

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199926926 B2
(10) Patent No. 765392

(54) Title
Highly active alkaline phosphatase

(51) 6 International Patent Classification(s)
C12N 015/53 C12N 009/02

(21) Application No: 199926926 (22) Application Date: 1999.05.04

(30) Priority Data

(31) Number (32) Date (33) Country
19819962 1998.05.05 DE

(43) Publication Date : 1999.11.11

(43) Publication Journal Date : 1999.11.11

(44) Accepted Journal Date : 2003.09.18

(71) Applicant(s)
Roche Diagnostics GmbH

(72) Inventor(s)
Werner Hoelke; Jose Luis Millan; Helmut
Burtscher; Rainer Muller

(74) Agent/Attorney
Davies Collison Cave, 1 Little Collins Street, MELBOURNE VIC 3000

Abstract

The invention concerns a DNA coding a eukaryotic highly active alkaline phosphatase with a specific activity of more than 3000 U/mg. The invention also concerns a process for the production of a DNA according to the invention, a vector containing the DNA according to the invention and a cell line containing this vector. Furthermore the invention concerns a recombinant highly active alkaline phosphatase with a specific activity of more than 3000 U/mg which is coded by the DNA according to the invention.

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S):

Roche Diagnostics GmbH

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

INVENTION TITLE:

Highly active alkaline phosphatase

The following statement is a full description of this invention, including the best method of performing it known to me/us:-

The invention concerns a DNA coding a eukaryotic highly active alkaline phosphatase with a specific activity of more than 3000 U/mg. Furthermore the invention concerns a process for the production of the DNA according to the invention as well as a vector containing the DNA according to the invention as well as a cell line containing this vector. The invention additionally concerns a recombinant highly active alkaline phosphatase with a specific activity of more than 3000 U/mg which is coded by the DNA according to the invention.

Alkaline phosphatases (AP) are dimeric, zinc-containing, non-specific phosphomonoesterases which are found in all organisms from *E. coli* to mammals (McComb et al., 1979). Comparison of the primary structure of different alkaline phosphatases showed a high degree of homology (25-30 % homology between *E. coli* and mammalian AP) (Millán, 1988; Harris, 1989).

In humans and higher animals the AP family consists of four members which are coded on different gene loci (Millán, 1988; Harris, 1989). The alkaline phosphatase family includes the tissue-specific APs (placental AP (PLAP), germ cell AP (GCAP) and intestinal AP (IAP)) and the non-tissue-specific APs (TNAP) which are mainly located in the liver, kidney and bones.

A decisive property of the previously known APs is the large variability of the catalytic activity of the mammalian APs which have a 10-100-fold higher specific activity than *E. coli* AP. Among the mammalian APs the AP from the bovine intestine (bIAP) exhibits the highest specific activity. This property makes the bIAP attractive for biotechnological applications such as enzyme conjugates for a diagnostic reagent or dephosphorylation of DNA. In 1985 Besman and Coleman proved the existence of two IAP isoenzymes in the bovine intestine, the IAP from the calf intestine and the IAP from the intestine of a mature cow (bIAPs), by amino-terminal sequencing of chromatographically purified AP fractions. A clear difference at the amino terminus was described between the bIAP of the mature cow (LVPVEEED) and the bIAP from calf intestine (LIPAAEEN). In 1993 Weissig et al. achieved an accurate biochemical characterization by cloning a recombinant bIAP (bIAP I) with a specific activity of ca. 3000 U/mg and the N-terminus LVPVEEED. However, bIAPs from calf intestine with specific activities of up to 8000 U/mg are also commercially available (Boehringer Mannheim, Biozyme, Oriental Yeast) which, however, have previously not been further characterized. All attempts at cloning these highly active alkaline phosphatases were unsuccessful. It was therefore not possible to produce a recombinant highly active alkaline phosphatase. However, the possibility of recombinant production is absolutely essential for an economic production of highly active alkaline phosphatase.

Consequently the object of the present invention was to provide highly active alkaline phosphatases by recombinant means which can also be cloned. Highly active within the sense of the present invention means

that the alkaline phosphatase according to the invention has an at least 10 % increased activity compared to previously known alkaline phosphatases.

The object was achieved according to the invention by the provision of a DNA coding a eukaryotic highly active alkaline phosphatase with a specific activity of more than 3000 U/mg, preferably of at least 3500 U/mg in which the amino acid residue at position 322 is smaller than aspartate. A eukaryotic DNA is preferred within the sense of the present invention. Eukaryotic cDNA is particularly preferred which means a DNA that no longer contains introns. The term "amino acid residue smaller than aspartate" is understood as any amino acid, preferably natural amino acids or amino acids derived therefrom, which has a smaller spatial dimension than the structure of the amino acid aspartate. A DNA according to the invention is preferred in which the amino acid residue 322 is glycine, alanine, threonine, valine or serine. A DNA according to the invention is particularly preferred in which the amino acid residue 322 is glycine or serine. It is quite especially preferred that the amino acid residue 322 is glycine. A DNA according to SEQ ID NO.: 1, 3 and 5 (Figure 1,3,5) and the associated amino acid sequence according to SEQ ID NO.: 2, 4 and 6 (Figure 2,4,6) are part of the present invention. The present invention also concerns those cDNAs which differ from the afore-mentioned only in that the N-terminus is longer or shorter in comparison to the cDNAs according to SEQ ID NO.: 2, 4 and 6. In such cases the name for position 322 according to SEQ ID NO.: 2, 4 and 6 changes correspondingly. If for example the N-terminus is x amino acids longer or shorter than SEQ ID NO.: 2, 4 and 6, the relevant position 322 is also shifted by x amino acids.

SEQ ID NO.: 1 contains the DNA code for the sequence of the highly active bIAP II isoenzyme. The native enzyme was known but not characterized and not possible to clone. Hence the determination of the amino acid sequence of the highly active bIAP II isoenzyme is a subject matter of the present invention. A highly purified fraction with high specific activity from the calf intestine (Boehringer Mannheim) was used to determine the sequence. Peptide maps of the highly active AP were produced by cleavage with the endoproteinas LysC, AspN, GluC, trypsin and chemical cleavage by bromocyanogen. The peptides produced in this manner were separated and isolated by means of reversed phase HPLC. Each peptide was analysed by electrospray mass spectroscopy and sequenced by means of Edman degradation. The sequences obtained in this way were compared with the published sequence of bIAP I (Weissig et al., 1993). As expected the amino terminus of bIAP II has the start sequence LIPAAEEN as described by Besman and Coleman (*J. Biol. Chem.* **260**, 11190-11193 (1985)). The complete amino acid sequence of bIAP II is shown in SEQ ID NO.: 2 (Figure 2). According to this the bIAP II has a total of 24 amino acid substitutions compared to bIAP I. The number of amino acids in the isolated highly active bIAP II isoenzyme is 480 amino acids. The nucleotide sequence of 1798 bp (Figure 1) includes a coding region of 514 amino acids. The amino acids that are possible from position 481 to 514 inclusive can vary within wide limits.

In the following the present invention describes the cloning and complete characterization of two new previously unknown bIAPs (bIAP III and bIAP IV). Northern blot analyses were carried out on RNA samples from different sections of the bovine intestine. A cDNA

bank of the probes with the strongest hybridization signal was set up with an oligo dT primer (Stratagene, San Diego, CA, USA) in the vector IZAP II (Stratagene, San Diego, CA, USA). The complete bank (1.0×10^6 recombinant clones) was screened with the 1075 bp HindIII fragment of bIAP I which covers a region from exon I to VIII of the bIAP I gene. 65 Clones were isolated and sequenced. In this process two new bIAPs were identified (bIAP III and bIAP IV) whose characterization is described further below and were neither completely homologous to bIAP I nor to bIAP II. The nucleotide sequences of bIAP III and IV are shown in Figures 3 and 5. The sequence differences of bIAPs I - IV are shown in Figure 7. However, none of the new bIAPs has the expected N-terminus LIPAEEN but rather new previously not described N-termini (see Figure 7). The cDNA of the two new bIAP isoenzymes was recleaved with appropriate restriction enzymes and inserted by ligation into the CHO expression vector pcDNA-3 (e.g. from the Invitrogen Co. San Diego, CA, USA). The clones which contained the new bIAP isoenzymes were brought to expression according to the method described by Invitrogen and the isoenzymes were characterized. The expression of a bIAP gene in various hosts is described in WO 93/18139 (CHO cells, E. coli, baculovirus system). The methods, vectors and expression systems described in this document are part of the disclosure of the present application. The present invention in addition concerns the native and recombinant highly active alkaline phosphatases bIAP III and bIAP IV. The alkaline phosphatases according to SEQ ID NO.: 4 and 6 are particularly preferred. CHO cell lines containing the bIAP III and bIAP IV gene were deposited at the DSMZ, "Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH", Mascheroder Weg 1b, D-38124 Braunschweig (DSM ACC

2349, DSM ACC 2350).

In the following the invention describes the construction of the bIAP II sequence by ligation of mutated and wild-type fragments of bIAP I, III and IV. A series of intermediary intermediate products (LIN8, INT 1, INT 2 and INT 3) was generated by this process which code for functional isoenzymes. In order to construct these intermediary intermediate products a section of the bIAP-cDNA to be modified was cleaved out in each case with appropriate restriction enzymes and replaced by a segment of another bIAP-cDNA containing the desired mutations which possesses compatible ends by digestion with restriction enzymes. Mutations which cannot be introduced by ligation of segments of different bIAP-cDNAs were introduced by site-directed mutagenesis. The mutated fragment was subsequently recleaved with appropriate restriction enzymes and ligated into a like-wise cleaved bIAP-cDNA segment with compatible ends (Figure 8). The mutations introduced in this manner were subsequently checked by restriction analysis and sequencing.

Hence a subject matter of the present invention is a process for the production of the DNA according to the invention characterized in that mutated and wild-type fragments of the DNA of one or several alkaline phosphatases were ligated. Moreover the present invention concerns a cDNA which codes functional isoenzymes and which is formed as intermediate products during the aforementioned process according to the invention. Additionally the present invention concerns a vector containing the cDNA according to the invention.

A further subject matter of the present invention is a

cell line containing the vector according to the invention. Suitable cells are for example eukaryotic cells such as CHO, pichia, hansenula or saccharomyces cerevisiae and aspergillus or prokaryotic cells such as E. coli. E. coli, yeast and CHO cells are particularly preferred. Suitable starting vectors for E. coli strains are for example pTE, pTaq, pPL, pBluescript. Suitable E. coli strains are for example XL1-Blue, HB101, RR1 Δ M15, BL21(DE), MC 1000 etc. Suitable pichia vectors are for example pGAPZα and pPICZα (Invitrogen, San Diego, CA, USA). A suitable vector for CHO cell lines is for example pcDNA-3 (Invitrogen, San Diego, CA, USA). A CHO cell line containing the bIAP II gene was deposited at the DSMZ, "Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig (DSM ACC 2348).

The kinetic characterization of the recombinant bIAP I, II, III and IV isoenzymes showed considerable differences with regard to the catalytic properties (Figure 9). For example bIAP II has a more than 300 % increased i.e. more than three-fold higher specific activity (ca. 8600 U/mg) than bIAP I (ca. 2700 U/mg). But also bIAP III and bIAP IV exhibit an approximately 1.8-fold (ca. 4700 U/mg) and about 2.6-fold (>6700 U/mg) higher activity respectively than bIAP I (Figure 9) which corresponds to a percentage increase of ca. 170 % and 250 % respectively. Furthermore there was a considerable measurable difference in the heat stability of the isoenzymes. bIAP I is the most heat stable isoenzyme, the T_m value of bIAP II and III is 7°C lower and the T_m value of bIAP IV is 13°C lower than bIAP I (Figure 9). The T_m value is understood as the temperature at which a 50 % residual activity is measured after an incubation period of 10 minutes.

In the following the invention describes the identification of amino acid residues which influence the specific activity of the bIAPs. This was aided by the intermediary intermediate products. The expression of the intermediary chimers L1N8, INT 1, INT2 and INT3 enabled 11 of the 24 amino acids to be excluded as an effector for the increase in activity (Figure 7).

- The L1N8 mutant enzyme had a comparable specific activity to bIAP I; consequently the mutations V2I, V4A and D8N introduced in this case are not relevant for the increase in the specific activity. The notation V2I means that at position 2 the amino acid valine is replaced by isoleucine.
- The INT 1 mutant has a comparable specific activity to bIAP II and consequently this region is important.
- The INT 2 mutant has a comparable specific activity to INT 1 and bIAP II and consequently the mutations S380G, D411G, D416E, Q420R, Q427L, E453Q and T480A from INT 2 can also be excluded.
- In generating the INT 3 mutants no change in the high specific activity was found thus excluding an effect of the mutation N192Y.

In order to identify which of the 13 remaining residues are crucial for the high specific activity, the bIAP II cDNA was used in the present invention as a template for single mutations against the corresponding amino acid of bIAP I. The single mutants N122K, I133M, A142S, K180M, M205K, E210V, E236A, G322D and I332G as well as a combined A289Q-A294V-Q297R-L299V bIAP II mutant were

constructed (Figure 9).

Surprisingly it was found that mainly the mutation G322D is able to decrease the high specific activity of bIAP II (ca. 8600 U/mg) by more than a factor of 3 (2817 U/mg) and thus to convert it into the comparably low specific activity of bIAP I.

In order to verify this result the reverse mutation D322G was introduced into bIAP I in the present invention. Surprisingly in this case the reverse effect namely an increase of the specific activity of more than 3-fold to 10148 U/mg was measured and hence a comparable value to bIAP II was achieved (Figure 9). A comparison of the amino acid sequences of the relatively more highly active bIAP III (ca. 4700 U/mg) and the more highly active bIAP IV (>6700 U/mg) again confirm this result. bIAP III has a serine at position 322 and bIAP IV has a glycine.

In addition in the present invention the generated mutants were in turn examined for heat stability. Consequently the difference in the heat stability between bIAP I and bIAP II is due to a combined effect of more than one substitution. The [G³²²]bIAP I as well as the [D³²²]bIAP II mutants exhibit stability values which lie between those of the bIAP I and bIAP II isoenzymes (Figure 9). The D322G mutation has a slight destabilizing effect (almost 4°C in T₅₀) on the bIAP I isoenzyme whereas the substitution G322D in bIAP II results in a corresponding increase in the stability of this mutant enzyme. However, the heat stability of the wild-type bIAP I is not achieved.

Hence the subject matter of the present invention is in particular to provide a highly active recombinant alkaline phosphatase with an activity of more than 3000 U/mg which is coded by a eukaryotic cDNA. A highly active recombinant alkaline phosphatase according to the invention is particularly preferred in which a glycine, alanine, threonine, valine or serine is at position 322. An alkaline phosphatase according to the invention is particularly preferred in which a glycine is at position 322.

The highly active recombinant alkaline phosphatase according to the invention can preferably additionally have a mutation at one or several of the following positions:

Amino acid residues at position 1, 108, 125, 149, 181, 188, 219, 221, 222, 223, 224, 231, 252, 258, 260, 282, 304, 321, 330, 331, 354, 383, 385, 400, 405, 413, 428, 431 and 461 in which the mutation causes an increase in activity. Furthermore the present invention concerns a process for the production of the highly active alkaline phosphatase according to the invention. The alkaline phosphatases according to the invention can also be further improved by specific mutagenesis e.g. with regard to their thermostability.

The activity of the highly active alkaline phosphatase according to the invention was determined according to E. Mössner et al., Z. Physiol. Chem. 361 (1980), 543-549; with the difference that the test was carried out at 37°C rather than at 25°C as described in the publication. The determination at 37°C is the world-wide usual temperature at which the activity is measured in

diethanol buffer (BM test method 5426).

The protein determination of the APs according to the invention and of the known APs is carried out by measuring the absorbance of the protein solution at 280 nm against water. The absorbance of a low and highly active AP solution at a concentration of 1 mg/ml is 1.0 at 280 nm (A 280 nm (1 mg/ml) equals 1).

The specific activity is determined by forming a quotient of activity relative to the accompanying amount of protein.

Figure legends

Figure 1:

SEQ ID NO.: 1 nucleotide sequence of bIAP II (1798 bp)
Start of the coding region for mature bIAP II at pos.
108, end at pos. 1649

Figure 2:

SEQ ID NO.: 2 amino acid sequence of bIAP II (480 amino acids) with cleavage sites

Figure 3:

SEQ ID NO.: 3 nucleotide sequence of bIAP III (2460 bp)
Start of the coding region for mature bIAP III at pos.
123, end at pos. 1655

Figure 4:

SEQ ID NO.: 4 amino acid sequence of bIAP III (511 amino acids)

Figure 5:

SEQ ID NO.: 5 nucleotide sequence of bIAP IV (2542 bp)
Start of the coding region for mature bIAP IV at pos.
122, end at pos. 1654

Figure 6:

SEQ ID NO.: 6 amino acid sequence of bIAP IV (511 amino acids)

Figure 7:

Amino acid differences between bIAP I, bIAP II, bIAP III and bIAP IV isoenzymes. Only the residues that are different are shown. The asterisk identifies those positions that were selected for individual mutagenesis in order to identify residues that are responsible for an increased catalytic activity of bIAP II.

Figure 8:

Ligation strategy for bIAP II DNA

Figure 9:

Kinetic parameters and heat stability of recombinant wild-type and chimeric bIAP enzymes and mutants of the bIAP enzymes changed by site-directed mutagenesis.
*[QVRV]bIAP II is the abbreviation for the [Q²⁸⁹, V²⁹⁴, R²⁹⁷, V²⁹⁹]bIAP II mutant.

The invention is further elucidated by the following examples:

Example 1: Cloning

A λ gt 11 cDNA bank prepared from the intestine of mature cows (Clontech Laboratories, Palo Alto, CA, USA) was screened using a 1075 bp Hind III fragment from the 5' end of the bIAP I cDNA as a probe (Weissig et al., 1993). Clones from this cDNA bank were used to screen an EMBL-3 SP6/T7 genomic cDNA bank which was prepared from the liver of mature cows (Clontech Laboratories, Palo Alto, CA, USA). A non-amplified λ ZAP II c-DNA bank was set up by means of an oligo dT primer (Stratagene, San Diego, CA, USA) from mRNA which was isolated from the small intestine of a mature cow using the Trisolv™ reagent and was screened with the 1075 bp HindIII fragment of the bIAP I cDNA as a probe. The probes were radio-labelled using a random primed DNA labeling kit (Boehringer Mannheim). Phage DNA was prepared as described for λ gt 11 and EMBL-3 SP6/T7 clones (Tsonis & Manes, 1988). The in vivo cleavage of the λ ZAP II clones was carried out according to the manufacturer's instructions (Stratagene, San Diego, CA). Genomic clones were characterized by Southern blot analysis as described (Sambrook et al., 1989). EcoRI cDNA fragments of λ gt 11 clones and different restriction fragments from clones of other banks were subcloned into the KS+ vector (Stratagene, San Diego, CA, USA). Plasmid DNA was prepared by alkaline lysis (Sambrook et al., 1989). The sequencing was carried out using Sequenase according to the manufacturer's protocol (Amersham). The oligo-nucleotides used to sequence the bIAPs III and IV are described in the following: 1s: SEQ ID NO.7: GCC AAG AAT GTC ATC CTC; 1a: SEQ ID NO.8: GAG GAT GAC ATT CTT GGC; 2s: SEQ ID NO.9: GGT GTA AGT GCA GCC GC; 2a: SEQ ID NO.10: GCG GCT GCA CTT AGA CC; 3s: SEQ ID NO. 11: AAT GTA CAT GTT TCC TG; 3a: SEQ ID NO.12: CAG GAA ACA TGT

ACA TT; 4s: SEQ ID NO.13: CCA GGG CTT CTA CCT CTT; 4a: SEQ ID NO.14: AAG AGG TAG AAG CCC TGG; 5s: SEQ ID NO.15: ACC AGA GCT ACC ACC TCG; 5a: SEQ ID NO.16: AAG CAG GAA ACC CCA AGA; 6s: SEQ ID NO.17: CTT CAG TGG CTT GGG ATT; 6a: SEQ ID NO.18: AAT CCC AAG CCA CTG AAG. The nucleic acid sequences were analysed with the MacVector sequence analysis program (International Biotechnologies, Inc. New Haven, CT, USA).

Example 2: Determination of the amino acid sequence of bIAP II

Approximately 500 µg of a purified highly active (ca. 6000 U/mg) bovine intestinal AP was dissolved in 450 µl 6M guanidine hydrochloride, 0.25 M Tris, 1 mM EDTA, pH 8.5 and subsequently 30 µl mercaptoethanol was added. After reduction for 30 minutes at 100°C, the cysteines were alkylated by addition of 35 µl vinylpyridine and this mixture was incubated in the dark for 45 minutes at room temperature. The reaction mixture was then immediately desalted over a short reversed phase HPLC Aquapore RP300 column (30 x 2.1 mm, Applied Biosystems, Weiterstadt). A step gradient of acetonitrile in 0.1 % trifluoroacetic acid was used to elute bound enzymes. Fractions containing protein were evaporated to dryness. In order to deglycosylate the enzyme 125 µg AP was dissolved in 15 µl distilled water and 6 µl incubation buffer (250 mM Na₂HPO₄, 50 mM EDTA, pH 7.2) and 15 U EndoF/PNGase (Boehringer Mannheim, Penzberg). The mixture was kept overnight at 37°C and subsequently used for cleavage. Reduced and alkylated AP was enzymatically cleaved with various enzymes according to the instructions on the data sheets of the individual enzymes (endoproteinase LysC, endoproteinase AspN, endoproteinase GluC and trypsin (Boehringer Mannheim,

Penzberg). Cyanogen bromide cleavage was carried out for 8 hours using 10 % (w/w) CNBr in 70 % (v/v) formic acid. After dissolving with water, the volume of the solution was reduced using a SpeedVac concentrator (Savant) and used for a reversed phase HPLC. The C-terminal tryptic peptide was digested for 4 minutes with carboxypeptidase Y (8 ng/μl) and the released peptides were analysed according to the manufacturer's instructions with matrix-supported laser desorption/ionisation mass spectrometry using a Bruker Reflex III instrument. 2,5 Dihydroxybenzoic acid (10 mg/ml) in acetonitrile/water (50/50, v/v) was used as the matrix. Peptides from enzymatic or chemical cleavages were separated by reversed phase HPLC on a LiChrospher C18 selB column 125x2 mm (Merck, Darmstadt) using a 0.1 % trifluoroacetic acid/acetonitrile solvent system. The flow rate was 300 μl/min. The eluant was detected by UV monitoring at 206 nm and the fractions were collected manually. The mass determination of the peptides was carried out with an API III electrospray mass spectrometer (PE-Sciex, Langen) according to the manufacturer's instructions. The amino acid sequence was determined with a 492 A protein sequencer (Applied Biosystems, Weiterstadt) according to the manufacturer's instructions.

Example 3: Preparation of the bIAP II cDNA and bIAP II mutagenesis

In order to prepare a cDNA which codes for bIAP II, wild-type restriction fragments and site-directed mutagenized PCR fragments of the cDNAs bIAP I, III and IV were ligated with one another and the L1N8 (3 fragments) and INT 1 (9 fragments) cDNA intermediate constructs were created. INT 1 and bIAP III then served as a template for

the site-directed mutagenesis and fragments from this were assembled to form the complete INT 2 (8 fragments) cDNA. Restriction fragments of INT 2 and site-directed mutagenized fragments of INT 2 were then assembled to form the INT 3 (5 fragments) cDNA and finally to form the bIAP II (4 fragments) cDNA. The site-directed mutagenesis was carried out according to the method of Tomic et al. (1990) using Bsa I (type II s) as the restriction enzyme which cleaves at a distance from its recognition sequence (GGTCTCN1/N5). All PCR products were sequenced in order to verify the absence of secondary mutations. All constructs were confirmed by sequencing and restriction digestion. The sequence of the oligonucleotide primers used to amplify the site-directed mutagenized fragments are as follows: the name of the primer is mentioned first followed by the sequence (positions that indicate the mutations are underlined): KS:SEQ ID NO.19: CGA GGT CGA CGG TAT CG; 1L:SEQ ID NO.20: GCA GGT CTC TCA GCT GGG ATG AGG GTG AGG; 8N:SEQ ID NO.21: GCA GGT CTC AGC TGA GGA GGA AAA CCC CGC; 122:SEQ ID NO.22: GCA GGT CTC TGT TGT GTC GCA CTG GTT; 1s:SEQ ID NO.7: GCC AAG AAT GTC ATC CTC; M133I:SEQ ID NO.23: GGT CTC TTT CTT GGC CCG GTT GAT CAC; S142A:SEQ ID NO.24: GGT CTC AAG AAA GCA GGG AAG GCC GTC; 180:SEQ ID NO.25: GGT CTC GTG CAT CAG CAG GCA GGT CGG C; M180K:SEQ ID NO.26: GGT CTC ATG CAC AGA AGA ATG GCT GCC AG; K205M:SEQ ID NO.27: GGT CTC AAA CAT GTA CAT TCG GCC TCC ACC; V210E:SEQ ID NO.28: GT CTC CAT GTT TCC TGA GGG GAC CCC A; A236E:SEQ ID NO.29: GGT CTC CTG CCA TTC CTG CAC CAG GTT; 236:SEQ ID NO.30: GGT CTC TGG CAG GCC AAG CAC CAG GGA; 289:SEQ ID NO.31: GGT CTC CAG GGT CGG GTC CTT GGT GTG; E289A:SEQ ID NO.32: GGT CTC GAC CCT GGC GGA GAT GAC G; 330:SEQ ID NO.33: GGT CTC CTC AGT CAG TGC CAT ATA; 330E,V332I:SEQ ID NO:34: GGT CTC ACT GAG GCG ATC ATG TTT GAC; X1a:SEQ ID NO.35: TG CAC CAG GTG CGC CTG CGG GCC; N192Y:SEQ ID NO.36: GCC GCA CAG CTG GTC TAC AAC ATG

GAT; S380G:SEQ ID NO.37: GCT GTC TAA GGC CTT GCC GGG GGC; N192Y:SEQ ID NO.38: GCC GCA CAG CTG GTC TAC AAC ATG GAT; D411G:SEQ ID NO.39: GGG GGT CTC GCT TGC TGC CAT TAA C; D416E:SEQ ID NO.40: GTT AAT GGT CTC ACA AGC GAG GAA CCC TCG; S428A:SEQ ID NO.41: CCC GTG GGT CTC GCT AGC CAG GGG CAC; D416E:SEQ ID NO.42: GTT AAT GGT CTC ACA AGC GAG GAA CCC TCG; T480S:SEQ ID NO.43: GAT GCT GGT CTC GGT GGA GGG GGC TGG CAG; 480:SEQ ID NO.44: CTG CCA GGT CTC ACC ACC GCC ACC AGC ATC; SP6:SEQ ID NO.45: CAT ACG ATT TAG GTG ACA CTA TAG; 236:SEQ ID NO.46: GGT CTC TGG CAG GCC AAG CAC CAG GGA; Q304R-:SEQ ID NO.47: GTA GAA GCC CCG GGG GTT CCT GCT; Q304+:SEQ ID NO.48:AGC AGG AAC CCC CGG GGC TTC TAC; E321D:SEQ ID NO.49: TGC CAT ATA AGC TTT GCC GTC ATG GTG. The various PCR reactions are numbered 1 - 16, the templates are either wild-type cDNAs bIAP I, III or IV or the chimeric constructs INT 1 or INT 2. The oligonucleotide primers (in parentheses) are stated above. 1. bIAP IV (KS, 1L); 2. bIAP IV (8N, 122); 3. bIAP III (1S, M133I); 4.bIAP I (S142A, 180); 5. bIAP I (M180K, K205M); 6. bIAP I(V210E, A236E); 7. bIAP I (236, 289); 8. bIAP IV (E289A, 330); 9. bIAP III (330E, V332I, XIa); 10. INT1 (N192Y, S380G); 11. INT1 (N192Y, D411G); 12. bIAP III (D416E, S428A); 13. INT1 (D416E, T480S); 14. INT1 (480, SP6); 15. INT2 (236, Q304R-); 16. INT2 (Q304R+, E321D). The following ligation reactions were carried out in all cases using the pcDNA-3 (Invitrogen, San Diego, CA) expression vector. The fragments are numbered according to the aforementioned PCR reaction numbers or named with the name of the wild-type or the chimeric cDNA followed by the restriction enzymes which were used to form the cohesive terminus of this fragment. L1N8 = pcDNA-3/EcoRI-XbaI + 1/EcoRI-BsaI + 2/BsaI-BamHI + bIAP I/BamHI-XbaI. INT 1 = pcDNA-3/EcoRI-XbaI +L1N8/EcoRI-NcoI + 3/NcoI-BsaI + 4/BsaI + 5/BsaI + 6/BsaI + 7/BsaI + 8/BsaI + 9/BsaI-StuI + bIAP I/StuI-XbaI. INT 2 = pcDNA-

3/EcoRI-NotI + INT1/EcoRI-PstI + 10/PstI-StuI + 11/StuI-BsaI + 12/BsaI + 13/BsaI + 14/BsaI + bIAP I/BsaI-NotI. INT 3 = pcDNA-3/EcoRI-XbaI + INT2/EcoRI-NcoI + INT2/NcoI-PvuII + 10/PvuII-EagI + INT2/EagI-HindIII + INT2/HindIII-XbaI. bIAP II = pcDNA-3/EcoRI-XbaI + INT3/EcoRI-EagI + 15/EagI-SmaI + 16/SmaI-HindIII + INT3/HindIII-XbaI.

10 Additional constructs were prepared in order to identify the residue (the residues) which are responsible for the various kinetic properties of bIAP I and II. All constructs were subcloned in pcDNA-3/EcoRI-XbaI. 5 Constructs were prepared by exchange of restriction fragments between L1N8 or bIAP I (I) and bIAP II (II). L1N8 EcoRI-PmII and (II) PmII-XbaI were ligated in order to prepare the [N122K]bIAP II mutant cDNA. (II) EcoRI-BstEII, (I) BstEII-PvuII, (II) PvuII XbaI were combined for the [K180M]bIAP II mutant cDNA. (II) EcoRI-EagI, (I) EagI-BstEII, (II) BstEII-XbaI were ligated for the [A289Q, A294V, Q297R, L299V]bIAP II mutant. (II) EcoRI-EagI, (II) EagI-BstEII, (I) BstEII-HindIII, (II) HindIII-XbaI for the [G322D]bIAP II mutant. (II) EcoRI-HindIII, (I) HindIII-SacI, (II) SacI-XbaI for the [I332G]bIAP II mutant. 5 other positions required new site-directed mutagenesis. The following oligonucleotides were used for this: I133M-:SEQ ID NO.50: GGT CTC TTT CTT GGC CCG GTT CAT CAC; A142S-:SEQ ID NO.51: TGG TCA CCA CTC CCA CGG ACT TCC CTG; M205K-:SEQ ID NO.52: GGT CTC AAA CAT GTA TTT TCG GCC TCC ACC; E210V+:SEQ ID NO.53: GGT CTC ATG TTT CCT GTG GGG ACC CCA GAC; E236A:SEQ ID NO.54: GGT CTC CTG CCA TGC CTG CAC CAG GTT. The following 8 PCR reactions (a-h) with bIAP II as the template were carried out using these and the previously listed oligonucleotides: a. 1s, I133M-; b. S142A+, M205K-; c. 1s, A142S-; d. V210E+, 330-; e. E210V+, 330-; f. M180K+, E236A-; g. 236+, 330-; h. S142A, K205M-.

The products which were formed from this were

subcloned and sequenced and then the fragments were isolated for the following ligations: (II) EcoRI-NcoI, (a) NcoI-BsaI, (b) BsaI, PvuII, (II) PvuII-XbaI for I133M. (II) EcoRI-NcoI, (c) NcoI-BstEII, (II) BstEII-PvuII, (II) PvuII-XbaI for A142S. (II) EcoRI-BstEII, (b) BstEII-BsaI, (d) BsaI-HindIII, (II) HindIII-XbaI for M205K. (II) EcoRI-BstEII, (h) BstEII-BsaI, (e) BsaI-HindIII, (II) HindIII-XbaI for E210V. (II) EcoRI-NcoI, (III) NcoI-PvuII, (f) PvuII-BsaI, (g) BsaI-HindIII, (II) HindIII-XbaI for E236A.

Example 4: Production and characterization of recombinant enzymes

All cDNAs (bIAP I, bIAP II, bIAP III, bIAP IV and corresponding mutants) were cloned into the pcDNA-3 expression vector (Invitrogen, San Diego, CA, USA), transferred into ovarian cells of a Chinese hamster (CHO cells) and stable transfectants were selected by growing the cells in the presence of 500 µg/ml geneticin (Gibco, BRL). Recombinant APs were extracted as described from stably transfected CHO cells (Hoylaerts et al., 1997). Microtitre plates that were coated with 0.1 µg/ml high affinity anti-bovine AP monoclonal antibody (Scottish Antibody Production Unit, Lanarkshire, Scotland) were incubated with increasing enzyme concentrations in order to measure the k_{cat} . The activity of the bound enzyme was measured as the change in absorbance with time at 405 nm and 20°C after addition of 30 mM p-nitrophenyl phosphate (pNPP) as the substrate in 1.0 M diethanolamine buffer (pH 9.8), 1 mM MgCl₂ and 20 µM ZnCl₂. The concentration of the p-nitrophenol that formed was calculated with an extinction coefficient of 10,080 litre mole⁻¹ cm⁻¹. Commercial preparations with known specific activities (Biozyme Laboratories, 7822 U/mg and Boehringer Mannheim,

3073 U/mg) and also purified bIAP II (8600 U/mg) were used as standards. The enzyme concentration in these solutions which saturated the antibody (E^0) was calculated from a standard curve of activity against known enzyme concentrations under identical test conditions. The maximum substrate conversion (V_{max}) was then divided by E^0 in order to calculate k_{cat} . In order to calculate K_m the substrate concentration was changed between 0.25 - 2.0 mM p-nitrophenyl phosphate (pNPP) and the initial reaction rate at 20°C was measured over a period of 10 minutes. Regression curves of $[pNPP]/v$ versus $[pNPP]$ (Hanes curves) as the X axis yielded $-K_m$. Division of the standard deviation of the calculated y value for each x value in the regression by the slope of regression yielded the standard deviation of K_m . $V_{max} \pm$ standard deviation was calculated using the appropriate equations by dividing $K_m \pm$ standard deviation by the y intercept \pm standard deviation. The specific activities were calculated in comparison to Biozyme on the basis of antibody-saturated activity. Heat stability curves were established by incubation of extracts at 45 - 75°C with an increase in 5°C steps every 10 minutes as described previously (Weissig et al., 1993). The activity of each sample was then determined as described above and the residual activity was calculated as the residual percentage compared to the non-heated sample. The temperature at which 50 % residual activity remains (T_{50}) was calculated from the residual activity against temperature curves.

SEQUENCE PROTOCOL

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Roche Diagnostics GmbH
 - (B) ROAD: Sandhofer Str. 116
 - (C) CITY: Mannheim
 - (E) COUNTRY: Germany
 - (F) POSTAL CODE: 68305
 - (G) TELEPHONE: 0621/7595482
 - (H) TELEFAX: 0621/7594457
- (ii) TITLE OF INVENTION: Highly active alkaline phosphatase
- (iii) NUMBER OF SEQUENCES: 54
- (iv) COMPUTER READABLE FORM:
 - (A) DATA MEDIUM: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, version #1.30 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1798 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear

- (ii) TYPE OF MOLECULE: genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAATTGGCGA CGAGCCAGGT CCCATCCTGA CCCTCCGCCA TCACACAGCT ATGCAGTGGG	60
CCTGTGTGCT GCTGCTGCTG GGCCTGTGGC TACAGCTCTC CCTCACCCCTC ATCCCAGCTG	120
AGGAGGAAAA CCCCGCCCTTC TGGAACCGCC AGGCAGCCCA GGCCCTTGAT GTAGCCAAGA	180
AGTTGCAGCC GATCCAGACA GCTGCCAAGA ATGTCATCCT CTTCTGGGG GATGGGATGG	240
GGGTGCCTAC GGTGACAGCC ACTCGGATCC TAAAGGGCA GATGATGGC AACTGGGAC	300
CTGAGACACC CCTGGCCATG GACCAGTTCC CATACGTGGC TCTGTCCAAG ACATACAACG	360
TGGACAGACA GGTGCCAGAC AGCGCAGGCA CTGCCACTGC CTACCTGTGT GGGGTCAAGG	420
GCAACTACAG AACCATCGGT GTAAGTGCAG CGGCCCGCTA CAATCAAGTGC AACACGACAC	480
GTGGGAATGA GGTCACCTCT GTGATCAACC GGGCCAAGAA AGCAGGGAAG GCCGTGGGAG	540
TGGTGACCAAC CACCAAGGGTG CAGCATGCCT CCCCAGCCGG GCCCTACCGC CACACGGTGA	600

ACCGAAACTG GTACTCAGAC GCCGACCTGC CTGCTGATGC ACAGAAGAAT GGCTGCCAGG 660
ACATCGCCGC ACAGCTGGTC TACAACATGG ATATTGACGT GATCCTGGGT GGAGGCCGAA 720
TGTACATGTT TCCTGAGGGG ACCCCAGACC CTGAATACCC AGATGATGCC AGTGTGAATG 780
GAGTCCGGAA GGACAAGCAG AACCTGGTGC AGGAATGGCA GGCCAGCAC CAGGGAGCCC 840
AGTATGTGTG GAACCGCACT GCGCTCCTTC AGGCGGCCGA TGACTCCAGT GTAACACACC 900
TCATGGCCT CTTTGAGCCG GCAGACATGA AGTATAATGT TCAGCAAGAC CACACCAAGG 960
ACCCGACCTC GGCGGAGATG ACGGAGGCCG CCCTGCAAGT GCTGAGCAGG AACCCCCGGG 1020
GCTTCTACCT CTTCGTGGAG GGAGGCCGCA TTGACCACGG TCACCATGAC GGCAAAGCTT 1080
ATATGGCACT GACTGAGGCG ATCATGTTG ACAATGCCAT CGCCAAGGCT AACGAGCTCA 1140
CTAGCGAACT GGACACCGCTG ATCCTTGTC CTGCAGACCA CTCCCATGTC TTCTTTTG 1200
GTGGCTACAC ACTGCGTGGG ACCTCCATT TCCTGCTGGC CCCCGGCAAG GCCTTAGACA 1260
GCAAGTCCTA CACCTCCATC CTCTATGGCA ATGGCCCAGG CTATGCGCTT GGCGGGGGCT 1320
CGAGGCCCGA TGTAAATGGC AGCACAAGCG AGGAACCCCTC ATACCGGCAG CAGGCCGCCG 1380
TGCCCCCTGGC TAGCGAGACC CACGGGGCG AAGACGTGGC GGTGTTCGCG CGAGGCCCGC 1440
AGGCGCACCT GGTGCACCGC GTGCAGGAGG AGACCTTCGT GGCGCACATC ATGGCCTTG 1500
CGGGCTGCCTGCT GGAGCCCTAC ACCGACTGCA ATCTGCCAGC CCCCGCCACC GCCACCAGCA 1560
TCCCCGACGC CGCGCACCTG GCGGCCAGCC CGCCTCCACT GGCGCTGCTG GCTGGGGCGA 1620
TGCTGCTGCT GCTGGCGCCC ACCTTGTACT AACCCCCACC AGTCCAGGT CTCGGGATT 1680
CCCGCTCTCC TGCCCAAAAC CTCCCGCTC AGGCCCTACC GGAGCTACCA CCTCAGAGTC 1740
CCCACCCCGA AGTGCTATCC TAGCTGCCAC TCCTGCAGAC CCGACCCAGC CGGAATTC 1798

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 480 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Leu Ile Pro Ala Glu Glu Asn Pro Ala Phe Trp Asn Arg Gln Ala
1 5 10 15

Ala Gln Ala Leu Asp Val Ala Lys Lys Leu Gln Pro Ile Gln Thr Ala
20 25 30

Ala Lys Asn Val Ile Leu Phe Leu Gly Asp Gly Met Gly Val Pro Thr
35 40 45

Val Thr Ala Thr Arg Ile Leu Lys Gly Gln Met Asn Gly Lys Leu Gly
50 55 60

Pro Glu Thr Pro Leu Ala Met Asp Gln Phe Pro Tyr Val Ala Leu Ser
65 70 75 80

Lys Thr Tyr Asn Val Asp Arg Gln Val Pro Asp Ser Ala Gly Thr Ala
85 90 95

Thr Ala Tyr Leu Cys Gly Val Lys Gly Asn Tyr Arg Thr Ile Gly Val
100 105 110

Ser Ala Ala Ala Arg Tyr Asn Gln Cys Asn Thr Thr Arg Gly Asn Glu
115 120 125

Val Thr Ser Val Ile Asn Arg Ala Lys Lys Ala Gly Lys Ala Val Gly
130 135 140

Val Val Thr Thr Arg Val Gln His Ala Ser Pro Ala Gly Ala Tyr
145 150 155 160

Ala His Thr Val Asn Arg Asn Trp Tyr Ser Asp Ala Asp Leu Pro Ala
165 170 175

Asp Ala Gln Lys Asn Gly Cys Gln Asp Ile Ala Ala Gln Leu Val Tyr
180 185 190

Asn Met Asp Ile Asp Val Ile Leu Gly Gly Arg Met Tyr Met Phe
195 200 205

Pro Glu Gly Thr Pro Asp Pro Glu Tyr Pro Asp Asp Ala Ser Val Asn
210 215 220

Gly Val Arg Lys Asp Lys Gln Asn Leu Val Gln Glu Trp Gln Ala Lys
225 230 235 240

His Gln Gly Ala Gln Tyr Val Trp Asn Arg Thr Ala Leu Leu Gln Ala
245 250 255

Ala Asp Asp Ser Ser Val Thr His Leu Met Gly Leu Phe Glu Pro Ala
260 265 270

Asp Met Lys Tyr Asn Val Gln Gln Asp His Thr Lys Asp Pro Thr Leu
275 280 285

Ala Glu Met Thr Glu Ala Ala Leu Gln Val Leu Ser Arg Asn Pro Arg
290 295 300

Gly Phe Tyr Leu Phe Val Glu Gly Gly Arg Ile Asp His Gly His His
305 310 315 320

Asp Gly Lys Ala Tyr Met Ala Leu Thr Glu Ala Ile Met Phe Asp Asn
325 330 335

Ala Ile Ala Lys Ala Asn Glu Leu Thr Ser Glu Leu Asp Thr Leu Ile
340 345 350

Leu Val Thr Ala Asp His Ser His Val Phe Ser Phe Gly Gly Tyr Thr
355 360 365

Leu Arg Gly Thr Ser Ile Phe Gly Leu Ala Pro Gly Lys Ala Leu Asp
370 375 380

Ser Lys Ser Tyr Thr Ser Ile Leu Tyr Gly Asn Gly Pro Gly Tyr Ala
385 390 395 400

Leu Gly Gly Ser Arg Pro Asp Val Asn Gly Ser Thr Ser Glu Glu
405 410 415

Pro Ser Tyr Arg Gln Gln Ala Ala Val Pro Leu Ala Ser Glu Thr His
420 425 430

Gly Gly Glu Asp Val Ala Val Phe Ala Arg Gly Pro Gln Ala His Leu
435 440 445

Val His Gly Val Gln Glu Glu Thr Phe Val Ala His Ile Met Ala Phe
450 455 460

Ala Gly Cys Val Glu Pro Tyr Thr Asp Cys Asn Leu Pro Ala Pro Ala
465 470 475 480

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2640 base pairs
(B) TYPE: nucleotide
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAATTCTGGCA CGAGCGAGAC CCAGACTCCC CAGGTCCCAT CCTGACCCCTC CGCCATCACA 60

CAGCTATGCA GGGGCCCTGC TGCTGCTGC TGCTGGCCT GTGGCTACAG CTCTCCCTCG 120
CCTTCATCCC AGTTGAGGAG GAAGACCCCG CCTTCTGGAA CGCCAGGCA GCCCAGGCC 180
TTGATGTGGC TAAGAAGCTG CAGCCCATCC AGAAAGCCG CAAAGATGTC ATCCTCTTCT 240
TGGGAGATGG GATGGGGGTG CCTACGGTGA CAGCCACTCG GATACTGAAG GGGCAGATGA 300
ATGACAAGCT GGGACCTGAG ACACCCCTGG CCATGGACCA GTTCCCATAC GTGGCTCTGT 360
CCAAGACATA CAACGTGGAC AGACAGGTGC CAGACAGCGC AGGCAGTGC ACTGCCTACC 420
TGTGTGGGT CAAGGGCAAC TACAGAACCA TCGGTGTAAG TGCAGCCGCC CGCTACAATC 480
AGTGCAACAC GACACGTGGG AATGAGGTCA CGTCTGTGAT GAACCCGGCC AAGAAAGCAG 540
GGAAGTCAGT GGGAGTGGTG ACCACCA ACCA GGGTGCAGCA CGCCTCCCCA GCCGGTGCTT 600
ATGCACACAC GGTGAACCGT GACTGGTACT CAGACGCCGA CCTGCCTGCC GATGCACAGA 660
CGTATGGCTG CCAGGACATC GCCACACAAC TGGTCAACAA CATGGATATT GACGTGATCC 720
TGGGTGGAGG CCGAAAGTAC ATGTTCTCG AGGGGACCC AGACCCCTGAA TACCCACACG 780
ATGCCAGTGT GAATGGAGTC CGGAAGGACA AGCGGAATCT GGTGCAGGAG TGGCAGGCCA 840
AGCACCAGGG AGCCCAGTAT GTGTGGAACC GCACGGAGCT CCTTCAGGCA GCCAATGACT 900
CCAGTGTTCAC ACATCTCATG GGCCTCTTG AGCCGGCAGA CATGAAGTAT AATGTTCAAGC 960
AAGACCCAC CAAGGACCCG ACCCTGGAGG AGATGACGGA GGGGGCCCTG CAAGTGTGA 1020
GCAGGAACCC CCAGGGCTTC TACCTCTCG TGGAGGGAGG CCGCATTGAC CACGGTCACC 1080
ATGATAGCAA AGCTTATATG GCGCTGACTG AGGCGGTAT GTTGACAAT GCCATCGCCA 1140
AGGCTAACGA GCTCACTAGC GAACTGGACA CGCTGATCCT TGTCACTGCA GACCACTCCC 1200
ATGTCTTCTC TTTTGGTGGC TACACACTGC GTGGGACCTC CATTTCGGT CTGGCCCCCA 1260
GCAAGGCCTC AGACAAGAAG TCCTACACCT CCATCCTCTA TGCAATGGC CCTGGCTACG 1320
TGCTTGGTGG GGGCTCAAGG CCCGATGTTA ATGACAGCAT AAGCGAGGAC CCCTCATACC 1380
GGCAGCAGGC GGCGTGTGCC CTGTCTAGCG AGACCCACGG GGGCGAAGAC GTGGCGGTGT 1440
TCGCGCGAGG CCCGCAGGCG CACCTGGTGC ACGGCGTGCA GGAGGAGACC TTGCGGGCGC 1500
ACGTCATGGC CTTTGGGGC TGCCTGGAGC CCTACACCGA CTGCAATCTG CGGGCCCCCT 1560

CTGGCCTCTC CGACGCCGCG CACCTGGCGG CCAGCGCGC TTCGCTAGCG CTGCTGGCG 1620
GGCGATGCT GCTGCTGCTG GCGCCCGCT TGTACTGACC CCCACCAACT CCAGGTCTG 1680
GGGTTTCCCG CTTTCTTGCC CCAAATCTC CCAGGCCAGG CCCCATCTGA CCTACCACT 1740
CAGAGTCCCC ACCCTGAAGT CCTATCTAGC GCACTCCAGA CGCGCACTCA GCCCCACCAC 1800
CAGAGCTTCA CCTCCCAGCA ACGAAGGAGC CTTAGCTCAC AGCCTTCAT GGCCCAGACC 1860
ATTCTGGAGA CTGAGGCCCT GATTTCCCG ACCCAACTTC AGTGGCTTGA GATTTGTGT 1920
TCTGCCACCC CGGATCCCTG TAAGGGGCT CGGACCATCC AGACTCCCC CACTGCCAC 1980
AGCCGAACCT GAGGACCAAGG CTGGCACGGT CCCAGGGTC CCAGGCCCGG CTGGAACCCA 2040
CATCTTGCC TTTCAGGAGA CCCTGGACT GTGGGGTTTC CAGGAGGCGT GGCTTCTGG 2100
AGGCGTGGCT TCGGAGGGT GGCTCCGAG AAGGCGTGGC TCCCTGTCCCT GGAACCACCC 2160
TGTGGGNATC TGGGGCCAA GGAGATGTCT GGGGCAAAGA GTGCCGGGG ACCCTGGACA 2220
CAGAATCTC AGCGGCCCT CCTAGGAACC CAGCAGTACC ATTATAGAGA GGGGACACCG 2280
ACACAGAGGA GAGGAGACTT GTCCAGGTC CCTCAGCTGC TGTGAGGGT GACCCTGGT 2340
TCCCGTTACC AGGCTGGGG ATCCCAGGAG CAGCGGGGA CCTGGGGTG GGGACACAGG 2400
CCCCACACTC CTGGGAGGGA GGAAGCAGCC CTNAAATAAA CTGTTCTCG TGCGAATT 2460

1. (2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 511 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Phe	Ile	Pro	Val	Glu	Glu	Glu	Asp	Pro	Ala	Phe	Trp	Asn	Arg	Gln	Ala
1				5					10				15		
Ala	Gln	Ala	Leu	Asp	Val	Ala	Lys	Lys	Leu	Gln	Pro	Ile	Gln	Lys	Ala
			20				25					30			
Ala	Lys	Asn	Val	Ile	Leu	Phe	Leu	Gly	Asp	Gly	Met	Gly	Val	Pro	Thr
			35			40					45				

Val Thr Ala Thr Arg Ile Leu Lys Gly Gln Met Asn Asp Lys Leu Gly
50 55 60

Pro Glu Thr Pro Leu Ala Met Asp Gln Phe Pro Tyr Val Ala Leu Ser
65 70 75 80

Lys Thr Tyr Asn Val Asp Arg Gln Val Pro Asp Ser Ala Gly Thr Ala
85 90 95

Thr Ala Tyr Ieu Cys Gly Val Lys Gly Asn Tyr Arg Thr Ile Gly Val
100 105 110

Ser Ala Ala Ala Arg Tyr Asn Gln Cys Asn Thr Thr Arg Gly Asn Glu
115 120 125

Val Thr Ser Val Met Asn Arg Ala Lys Lys Ala Gly Lys Ser Val Gly
130 135 140

Val Val Thr Thr Arg Val Gln His Ala Ser Pro Ala Gly Ala Tyr
145 150 155 160

Ala His Thr Val Asn Arg Asp Trp Tyr Ser Asp Ala Asp Leu Pro Ala
165 170 175

Asp Ala Gln Thr Tyr Gly Cys Gln Asp Ile Ala Thr Gln Leu Val Asn
180 185 190

Asn Met Asp Ile Asp Val Ile Leu Gly Gly Arg Lys Tyr Met Phe
195 200 205

Pro Glu Gly Thr Pro Asp Pro Glu Tyr Pro His Asp Ala Ser Val Asn
210 215 220

Gly Val Arg Lys Asp Lys Arg Asn Leu Val Gln Glu Trp Gln Ala Lys
225 230 235 240

His Gln Gly Ala Gln Tyr Val Trp Asn Arg Thr Glu Leu Leu Gln Ala
245 250 255

Ala Asn Asp Ser Ser Val Thr His Leu Met Gly Leu Phe Glu Pro Ala
260 265 270

Asp Met Lys Tyr Asn Val Gln Gln Asp Pro Thr Lys Asp Pro Thr Leu
275 280 285

Glu Glu Met Thr Glu Ala Ala Leu Gln Val Leu Ser Arg Asn Pro Gln
290 295 300

Gly Phe Tyr Leu Phe Val Glu Gly Gly Arg Ile Asp His Gly His His
305 310 315 320

Asp Ser Lys Ala Tyr Met Ala Leu Thr Glu Ala Val Met Phe Asp Asn
325 330 335

Ala Ile Ala Lys Ala Asn Glu Leu Thr Ser Glu Leu Asp Thr Leu Ile
340 345 350

Leu Val Thr Ala Asp His Ser His Val Phe Ser Phe Gly Gly Tyr Thr
355 360 365

Leu Arg Gly Thr Ser Ile Phe Gly Leu Ala Pro Ser Lys Ala Ser Asp
370 375 380

Lys Lys Ser Tyr Thr Ser Ile Leu Tyr Gly Asn Gly Pro Gly Tyr Val
385 390 395 400

Leu Gly Gly Ser Arg Pro Asp Val Asn Asp Ser Ile Ser Glu Asp
405 410 415

Pro Ser Tyr Arg Gln Gln Ala Ala Val Pro Leu Ser Ser Glu Thr His
420 425 430

Gly Gly Glu Asp Val Ala Val Phe Ala Arg Gly Pro Gln Ala His Leu
435 440 445

Val His Gly Val Gln Glu Glu Thr Phe Val Ala His Val Met Ala Phe
450 455 460

Ala Gly Cys Val Glu Pro Tyr Thr Asp Cys Asn Leu Pro Ala Pro Ser
465 470 475 480

Gly Leu Ser Asp Ala Ala His Leu Ala Ala Ser Ala Pro Ser Leu Ala
485 490 495

Leu Leu Ala Gly Ala Met Leu Leu Leu Leu Ala Pro Ala Leu Tyr
500 505 510

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2542 base pairs
(B) TYPE: nucleotide
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GAATTCGGCA CGAGGAGACC CGGCCTCCCC AGGTCCATC CTGACCCCTCC GCCATCACAC 60
AGCCATGCAG TGGGCCTGTG TGCTGCTGCT GCTGGGCCTG TGGCTACAGC TCTCCCTCAC 120
CTTCATCCCA GCTGAGGAGG AAGACCCCGC CTTCTGGAAC CGCCAGGCAG CCCAGGCCCT 180
TGATGTAGCC AAGAAGTTGC AGCCGATCCA GACAGCTGCC AAGAATGTCA TCCTCTTCTT 240

GGGGGATGGG ATGGGGTGC CTACGGTGAC AGCCACTCGG ATCCTAAAGG GGCAGATGAA 300
TGGTAAGCTG GGACCTGAGA CACCCCTGGC CATGGACAG TTCCCATACTG TGGCTCTGTC 360
CAAGACATAC AACGTGGACA GACAGGTGCC AGACAGCGCA GGCACTGCCA CTGCCAACCT 420
GTGTGGGTGTC AAGGGCAACT ACAAAACCAT TGGTGTAACT GCAGCCGCC GCTACAACCA 480
GTGCAACACA ACAAGTGGCA ATGAGGTACG GTCTGTGATG AACCCGGCCA AGAAAGCAGG 540
AAAGTCAGTG GGAGTGGTGA CCACCTCCAG GGTGCAGCAT GCCTCCAG CCGGTGCTTA 600
TGCACACACG GTGAACCGAA ACTGGTACTC AGATGCCGAC CTGCCGCCG ATGCACAGAC 660
GTATGGCTGC CAGGACATCG CCACACAAC GGTCAACAAAC ATGGATATTG ACGTGATCCT 720
GGGTGGAGGC CGAATGTACA TGTTCTGAA GGGGACCCCG GATCCTGAAT ACCCATAACGA 780
TGTCAATCAG ACTGGAGTCC GGAAGGACAA CGGAAATCTG GTGCAGGAGT GGCAGGCCAA 840
GCACCAGGGA GCCCAGTATG TGTGGAACCG CACGGAGCTC CTTCAGGCAG CCAATGACCC 900
CAGTGTAAACA CACCTCATGG GCCTCTTGA GCCGGCAGAC ATGAAGTATA ATGTTCAGCA 960
AGACCCCAACC AAGGACCCGA CCCTGGAGGA GATGACGGAG GCGGCCCTGC AAGTGCTGAG 1020
CAGGAACCCC CAGGGCTTCT ACCTCTTCGT GGAGGGAGGC CGCATTGACCC ACGGTACCCA 1080
TGAAGGCAAA GCTTATATGG CACTGACTGA TACAGTCATG TTTGACAATG CCATGCCAA 1140
GGCTAACGAG CTCACTAGCG AACTGGACAC GCTGATCCTT GCCACTGCAG ACCACTCCCA 1200
TGTCTTCTCT TTTGGTGGCT ACACACTGGC TGGGACCTCC ATTTTGGTC TGGCCCCCAG 1260
CAAGGCCTCA GACAACAAGT CCTACACCTC CATCCTCTAT GGCA-TGGCC CTGGCTACGT 1320
GCTTGGTGGG GGCTTAAGGC CCGATGTTAA TGACAGCATA AGCGAGGACCC CCTCGTACCG 1380
GCAGCAGGGCG GCCGTGCCCG TGTCTAGTGA GTCCCACGGG GGCAGGGACG TGGCGGTGTT 1440
CGCGCGAGGC CGCGAGGC ACCTGGTGCA CGCGTGCAG GAGGAGACCT TCGTGGCGCA 1500
CGTCATGGCC TTTGCGGGCT GCGTGGAGCC CTACACCGAC TGCA-TCTGC CGGCCCCCTC 1560
TGGCCTCTCC GACGCCGCGC ACCTGGCGC CAGCCCGCT TCGCTGGCGC TGGCTGGCGG 1620
GGCGATGCTG CTGCTGCTGG CGCCTGCCCT GTACTGACCC CCACCAACTC CAGGTCTTGG 1680
GGTTTCCTGC TTTCTGCCA AAAATCTCCC AGCGCAGACC CCACCAAGAGC TACCACTCG 1740
GAGTCTCCAC CCTGAAGTCC TATCTTAGCG GCCACTCCCG GATCCCCGAC CAGGCCCCAC 1800
TAGCAGAGCT TCACCTCCCA GAAATGAAGG ATTACACCTTC CAGCAGCAA GAAGCCTCAG 1860

CTCACAGCCC TTCATGGCCC AGCCCATCCA GAGGCTGAGG CCCTGATTTC CCTGTGACAC 1920
CCGTAGACCT ACTGCCCGAC CCCAACCTCA GTGGCTTGGG ATTTGTGTT CTGCCACCCC 1980
TAACCCAGT AAGGGGGCTC GGACCATCCA GACTCTCCCC ACTGCCACAA ACCCCACCTG 2040
AGAACCAAGGC TAGCACGGTC CCAAGGTTCC CAGGCCCGC TAGAACCCAC ACCATGCCTT 2100
TCAGGAGACC CTGGGGCTCC GGGGTTCCG GGAGGCGTGG CTTCTTAGG AGGCCTGGAA 2160
ACTGAGGAGG CACGGTTCT GAGGAGGC GT GCGTCCTGGG GAGCTGTGGC TTCCGGTCCT 2220
CCCCATGCC TGTGGGCTCC TCCCTAACCA AGGAGACGGC CAAGGAGACG TCTGGAACCA 2280
GGAGCGGGCGG GGGAACCTG CAGAGCCCTC AGCAACCCCT CCTAGGAACC CAGGGTACCG 2340
TTAGAGAGAG GAGACAGCGA CACAGAGGAG AGGAGACTTG TCCCAGGTCT CTCAGCTGCT 2400
ATGAAGGTGG CCCCGGTGCC CCTTCAGGC TGGGAGATCC CAGGAGCAGC GGGGGAGCTG 2460
GTGGGTGGGG ACACAGCCCC GCCTTCATGG GAGGGAGGAA GCAGCCCTCA AATAAACTGT 2520
TCTAAAGTGTG AAAAAATCTA GA 2542

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 511 amino acids
(B) TYPE: amino acids
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Phe	Ile	Pro	Ala	Glu	Glu	Glu	Asp	Pro	Ala	Phe	Trp	Asn	Arg	Gln	Ala
1				5					10			15			
Ala	Gln	Ala	Leu	Asp	Val	Ala	Lys	Lys	Leu	Gln	Pro	Ile	Gln	Thr	Ala
	20				25				30						
Ala	Lys	Asn	Val	Ile	Leu	Phe	Leu	Gly	Asp	Gly	Met	Gly	Val	Pro	Thr
	35				40				45						
Val	Thr	Ala	Thr	Arg	Ile	Leu	Lys	Gly	Gln	Met	Asn	Gly	Lys	Leu	Gly
	50				55				60						
Pro	Glu	Thr	Pro	Leu	Ala	Met	Asp	Gln	Phe	Pro	Tyr	Val	Ala	Leu	Ser
65				70				75			80				

Lys Thr Tyr Asn Val Asp Arg Gln Val Pro Asp Ser Ala Gly Thr Ala
85 90 95

Thr Ala Tyr Leu Cys Gly Val Lys Gly Asn Tyr Lys Thr Ile Gly Val
100 105 110

Ser Ala Ala Ala Arg Tyr Asn Gln Cys Asn Thr Thr Ser Gly Asn Glu
115 120 125

Val Thr Ser Val Met Asn Arg Ala Lys Lys Ala Gly Lys Ser Val Gly
130 135 140

Val Val Thr Thr Ser Arg Val Gln His Ala Ser Pro Ala Gly Ala Tyr
145 150 155 160

Ala His Thr Val Asn Arg Asn Trp Tyr Ser Asp Ala Asp Leu Pro Ala
165 170 175

Asp Ala Gln Thr Tyr Gly Cys Gln Asp Ile Ala Thr Gln Leu Val Asn
180 185 190

Asn Met Asp Ile Asp Val Ile Leu Gly Gly Arg Met Tyr Met Phe
195 200 205

Pro Glu Gly Thr Pro Asp Pro Glu Tyr Pro Tyr Asp Val Asn Gln Thr
210 215 220

Gly Val Arg Lys Asp Lys Arg Asn Leu Val Gln Glu Trp Gln Ala Lys
225 230 235 240

His Gln Gly Ala Gln Tyr Val Trp Asn Arg Thr Glu Leu Leu Gln Ala
245 250 255

Ala Asn Asp Pro Ser Val Thr His Leu Met Gly Leu Phe Glu Pro Ala
260 265 270

Asp Met Lys Tyr Asn Val Gln Gln Asp Pro Thr Lys Asp Pro Thr Leu
275 280 285

Glu Glu Met Thr Glu Ala Ala Leu Gln Val Leu Ser Arg Asn Pro Gln
290 295 300

Gly Phe Tyr Leu Phe Val Glu Gly Gly Arg Ile Asp His Gly His His
305 310 315 320

Glu Gly Lys Ala Tyr Met Ala Leu Thr Asp Thr Val Met Phe Asp Asn
325 330 335

Ala Ile Ala Lys Ala Asn Glu Leu Thr Ser Glu Leu Asp Thr Leu Ile
340 345 350

Leu Ala Thr Ala Asp His Ser His Val Phe Ser Phe Gly Gly Tyr Thr
355 360 365

- 32 -

Leu Arg Gly Thr Ser Ile Phe Gly Leu Ala Pro Ser Lys Ala Ser Asp
370 375 380

Asn Lys Ser Tyr Thr Ser Ile Leu Tyr Gly Asn Gly Pro Gly Tyr Val
385 390 395 400

Leu Gly Gly Leu Arg Pro Asp Val Asn Asp Ser Ile Ser Glu Asp
405 410 415

Pro Ser Tyr Arg Gln Gln Ala Ala Val Pro Leu Ser Ser Glu Ser His
420 425 430

Gly Gly Glu Asp Val Ala Val Phe Ala Arg Gly Pro Gln Ala His Leu
435 440 445

Val His Gly Val Gln Glu Glu Thr Phe Val Ala His Val Met Ala Phe
450 455 460

Ala Gly Cys Val Glu Pro Tyr Thr Asp Cys Asn Leu Pro Ala Pro Ser
465 470 475 480

Gly Leu Ser Asp Ala Ala His Leu Ala Ala Ser Pro Pro Ser Leu Ala
485 490 495

Leu Leu Ala Gly Ala Met Leu Leu Leu Leu Ala Pro Ala Leu Tyr
500 505 510

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GCCAAGAATG TCATCCTC

18

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GAGGATGACA TTCTTGGC

18

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 base pairs
- (B) TYPE: nucleotide
- (C) STRANDEDNESS: single strand
- (D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid

- (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GGTGTAAGTG CAGCCGC

17

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 base pairs
- (B) TYPE: nucleotide
- (C) STRANDEDNESS: single strand
- (D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid

- (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GCGGCTGCAC TTAGACC

17

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 base pairs
- (B) TYPE: nucleotide
- (C) STRANDEDNESS: single strand
- (D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid

- (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

AATGTACATG TTTCCTG

17

(2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CAGGAAACAT GTACATT

17

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CCAGGGCTTC TACCTCTT

18

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AAGAGGTAGA AGCCCTGG

18

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

ACCAAGAGCTA CCACCTCG

18

(2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

AAGCAGGAAA CCCCAAGA

18

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CTTCAGTGGC TTGGGATT

18

(2) INFORMATION FOR SEQ ID NO: 18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

AATCCCAAGC CACTGAAG 18

(2) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CGAGGGTCGAC GGTATCG 17

(2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GCAGGTCTCT CAGCTGGGAT GAGGGTGAGG 30

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GCAGGTCTCA GCTGAGGAGG AAAACCCCGC 30

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GCAGGTCTCT GTTGTGTCGC ACTGGTT 27

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GGTCTCTTTC TTGGCCCGGT TGATCAC 27

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleotide
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid
(A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GGTCTCAAGA AAGCAGGGAA GGCGTC

27

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 28 base pairs
(B) TYPE: nucleotide
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid
(A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GGTCTCGTGC ATCAGCAGGC AGGTCGGC

28

(2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs
(B) TYPE: nucleotide
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid
(A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GGTCTCATGC ACAGAAGAAAT GGCTGCCAG

29

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GGTCTCAAAC ATGTACATTG GGCCTCCACC

30

(2) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

GTCTCCATGT TTCCTGAGGG GACCCCA

27

(2) INFORMATION FOR SEQ ID NO: 29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide",
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GGTCTCCTGC CATTCCCTGCA CCAGGGT

27

(2) INFORMATION FOR SEQ ID NO: 30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

GGTCTCTGGC AGGCCAAGCA CCAGGG

27

(2) INFORMATION FOR SEQ ID NO: 31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GGTCTCCAGG GTCGGGTCCCT TGGTGTG

27

(2) INFORMATION FOR SEQ ID NO: 32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

GGTCTCGACC CTGGCGGAGA TGACG

25

(2) INFORMATION FOR SEQ ID NO: 33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GGTCTCCTCA GTCAGTGCCCA TATA

24

(2) INFORMATION FOR SEQ ID NO: 34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GGTCTCACTG AGGCGATCAT GTTTGAC

27

(2) INFORMATION FOR SEQ ID NO: 35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

TGCACCAGGT GCGCCTGCGG GCC

23

(2) INFORMATION FOR SEQ ID NO: 36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GCCGCACAGC TGGTCTACAA CATGGAT

27

(2) INFORMATION FOR SEQ ID NO: 37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GCTGTCTAACAGC GCCTTGCCGG GGGC

24

(2) INFORMATION FOR SEQ ID NO: 38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GCCGCACAGC TGGTCTACAA CATGGAT

27

(2) INFORMATION FOR SEQ ID NO: 39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

GGGGGTCTCG CTTGCTGCCA TTAAC

25

(2) INFORMATION FOR SEQ ID NO: 40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GTAAATGGTC TCACAAGCGA GGAACCCTCG

30

(2) INFORMATION FOR SEQ ID NO: 41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

CCCGTGGGTC TCGCTAGCCA GGGGCAC

27

(2) INFORMATION FOR SEQ ID NO: 42:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleotide
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid
(A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GTAAATGGTC TCACAAGCGA GGAACCCCTCG

30

(2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleotide
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid
(A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

GATGCTGGTC TCGGTGGAGG GGGCTGGCAG

30

(2) INFORMATION FOR SEQ ID NO: 44:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleotide
(C) STRANDEDNESS: single strand
(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid
(A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

CTGCCAGGTC TCACCACCGC CACCAGCATC

30

(2) INFORMATION FOR SEQ ID NO: 45:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CATACGATT AGGTGACACT ATAG

24

(2) INFORMATION FOR SEQ ID NO: 46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

GGTCTCTGGC AGGCCAAGCA CCAGGGA

27

(2) INFORMATION FOR SEQ ID NO: 47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

GTAGAAGCCC CGGGGGTTCC TGCT

24

(2) INFORMATION FOR SEQ ID NO: 48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

ACCAAGGAACC CCCGGGGCTT CTAC

24

(2) INFORMATION FOR SEQ ID NO: 49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

TGCCATATAA GCTTTGCCGT CATGGTG

27

(2) INFORMATION FOR SEQ ID NO: 50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

GGTCTCTTTC TTGGCCCGGT TCATCAC

27

(2) INFORMATION FOR SEQ ID NO: 51:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

TGGTCACCAC TCCCACGGAC TTCCCTG

27

(2) INFORMATION FOR SEQ ID NO: 52:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

GGTCTCAAAAC ATGTATTTTC GGCCTCCACC

30

(2) INFORMATION FOR SEQ ID NO: 53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

GGTCTCATGT TTCCTGTGGG GACCCCAGAC

30

(2) INFORMATION FOR SEQ ID NO: 54:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleotide
- (C) STRANDEDNESS: single strand
- (D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: other nucleic acid

- (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

GGTCTCCTGC CATGCCTGCA CCAGGTT

27

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form or suggestion that that prior art forms part of the common general knowledge in Australia.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An isolated DNA coding for a bovine highly active alkaline phosphatase with a specific activity of more than 3000 U/mg in which based on the first position of 5 the aminotermminus of the sequence LIPAEEN, LVPVEED, FIPVEEED or FIPAEED (position 1) the amino acid residue at position 322 has a smaller spatial dimension than aspartate.
2. An isolated DNA as claimed in claim 1, wherein the 10 amino acid residue 322 can be glycine, alanine, threonine, valine or serine.
3. An isolated DNA as claimed in claim 1 or 2, wherein the amino acid residue 322 can be glycine or serine.
4. An isolated DNA as claimed in one of the claims 1-3, 15 wherein the amino acid residue 322 is glycine.
5. An isolated DNA according to SEQ ID NO: 1 (bIAP II).
6. An isolated DNA according to SEQ ID NO: 3 (bIAP III).
7. An isolated DNA according to SEQ ID NO: 5 (bIAP IV).
8. Process for producing a DNA as claimed in one of the 20 claims 1-7, wherein mutated and wild-type fragments of cDNA of one or several bovine alkaline phosphatases were ligated to form a gene which codes for an active alkaline phosphatase.
9. Bovine cDNA which codes for functional isoenzymes with 25 alkaline phosphatase activity and which is formed as an intermediate product during a process as claimed in claim 8.

- 50 -

10. Vector containing a cDNA as claimed in one of the claims 1-9.

11. Eukaryotic or prokaryotic cell containing a vector as claimed in claim 10.

5 12. Highly active recombinant alkaline phosphatase with a specific activity of more than 3000 U/mg which is coded by a DNA as claimed in one of the claims 1-7.

10 13. Highly active recombinant alkaline phosphatase as claimed in claim 12, wherein based on the first position of the aminotermminus of the sequence, LIPAAEEN, LVPVEEED, FIPVEEED or FIPAAEED (position 1) the amino acid at position 322 is glycine.

15 14. Highly active recombinant alkaline phosphatase as claimed in one of the claims 12 to 13, wherein based on the first position of the aminotermminus of the sequence LIPAAEEN, LVPVEEED, FIPVEEED or FIPAAEED (position 1) additionally a mutation has been introduced at one or several of the following amino acid positions: 1, 108, 125, 149, 181, 188, 219, 221, 222, 223, 224, 231, 252, 20 258, 260, 282, 304, 321, 330, 331, 354, 383, 385, 400, 405, 413, 428, 431 and 461.

25 15. Process for the production of a highly active alkaline phosphatase as claimed in one of the claims 12-14, wherein a DNA as claimed in one of the claims 1-11 is used.

- 51 -

16. Isolated highly active alkaline phosphatase which is coded by SEQ ID NO: 4 (bIAP III) of SEQ ID NO: 6 (bIAP IV).

DATED this 18th day of July 2003

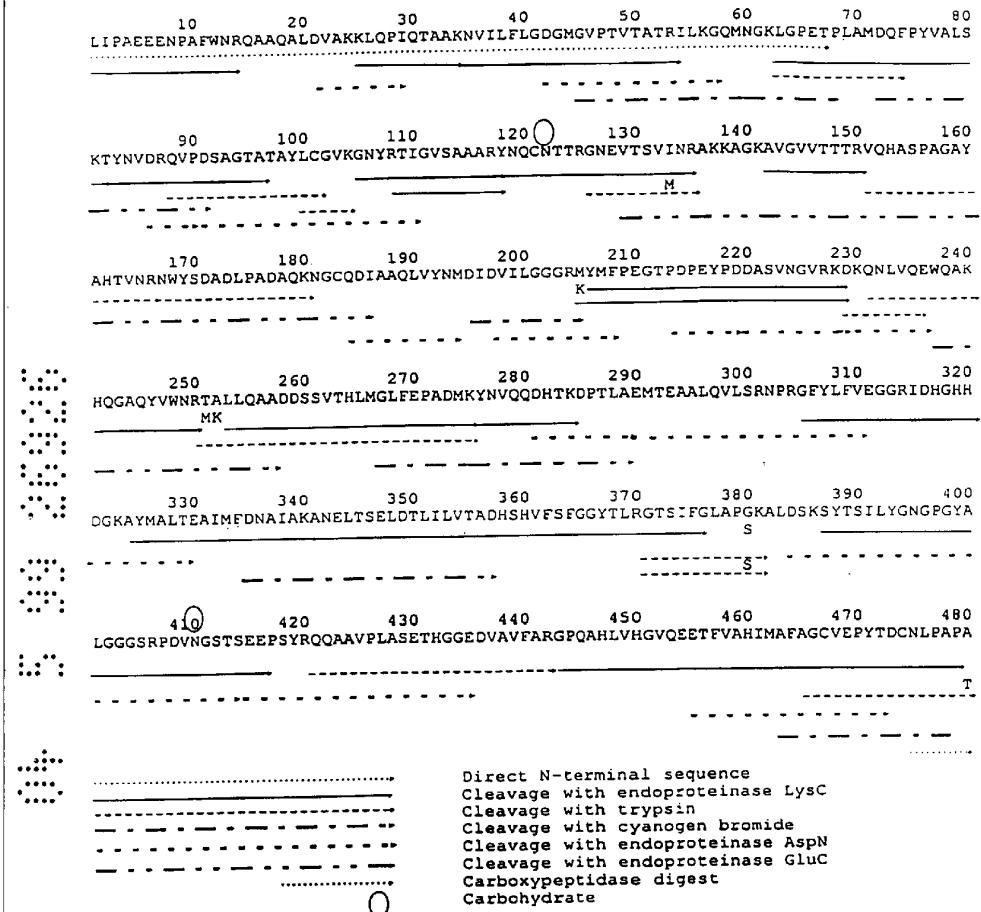
5 **Roche Diagnostics GmbH**

by Davies Collison Cave

Patent Attorneys for the Applicant

333
333
333

333
333
333


Figure 1/1

1 GAATTGGCA CGAGCCAGGT CCCATCCTGA CCCTCCGCCA TCACACAGCT
51 ATGCAGTGGG CCTGTGTGCT GCTGCTGCTG GGCCCTGGC TACAGCTCTC
101 CCTCACCCCTC ATCCCAGCTG AGGAGGAAAA CCCCGCCCTTC TGGAACCGCC
151 AGGCAGGCCA GGCCCTTGAT GTAGCCAAGA AGTTGCAGCC GATCCAGACA
201 GCTGCCAAGA ATGTCATCCT CTTCTTGGGG GATGGGATGG GGGTGCCTAC
251 GGTGACAGCC ACTCGGATCC TAAAGGGCA GATGAATGGC AACTGGGAC
301 CTGAGACACC CCTGGCCATG GACCAGTTCC CATACTGGC TCTGTCCAAG
351 ACATACAACG TGGACAGACA GGTGCCAGAC AGCGCAGGCA CTGCCACTGC
401 CTACCTGTGT GGGGTCAGG GCAACTACAG AACCATCGGT CTAAGTGCAG
451 CCGCCCGCTA CAATCAGTGC AACACGACAC GTGGGAATGA GGTCACGTCT
501 GTGATCAACC GGGCAAGAA AGCAGGGAAG GCCGTGGAG TGGTGACCAC
551 CACCAGGGTG CAGCATGCCT CCCCAGCCGG GGCTACGCG CACACGGTGA
601 ACCGAAACTG GTACTCAGAC GCCGACCTGC CTGCTGATGC ACAGAAGAAT
651 GGCTGCCAGG ACATCGCCGC ACAGCTGGTC TACAACATGG ATATTGACGT
701 GATCCTGGGT GGAGGCCGAA TGTACATGTT TCCTGAGGGG ACCCCAGACC
751 CTGAATAACCC AGATGATGCC AGTGTGAATG GAGTCCGGAA GGACAAGCAG
801 AACCTGGTGC AGGAATGGCA GGCAAGCAC CAGGGAGCCC AGTATGTGTG
851 GAACCGCACT GCGCTCCTTC AGGCAGCCGA TGACTCCAGT GTAACACACC
901 TCATGGGCCT CTTGAGCCG GCAGACATGA AGTATAATGT TCAGCAAGAC
951 CACACCAAGG ACCCGACCCCT GGCGGAGATG ACGGAGGCAG CCCTGCAAGT
1001 GCTGAGCAGG AACCCCCGGG GCTTCTACCT CTTCTGGAG GGAGGCCGCA
1051 TTGACCACGG TCACCATGAC GGCAAAGCTT ATATGCCACT GACTGAGGCG
1101 ATCATGTTG ACAATGCCAT CGCCAAGGCT AACGAGCTCA CTAGCGAACT
1151 GGACACGCTG ATCCTTGTCA CTGCAGACCA CTCCCATGTC TTCTTTTG
1201 GTGGCTACAC ACTGCGTGGG ACCTCCATT TCAGCTGGC CCCCGGCAAG

Figure 1/2

1251 GCCTTAGACA GCAAGTCCTA CACCTCCATC CTCTATGGCA ATGGCCCAGG
1301 CTATGCGCTT GGCGGGGGCT CGAGGCCCCGA TGTTAATGGC AGCACAAGCG
1351 AGGAACCCTC ATACCGGCAG CAGGCGGCCG TGCCCCCTGGC TAGCGAGACC
1401 CACGGGGCG AAGACGTGGC GGTGTTCGCG CGAGGCCCCGC AGGCGCACCT
1451 GGTGCACGGC GTGCAGGAGG AGACCTTCGT GGCGCACATC ATGGCCTTG
1501 CGGGCTGCGT GGAGCCCTAC ACCGACTGCA ATCTGCCAGC CCCCCGCCACC
1551 GCCACCAGCA TCCCCGACGC CGCGCACCTG GCGGCCAGCC CGCCTCCACT
1601 GGCCTGCTG TGCTGGGGCGA TGCTGCTGCT GCTGGCGCCC ACCTTGACT
1651 AACCCCCACC AGTCCAGGT CTCGGGATTT CCCGCTCTCC TGCCCCAAAC
1701 CTCCCAGCTC AGGCCCTACC GGAGCTACCA CCTCAGAGTC CCCACCCCGA
1751 AGTGCTATCC TAGCTGCCAC TCCTGCAGAC CCGACCCAGC CGGAATTG

Figure 2

3/13

Figure 3/1

1 GAATTCCGGCA CGAGCGAGAC CCAGACTCCC CAGGTCCCCAT CCTGACCCCTC
51 CGCCCATCACA CAGCTATGCA GGGGGCCTGC GTGCTGCTGC TGCTGGGCCT
101 GTGGCTACAG CTCTCCCTCG CCTTCATCCC AGTTGAGGAG GAAGACCCCG
151 CCTTCTGGAA CCGCCAGGCA GCCCAGGCC TTGATGTGGC TAAGAAGCTG
201 CAGCCCCATCC AGAAAGCCGC CAAGAATGTC ATCCTCTTCT TGAGGAGATGG
251 GATGGGGGTG CCTACGGTGA CAGCCACTCG GATACTGAAG GGGCAGATGA
301 ATGACAAGCT GGGACCTGAG ACACCCCTGG CCATGGACCA GTTCCCATAAC
351 GTGGCTCTGT CCAAGACATA CAACGTGGAC AGACAGGTGC CAGACAGCGC
401 AGGCACTGCC ACTGCCTACC TGTGTGGGGT CAAGGGCAAC TACAGAACCA
451 TCGGTGTAAG TGCAGCCGCC CGCTACAATC AGTGCACAC GACACGTGGG
501 AATGAGGTCA CGTCTGTGAT GAACCGGGCC AAGAAGGCAG GGAAGTCAGT
551 GGGAGTGGTG ACCACCACCA GGGTGCAGCA CGCCTCCCCA GCCGGTGCCTT
601 ATGCACACAC GGTGAACCGT GACTGGTACT CAGACCCGA CCTGCCTGCC
651 GATGCACAGA CGTATGGCTG CCAGGACATC GCCACACAAAC TGGTCAACAA
701 CATGGATATT GACGTGATCC TGGGTGGAGG CCGAAAGTAC ATGTTTCTG
751 AGGGGACCCC AGACCCCTGAA TACCCACACG ATGCCAGTGT GAATGGAGTC
801 CGGAAGGACA AGCGGAATCT GGTGCAGGAG TGGCAGGCCA AGCACCAGGG
851 AGCCCCAGTAT GTGTGGAACC GCACGGAGCT CCTTCAGGCA GCCAATGACT
901 CCAGTGTAC ACATCTCATG GGCCTCTTG AGCCGGCAGA CATGAAGTAT
951 AATGTTCAAG AAGACCCAC CAAGGACCCG ACCCTGGAGG AGATGACGGA
1001 GGCGGCCCTG CAAAGTGTGA GCAGGAACCC CCAGGGCTTC TACCTCTTCG
1051 TGGAGGGAGG CCGCATTGAC CACGGTCACC ATGATAGCAA AGCTTATATG
1101 GCGCTGACTG AGGCGGTCA GTTTGACAAT GCCATC3CCA AGGCTAACGA
1151 GCTCACTAGC GAACTGGACA CGCTGATCCT TGTCACTGCA GACCACTCCC
1201 ATGTCTTCTC TTTTGGTGGC TACACACTGC GTGGGACCTC CATTTCGGT

Figure 3/2

1251 CTGGCCCCCA GCAAGGCCTC AGACAAGAAG TCCTAGACCT CCATCCTCTA
1301 TGGCAATGGC CCTGGCTACG TGCTTGGTGG GGGCTCAAGG CCCGATGTTA
1351 ATGACAGCAT AAGCGAGGAC CCCTCATACC GGCAGCAGGC GGCGTGC
1401 CTGTCTAGCG AGACCCACGG GGGCGAAGAC GTGGCGGTGT TCGCGCGAGG
1451 CCCGCAGGCG CACCTGGTGC ACGGCGTGCA GGAGGAGACC TTCTGGCGC
1501 ACGTCATGGC CTTTGCGGGC TGCGTGGAGC CCTACACCGA CTGCAATCTG
1551 CCGGCCCCCT CTGGCCTCTC CGACGCCGCG CACCTGGCGG CCAGCGCGCC
1601 TTGCTAGCG CTGCTGGCCG GGGCGATGCT GCTGCTGCTG GCGCCCGCCT
1651 TGTACTGACC CCCACCAACT CCAGGTCTTG GGGTTTCCCG CTTTCTTGCC
1701 CCAAAATCTC CCAGCGCAGG CCCCCATCTGA GCTACCAACCT CAGAGTCCCC
1751 ACCCTGAAGT CCTATCTAGC GCACTCCAGA CCGCGACTCA GCCCCACCAC
1801 CAGAGCTTCA CCTCCCAGCA ACGAAGGAGC CTTAGCTCAC AGCCTTCAT
1851 GGGCCAGACC ATTCTGGAGA CTGAGGCCCT GATTTTCCCG ACCAACTTC
1901 AGTGGCTTGA GATTTTGTGT TCTGCCACCC CGGATCCCTG TAAGGGGGCT
1951 CGGACCATCC AGACTCCCCC CACTGCCAC AGCCGACCT GAGGACCAGG
2001 CTGGCACGGT CCCAGGGGTC CCAGGCCCGG CTGGACCCCA CATCTTGCC
2051 TTTCAGGAGA CCCTGGGACT GTGGGGTTTC CAGGAGGCGT GGCTTCTTGG
2101 AGGCCTGGCT TCGGAGGGGT GGCTTCCGAG AAGGCCTGGC TCCCTGTCC
2151 GGAACCACCC TGTGGGNATC TGGGGCCCAA GGAGATGTCT GGGGCAAAGA
2201 GTGCCGGGG ACCCTGGACA CAGAATCTTC AGCGGCCCT CCTAGGAACC
2251 CAGCAGTACC ATTATAGAGA GGGGACACCG ACACAGAGGA GAGGAGACTT
2301 GTCCCCAGGTC CCTCAGCTGC TGTGAGGGGT GACCCCTGGT TCCCGTTACC
2351 AGGCTGGGGG ATCCCAGGAG CAGCGGGGGA CCTGGGGGTG GGGACACAGG
2401 CCCCCACACTC CTGGGAGGGG GGAAGCAGCC CTAAATAAA CTGTTCTCG
2451 TGCCGAATTC

Figure 4

1 FIPVEEEDPA FWRQAAQAL DVAKKLOPIQ KAAKNVILFL GDGMGVPTVT
51 ATRILKGQMN DKLGPETPLA MDQFPYVALS KTYNVDRQVP DSAGTATAYL
101 CGVKGNYRTI GVSAAARYNQ CNTTRGNEVT SVMNRAKKAG KSVGVVTTTR
151 VQHASPAGAY AHTVNRDWYS DADLPADAQT YGCQDIATQL VNNMDIDVIL
201 GGGRKYMFPE GTPDPEYPHD ASVNGVRKDK RNLVQEWAQK HQGAQYVWNR
251 TELLQAANDS SVTHLMGLFE PADMKYNVQQ DPTKDPTEE MTEAALQVLS
301 RNPQGFYLFV EGGRIDHGHH DSKAYMALTE AVMFDNAIAK ANELTSELDT
351 LILVTADHSH VFSFGGYTLR GTSIFGLAPS KASDKKSYTS ILYGNGPGYV
401 LGGGSRPDVN DSISEDPSYR QQAAVPLSSE THGGEDWAVF ARGPQAHLVH
451 GVQEETFVAH VMAFAGCVEP YTDCNLPAPS GLSDAAHLAA SAPSLALLAG
501 AMLLLAPAL Y

Figure 5/1

1 GAATTGGCA CGAGGAGACC CGGCCTCCCC AGGTCCCATC CTGACCCCTCC
51 GCCATCACAC AGCCATGCAG TGGGCCTGTG TGCTGCTGCT GCTGGGCCTG
101 TGGCTACAGC TCTCCCTCAC CTTCATCCCA GCTGAGGAGG AAGACCCCGC
151 CTTCTGGAAC CGCCAGGCAG CCCAGGCCT TGATGTAGCC AAGAAGTTGC
201 AGCCGATCCA GACAGCTGCC AAGAATGTCA TCCTCTTCTT GGGGGATGGG
251 ATGGGGGTGC CTACGGTGAC AGCCACTCGG ATCCTAAGG GGCAGATGAA
301 TGGTAAGCTG GGACCTGAGA CACCCCTGGC CATGGACCAAG TTCCCATAACG
351 TGGCTCTGTC CAAGACATAC AACGTGGACA GACAGGTGCC AGACAGCGCA
401 GGCACAGCCA CTGCCTACCT GTGTGGGTC AAGGGCAACT ACAAAACCAT
451 TGGTGTAAAGT GCAGCCGCC GCTACAACCA GTGCAACACA ACAAGTGGCA
501 ATGAGGTACAC GTCTGTGATG AACCGGCCA AGAAAGCAGG AAAGTCAGTG
551 GGAGTGGTGA CCACCTCCAG GGTGCAGCAT GCCTCCCCAG CCGGTGCTTA
601 TGCACACACG GTGAACCGAA ACTGGTACTC AGATGCCGAC CTGCCTGCCG
651 ATGCACAGAC GTATGGCTGC CAGGACATCG CCACACAACT GGTCAACAAAC
701 ATGGATATTG ACGTGATCCT GGGTGGAGGC CGAATGTACA TGTTTCCTGA
751 GGGGACCCCG GATCCTGAAT ACCCATACGA TGTCATCAG ACTGGAGTCC
801 GGAAGGACAA GCGGAATCTG GTGCAGGAGT GGCAGGCCAA GCACCAGGGA
851 GCCCAGTATG TGTGGAACCG CACGGAGCTC CTTCAGGCAG CCAATGACCC
901 CAGTGTAAACA CACCTCATGG GCCTTTGA GCCGGCAGAC ATGAAGTATA
951 ATGTTCAGCA AGACCCACC AAGGACCCGA CCCTGGAGGA GATGACGGAG
1001 GCGGCCCTGC AAGTGCTGAG CAGGAACCCC CAGGGCTTCT ACCTCTTCGT
1051 GGAGGGAGGC CGCATTGACC ACGGTCAACCA TGAAGGCAA GCTTATATGG
1101 CACTGACTGA TACAGTCATG TTTGACAATG CCATGCCAA GGCTAACGAG
1151 CTCACTAGCG AACTGGACAC GCTGATCCTT GCCACTGCAG ACCACTCCCA
1201 TGTCTTCTCT TTTGGTGGCT ACACACTGCG TGGGACCTCC ATTTTCGGTC

Figure 5/2

1251 TGGCCCCCAG CAAGGCCTCA GACAACAAGT CCTACACCTC CATCCCTAT
1301 GGCAATGGCC CTGGCTACGT GCTTGGTGGG GGCTTAAGGC CCGATGTTAA
1351 TGACAGCATA AGCGAGGACC CCTCGTACCG GCAGCAGGCG GCCGTGCC
1401 TGTCTAGTGA GTCCCACGGG GGCGAGGACG TGGCGGTGTT CGCGCGAGGC
1451 CGCAGGGCGC ACCTGGTGCA CGGCAGTGCAG GAGGAGACCT TCGTGGCGCA
1501 CGTCATGGCC TTTGCGGGCT GCGTGGAGCC CTACACCGAC TGCAATCTGC
1551 CGGGCCCCCTC TGGCCTCTCC GACGCCGCAC ACCTGGCGGC CAGCCCGCCT
1601 TCGCTGGCGC TGCTGGCCGG GGCGATGCTG CTGCTGCTGG CGCCTGCCTT
1651 GTACTGACCC CCACCAAATC CAGGTCTTGG GGTTTCTGC TTTCTGCCA
1701 AAAATCTCCC AGCGCAGACC CCACCAAGAGC TACCAACCTCG GAGTCTCCAC
1751 CCTGAAGTCC TATCTTAGCG GCCACTCCCG GATCCCGAC CAGGCCCGAC
1801 TAGCAGAGCT TCACCTCCCA GAAATGAAGG ATTCAACCTTC CAGCAACGAA
1851 GAAGCCTCAG CTCACAGCCC TTCATGGCCC AGCCCATCCA GAGGCTGAGG
1901 CCCTGATTTC CCTGTGACAC CCGTAGACCT ACTGCCGAC CCCAACTTCA
1951 GTGGCTTGGG ATTTGTGTT CTGCCACCCCC TAACCCAGT AAGGGGGCTC
2001 GGACCATCCA GACTCTCCCC ACTGCCACACA ACCCCACCTG AGAACCCAGGC
2051 TAGCACGGTC CCAAGGTTCC CAGGCCCGGC TAGAACCAC ACCATGCCTT
2101 TCAGGAGACC CTGGGGCTCC GGGGTTCCG GGAGGGCTGG CTTTCTTAGG
2151 AGGCGTGGAA ACTGAGGAGG CACGGTTCT GAGGAGGGCGT GCGTCCTGGG
2201 GAGCTGTGGC TTCCGGTCCT CCCCCATGCC TGTGGGCTCC TCCCTAACCA
2251 AGGAGACGGC CAAGGAGACG TCTGGAACCA GGAGCGCGG GGGAACCTTG
2301 CAGAGCCCTC AGCAACCCCT CCTAGGAACC CAGGGTACCG TTAGAGAGAG
2351 GAGACAGCGA CACAGAGGAG AGGAGACTTG TCCCAAGGTCT CTCAGCTGCT
2401 ATGAAGGTGG CCCCGGTGCC CCTTCCAGGC TGGGAGATCC CAGGAGCAGC
2451 GGGGGAGCTG GTGGGTGGGG ACACAGCCCC GCCTTCATGG GAGGGAGGAA
2501 GCAGCCCTCA AATAAACTGT TCTAAGTGTG AAAAATCTA GA

Figure 6

1 FIPAEEDPA FWNRQAAQAL DVAKKLQPIQ TAAKNVILFL GDGMGVPTVT
51 ATRILKGQMN GKLGPETPLA MDQFPYVALS KTYNVDRQVP DSAGTATAYL
101 CGVKGNYKTI GVSAAARYNQ CNTTSGNEVT SVMNRAKKAG KSVGVVTTSR
151 VQHASPAGAY AHTVNRNWYS DADLPADAQT YGCQDIATQL VNNMDIDVIL
201 GGGRMYMFPE GTPDPEYPYD VNQTGVRKDK RNLVQEWAQK HQGAQYVWNR
251 TELLQAANDP SVTHLMGLFE PADMKYNVQQ DPTKDPTLEE MTEAALQVLS
301 RNPQGFYLFV EGGRIDHGHH EGKAYMALTD TVMFDNIAIK ANELTSELDT
351 LILATADHSH VFSFGGYTLR GTSIFGLAPS KASDNKSYTS ILYGNGPGYV
401 LGGGRLRPDVN DSISEDPSYR QQAAVPLSSE SHGGEDVAVF ARGPQAHLVH
451 GVQEETFVAH VMAFAGCVEP YTDCNLPAPS GLSDAAHLAA SPPSLALLAG
501 AMLLLLAPAL Y

114 53 26325

Figure 7

Residue #	1	2	4	8	31	61	108	122	125	133	142	149	167	180	181	188	192	195	210
hIAP I	L	V	V	D	T	G	R	K	R	M	S	T	N	M	N	A	K	V	
hIAP II	L	I	A	N	T	G	R	N	R	I	A	T	N	K	N	A	Y	M	E
hIAP III	F	I	V	D	K	D	R	N	R	M	S	T	D	T	Y	T	N	K	E
hIAP IV	F	I	A	D	A	D	T	G	K	N	S	M	S	S	N	T	Y	T	M

Residue #	219	221	222	223	224	231	236	252	258	260	282	289	294	297	299	304	321	322	330
hIAP I	D	A	S	V	N	Q	A	A	D	S	H	Q	V	R	V	R	D	D	E
hIAP II	D	A	S	V	N	Q	E	A	D	S	H	A	A	Q	L	R	D	G	E
hIAP III	H	A	S	V	N	R	E	E	N	P	S	P	E	A	Q	L	Q	D	S
hIAP IV	Y	V	N	Q	T	R	E	E	N	P	P	E	A	Q	L	Q	E	G	D

Residue #	331	332	354	380	383	385	400	405	411	413	416	420	427	428	431	453	461	480	
hIAP I	A	G	V	S	L	S	A	S	D	T	D	Q	Q	E	E	T	A		
hIAP II	A	I	V	G	L	S	A	S	G	T	E	R	L	A	T	Q	I		
hIAP III	A	V	V	S	S	K	V	S	D	I	D	R	L	S	T	Q	V	S	
hIAP IV	T	V	A	S	S	N	V	L	D	I	D	R	L	S	S	Q	V	S	

10/13

Figure 8/1

Ligation reactions to generate constructs

Construct	original bIAFs in fragment	PCR number (template)	Fragment Origin (PCR or cDNA)	Relevant residues in fragment	Restriction Enzymes	5' cohesive termini	3' cohesive termini
L1N8bIAP	IV IV I	1 (IV) 2 (IV)	KS - 1L 8N - 122 I	1, 2, 4 8, 31 61, 149, 167, 181, 188, 219, 221, 222, 223, 224, 231, 232, 238, 260, 282, 383, 385, 400, 405, 413, 461	EcoRI - Bsal Bsa I - BamHI BamHI - XbaI	AATT GCTG GATC	CAGC GATC CTAG
peDNA-3					XbaI - EcoRI	CTAG	AATT
INT1	IV, I III I	3 (III) 4 (I) 5 (I) 6 (I) 7 (I) 8 (IV)	L1N8bIAP I8 - M133I S142A - 180 M180K - K205M V210E - A236E 236 - 289 E289A - 330	108, 122, 125, 133 142, 180, 205 210, 236 289, 294, 297, 299, 322	EcoRI - Ncol Ncol - Bsal Bsa I - Bsal	AATT CATG TTCT AGAA TGCA AACG TGCC GGCA ACCC	CATG CATG TTCT AGAA TGCA AACG TGCC GGCA ACCC
	III I	9 (III)	E330, V3321 - Xia I	330, 331, 332, 354	CTGA blunt CTAG AATT		
			peDNA-3	XbaI - EcoRI			

11/13

Figure 8/2

12/13

Figure 9

AP mutant	$V_{max} \pm sd$	$V_{max} [\text{U}/\text{mg}]$	$T_{50} (10 \text{ min})$
<i>Wild-type</i>			
bIAP I	5.26 \pm 0.44	2.723 \pm 249	66,2
bIAP II	16.61 \pm 0.88	8.600 \pm 843	58,8
bIAP III	9.07 \pm 0.79	4.696 \pm 494	59,1
bIAP IV	13.11 \pm 0.85	6.787 \pm 571	52,9
<i>Chimaeric</i>			
L1N8	5.90 \pm 0.40	3.055 \pm 336	65,8
INT 1	19.22 \pm 1.08	9.951 \pm 1.565	59,7
INT 2	16.95 \pm 0.95	8.776 \pm 1.431	55,6
INT 3	17.17 \pm 0.90	8.890 \pm 1.413	57,9
<i>Mutants</i>			
[K ¹²²]bIAP II	16.21 \pm 2.33	8.393 \pm 1.328	58,0
[M ¹³³]bIAP II	17.69 \pm 1.45	9.159 \pm 1.099	58,1
[S ¹⁴²]bIAP II	16.53 \pm 1.06	8.559 \pm 603	57,9
[M ¹⁸⁰]bIAP II	17.81 \pm 0.80	10.433 \pm 900	58,6
[K ²⁰⁵]bIAP II	20.29 \pm 1.25	9.454 \pm 819	57,5
[V ²¹⁰]bIAP II	17.98 \pm 1.40	8.377 \pm 908	58,1
[A ²³⁶]bIAP II	19.61 \pm 2.81	10.153 \pm 1.565	58,1
[QVRV]bIAP II	19.25 \pm 0.99	9.967 \pm 534	59,0
[D ³²²]bIAP II	5.44 \pm 0.34	2.817 \pm 307	61,4
[G ³³²]bIAP II	16.53 \pm 1.30	8.559 \pm 1.075	59,2
[G ³²²]bIAP I	19.60 \pm 0.99	10.148 \pm 1.021	60,6