device
types (e.g., DRAM, Flash) with different attributes. A tag or
other data structure associated with each page includes data
indicative of the memory device, or type of memory device, in
which the page is to be stored whenever the page is brought
into main memory.

In some embodiments, virtual memory pages that are read-
write, especially pages that may be written a large number of
times, are mapped to a first portion of main memory imple-
mented using one or more memory devices of a first type,
while virtual memory pages that are read-only are mapped to
a second portion of main memory, implemented using one or
memory devices of a second type. In some embodiments, at
least some virtual memory pages expected to be written to
only a small number of times (i.e., pages having a “read
mostly” usage characteristic) are mapped to the second por-
tion of main memory.

In some embodiments, the second type of memory device
has limited endurance while the second type of memory
device has unlimited endurance. (For example, various types
of NOR Flash memory have cycle endurances ranging from
1,000 cycles to 100,000 write cycles.) In some embodiments,
the second type of memory device has substantially longer
write time than read time, while the first type of memory
device has substantially similar read and write time.

In some embodiments, the memory controller includes a
write cache, used to temporarily store write data directed to
pages in the second type of memory device. In some embodi-
ments, an endurance table is adapted to track page operations
directed to memory devices having limited endurance.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system having non-homo-
geneous main memory.

FIG. 2 is a diagram illustrating an embodiment of a data
structure for managing page operations in a non-homoge-
neous memory system.

US 8,271,745 B2

3

FIG. 3 is a flow diagram of an embodiment of a non-
homogeneous memory process.

FIG. 4 is another block diagram of a computer system
having non-homogenous main memory.

DESCRIPTION OF EMBODIMENTS
DRAM and Flash Memory Attributes

While DRAM has many advantages over other memory
device types for implementing main memory in a computer
system, it also has some disadvantages. For example, DRAM
storage cells must be refreshed to maintain their contents even
when the DRAM is not being accessed. Additionally, when
power is removed from the system, the DRAM storage cells
loose their stored information. In other words, data storage by
DRAM devices is volatile. In the future, it is likely that the
attributes needed by computer systems, such as portable com-
puter systems, will no longer be optimally satisfied by DRAM
devices. Indeed, it is possible that other memory device types
(e.g., Flash memory) will have a cost per bit that is compa-
rable or lower than DRAM memory. In addition, these alter-
native memory device types may have different attributes
than DRAM. For example, Flash memory attributes include,
without limitation, low cost (i.e., comparable to DRAM), low
read time (i.e., the read access time is within an order of
magnitude of that of the highest speed SRAM in the cache
hierarchy), large write time (i.e., the write access time is large
compared to the DRAM write access time), limited endur-
ance (i.e., the storage cell may be written a limited number of
times), non-volatile (i.e., Flash memory retains its contents
without requiring periodic refreshing), and zero standby
power (i.e., when power is removed from the system, Flash
memory retains the stored information). The Flash memory
attributes of low read time and non-volatility make Flash
memory devices particularly attractive for use in portable
computing applications. As explained below, however,
replacing the magnetic disk storage with Flash memory is a
suboptimal use of Flash memory.

System Overview

FIG. 11is a block diagram of a computer system 100 having
a non-homogeneous main memory 101. The computer sys-
tem 100 is includes a memory controller 102, main memory
101, one or more processors 108 and secondary storage 100
(e.g., ahard disk unit). In many embodiments, cache memory
103 forms a fastest level in the memory hierarchy, with main
memory 101 and secondary storage 110 comprising two other
levels of the memory hierarchy. In some embodiments, two or
more levels of cache memory are provided, resulting a
memory hierarchy with four or more levels. In some embodi-
ments, the processor 108, /O controller 126 and memory
controller 102 may be separate components, while in other
embodiments they may reside on a common component.

Main Memory

The main memory 101 includes a first portion 104 imple-
mented with one or more memory devices of a first type (e.g.,
DRAM), and a second portion 106 implemented with one or
more memory devices of a second type (e.g., NOR Flash,
often simply called Flash memory). The main memory 101
stores programs and dataused by processor 108 during execu-
tion of those programs.

Data can be distributed among the first and second portions
104, 106 of main memory 101 as well as secondary storage

20

25

30

35

40

45

50

55

60

65

4

110 in a manner designed to provide fast access to the data and
programs that are most frequently used. In some embodi-
ments, this distribution may be governed, at least in part, by a
memory management policy implemented by the system 100.

The memory devices in the first and second portions 104,
106 of main memory are coupled to the memory controller
102 via memory interfaces 112 and 114, respectively. The
memory devices in portion 104 have one or more attributes
that differ from the attributes of the memory devices in por-
tion 106. Examples of such attributes are: the ratio of write
access time to read access time, volatility, and endurance.

For example, when the second portion 106 is implemented
using Flash memory devices, the memory devices in the
second portion have a write access time that is substantially
greater than their read access time. For Flash memory, the
write access time is sometimes called the erase-write time,
because writing new data to a Flash memory device requires
erasing the corresponding block of the memory device before
new data is written to the memory device. A typical NOR
Flash memory device may have aread access time ofless than
100 ns, and an erase-write time of more than 1 millisecond.
Thus, the ratio of write access time to read access time may
exceed 10,000 to 1, and will typically be greater than 100 to
1. This attribute differs from the write access time of, for
example, DRAM, which is typically about the same as the
read access time of DRAM devices. For example, the read
access time and write access time of a DRAM device are
typically both less than 100 ns, and often both are between 20
ns and 40 ns. The ratio of write access time to read access time
of DRAM devices is generally less than 4 to 1, and is typically
less than 2 to 1. The first portion 104 and second portion 106
of main memory 101 occupy distinct portions of the main
memory address space, sometimes called the physical
memory address space, but share the same virtual memory
address space used by programs during their execution by the
processor 108.

In some embodiments, the first portion 104 of main
memory 101 is implemented using one or more DRAM
memory devices, and the second portion 106 of main memory
101 is implemented using one or more Flash memory devices
(e.g., NOR Flash memory devices). In other embodiments,
one or both portions of main memory 101 may be imple-
mented using other types of memory devices. In some
embodiments, main memory 101 may be implemented with
more than two portions, implemented using more than two
types of memory devices. For each such arrangement, the
memory controller 102 can be configured to exploit the dif-
ferent attributes of the memory device types in the respective
portions of main memory so as to improve one or more
aspects of memory system performance.

Secondary Storage System

The secondary storage system 110 is coupled to the
memory controller 102 via processor interface logic 122, I/O
controller 126 and communication channel 124 (sometimes
called bus 124). The secondary storage system 110 can be any
type of file storage device, system or network, including
without limitation, hard disk units, optical disks, Universal
Serial Bus (USB) Flash, storage area networks (SANs), a
wireless connection to a file server system or wireless local
area network (WLAN), and any other file storage device,
system or network having a file structure for storing virtual
pages. In some embodiments, the second storage system 110
is a non-volatile repository for user and system data and
programs. Uses of the secondary storage system 110 include
storing various forms of programs (e.g., source, object,

US 8,271,745 B2

5

executable) and temporary storage of virtual pages (e.g.,
swap space). Information stored in the secondary storage
system 110 may be in a variety of forms, including readable
text and raw data (e.g., binary).

The secondary storage system 110 includes a file manage-
ment system (not shown) for providing mapping between the
logical and physical views of a file via one or more services
and the I/O controller 126. Some basic services of the file
management system include keeping track of files, I/O sup-
port (e.g., providing a transmission mechanism to and from
main memory), management of the secondary storage system
110, sharing I/O devices, and providing protection mecha-
nisms for the files and other information.

Page Table

A full description of virtual memory management and page
table operation is outside the scope of this document, and
furthermore is well understood by those of ordinary skill in
the art of data processor design. Only those aspects of virtual
memory management required for description of the present
invention are presented here.

In embodiments that use virtual memory paging tech-
niques, a page table is used to indicate the location of each
logical page, either in main memory 101 or secondary storage
110. While the page table 130 is shown in FIG. 1 as being
stored in secondary storage 110, portions of the page table
may be stored in main memory 101, and furthermore the
entries of the page table currently in use are stored within the
processor 108 in a page table cache, sometimes called the
translation look-aside buffer (TLB) 132. The page table
entries in the TL.B 132 map virtual memory pages to physical
page frames in main memory. When the TLB 132 lacks a page
table entry required for mapping a virtual memory address to
a physical main memory address, an interrupt process is
automatically invoked to bring the required page table entry
into the TLB 132. If the virtual memory page containing the
virtual memory address has not yet been assigned to a physi-
cal main memory page, one is assigned, and the page table
entry is updated to reflect the assignment. Furthermore, if
necessary, the virtual memory page may be initialized or
swapped in from secondary storage.

In some embodiments, each page table entry in the TLB
132 includes a usage field 134 that designates the portion of
main memory 101 to which the corresponding virtual
memory page is mapped. In some embodiments, the usage
field 134 of each entry comprises the most significant bit
(MSB), orbits (MSBs), of the physical memory address of the
page. In other embodiments, the usage field 134 does not
comprise the MSB or MSBs of the page’s physical memory
address, but does specify the portion (104, 106) of the main
memory 101 to which the page is mapped. In FIG. 1, a usage
field value of “A” represents a page mapped to the first portion
104 of main memory 101, while a value of “B” represents a
page mapped to the second portion 106 of main memory 101.

Endurance Table

NOR Flash memory devices typically have different
granularity for read and write operations. In particular, the
minimum unit for reading data from Flash memory may be a
word (e.g., 16 bits) while the minimum unit for writing data to
Flash memory is typically significantly larger than the mini-
mum unit for reading, and is called either a block or a group
of memory cells. In some Flash memory devices, each block
includes between 1024 and 65,536 words, with blocks typi-
cally containing between 4 k (4096) and 32 k (32,768) words.

20

25

30

35

40

45

50

55

60

65

6

Some Flash memory devices have blocks or groups of
memory cells of two or more distinct sizes.

Furthermore, it may be noted that a page, which is the basic
unit of data or storage in a virtual memory system is typically,
but not necessarily, of a different size than a block in a Flash
memory device. Thus, a page may be stored in a plurality of
blocks, or one block could store multiple pages, or each page
could be stored in a single block.

In embodiments in which a portion of main memory 101 is
implemented using memory devices having limited endur-
ance (e.g., Flash memory devices), an endurance table 128 is
used to keep track of the number of write operations to each
block of memory cells in the corresponding portion of main
memory. In some embodiments, the endurance table 128
contains a distinct entry for each block of memory cells for
which a write operations count is to be maintained. In other
words, the endurance table 128 has a distinct entry for each
distinct block of memory cells in each of the memory devices
in the second portion of main memory.

In some embodiments, the endurance table is stored in
secondary storage 110, to ensure that the endurance table 128
is retained when system power is turned off. The “endurance”
of a memory device is defined as the maximum number of
erase-write cycles that the memory device can support, which
is a parameter typically included on data sheets for off-the-
shelf memory non-volatile memory devices. The count values
in the endurance table 128 are updated, maintained and
checked to ensure that the endurance limit of the device is not
exceeded (e.g., 10K cycles). For example, prior to performing
a write operation on the second memory device 106, the
operating system can check erase-write cycle count data
stored in the endurance table 128 to determine whether to
complete the write operation, or perform a contingency
operation (e.g., write to a different block of memory or to a
different portion of main memory).

In some embodiments, the erase-write cycle count for a
block of memory cells is decremented by the memory con-
troller 102 after each erase-write operation. Prior to each
erase-write operation the cycle count for the block to be
written is compared with zero (or other threshold value). Ifthe
count is equal to zero, the endurance limitation of the memory
device has been reached with respect to the memory block
corresponding to the count. In other embodiments, the erase-
write cycle count is either incremented or decremented, and
the resulting value is compared with a threshold value to
determine if the endurance limitation has been reached. More
generally, in these embodiments, the memory controller 102
utilizes an endurance table counting mechanism to ensure
that the endurance limitation of each block of memory cells in
the second portion 106 of main memory 101 (i.e., the portion
implemented using memory devices of limited endurance) is
not exceeded.

In other embodiments, an endurance table 128 is not
employed. In such embodiments, other measures are
employed to ensure that the endurance limitation of the
memory devices in a portion 106 of main memory 101 are not
exceeded. For instance, pages initially mapped to limited
endurance memory devices may be remapped to unlimited
endurance memory devices when predefined remapping con-
ditions are satisfied. Such predefined remapping conditions
may include conditions relating to write operations to a page
initially mapped to a page frame in a limited endurance
memory device. For instance, the predefined remapping con-
dition for a page may be satisfied when more than N write

US 8,271,745 B2

7

operations are performed on the page (e.g., where N is a
predefined non-negative integer value).

Processor

The processor 108 is coupled to the memory controller 102
via bus 124 and processor interface logic 122. The processor
108 can be any processor suitable for memory management
and/or control, including without limitation, a central pro-
cessing unit (CPU), a memory management chip or chip-set,
an on-chip memory management unit (MMU) and the like. In
some embodiments, the processor 108 includes a page table
cache 132 (e.g., a translation look-aside buffer or TLB) for
storing the physical address translations of recently refer-
enced logical addresses.

Memory Controller

The memory controller 102 includes memory interfaces
112, 114 for coupling the memory controller 102 to the
memory devices in two or more distinct portions (104, 106) of
main memory 101, and processor interface logic 122. The
memory interfaces 112 and 114 may include signal condi-
tioning circuitry and other devices for transmitting addresses,
data, and control signals to and from the memory devices in
main memory portions 104 and 106.

In some embodiments, the first memory interface 112
includes circuitry for powering down, or reducing power to
the memory devices in the first portion 104 of main memory
101 in response to a power reduction command from the
memory controller 102 or the processor 108. Similarly, in
some embodiments, the second memory interface 114
includes circuitry for powering down, or reducing power to
the memory devices in the second portion 106 of main
memory 101 in response to a power reduction command from
the memory controller 102 or the processor 108.

In some embodiments, the memory controller 102 also
includes a write cache 116 and address compare logic 118,
both coupled to a communication path 136 (ReadY path). In
some embodiments, the memory controller 102 includes an
endurance counter and cache 120 coupled to path 136 (ReadY
path). The path 136 is coupled to the bus 124 via the processor
interface logic 122. The processor interface logic 122 may
include signal conditioning circuitry and other devices for
transmitting data, addresses and control signals to and from
the bus 124. For example, the processor interface logic 122
may include decoding logic for decoding one or more bits of
a physical address to determine whether the first or second
portion of main memory will receive a memory access trans-
action, as described below with respect to FIG. 2.

In some embodiments, the ReadY path 136 couples the
second portion 106 of main memory 101 to a streaming-type
prefetch buffer 138. If the memory devices in the second
portion 106 of main memory are non-volatile memory
devices (e.g., Flash memory devices), it is likely that much of
the information contained in those memory devices will be of
a media nature and therefore access to that information could
be made faster by the streaming-type prefetch bufter 138. The
use of the prefetch butfer 138 could also save power, since the
memory devices in the second portion 106 of main memory
could be powered down in between prefetch accesses, par-
ticularly if the system was performing a single application
like media playback.

It should be apparent that the memory controller 102 would
typically include other hardware/software components (e.g.,
clock circuits, buffers, switches, power management circuits.

20

25

30

35

40

45

50

55

60

65

8

etc.), which are not shown in FIG. 1 for clarity purposes. Such
components are well-known in the field of memory system
management and control.

Endurance Cache

The endurance counter and cache 120 stores the most
recently used entries of the endurance table 128, and updates
those entries (by decrementing or incrementing them) when a
corresponding block write operation is performed. For
example, prior to a write operation to a physical page in Flash
memory address space, it may be necessary to check the
endurance cache 120 to determine whether the endurance
limit has been exceeded. If it is determined that the endurance
limit has been exceeded, then the operating system can abort
the write operation and/or perform a remedial operation (e.g.,
remapping the page in question to another memory block in
the same portion of main memory, or remapping the page in
question to a page frame in another portion of main memory).

Note that it is possible that the smallest set of storage cells
(e.g., a block) that can be written to a memory device in the
second portion 106 of main memory is smaller than the num-
ber of storage cells that are written by a single write transac-
tion by the processor 108 (e.g., a word). If this is the case, a
read-modify-write operation can be performed by the
memory controller 102. The read-modify-write operation
includes reading out the group, modifying the data corre-
sponds to the word (or other unit) written by the processor,
and then writing the group back to the memory device. Alter-
nately, a write cache (described elsewhere in this document)
can be used to accumulate written data, which is then written
to the memory device at appropriate times (e.g., when data in
the write cache requires flushing).

Write Cache Structure & Operation

A write cache 116 may be used in embodiments in which a
portion of main memory 101 is implemented using memory
devices (such as Flash memory devices) having either limited
endurance, or write access time that is significantly longer
than read access time, or both. The write cache 116 may be
used both to hide the write access latency of such memory
devices, and also to reduce write cycles to memory devices
having limited endurance. When a block B, of a physical page
B in a memory device in the second portion 106 of main
memory 101 is to be written (e.g., because the processor 108
has written new data to one or more words in the block B,),
the write data is placed in a corresponding block B,' of the
write cache 116.

In some embodiments, the write cache 116 is organized in
an associative manner (e.g., fully associative, multiple set
associative, etc.). This cache organization, as opposed to a
directly mapped (one set) cache, reduces the number of write
operations to the memory device(s) in the second portion 106
of main memory 101 caused by cache storage conflicts
between a current write operation and data previously written
to the write cache 116. For instance, if the write cache 116 is
an N-way set associative cache, then data for up to N blocks
having the same address tag can be stored in the write cache
116 before a block must be flushed from the write cache 116
to a corresponding memory device in the second portion 106
of main memory. If the write cache 116 is fully associative,
then a write operation by the processor 108 will cause a block
to be flushed from the write cache 116 only if the write cache
is full (i.e., all the blocks in the write cache 116 are occupied

US 8,271,745 B2

9

by valid write data), and the processor attempts to write to
another block (herein called the current block) not present in
the write cache 116.

Whenever the write cache 116 is unable to store data writ-
ten by the processor 108 without performing a flush opera-
tion, one of a number of remedial operations must be per-
formed: either one or more blocks must be flushed from the
write cache 116 to one or more memory devices in the second
portion 106 of main memory 101, or the current block must be
written directly to a memory device in the second portion 106
of main memory 101, or a page of data mapped to the second
portion 106 of main memory 101 must be remapped and
copied to the first portion 104 of main memory 101, thereby
freeing the corresponding blocks in the write cache 116. In
other embodiments, other remedial actions may be taken.

In one embodiment, the remedial operation performed is to
flush one or more blocks from the write cache 116 to one or
more memory devices in the second portion 106 of main
memory 101. In another embodiment, the remedial operation
performed depends on an endurance count associated with
either the current block or the block to be flushed from the
write cache 116. If the endurance count indicates a number of
write operations above a threshold level, the remedial action
performed is to remap and copy the corresponding page to a
page frame in the first portion 104 of main memory 101.
Otherwise, the remedial action performed is the aforemen-
tioned flush operation. As already indicated, in other embodi-
ments, other remedial actions may be taken.

When a write operation to a current block B is received by
the memory controller 102, the address compare logic 118
compares the address against addresses of the corresponding
blocks in the write cache 116. If there is a match, the new
write data is written back to block B," in the write cache 116.
If there is no match, an available block in the write cache 116
becomes block B,' and is written with the data.

The address compare logic 118 includes various logic
devices configured to compare the physical addresses issued
by the processor 108 with the address tags of entries in the
write cache 116, and to determine when data corresponding to
the specified address is present in the write cache 116. The
address compare logic 118 may be considered to be an inte-
gral part of the write cache 116.

If'a read operation to block B, in the second portion 106 of
main memory 101 is received, the physical address is com-
pared against physical addresses of blocks in the write cache
116. This comparison may be performed by the address com-
pare logic 118. If there is a match, the contents of block B,'in
the write cache 116 are returned via the ReadX path 137
shown in FIG. 1. If there is no match, the contents of block B,
in a memory device in the second portion 106 of main
memory 101 is returned via the ReadY 136 path shown in
FIG. 1.

Power State Transitions

In some embodiments, the system 100 operates in at least
two power modes: normal mode and low power (standby)
mode. In low power mode, the first portion 104 of main
memory 101 is completely disabled (e.g., power is removed).
When transitioning to low power mode, all pages currently
mapped to page frames in the first portion 104 of main
memory are preferably swapped back out to secondary stor-
age 110. When the processor 108 thereafter requires use of
any page not in main memory 101, the page will be mapped to
apage frame in the second portion 106 of main memory 101.

In low power mode, a limited set of application and/or
operating system processes can be executed using only the

20

25

30

35

40

45

50

55

60

65

10

second portion 106 of main memory 101, together with the
write cache 116. Preferably, the application and operating
system processes are restricted from performing write opera-
tions that exceed the capacity and endurance limitations of the
memory devices in the second portion 106 of main memory.
If these constraints can be satisfied, then the system 100 may
transition into a low power mode in which the first portion 104
of main memory 101 is not drawing power, and the second
portion 106 of main memory 101 is drawing very little power.
If the memory devices of the second portion 106 of main
memory 101 are non-volatile, and all power is removed from
main memory 101, the contents of the memory devices in the
second portion 106 of main memory 101 can be retrieved
once power is restored, i.e., it is not necessary to restore the
contents of the pages mapped to the second portion 106 of
main memory 101 from secondary storage 110.

FIG. 4 provides another view of the system 100. The sys-
tem includes main memory 101 and secondary storage,
shown here in aggregate. The system also includes one or
more processors (CPU(s) 108) and may optionally include a
user interface 400 (e.g., having a display 402 and keyboard
404 or other user interface devices) and may optionally
include a network interface 406. These components may be
interconnected by one or more busses or other interconnect
mechanisms 124.

The system’s memory 101/110 stores computer programs
and data, including an operating system 410, which includes
a virtual memory management module or procedures 412, as
well as application programs 432. The virtual memory man-
agement module 412 include instructions or a module 414 for
page table management, such as for creating and updating the
page table entries in the page table 130. In some embodi-
ments, the page table management module or instructions 414
include instructions 416 for usage based page mapping. In
particular, the usage based page mapping instructions or
module 416 include instructions for setting the usage field
134 in at least a plurality of page table entries based on actual
or expected usage of the corresponding pages. As indicated
elsewhere, in some embodiments, pages containing computer
program code may be initially mapped to a portion of main
memory reserved for pages that are either read-only or are
expected to have a “read mostly” usage characteristic, while
other pages may be initially mapped to a portion of main
memory implemented using DRAM or other memory devices
suitable for handling a high volume of both read and write
operations.

Data Structure For Managing Page Operations

FIG. 2 is a diagram illustrating an embodiment of a map-
ping module 200 for managing page operations in a computer
system having non-homogeneous main memory. The map-
ping module 200 (e.g., TLB 132) includes entries 204 for the
most recently used pages in main memory 101. Each entry
204 includes a field 206 for storing the physical address to
which a virtual address maps and a usage field 208 (i.e., tag).
More or fewer fields may be included in the entries 204 of the
mapping module 200 depending upon the architecture of the
computer system 100.

The usage field 208 stores data indicative of the usage
model of the page, which can be used by the processor 210 to
exploit the unique attributes of a physical memory device
associated with the main memory address space 212. For
example, when the processor 210 issues a write operation to
page A (and page A is not currently stored in main memory
101), then the usage field 208 for page A is read from a page
table cache or TLB. If the usage field 208 contains a logic ‘1°,

US 8,271,745 B2

11

then page A is retrieved from the secondary storage 110 and
written to a page frame (i.e., at a corresponding physical
address) in amemory device (e.g., a Flash memory device) in
the second portion 106 of main memory. If the usage field 208
contains a logic ‘0°, then page A is written to a page frame in
a memory device (e.g., DRAM) in the first portion 104 of
main memory 101. Since pages B and C each have a logic ‘0’
in their respective usage fields 208, these pages will be written
to corresponding physical addresses in the first portion 104 of
main memory.

In the above example, the usage field 208 is a one-bit flag
that indicates whether the requested page is expected to be
read-only or whether it is to be read-write. It should be appar-
ent, however, that the usage field 208 can represent other page
usage models, and include more or fewer bits. In some
embodiments, the usage field 208 includes a bit which is
appended to the physical address (e.g., as a most significant
bit or MSB). The MSB can then be decoded by decoder logic
in the processor interface logic 122 to determine which por-
tion of main memory 101 will receive the page transaction.

Data Structure Initialization

In some embodiments, the usage field 208 for a page is set
by hardware and/or software contained within the system
100, or it could be set by hardware or software external to the
system 100. For example, the value to be stored in usage field
208 for a particular page can be determined when the software
stored in the page is compiled. Alternatively, the value to be
stored in usage field 208 may be determined by the operating
system or by the system hardware at the time that the page is
transferred from secondary storage 110 to main memory 101.
In some embodiments, the usage field 208 is set or changed
during operation of the system based on one or more events.

In some embodiments, a page of data or program code can
be first moved into the first portion 104 of main memory, and
later moved to the second portion 106 of main memory after
it has been determined that no write operations are being
directed to the page. This determination could be made by, or
with the assistance of, hardware (e.g., the memory controller
102) configured to keep usage data for each page of physical
memory in the first portion 104 of main memory. The usage
field 208 of each page in main memory 101 can be set based
on the accumulated usage data. Similarly, a virtual page can
be first moved into the second portion 106 of main memory,
and later move to the first portion 104 of main memory if a
write operation is directed to the page.

Process Flow

FIG. 3 is a flow diagram of an embodiment of a non-
homogeneous memory management process. The process
flow is for a memory system in which a first portion of main
memory is implemented using DRAM memory device and a
second portion of main memory is implemented using Flash
memory device. It should be apparent, however, that more or
fewer memory device types can be used with the memory
system, as needed, based on the architecture of the memory
system.

The process begins by initializing 300 usage fields in a
page table located in secondary storage system and having a
corresponding page table cache located near the processor
core for storing the most recently used page table entries. The
usage fields can be filled by internal or external hardware
and/or software. In alternative embodiments, the usage fields
are filled or changed based on a page usage model (e.g., static
or dynamic) or other trigger events (e.g., power state transi-

20

25

30

35

40

45

50

55

60

65

12

tion). After the initialization phase is complete, the memory
controller waits 302 for a read or write transaction request. If
aread request is received, the virtual address is translated into
a physical address at step 304. The process for translating a
virtual address to a physical address is discussed above. One
aspect of step 304 is reading the usage field for the page. If the
usage field indicates that the page (i.e., the page containing
the specified address from which data is to be read) should be
read from DRAM, then the data (which may contain program
code) is read at step 306 from DRAM and returned to the
requestor. The process then returns to step 302 to wait for
another read or write transaction request. If the usage field
indicates that the page containing the specified address
should be read from Flash memory, then the data is read at
step 308 from Flash memory and returned to the requestor,
after which the process returns to step 302 to wait for another
read or write transaction request.

In an alternative embodiment (indicated by the dashed
line), the physical address is compared 320 with entries in a
write cache. If there is a match 322, the requested data is read
324 from the write cache and the process returns to step 302
to wait for another transaction request. If there is no match
322, then the requested data is read from the Flash memory
and the process returns to step 302 to wait for another trans-
action request.

If the transaction request is a write request, the virtual
address is translated into a physical address at step 310, which
once again includes reading the usage field for the page con-
taining the specified address. If the usage field indicates that
the write data should written to DRAM (i.e., to a first portion
of main memory), then the write data is written to DRAM at
step 318, and then the process returns to step 302 to wait for
another transaction request. If the usage field indicates that
the write data should be written to Flash memory (i.e., to a
second portion of main memory), then an entry in an endur-
ance table corresponding to the memory block containing the
specified address is checked 312. If the entry indicates that the
number of read-write cycles exceeds 314 a threshold, then a
remedial action is taken 332, after which the process returns
to step 302 to wait for another transaction request. In some
embodiments, the remedial action 332 is to remap the speci-
fied page (i.e., the page containing the specified address) to
the portion of main memory implemented using DRAM
devices and then write the page to DRAM. In some embodi-
ments, the remedial action is to remap the specified page to
another page frame in the second portion of main memory
(i.e., in the same portion of main memory as before). If the
number of read-write cycles does not exceed 314 the thresh-
old, then the write data is written to Flash memory and the
corresponding endurance counter is updated 316. The process
then returns to step 302 for another read or write transaction
request.

In embodiments that include a write cache (dashed line),
the availability of write cache capacity is checked 326 after
performing the virtual to physical address translation step
310. If the write cache already has a valid entry for the block
containing the address to which data is to be written, or if the
write cache has an available block that can be used to store the
block containing the address to which data is to be written,
then the write data is written 328 to the write cache, and the
process returns to step 302 for another page transaction
request. If all the entries in the write cache that could be used
to store the block containing the specified address are occu-
pied by other blocks (326), then a swap operation is per-
formed at step 330. Prior to performing the swap operation,
the write cache is in a state in which it cannot fully process the
write operation. The swap operation will typically include

US 8,271,745 B2

13

evicting one or more blocks of data from the write cache,
writing the one or more evicted blocks of data to one or more
Flash memory devices in main memory so as to produce one
or more free entries in the write cache, and copying the
specified block from Flash memory into the write cache. The
specified block is typically copied from main memory to the
write cache because the write operation will typically modify
only a small portion of the block, but when the block is written
back to main memory, the entire block must be written back
to the Flash memory device in main memory. The swap
operation 330 frees up one or more entries in the write cache
and may take a significant amount of time (e.g., 0.25 to 1.0
seconds). In some embodiments, the write cache may include
a buffer for temporarily storing one or more write transac-
tions, and to thereby partially mask the latency associated
with writing a block of data evicted from the write cache back
to a Flash memory device. Once the swap operation is com-
pleted, the write data from the current write operation is
written into an appropriate entry in the write cache 328.

In an alternate embodiment, when the write cache does not
have an entry available for storing the write data from a write
transaction, the associated page is remapped to a page frame
in another portion (e.g., the DRAM portion) of main memory,
and then write data is written to that page frame. In some
embodiments, the latency associated with remapping and
copying a page from Flash memory to DRAM may be con-
siderably less than the latency associated with writing a block
of data (evicted from the write cache) to a Flash memory
device.

By using a write cache, write transactions to the Flash
portion of main memory may be performed without actually
performing a write transaction to the Flash memory devices.
While most of the data in the write cache will be written to a
Flash memory device in the Flash portion of main memory,
the average latency associate with write operations to the
Flash portion of main memory is drastically reduced (e.g.,
typically by a factor of more than ten to 1) compared to the
latencies that would be encountered when using a memory
controller without a write cache.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

What is claimed is:

1. A memory system, comprising:

a memory controller;

a main memory including a range of physical addresses
divided between one or more memory devices of a first
type and one or more memory devices of a second type,
wherein the first type and the second type have different
volatility attributes;

cache memory distinct from the main memory; and

address translation logic to map virtual addresses onto the
physical addresses of the main memory;

where the memory controller is to swap data from second-
ary storage to the main memory, and to store the data in
either the first type of memory devices or the second type
of memory devices in accordance with predefined crite-
ria.

20

25

30

35

40

45

50

55

60

o

5

14

2. The memory system of claim 1, where the predefined
criteria are included in at least one of a field associated with
the data or a usage characteristic of the data.

3. The memory system of claim 2, where the at least one of
a field or a usage characteristic includes a tag or other data
structure associated with each page of the data.

4. The memory system of claim 2, where the at least one of
a field or a usage characteristic includes a characteristic that
represents one of a read-only attribute or a read-mostly
attribute.

5. The memory system of claim 1, where the first type is
DRAM and the second type is flash memory.

6. The memory system of claim 1, where the cache memory
is dedicated to caching write data directed to only one of the
first type or the second type of memory devices.

7. The memory system of claim 6, where the memory
system is to write pages of data from the cache memory to the
only one of the first type or the second type of memory
devices as part of a cache eviction operation.

8. The memory system of 6, where the cache memory is
fully associative.

9. The memory system of claim 6, where the address trans-
lation logic is to:

compare an address associated with the command with

entries in the cache memory;

service the command using a copy of the requested data

from the cache memory in response to a first comparison
result; and,

service the command using a copy of the requested data

from a memory device of the second type in response to
a second comparison result.

10. The memory system of claim 6, where the cache
memory is set associative.

11. The memory system of claim 1, where the memory
system further comprises first and second modes and where:

in the first mode, the memory controller is to swap the data

from the secondary storage to the main memory and is to
store the data in either the first or second type devices,
depending upon at least one of a field associated with the
data or a usage characteristic of the data; and

in the second mode, the memory controller is to swap data

from the secondary storage exclusively to a memory
device of the second type and is to disable the use of at
least one memory device of the first type.

12. The memory system of claim 11, where the cache
memory is to cache write data to be written to one or more
memory devices of the second type.

13. The memory system of claim 12, where the first type is
DRAM memory and the second type is nonvolatile memory.

14. The memory system of claim 11, further comprising
circuitry to power down at least one memory device of the
first type during the second mode.

15. The memory system of claim 11, where the system is
to:

upon transition from the first mode to the second mode,

swap data from each device in the first type to the sec-
ondary storage; and

during the second mode, store data in a portion of the main

memory associated with the second type, irrespective of
the at least one of the field or usage characteristic of the
data.

16. The memory system of claim 1, where at least one
memory device of the second type is a streaming-type
prefetch buffer.

17. The memory system of claim 1, where the address
translation logic includes a translation look-aside bufferand a

US 8,271,745 B2

15

page table identifying to the memory controller whether a
requested page is stored in one or more memory devices of the
first or second type.

18. The memory system of claim 1, where the memory
system further comprises an endurance table to store an indi-
cator of a number of write operations on a per-block basis for
each memory device of the second type.

19. The memory system of claim 18, wherein the memory
system is configured so that, prior to writing data to a particu-
lar memory location in memory of the second type, the
memory system determines whether a corresponding endur-
ance limit has been reached and, if the corresponding endur-
ance limit has been reached, the memory system remaps the
data to another memory location.

20. The memory system of claim 1, further comprising a
network interface.

21. The memory system of claim 1, where the memory
controller is to:

swap the data from the secondary storage to the main

memory and store the data within main memory in either
the first type or second type devices, depending upon a
field associated with the data and the predefined criteria;
and

dynamically change the field dependent upon a dynamic

page usage model.

22. A memory system, comprising:

a main memory including one or more memory devices of

a first type and one or more memory devices of a second
type, where the first type and the second type have dif-
ferent volatility attributes;

secondary storage;

atable identifying whether a particular page is in the main

memory; and

a memory controller, where:

in a first mode, the memory controller is to swap data from

the secondary storage to the main memory and is to store
the data in either the first or second type devices, depend-
ing upon at least one of a field associated with the data or
a usage characteristic of the data and is to responsively
update the table, and

in a second mode, the memory controller is to swap data

from the secondary storage exclusively to a memory
device of the second type, is to responsively update the
table, and is to disable use of at least one memory device
of'the first type.

23. The memory system of claim 22, where the at least one
of'a field or a usage characteristic includes a tag or other data
structure associated with each page of the data.

24. The memory system of claim 22, where the at least one
of a field or a usage characteristic includes a characteristic
that represents one of a read-only attribute or a read-mostly
attribute.

25. The memory system of claim 22, where the first type is
DRAM and the second type is flash memory.

26. The memory system of claim 22, further comprising a
cache dedicated to storing write data directed to only one of
the first type or the second type of memory devices, where the
memory system is to write pages of data from the cache to the
only one of the first type or the second type as part of a cache
eviction operation.

27. The memory system of claim 26, where the cache is set
associative.

28. The memory system of claim 22, where the memory
system is to:

compare an address associated with the command with

entries in the table; and

5

20

25

30

35

40

45

50

55

60

65

16

service the command using a copy of the requested data
from a secondary storage based at least in part on the
comparison result.

29. The memory system of claim 22, further comprising
circuitry to power down at least one memory device of the
first type during the second mode.

30. The memory system of claim 22, where the memory
controller is to:

swap the data from the secondary storage to the main
memory;

store the data within main memory in either the first type or
second type memory devices, depending upon a field
associated with the data; and

dynamically change the field dependent upon a dynamic
page usage model.

31. A memory system, comprising:

a memory controller;

a main memory comprising one or more memory devices
of a first type and one or more memory devices of a
second type, the first type and the second type having
different volatility attributes;

cache memory distinct from the main memory; and

secondary memory;

where the memory controller is to swap data from the
secondary memory to the main memory and is to store
the data within main memory in either the first type or
second type of memory devices, depending upon at least
one of a field associated with the data or a usage char-
acteristic of the data.

32. The memory system of claim 31, where the at least one
of'a field or a usage characteristic includes a tag or other data
structure associated with each page of the data.

33. The memory system of claim 31, where the at least one
of a field or a usage characteristic includes a characteristic
that represents one of a read-only attribute or a read-mostly
attribute.

34. The memory system of claim 31, where the first type is
DRAM and the second type is nonvolatile memory.

35. The memory system of claim 31, where the cache
memory is dedicated to caching write data directed to only
one of the first type or the second type of memory devices.

36. The memory system of claim 35, where the memory
system is to write pages of data from the cache memory to the
only one of the first type or the second type as part of'a cache
eviction operation.

37. The memory system of claim 35, where the memory
controller is to:

compare an address associated with the command with
entries in the cache memory and, if there is a match, to
responsively service the command using a copy of the
requested data from the cache memory, and, if there is no
match, to service the command using a copy of the
requested data from a memory device ofthe second type.

38. The memory system of claim 31, where the memory
system further comprises first and second modes and where:

in the first mode, the memory controller is to swap the data
from the secondary memory to the main memory and is
to store the data in either the first or second type memory
devices, depending upon at least one of a field associated
with the data or a usage characteristic of the data; and

in the second mode, the memory controller is to swap data
from the secondary memory exclusively to the one or
more memory devices of the second type and is to dis-
able the use of at least one memory device of the first
type.

39. The memory system of claim 38, further comprising
circuitry to power down at least one memory device of the

US 8,271,745 B2

17

first type during the second mode, where the system is to,
upon transition from the first mode to the second mode, swap
data from each device in the first type to the secondary storage
and is to, during the second mode, store data in a portion of the
main memory associated with the second type, irrespective of
at the at least one of the field or usage characteristic of the
data.

40. The memory system of claim 31, further comprising a
page table identifying to the memory controller whether a
particular page is stored in one or more memory devices of the
first or second types and where the memory system is to
service a memory command by first comparing an address
associated with the command with entries in the table and, if
there is a match, to responsively service the command using
a copy of the requested data from the secondary storage.

41. The memory system of claim 40, where the at least one
of'a field or a usage characteristic includes a field, and where
the memory controller is to dynamically change the field
dependent upon a dynamic page usage model.

18

42. A memory system, comprising:

a memory controller;

a main memory comprising a range of physical addresses
divided between one or more memory devices of a first
type and one or more memory devices of a second type,
the first type and the second type having different vola-
tility attributes;

cache memory distinct from the main memory; and

means for mapping virtual addresses onto the physical
addresses of the main memory;

where the memory controller is to swap data from second-
ary storage to the main memory, and to store the data in
either the first type of memory devices or the second type
of memory devices in accordance with predefined crite-
ria.

