A DEVICE FOR PREVENTING THEFT OF A FIRST VEHICLE COMPONENT, WHICH IS RELEASABLY CONNECTED TO A SECOND VEHICLE COMPONENT

The present invention relates to a device (101) for preventing theft of a first vehicle component (3), which is releasably connected to a second vehicle component (4). The theft preventing device (101) comprises a cover member (103) arranged for obstructing removal of said first component (3) from said second component (4) and a locking member (105), which is configured for locking the cover member or the second component in an operational position in which the cover member obstructs said removal of said first component from said second component.
A device for preventing theft of a first vehicle component, which is releasably connected to a second vehicle component.

TECHNICAL FIELD

The present invention relates to a device for preventing theft of a first vehicle component, which is releasably connected to a second vehicle component. A commercial vehicle, such as a truck or bus, may comprise a diesel engine as power source and an exhaust gas aftertreatment system. The exhaust gas aftertreatment system in turn comprises different exhaust gas aftertreatment units, such as a diesel particulate filter. The first vehicle component may be formed by such a diesel particulate filter.

The diesel particulate filter is often arranged within a container for a muffler (sound dampening unit). The second vehicle component mentioned above may therefore be formed by such a muffler container. The muffler container is in turn attached to a frame member of the commercial vehicle.

BACKGROUND OF THE INVENTION

The primary function of a diesel particulate filter is to collect (filtering) soot and oxidise (burn) it. In order to enhance that soot oxidation many filters are coated with a catalytic coating that contains considerable amounts of precious metals such as platinum and palladium, which are expensive metals. Further, the process to manufacture the filter itself is fairly complicated, resulting in that the diesel particulate filter adds up to be a fairly costly component.
Due to that the diesel particulate filter also collects inorganic products, usually called ash, it has to be regularly serviced and is therefore arranged in a way that it is easy to dismount and replace. Especially, the diesel particulate filter may have a cylindrical shape and be received in a correspondingly shaped recess in the muffler container. The muffler container is in turn attached to a frame member of the commercial vehicle so that the diesel particulate filter may be released from the muffler container and withdrawn from the muffler container while the muffler container is attached to the vehicle frame. The muffler container may be attached to the vehicle so that the diesel particulate filter is accessible from a side of the vehicle and may be withdrawn in a transverse direction in relation to a longitudinal direction of the vehicle.

On some designs, it will only take a few minutes with normal hand tools to dismount a filter insert from a parked vehicle. The weight is only around 15 kg and possible to carry away fairly easy. The muffler may weigh around 150 kg, making it harder to remove and carry away from the vehicle.

Due to the fact that the diesel particulate filter is a valuable component, which is very easy to dismount, there is a desire to achieve a device for preventing theft of the diesel particulate filter.
SUMMARY OF THE INVENTION

An object of the present invention is to achieve a device for preventing theft of a first vehicle component (such as the diesel particulate filter), which is releasably connected to a second vehicle component (such as a muffler), which device is cost-efficient and easily operated by a service technician by means of relevant tools.

This object is achieved by the features of the independent claims. The other claims and the description disclose advantageous embodiments of the invention.

According to a first aspect of the invention, the theft preventing device comprises a cover member configured for obstructing removal of said first component from said second component and a locking member, which is configured for locking the cover member or the second component in an operational position in which the cover member obstructs said removal of said first component from said second component.

Thus, the cover member obstructs removal of said first component from said second component when arranged in its intended operational position. In other words, even if someone would manage to release said first component from said second component, a physical separation of said first and second components is obstructed.

According to a preferred embodiment, the cover member comprises a material, which is sufficiently hard for substantially withstanding impact by a foreign object. The cover member being "sufficiently hard for substantially withstanding impact by a foreign object"
should be interpreted in the light of the purpose of the invention i.e. preventing theft. Thus, "sufficiently hard" should be interpreted as substantially non-deformable by means of a handheld tool, such as a crow bar or other elongated object, which may be used by a person for hitting/bending the cover member. Such a design makes it difficult to damage/displace the cover member enough for removing the first vehicle component. Preferably, said material may be hardened steel.

Preferably, the cover member is in its entirety formed by said material, which is sufficiently hard for substantially withstanding impact by a foreign object.

According to a further preferred embodiment, the locking member comprises an individual engagement pattern configured for mating only with a corresponding engagement pattern of a service tool. Such a design makes it substantially more difficult to operate the locking member for unlocking the cover member without the associated service key/adapter tool.

Preferably, the locking member comprises a bolt of the wheel lock bolt type with an individual engagement pattern. Such wheel lock bolts are known for locking a wheel to a wheel hub within the automotive industry and thereby deter theft of the wheel.

According to a further preferred embodiment, the locking member is configured for fastening the cover member to the second vehicle component in said operational position. Preferably, the second vehicle component is configured for said fastening, for example via a threaded opening for engagement with a locking bolt forming the locking member. Said threaded opening is preferably positioned in the vicinity of the operational position of
the first vehicle component so that an extension of the cover member between the locking bolt and the first component is minimized.

According to a conventional design, the second component comprises an opening for receiving the first component and wherein the first component is configured for withdrawal from the second component in a first direction via said opening. According to an embodiment adapted for that conventional design, the cover member is configured for obstructing withdrawal of the first component from the second component. Since such an opening normally has a closed bottom, the first component is positioned in the opening via linear movement towards its intended position and withdrawn from its intended position via a linear movement in the opposite direction. By designing the cover member for obstructing said withdrawal and attaching the cover member such that said withdrawal is blocked, theft of the first vehicle component is deterred.

The first component, when formed by a diesel particulate filter, normally has a circular-cylindrical shape and is received in said opening of a corresponding shape and dimension in the second component, when formed by a muffler container.

According to the conventional design, the first component comprises a flange at least partly surrounding the first component. The second vehicle component is then provided with a corresponding flanges for connection of the two vehicle components. According to an embodiment adapted for that conventional design, the cover is configured to at least partly overlap the flange for obstructing said withdrawal of the first component in said first direction.
Preferably, the cover member has a shape that matches a part of the exterior of the first vehicle component. Further, the cover member extends only around a portion of the first vehicle component, wherein the portion is less than 180 degrees, and specifically less than 90 degrees.

According to the conventional design, the first component is fastened to the second component in an operational position via a fastener. According to an embodiment adapted for that conventional design the locking member is configured for locking the cover member for obstructing access for releasing said fastener. Thus, the cover member is designed for both obstructing access to the fastener and for obstructing release of the first component from the second component. For example, the first component may be fastened to the second component in an operational position via a flexible clamping ring, wherein the fastener, in the form of a screw, is configured for tightening the ring. The clamping ring is normally configured to clamp the first component to the second component via flanges extending from the vehicle components.

According to a further preferred embodiment, the cover member comprises a first plate shaped portion, which is configured for obstructing removal of said first component from said second component. This design creates conditions for a cost-efficient production, wherein a metal sheet may be used for forming the cover member.

According to a further development of the last-mentioned embodiment, the cover member comprises a second plate shaped portion, which is formed in a one-piece unit with the first plate-shaped portion, wherein the first and
second plate shaped portions extend in different directions, and that the second portion is configured for obstructing access to said fastener. This design may be achieved via cutting a metal sheet material to a desired shape and then bending the metal sheet to form the cover member.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention together with the above mentioned and other objects and advantages may best be understood from the following detailed description of the embodiments, but not restricted to the embodiments, wherein is shown schematically:

fig. 1 depicts a side view of a truck, wherein the position of a muffler housing a diesel particulate filter is shown,

fig. 2 shows removal of the diesel particulate filter from the muffler in figure 1,

fig. 3 shows the muffler from figure 1 in a perspective view,

fig. 4 shows the muffler from figure 3, the diesel particulate filter, and an associated anti-theft device according to a first embodiment of the invention in an exploded view,

fig. 5a schematically shows installation of the anti-theft device in figure 4 in an enlarged perspective view,

fig. 6 shows the anti-theft device in figure 4 in a perspective view cut along a horizontal plane,

fig. 7 shows the anti-theft device in figure 4 in a perspective view cut along a vertical plane,

fig. 8 shows operation of the anti-theft device in figure 4 in an exploded perspective view,
fig 9-10 shows a second and third embodiment of an anti-theft device,
fig 11-12 shows a fourth embodiment of an anti-theft device,
fig 13a-d shows an alternative arrangement of the diesel particulate filter and the muffler and a fifth embodiment of an anti-theft device, and
fig 14a-b shows a further alternative arrangement of the diesel particulate filter and the muffler and a sixth embodiment of an anti-theft device.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure 1 shows a truck 1 in a side view. The truck comprises a pair of frame members 2 extending in a longitudinal direction of the truck and arranged at a distance from each other in a transversal direction of the truck. A first vehicle component 3, in the form of an exhaust gas aftertreatment unit and more specifically a diesel particulate filter, is indicated with dotted lines. A second vehicle component 4, in the form of a muffler container, is positioned behind a front wheel 5 of the truck 1 and attached to the frame member 2. The first vehicle component 3 is housed in an opening in the second vehicle component 4 such that a side face is exposed from a side of the truck. A conduit member 6 is arranged over the opening for conveying an exhaust gas flow from the diesel particulate filter to the muffler or vice versa. The conduit member 6 also forms a cover for covering the exposed side of the diesel particulate filter 3.

Figure 2 shows an enlarged perspective view of the muffler 4 in figure 1. A service technician 7 is about to remove the diesel particulate filter 3 from the muffler 4 for exchange/service. The muffler 4 is attached to the
frame member 2 during the complete exchange/service process. Thus, the muffler 4 is stationary during the complete exchange/service process. In figure 2, an opening 8 in the muffler 4 for the diesel particulate filter 3 is shown. The opening 8 has a bottom end 9 forming a stop for the diesel particulate filter 3. The opening 8 defines a movement direction 10 for insertion of the diesel particulate filter 3 to its operational position. More specifically, the diesel particulate filter 3 and the opening 8 are designed for a relative linear movement of the diesel particulate filter 3 towards its operational position and during removal movement in the opposite direction.

The diesel particulate filter 3 has a circular cylindrical shape. The circular cylindrical shape may be defined as a three-dimensional surface bounded by a curved surface and two parallel circles of equal size at the ends. The curved surface is formed by all the line segments joining corresponding points of the two parallel circles. The opening 8 has a corresponding design as the filter 3 with regard to shape and dimension.

Figure 3 shows the muffler 4 in a perspective view, the muffler 4 being designed in the form of a drum and comprises a circular front-end wall 11 and a circular rear-end wall 12; and a hollow at least partially cylindrical circumferential outside wall 13, which connects both end walls 11, 12. An exhaust conduit 14 and an intake conduit 15 are provided for conveying an exhaust gas flow. In other words, the second component 4
is formed by a cylindrical casing for housing said first component 3.

Figure 4 shows an exploded view of a portion of the muffler 4 with the particulate filter 3 and the U-shaped conduit 6 removed. As indicated in Figure 4, the opening 8 in the rear end wall 12 comprises a tubular outlet 16 with a first flange 17. The first flange 17 is arranged to cooperate with and seal against a circumferential flange 18 located adjacent a rear, first end 19 of the particulate filter 3. A first ring shaped seal or O-ring 20 is placed between the flanges 17, 18 to ensure that the connection is gas tight during normal operation. A second ring shaped seal or O-ring 22 is placed between the circumferential flange 18 and a first flange 22a at the inlet end of the U-shaped conduit 6 for the same purpose. A second flange 22b is configured to seal in relation to a second flange 23 at a second opening 24 in the rear end wall 12.

A first flexible clamping ring 25 is arranged to hold the particulate filter 3 in place, while clamping the filter flange 18 to the muffler flange 17. The clamping ring 25 is discontinuous in the circumferential direction, forming a gap between the ring ends. A fastener 26, in the form of a screw, is arranged at the ring ends and configured for tightening the ring 25 in a conventional manner. The flexibility of the clamping ring 25 allows it to be placed over the respective flanges and tightened to seal the connection between the muffler 4 and the filter 3. A second clamping ring 27 is arranged to fasten the conduit 6 to the second flange 23. This type of clamping
rings is known in the art and will not be described in further detail. The above-mentioned seals can form integral parts of the sealing surfaces and/or comprise separate, removable seals such as O-rings. Figure 4 also indicates a theft preventing device 101, which will be shown in more detail in figures 5-8.

Figure 5a shows the theft preventing device 101 in a perspective exploded view. The theft preventing device 101 comprises a cover member 103 arranged for obstructing removal of said first component 3 (the diesel particulate filter) from said second component 4 (the muffler). More specifically, the cover member 103 is configured for obstructing withdrawal of the first component 3 from the second component 4.

The cover member 103 comprises a material, which is sufficiently hard for substantially withstanding impact by a foreign object. Thus, the cover member 103 is of a substantially non-deformable material. In other words, the cover member 103 is of a rigid character. The cover member 103 preferably comprises a metallic material and especially a hardened steel material that is very hard to deform.

The cover member 103 comprises a first plate shaped portion 107, which is configured for obstructing separation of said first component 3 from said second component 4. The plate shaped portion 107 is configured to at least partly overlap with a boundary of the first component 3 in said first direction when the cover member is in its active position. The plate shaped portion 107 has an edge 109 with an extension direction along an
extension direction of the first component 3 and/or clamping ring 25. In other words, the shape of the edge 109 matches the external shape of the first component 3 and/or clamping ring 25. Preferably, the plate shaped portion 107 is configured so that the edge 109 abuts or at least is in closed vicinity of the first component 3 and/or clamping ring 25 when the theft preventing device is in a locked state, see figure 5b. In this way, access to the parts inside the cover member 103 is minimized.

In its desired position, the plate shaped portion 107 is substantially in parallel with an end surface 112 of the second vehicle component 4.

The cover member 103 comprises a second plate shaped portion 111, which is formed in a one-piece unit with the first plate-shaped portion 107. The first and second plate shaped portions 107,111 extend in different directions. In the shown embodiment, the first and second plate shaped portions 107,111 extend at right angles in relation to each other. More specifically, each of the first and second plate shaped portions 107,111 extend in a plane and the two planes intersect. In the shown embodiment, the second plate shaped portion 111 extends around a substantial part of the first plate shaped portion 107. More specifically, the second plate shaped portion 111 extends around the first plate shaped portion 107 on all sides except the side comprising said edge 109. The cover member 103 is configured so that an edge 113 of the second plate shaped portion 111 will abut against the end surface 112 of the second vehicle component 4 when the cover member is in its locked position. The second portion 111 is configured for obstructing access to said fastener 26.
The cover member 103 is preferably formed from a blank, which is cut and folded to the final shape comprising the first and second plate shaped portions 107,111 as folded sides.

The cover member 103 is configured to at least partly overlap the flange 18 for obstructing said withdrawal of the first component in said first direction.

The theft preventing device 101 further comprises a locking member 105, which is configured for locking the cover member 103 in an operational position in which the cover member obstructs said removal of said first component 3 from said second component 4. The locking member 105 has an elongated shape and is configured for mating with a correspondingly shaped recess. Further, the cover member 103 comprises an opening 115 for receiving said locking member 105. The locking member 105 comprises male or female portions configured for mating with corresponding female or male portions of a service tool. More specifically, the locking member 105 comprises an individual engagement pattern 117 configured for mating only with a corresponding engagement pattern 119 of a service tool 121, see figure 8. The individual engagement pattern 117 is provided as a recess at a first end of the elongated locking member 105 and accessible via a relative movement in the longitudinal direction of the locking member 105. The locking member 105 is cylindrical and provided with threads at a second end opposite the first end. More specifically, the locking member 105 comprises a bolt of the wheel lock bolt type with an individual engagement pattern. The locking member 105 is configured for fastening the cover member 103 to the second component 4 in said operational position. The cover member 103 is provided with a collar around the
b Bolt head of the lock-bolt in order to protect the sides of the bolt head from being accessed.

The theft preventing device 101 further comprises a support member 123, which is configured for bridging the distance between the first plate-shaped portion 107 and the end surface 112 of the second vehicle component 4. The support member 123 is configured for being rigidly connected to the second component 4 and mating with said locking member 105. The support member 123 has an external shape matching an internal shape of the cover member 103 for forming a rigid construction.

Referring now also to figure 6-8, the support member 123 comprises two holes 133,135. A first hole 133 is formed by a through hole and configured for receiving a screw 131 for rigidly attaching the support member 123 to the second vehicle component 4. A second hole 135 is threaded and configured for mating with the threads of the locking member 105 for attaching the cover member 103 to the support member 123.

The second vehicle component 4 comprises a lock portion 125, or boss, see figure 7-8, for engagement with said screw 131. Said lock portion 125 forms a projection extending from a plane or curved surface, and more specifically from the end surface 112 of said second component 4. The projection 125 comprises a threaded recess 127 for attaching the support member 123 to the second vehicle component 4 by means of the screw 131. The projection 125 is preferably pre-attached to the side wall 12 of the second vehicle component 4 via welding or similar.

The first hole 133 comprises a first wide part configured for receiving the projection 125 from one side and a
second more narrow part for receiving the screw 131 from the other side. Further, the first hole 133 comprises a third portion inbetween the first and second portions, which third portion is more narrow than the second portion. The third, intermediate part forms a stop for the screw 131 for securing the support member 123 to the second component 4.

Figure 9 shows a second embodiment of an anti-theft device 201, wherein the main difference in relation to the first embodiment is that there is no support member 123. Instead, the locking member 105 is attached directly to a projection 225 for locking a cover member 203 to the second component 4. This embodiment may be advantageous in the case that the fastener 26 for the clamping ring is located relatively close to the end surface 112 of the second component 4.

Figure 10 shows a third embodiment of an anti-theft device 301, wherein the main difference in relation to the second embodiment is that the projection 325 extends from an envelope wall 313 instead of from the end wall 312 of the cylindrical second component 4. The locking member 105 is attached directly to a projection 325 for locking a cover member 303 to the second component 4.

Figure 11-12 shows a fourth embodiment of an anti-theft device 401. The anti-theft device 401 comprises a cover member 403, which comprises a substantially rigid ring shaped part 404,406 configured for surrounding said first component 3. More specifically, the cover member 403 comprises two ring parts 404,406 and a hinge 408 for relative motion between the two ring parts. The cover member 403 further comprises two ring end parts 410,412, which are configured for being connected via the locking member 105. The cover member 403 is configured for at
least substantially covering the clamping ring 25 and the associated tensioning screw 26.

Figure 13a-b shows an alternative arrangement of the diesel particulate filter 3 and the muffler 4. A main difference in relation to the first embodiment is that the filter 3 is internally connected to the muffler 4 by means of clamping rings or screw connections or in any other way known in the art, see an example in figure 13d. This connection is releasable through the same opening as the filter opening 8. A plurality of spaced screw holes 28 are arranged in the second component 4 around the filter opening 8. A cover plate 30 for protecting the filter 3 is also provided with a plurality of screw holes 32. The cover plate 30 is intended to be positioned so that each of the screw holes 32 of the cover plate is in line with the screw holes 28 of the muffler 4. A plurality of screws 34 are configured to lock the cover plate 30 to the muffler 4 via said screw holes 28,32.

The muffler 4 comprises a projection 525 for an anti-theft device 501 extending from an end surface 512 of the muffler 4 in the vicinity of the opening 8 and outside the circumference of the cover plate 30.

Figure 13c shows the anti-theft device 501 comprising a substantially flat cover member 503 configured to cover a portion of the cover plate 30 in its intended operational position. The cover member 503 comprises a through hole for receiving the locking member 105, which is configured to lock the cover member 30 to the muffler 4.

Figure 13d shows the fifth embodiment of the anti-theft device 501 in a partly cut view.
Figure 14a-b shows a further alternative arrangement of
the diesel particulate filter 3 and the muffler 4. The
muffler 4 is pivotably attached to the frame member 2 via
pivot means 40. The pivot means 40 has a pivot axis in
parallel with a longitudinal direction of the frame
member 2. Further, the pivot means 40 is provided at a
lower part of the muffler 4 so that the muffler can be
pivoted from an upper, operational position (see figure
14b), to a lower, service position (see figure 14a). The
muffler 4 comprises an opening for the diesel particulate
filter 3 extending in such a direction that the filter 3
is configured for withdrawal from the muffler in a first
direction via said opening. The muffler 4 is arranged so
that said withdrawal direction is in parallel with the
longitudinal direction of the frame member 2.

More specifically, the muffler 4 is provided with an
arrangement 42 for achieving a pivotal connection to the
frame 2. The arrangement 42 comprises at least one pair
of legs 44,46, wherein a first of said legs 44 is rigidly
attached to the frame in an upright position (extending
vertically) and a second of said legs 46 is rigidly
attached to the muffler 4. The first and second legs
44,46 are pivotably arranged in relation to each other
via said pivot means 40. The first and second legs will
be substantially parallel to each other when the muffler
is in the upper position. Further, means 105,633,48 are
provided for locking the first and second legs to each
other in said parallel relationship. Said locking means
105,633,48 comprises a screw connection. In the
embodiment shown, two pair of legs 44,46 are arranged
spaced in the longitudinal direction of the frame member
2.

Figure 14a-b further shows a device 601 according to a
sixth embodiment for preventing theft of a first vehicle
component 3 (the diesel particulate filter), which is releasably connected to a second vehicle component 4 (the muffler 4). The theft preventing device 601 comprises a cover member 603 arranged for obstructing removal of said first component 3 from said second component 4 and said locking member 105, which is configured for locking the second component 4 in an operational position in which the cover member 603 obstructs said removal of said first component 3 from said second component 4. More specifically, the cover member 603 is configured for obstructing withdrawal of the first component 3 from the second component 4 when the second component (the muffler) is locked to the frame member 2. Further, the pivoting means 42 is configured so that the first vehicle component (the filter) 3 will be accessible, i.e., not covered by the cover member 603 when the muffler 4 is in the lower position. More specifically, the pivoting means 42 is configured so that the first vehicle component (the filter) 3 will be accessible from below the cover member 603 when the muffler 4 is in the lower position.

The cover member 603 may form part of another active vehicle component.

More specifically, in the figures 14a-b, the locking member 105 is configured for releasably locking the second component 4 to the frame member 2. Further, the cover member 603 is configured for being rigidly connected to the frame member 2 such that the cover member 603 obstructs separation of said first component 3 from said second component 4 when the second component 4 is locked to the frame.

According to a further aspect of the invention, it comprises a vehicle arrangement, which comprises a first vehicle component and a second vehicle component, wherein
the first component is releasably connected to the second vehicle component, and wherein the vehicle arrangement comprises a device for preventing theft of the first vehicle component according to any one of the above mentioned embodiments. The second vehicle component comprises said lock portion (boss or projection) for attachment of the cover member via the locking member 105.

According to a further aspect of the invention, it comprises a vehicle 1, which in turn comprises a vehicle arrangement according to any one of the above mentioned embodiments. Said second component 4 is then fastenable to said frame.

The invention must not be regarded as being limited to the examples of embodiment described above, a number of further variants and modifications being feasible without departing from the scope of the following claims.

For example, the invention may be realized for different designs and arrangements of the muffler and the diesel particulate filter than the ones shown in the drawings.

Further, the first vehicle component is not limited to a diesel particulate filter, but may be formed by any other vehicle component liable to be stolen, which is configured to be attached to another vehicle component, such as the frame. Especially, the first vehicle component may be formed by another gas aftertreatment unit, such as a selective catalytic reduction unit or an oxidation catalyst unit.

Further, the second vehicle component is not limited to be formed by a sound dampening device or muffler, but may be formed by any other vehicle component configured to
house or in any other way form a support for attaching a vehicle component liable to be stolen. The second vehicle component may for example be formed by a frame member.
1. A device (101, 201, 301, 401, 501, 601) for preventing theft of a first vehicle component (3), which is releasably connected to a second vehicle component (4), characterized in that the theft preventing device (101, 201, 301, 401, 501, 601) comprises a cover member (103, 203, 303, 403, 503, 603) configured for obstructing removal of said first component (3) from said second component (4) and a locking member (105), which is configured for locking the cover member or the second component in an operational position in which the cover member obstructs said removal of said first component from said second component.

2. A device according to claim 1, characterized in that the cover member (103, 203, 303, 403, 503, 603) comprises a material, which is sufficiently hard for substantially withstanding impact by a foreign object.

3. A device according to claim 1 or 2, characterized in that the locking member (105) comprises an individual engagement pattern configured for mating only with a corresponding engagement pattern of a service tool.

4. A device according to any preceding claim, characterized in that the locking member (105) comprises a bolt of the wheel lock bolt type with an individual engagement pattern.

5. A device according to any preceding claim, characterized in that the cover member (103, 203, 303, 403, 503, 603) comprises an opening for receiving said locking member (105).
6. A device according to any preceding claim, characterized in that the locking member (105) is configured for fastening the cover member (103, 203, 303, 403, 503) to the second component in said operational position.

7. A device according to any preceding claim, wherein the second component comprises an opening for receiving the first component and wherein the first component is configured for withdrawal from the second component in a first direction via said opening characterized in that the cover member (103, 203, 303, 403, 503) is configured for obstructing withdrawal of the first component from the second component.

8. A device according to claim 7, wherein the first component comprises a flange at least partly surrounding the first component characterized in that the cover member (103, 203, 303, 403, 503) is configured to at least partly overlap the flange for obstructing said withdrawal of the first component in said first direction.

9. A device according to any preceding claim, wherein the first component is fastened to the second component in an operational position via a fastener characterized in that the locking member (105) is configured for locking the cover member (103, 203, 303, 403, 503) for obstructing access for releasing said fastener.

10. A device according to any preceding claim, characterized in that the cover member (103) comprises a first plate shaped portion (107), which is configured for obstructing removal of said first component (3) from said second component (4).
11. A device according to claim 9 and 10, characterized in that the cover member (103) comprises a second plate shaped portion (111), which is formed in a one-piece unit with the first plate-shaped portion (107), that the first and second plate shaped portions (107,111) extend in different directions, and that the second portion is configured for obstructing access to said fastener.

12. A device according to claim 7 and claim 10 or 11, characterized in that the device comprises a support member (123), which is configured for bridging the distance between the first plate-shaped portion (107) and the surface (12) of the second vehicle component (4) and that the support member (123) is configured for being rigidly connected to the second component (4) and mating with said locking member (105).

13. A device according to any one of claims 1-9, characterized in that the cover member (403) comprises a substantially rigid ring shaped part configured for surrounding said first component (3).

14. A device according to claim 13, characterized in that the cover member (403) comprises two ring parts (404,406) and a hinge (408) for relative motion between the two ring parts.

15. A device according to any one of claims 1-4 and claim 7, characterized in that the locking member (105) is configured for releasably locking the second component (4) to a frame and that the cover member (603) is configured for being rigidly connected to the frame such that the cover member (103,203,303,403,503,603) obstructs removal of said first component (3) from said second component (4) when the second component is locked to the frame.
16. A device according to any preceding claim, characterized in that the first component (3) is an exhaust gas aftertreatment unit.

17. A device according to any preceding claim, characterized in that the second component (4) is a muffler.

18. A device according to claim 5, characterized in that the cover member (103,203,303,403,503,603) is provided with a collar around the opening for receiving said locking member (105).

19. A vehicle arrangement comprising a first vehicle component (3) and a second vehicle component (4), wherein the first component is releasably connected to the second vehicle component, characterized in that the vehicle arrangement comprises a device (101,201,301,401,501,601) for preventing theft of the first vehicle component according to any preceding claim.

20. A vehicle arrangement according to claim 19, characterized in that the second component (4) comprises a lock portion (125,325,525) for engagement with said locking member (105).

21. A vehicle arrangement according to claim 20, characterized in that said lock portion (125,325,525) forms a projection extending from a plane or curved surface of said second component and that the projection comprises a recess for attachment of the locking member (105) to the second component.

22. A vehicle characterized in that it comprises a vehicle arrangement according to any one of claims 19-21.
23. A vehicle according to claim 22, wherein it comprises a frame characterized in that said second component is fastenable to said frame.

24. A device for preventing theft of a first vehicle component, which is releasably connected to a second vehicle component, wherein the theft preventing device comprises a cover member configured for obstructing removal of said first component from said second component and a locking member, which is configured for locking the cover member or the second component in an operational position in which the cover member obstructs said removal of said first component from said second component.

25. A device according to claim 24, wherein the cover member comprises a material, which is sufficiently hard for substantially withstanding impact by a foreign object.

26. A device according to claim 24 or 25, wherein the locking member comprises an individual engagement pattern configured for mating only with a corresponding engagement pattern of a service tool.

27. A device according to claim 24, wherein the locking member comprises a bolt of the wheel lock bolt type with an individual engagement pattern.

28. A device according to claim 24, wherein the cover member comprises an opening for receiving said locking member.
29. A device according to claim 24, wherein the locking member is configured for fastening the cover member to the second component in said operational position.

30. A device according to claim 24, wherein the second component comprises an opening for receiving the first component and wherein the first component is configured for withdrawal from the second component in a first direction via said opening wherein the cover member is configured for obstructing withdrawal of the first component from the second component.

31. A device according to claim 30, wherein the first component comprises a flange at least partly surrounding the first component, wherein the cover member is configured to at least partly overlap the flange for obstructing said withdrawal of the first component in said first direction.

32. A device according to claim 24, wherein the first component is fastened to the second component in an operational position via a fastener, wherein the locking member is configured for locking the cover member for obstructing access for releasing said fastener.

33. A device according to claim 24, wherein the cover member comprises a first plate shaped portion, which is configured for obstructing removal of said first component from said second component (4).

34. A device according to claim 32 and 33, wherein the cover member comprises a second plate shaped portion, which is formed in a one-piece unit with the first plate-shaped portion, that the first and second plate shaped portions extend in different directions, and that the
second portion is configured for obstructing access to said fastener.

35. A device according to claim 30 and claim 33 or 34, wherein the device comprises a support member, which is configured for bridging the distance between the first plate-shaped portion and the surface of the second vehicle component and that the support member is configured for being rigidly connected to the second component and mating with said locking member.

36. A device according to claim 24, wherein the cover member comprises a substantially rigid ring shaped part configured for surrounding said first component.

37. A device according to claim 36, wherein the cover member comprises two ring parts and a hinge for relative motion between the two ring parts.

38. A device according to claim 24 and claim 30, wherein the locking member is configured for releasably locking the second component to a frame and that the cover member is configured for being rigidly connected to the frame such that the cover member obstructs removal of said first component from said second component when the second component is locked to the frame.

39. A device according to claim 24, wherein the first component is an exhaust gas aftertreatment unit.

40. A device according to claim 24, wherein the second component is a muffler.

41. A device according to claim 28, wherein the cover member is provided with a collar around the opening for receiving said locking member.
42. A vehicle arrangement comprising a first vehicle component and a second vehicle component, wherein the first component is releasably connected to the second vehicle component, wherein the vehicle arrangement comprises a device for preventing theft of the first vehicle component according to claim 24.

43. A vehicle arrangement according to claim 42, wherein the second component comprises a lock portion for engagement with said locking member.

44. A vehicle arrangement according to claim 43, wherein said lock portion forms a projection extending from a plane or curved surface of said second component and that the projection comprises a recess for attachment of the locking member to the second component.

45. A vehicle wherein it comprises a vehicle arrangement according to any one of claims 42-44.

46. A vehicle according to claim 45, wherein it comprises a frame wherein said second component is fastenable to said frame.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. F01N13/18 B60R25/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F01N B60R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2011/253471 Al (DUSA II JAMES R [US]) 20 October 2011 (2011-10-20) the whole document</td>
<td>1-46</td>
</tr>
<tr>
<td>X</td>
<td>US 2010/258703 Al (MEISLAHN STEVEN [US]) 14 October 2010 (2010-10-14) the whole document</td>
<td>1,2,24, 25</td>
</tr>
<tr>
<td>X</td>
<td>GB 2 481 574 A (WADDINGTON SIMON [GB]) 4 January 2012 (2012-01-04) the whole document</td>
<td>1,2,24, 25</td>
</tr>
<tr>
<td>X</td>
<td>US 2011/036130 Al (HISLER KARLA JEAN [US]) 17 February 2011 (2011-02-17) the whole document</td>
<td>1,2,24, 25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier application or patent but published on or after the international filing date

 "L" document which may throw doubts on priority claim(s) or on which is cited to establish the publication date of another citation or other special reason (as specified)

 "O" document referring to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

 "R" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

 "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

 "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

 "Z" document member of the same patent family

Date of the actual completion of the international search: 8 January 2013

Date of mailing of the international search report: 15/01/2013

Name and mailing address of the ISA:

European Patent Office, P.B. 5018 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Nobre Correi a, S
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2011253471 A1</td>
<td>20-10-2011</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2010258703 A1</td>
<td>14-10-2010</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>GB 2481574 A</td>
<td>04-01-2012</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2011036130 A1</td>
<td>17-02-2011</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>