a2 United States Patent

Li

US011487465B2

US 11,487,465 B2
Nov. 1, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND SYSTEM FOR A LOCAL
STORAGE ENGINE COLLABORATING
WITH A SOLID STATE DRIVE
CONTROLLER

Applicant: Alibaba Group Holding Limited,
Grand Cayman (KY)

Inventor: Shu Li, Bothell, WA (US)

Assignee: Alibaba Group Holding Limited,
George Town (KY)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/119,649
Filed: Dec. 11, 2020

Prior Publication Data

US 2022/0188010 Al Jun. 16, 2022

Int. CL.

GO6F 3/06 (2006.01)

HO3M 13729 (2006.01)

GIlIB 20/12 (2006.01)

U.S. CL

CPC ... GO6F 3/0655 (2013.01); GOGF 3/0604

(2013.01); GO6F 3/067 (2013.01);
(Continued)

Field of Classification Search
CPC ... GOG6F 3/0655; GOGF 3/067, GO6F 3/0631;
GOG6F 3/0604; GOGF 3/0619;

(Continued)

254
CHUNK ORGANIZATION MODULE

(56) References Cited
U.S. PATENT DOCUMENTS

3,893,071 A
4,562,494 A

7/1975 Bossen
12/1985 Bond

(Continued)

FOREIGN PATENT DOCUMENTS

WO
WO

9418634
1994018634

8/1994
8/1994

OTHER PUBLICATIONS

https://web.archive.org/web/20071130235034/http://en.wikipedia.
org:80/wiki/logical_block_addressing wikipedia screen shot retriefed
on wayback Nov. 20, 2007 showing both physical and logical
addressing used historically to access data on storage devices (Year:
2007).

(Continued)

Primary Examiner — Mark A Giardino, Jr.
(74) Attorney, Agent, or Firm — Yao Legal Services, Inc.;
Shun Yao

(57) ABSTRACT

One embodiment provides a system which facilitates data
movement. The system allocates, in a volatile memory of a
first storage drive, a first region to be accessed directly by a
second storage drive or a first NIC. The first storage drive,
the second storage drive, and the first NIC are associated
with a first server. The system stores data in the first region.
Responsive to receiving a first request from the second
storage drive to read the data, the system transmits, by the
first storage drive to the second storage drive, the data stored
in the first region while bypassing a system memory of the
first server. Responsive to receiving, from a third storage
drive associated with a second server, a second request to
read the data, the system retrieves, by the first NIC, the data
stored in the first region while bypassing the system memory
of the first server.
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START

ALLOCATE, IN A VOLATILE MEMORY OF A FIRST STORAGE DRIVE, A FIRST REGION
TO BE ACCESSED DIRECTLY BY A SECOND STORAGE DRIVE OR A FIRST NETWORK
INTERFACE CARD (NIC), WHEREIN THE FIRST STORAGE DRIVE, THE SECOND
STORAGE DRIVE, AND THE FIRST NIC ARE ASSOCIATED WITH A FIRST SERVER
802

STORE DATA IN THE FIRST REGION OF THE FIRST STORAGE DRIVE
604

RESPONSIVE TO RECEIVING A FIRST REQUEST FROM THE SECOND STORAGE DRIVE
TO READ THE DATA, TRANSMIT, BY THE FIRST STORAGE DRIVE TO THE SECOND
STORAGE DRIVE, THE DATA STORED IN THE FIRST REGION WHILE BYPASSING A

SYSTEM MEMORY OF THE FIRST SERVER
606

RESPONSIVE TO RECEIVING, FROM A THIRD STORAGE DEVICE ASSOCIATED WITH A
SECOND SERVER, A SECOND REQUEST TO READ THE DATA, RETRIEVE, BY THE
FIRST NIC, THE DATA STORED IN THE FIRST REGION WHILE BYPASSING THE
SYSTEM MEMORY OF THE FIRST SERVER
608

FIG. 6A
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SECOND SERVER, METADATA ASSOCIATED WITH THE DATA
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INCLUDES A PHYSICAL BLOCK ADDRESS OF A NON-VOLATILE MEMORY OF THE
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SEND, BY THE LOCAL STORAGE ENGINE, THE MANAGEMENT INFORMATION TO THE
THIRD STORAGE DRIVE
632
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634

RECEIVE, BY THE THIRD STORAGE DRIVE, THE MANAGEMENT INFORMATION FROM
THE LOCAL STORAGE ENGINE AND THE PAYLOAD FROM THE SECOND NIC
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WRITE, BY THE THIRD STORAGE DRIVE, THE DATA TO THE NON-VOLATILE MEMORY
OF THE THIRD STORAGE DRIVE BASED ON THE RECEIVED MANAGEMENT
INFORMATION
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METHOD AND SYSTEM FOR A LOCAL
STORAGE ENGINE COLLABORATING
WITH A SOLID STATE DRIVE
CONTROLLER

BACKGROUND
Field

This disclosure is generally related to the field of data
storage. More specifically, this disclosure is related to a
method and system for a local storage engine collaborating
with a solid state drive (SSD) controller.

Related Art

Today, various storage systems are being used to store and
access the ever-increasing amount of digital content. A
storage system can include storage servers with one or more
storage devices or drives (such as a solid-state drive (SSD)).
In the architecture of an existing storage system, a central
processing unit (CPU) complex can include a CPU and
system memory, which can serve as the data hub. Data
transfers both within a storage server (e.g., between storage
drives of the same storage server) and between storage
servers (e.g., between storages drive of different storage
servers) can result in multiple folds of memory copy which
involve the CPU and system memory. These data transfers
can result in an increased latency, an increased consumption
of memory bandwidth, and an increased utilization of the
CPU complex or core. In scenarios which involve a large
amount of data transfer, the system performance and
resource consumption can suffer and limit the efficiency of
the overall storage system.

SUMMARY

One embodiment provides a system which facilitates data
movement while bypassing the system memory. During
operation, the system allocates, in a volatile memory of a
first storage drive, a first region to be accessed directly by a
second storage drive. The system stores data in the first
region of the first storage drive. Responsive to receiving a
first request from the second storage drive to read the data,
the system transmits, by the first storage drive to the second
storage drive, the data stored in the first region while
bypassing a system memory of a first server.

In some embodiments, the first storage drive and the
second storage drive are associated with the first server.

In some embodiments, the first region of the first storage
drive is to be further accessed by a third storage drive via a
first network interface card (NIC). The first NIC is associ-
ated with the first server, and the third storage drive is
associated with a second server

In some embodiments, responsive to receiving, from the
third storage drive, a second request to read the data, the
system retrieves, by the first NIC, the data stored in the first
region while bypassing the system memory of the first
server. The system stores, by the first NIC, the data as
formatted data which includes formatting information and a
payload. The system sends, by the first NIC to a second NIC
associated with the second server, the formatted data. The
system stores, by the second NIC, the formatted data. The
system sends, by the second NIC to a local storage engine
associated with the second server, metadata associated with
the data. The system generates, by the local storage engine,
management information which includes a physical block
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address of a non-volatile memory of the third storage drive
to which the data is to be written. The system sends, by the
local storage engine, the management information to the
third storage drive. The system sends, by the second NIC,
the payload to the third storage drive. The system receives,
by the third storage drive, the management information from
the local storage engine and the payload from the second
NIC. The system writes, by the third storage drive, the data
to the non-volatile memory of the third storage drive based
on the received management information.

In some embodiments, the formatting information
includes one or more of a frame header, an Internet Protocol
(IP) header, and a Transmission Control Protocol (TCP)
header. The payload includes one or more of application data
and user data. Sending, by the first NIC to the second NIC,
the formatted data further involves sending the formatted
data through an Ethernet switch.

In some embodiments, the system sets, in the second NIC,
a second region of a volatile memory of the second NIC as
a host memory which is directly accessible by the third
storage drive. The system stores, by the second NIC, the
formatted data in the second region of the second NIC.

In some embodiments, subsequent to sending, by the
second NIC to the local storage engine, the metadata, the
system performs the following operations. The system gen-
erates, by a network engine of the local storage engine, the
management information, which includes one or more of an
order and a merged size. The system groups, by a chunk
organization module of the local storage engine, multiple
chunks of data in parallel. The system allocates, by a local
file system of the local storage engine, a logical extent or a
range of logical block addresses (LBAs) based on metadata
associated with the multiple chunks. The system sends, by
the file system to a flash translation layer module of the local
storage engine, the allocated LBAs. The system receives, by
the flash translation layer module, the allocated LBAs. The
system generates, by the flash translation layer module,
physical block addresses (PBAs) mapped to the allocated
LBAs. The system transmits, by the flash translation layer
module to a Non-Volatile Memory Express (NVMe) driver,
the PBAs and the metadata. The system transmits, by the
NVMe driver to a controller of the third storage drive, the
PBAs and the metadata.

In some embodiments, the system writes, by the third
storage drive, the data to the non-volatile memory based on
the received management information by performing the
following operations. The system stores, by the third storage
drive, in a buffer of the third storage drive, the payload as
part of a group. The system stores other payloads in the
group, wherein the other payloads are associated with other
management information. The system determines that a size
of'the payload and the other payloads meets a predetermined
group size. The system writes, from the buffer of the third
storage drive to the non-volatile memory, the payload and
the other payloads of the group.

In some embodiments, the system writes, by the third
storage drive, the data to the non-volatile memory by
performing the following operations. The system receives,
by a controller of the third storage drive, the data. The
controller includes a Non-Volatile Memory Express
(NVMe) controller, a double data rate (DDR) controller
associated with the volatile memory, a cyclic redundancy
check (CRC) module, and a flash controller, wherein the
flash controller includes an error correction code (ECC)
encoding/decoding module. The system performs, by the
CRC module, a first redundancy check on the received data
to obtain CRC data. The system stores, by the DDR con-
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troller in the first region of the volatile memory, the CRC
data. The system determines to write the stored CRC data
from the first region of the volatile memory to the non-
volatile memory. The system retrieves, by the DDR control-
ler, the stored CRC data. The system performs, by the CRC
module, a second redundancy check on the retrieved CRC
data to obtain CRC-checked data. Responsive to verifying
the CRC-checked data, the system encodes, by the ECC
encoding/decoding module of the flash controller, the CRC-
checked data to obtain ECC-encoded data. The system
writes the ECC-encoded data to the non-volatile memory.

In some embodiments, the data stored in the first region
of the first storage drive is transferred from the second
storage drive or the first NIC while bypassing the system
memory of the first server.

In some embodiments, subsequent to the first storage
drive transmitting to the second storage drive the data stored
in the first region while bypassing the system memory of the
first server, the system retrieves, by the second storage drive,
the data stored in the first region while bypassing the system
memory of the first server.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A illustrates an exemplary environment with a data
transfer between storage drives in a same storage server, in
accordance with the prior art.

FIG. 1B illustrates an exemplary environment with a data
transfer between storage drives in different storage servers,
in accordance with the prior art.

FIG. 2 illustrates an exemplary environment with separate
control and data paths, which facilitates bypassing system
memory, in accordance with an embodiment of the present
application.

FIG. 3 illustrates an exemplary environment with data
movement from a network interface card to a storage drive,
in accordance with an embodiment of the present applica-
tion.

FIG. 4A illustrates an exemplary environment with a data
transfer between storage drives in a same storage server,
which facilitates bypassing system memory, in accordance
with an embodiment of the present application.

FIG. 4B illustrates an exemplary environment with a data
transfer between storage drives in different storage servers,
which facilitates bypassing system memory, in accordance
with an embodiment of the present application.

FIG. 5A illustrates an exemplary environment for data
access with a cyclic redundancy check (CRC) in a storage
controller, in accordance with an embodiment of the present
application.

FIG. 5B illustrates an exemplary environment for data
access with a CRC in a storage controller, in accordance
with an embodiment of the present application.

FIG. 6A presents a flowchart illustrating a method for
facilitating data movement while bypassing system memory,
including a data transfer between storage drives in a same
storage server, in accordance with an embodiment of the
present application.

FIG. 6B presents a flowchart illustrating a method for
facilitating data movement while bypassing system memory,
including a data transfer between storage drives in different
storage servers, in accordance with an embodiment of the
present application.

FIG. 7 presents a flowchart illustrating a method for
facilitating data movement while bypassing system memory,
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including writing data in groups to a non-volatile memory,
in accordance with an embodiment of the present applica-
tion.

FIG. 8 presents a flowchart illustrating a method for
facilitating data movement while bypassing system memory,
including operations to ensure data integrity, in accordance
with an embodiment of the present application.

FIG. 9 illustrates an exemplary computer system that
facilitates data movement while bypassing system memory,
in accordance with an embodiment of the present applica-
tion.

FIG. 10 illustrates an exemplary apparatus that facilitates
data movement by bypassing system memory, in accordance
with an embodiment of the present application.

In the figures, like reference numerals refer to the same
figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the embodiments,
and is provided in the context of a particular application and
its requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present disclosure. Thus, the
embodiments described herein are not limited to the embodi-
ments shown, but are to be accorded the widest scope
consistent with the principles and features disclosed herein.
Overview

The embodiments described herein provide a system
which addresses the inefficiencies associated with data trans-
fers in existing storage systems which consume CPU
resources and system memory bandwidth, by providing a
system which bypasses the system memory.

As described above, in existing storage systems, a CPU
complex can include a CPU and system memory, which can
serve as the data hub. Data transfers both within a storage
server (e.g., between storage drives of the same storage
server) and between storage servers (e.g., between storages
drive of different storage servers) can result in multiple folds
of memory copy which involve the CPU and system
memory, as described below in relation to FIGS. 1A and 1B.
These data transfers can result in an increased latency, an
increased consumption of memory bandwidth, and an
increased utilization of the CPU complex or core. In sce-
narios which involve a large amount of data transfer, the
system performance and resource consumption can suffer
and limit the efficiency of the overall storage system.

The embodiments described herein address these limita-
tions by providing a system which separates the data path
and the control path, by allocating or exposing a portion of
a volatile memory of a first SSD as a region which can be
directly accessed by a second SSD (in a single server
scenario, as described below in relation to FIG. 4A) or a
network interface card (NIC) (in a storage cluster scenario,
as described below in relation to FIG. 4B).

In the single server scenario (where the first and second
SSD are associated with the same single server), the first
SSD can allocate a region of its volatile memory to be
directly accessible by other SSDs (and a NIC) associated
with the same single server. The second SSD can subse-
quently directly access and retrieve data stored in the
allocated region of the first SSD, which allows the data
transfer to bypass the system memory of the server.
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In the storage cluster scenario, when data is transferred
from a first storage drive of a first storage server to a second
storage drive of a second storage server, the data can pass
through a first NIC of the first storage server and a second
NIC of'the second storage server. Formatting and retrieval of
data from the NICs can be used to bypass the system
memory, which can result in a more efficient overall storage
system.

For example, for data which is to be transferred from the
first storage drive to the second storage drive, the first NIC
can retrieve the data directly from the allocated region of the
first storage drive, while bypassing the system memory. The
first NIC can format the data (e.g., into a network packet
with formatting information and a payload), and transmit the
network packet to the second NIC (e.g., via an Ethernet
switch). In the control path, the second NIC can send the
metadata to a local storage engine of the second server,
which can perform management operations as described
below in relation to FIG. 2, and the local storage engine can
send the management information (such as the metadata and
an assigned physical block address (PBA)) to the second
storage drive. In the data path, the second NIC can send to
the second storage drive (and the second storage drive can
receive or retrieve from the second NIC) the data as the
payload only directly from the second NIC, again bypassing
the system memory.

Thus, by allocating a region of the non-volatile memory
of a first storage drive and making the allocated region
directly accessible to a second storage drive in the same first
server, the system can bypass system memory of the first
server in the single server scenario. Furthermore, by allo-
cating the region of the first storage drive and making the
allocated region directly accessible to the first NIC (e.g., in
the same first server), and by allowing data stored in a
second NIC to be accessible by a third storage drive in the
same second server (e.g., data stored in the second NIC is
accessible by the third storage drive in the second server),
the system can also bypass system memory in the storage
cluster scenario.

The described embodiments can also perform consecutive
data fetching based on groups in a write cache of the SSD
controller, as described below in relation to FIG. 3. In
addition, the described embodiments can ensure the integrity
of the data stored in the volatile memory of a storage drive,
as described below in relation to FIG. 5.

A “distributed storage system” or a “storage system” can
include multiple storage servers. A “storage server” or a
“storage system” can refer to a computing device which can
include multiple storage devices or storage drives. A “stor-
age device” or a “storage drive” refers to a device or a drive
with a non-volatile memory which can provide persistent
storage of data, e.g., a solid-state drive (SSD), or a flash-
based storage device. A storage system can also be a
computer system.

“Non-volatile memory” refers to storage media which
may be used for persistent storage of data, e.g., flash
memory of a NAND die of an SSD, magnetoresistive
random access memory (MRAM), phase change memory
(PCM), resistive random access memory (ReRAM), or
another non-volatile memory.

“Volatile memory” refers to storage media which can
include, e.g., dynamic random access memory (DRAM),
double data rate (DDR) DRAM, and DDR dual in-line
memory modules (DIMM). In general, data stored in volatile
memory is not protected in the event of a power loss or other
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failure. In some cases, volatile memory can be protected
from such data loss with a power protection module or other
power loss component.

The terms “sysmem” and “region of a volatile memory”
are used interchangeably in this disclosure and refer to a
portion of a volatile memory of a first storage drive, where
the portion or region is allocated to be accessed directly by
a second storage drive or a NIC, and where the first storage
drive, the second storage drive, and the NIC are associated
with the same server. The allocated sysmem or region can
serve as system memory for the storage device in a more
efficient manner than the conventional system memory
associated with a host or a storage server.

A “computing device” refers to any server, device, node,
entity, drive, or any other entity which can provide any
computing capabilities.

The term “write cache” refers to a data cache, buffer, or
region which can store data in a persistent memory or a
non-volatile memory.

Exemplary Data Transfer in the Prior Art

FIG. 1A illustrates an exemplary environment 100 with a
data transfer between storage drives in a same storage server,
in accordance with the prior art. Environment 100 can
include: a central processing unit (CPU) 102, an associated
Peripheral Component Interconnect Express (PCle) inter-
face 104, and an associated system memory 106; and solid
state drives (SSDs) 112 and 114. CPU 102 can communicate
with SSDs 112 and 114 via PCle interface 104. During
operation, in order to move data from one drive to another
drive (e.g., from a source drive such as SSD 112 to a
destination drive such as SSD 114), the data is first copied
from the source drive into system memory, i.e., transferred
from SSD 112, via PCle 104, to CPU 102, to system memory
106 (via a communication 120). The data is then written
from system memory to the destination drive, i.e., trans-
ferred from system memory 106 to CPU 102 and, via PCle
304, to SSD 114 (via a communication 122). Thus, the host
CPU and system memory are involved in the transfer of data
from the source storage drive to the destination storage
drive, which can increase the latency and inefficiency of the
overall storage system.

FIG. 1B illustrates an exemplary environment 130 with a
data transfer between storage drives in different storage
servers, in accordance with the prior art. Environment 130
can include an Ethernet switch 160 and a cluster of servers,
where each server can include a CPU and a system memory,
and be associated with multiple SSDs and a network inter-
face card (NIC). For example, a first server 101 can include:
a CPU 102, an associated PCle interface 104, and an
associated system memory 106; one or more SSDs, such as
an SSD 112; and a NIC 132. A second server 141 can
include: a CPU 142, an associated PCle interface 144, and
an associated system memory 146; one or more SSDs, such
as an SSD 154; and a NIC 152. CPU 102 can communicate
with SSD 112 via PCle interface 104, and CPU 142 can
communicate with SSD 154 via PCle interface 144. The two
depicted servers 101 and 141 can communicate with each
other through Ethernet switch 160 via their respective NICs
132 and 152.

During operation, in order to move data from one drive in
the first server to another drive in the second server (e.g.,
from a source drive such as SSD 112 of server 101 to a
destination drive such as SSD 154 of server 141), the data
is first copied from the source drive into system memory of
the first server, i.e., transferred from SSD 112, via PCle 104,
to CPU 102, to system memory 106 (via a communication
path 160). The data is then written from system memory to
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NIC 132, i.e., transferred from system memory 106 to CPU
102 and, via PCle 104, to NIC 132 (via a communication
path 162). NIC 132 can generate formatting information for
the data, and perform other packet processing, data reorder-
ing, and concatenation operations.

NIC 132 can transfer the formatted data (e.g., formatting
information and payload) to Ethernet switch 160 (via a
communication 164), and, based on the formatting informa-
tion, Ethernet switch 160 can transfer the data to NIC 152
(via a communication 168). NIC 152 can perform packet
processing, data reordering, and concatenation operations.
NIC 152 can send the data to be copied into system memory
of the second server, i.e., transferred from NIC 152, via PCle
144, to CPU 142, to system memory 146 (via a communi-
cation path 170). The data is then written from system
memory to the destination drive, i.e., transferred from sys-
tem memory 146 to CPU 142 and, via PCle 144, to SSD 154
(via a communication path 172).

Thus, in environment 130, the host CPU and system
memory of both servers are involved in the transfer of data
from the source storage drive to the destination storage
drive, which can increase the latency and inefficiency of the
overall storage system. In addition, the NICs of both servers
can consume a non-trivial amount of time, energy, band-
width, and other resources on packet processing, data reor-
dering, concatenation, and other operations related to for-
matting and processing network packets. These operations
can further increase the latency and inefficiency of the
overall storage system.

Moreover, in the storage cluster depicted in environment
130, the system can experience a non-trivial amount of
traffic due to, e.g., managing data replicas, rebalancing data,
etc. Moving multiple copies of data within the storage
cluster can result in a performance bottleneck due to the
latency involved in memory copy operations, as described
above.

Exemplary Environment with Separate Control and Data
Paths

FIG. 2 illustrates an exemplary environment 200 with
separate control and data paths, which facilitates bypassing
system memory, in accordance with an embodiment of the
present application. Environment 200 can include: a host
202 with a local storage engine 210; a NIC 230; and SSDs
240, 242, and 246. Local storage engine can include: a
network engine 214; a chunk organization module 212; a
local file system 216; a flash translation layer (FTL) module
218; and a Non-Volatile Memory Express (NVMe) driver
220.

NIC 230 can store data as formatted data which includes
formatting information and a payload. For example, pay-
loads 232, 234, and 236 are indicated in FIG. 2 with
left-slanting diagonal lines. Assume that metadata 250 is
associated with the data indicated by payload 234 in NIC
230. NIC 230 can send metadata 250 to host 202 for
processing, and host 202, after processing the metadata as
described below, can send a physical block address (PBA)
and metadata back to SSDs 240-246 (via a control path 262).
At the same or a similar time, NIC 230 can send the payload
data itself directly to SSDs 240-246 (e.g., via a data path
260).

Local storage engine 210 can perform a series of opera-
tions on metadata 250. Upon receiving metadata 250 from
NIC 230, network engine 214 can generate management
information, e.g., an order, a merged size, and other meta-
data for the data indicated by payload 234. Network engine
214 can send management information 252 to chunk orga-
nization module 212.
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Chunk organization module 212 can group received net-
work packets into multiple chunks in parallel, and can send
chunk metadata 254 to local file system 216. Local file
system 216 can use chunk metadata 254 to allocate the
logical extent (e.g., a range of logical block addresses
(LBAs)) to accommodate the data, and can send LBA
range/metadata 256 to FTL module 218.

FTL module 218 can receive the incoming [.LBAs, includ-
ing LBAs allocated to chunks associated with the data
indicated by payload 234, from multiple chunks in a random
order, which is similar to the pattern associated with a
random write operation. FTL module 218 can implement the
mapping of the LBAs to physical block addresses (PBAs),
e.g., by generating or mapping PBAs for the incoming
LBAs, and storing the mapping in a data structure. FTL
module 218 can send PBA/metadata 258 to NVMe driver
220, which can perform any necessary data processing, and
can send PBA/metadata 258 to controllers (not shown) of
SSDs 240-246, via control path 262.

The PBA and metadata information received by control-
lers of SSDs 240-246 via control path 262, along with the
payload data received by the controllers of SSDs 240-246
via control path 260, can accomplish the programming of the
NAND flash in SSDs 240-246. Thus, the operations and
communications depicted in environment 200 demonstrate
how the local storage engine collaborating with the SSD
controller for metadata/data transmission can result in an
improved system for both data transmission and storage
efficiency.

Data Movement from a NIC to a Storage Drive

FIG. 3 illustrates an exemplary environment 300 with
data movement from a network interface card to a storage
drive, in accordance with an embodiment of the present
application. Environment 300 can include: a NIC memory
310 (which is set as host memory); an SSD controller write
cache 340; and a non-volatile memory 370, such as NAND
flash storage modules, units, or components 372, 374, and
376. NIC memory 310 can store formatted data, which can
include formatting information and a payload. For example,
NIC memory can store network packets as: formatting
information 322 for a payload or application data indicated
by a packet_1 324; formatting information 326 for a payload
or application data indicated by a packet_2 328; and for-
matting information 330 for a payload or application data
indicated by a packet_n 332.

Each network packet can include formatting information
and a payload or application data. For example, formatting
information 326 and packet_2 328 can include: a frame
header 312, an Internet Protocol (IP) header 314, and a
Transmission Control Protocol (TCP) header 316 which are
part of formatting information 326, as indicated by right-
slanting diagonal lines; and application data 318, which can
correspond to the payload of packet_2 328.

The SSD controller can store data in write cache 340 in
write groups of a predetermined size, and when the data
stored in a given write group reaches the predetermined size,
the SSD controller can write the data in the given write
group to the NAND flash. For example, write cache 340 can
include a write group_1 350 and a write group_2 360.
Environment 300 can depict that the payload or application
data indicated by packet_1 324 has been written as a data
packet_1 352 to write group_1 350 of write cache 340.
Another payload can then be written to write group_1 350,
as indicated by packet_2 328 being written to write group_1
350 as a data packet_2 354 (via a communication 370).

The system can determine that the data stored in write
group _1 350 meets or has reached a predetermined group
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size, and can write the data to non-volatile memory 370 (i.e.,
NAND flash 372-376). The predetermined group size can be
based on, e.g., a size of a page in the NAND flash or a
number of available channels for processing data in a
parallel manner.

Exemplary Environment for Data Transfer: Single Server
Scenario and Storage Cluster Scenario

FIG. 4A illustrates an exemplary environment 400 with a
data transfer between storage drives in a same storage server,
which facilitates bypassing system memory, in accordance
with an embodiment of the present application. Environment
400 can include: a central processing unit (CPU) 402, an
associated Peripheral Component Interconnect Express
(PCle) interface 404, and an associated system memory 406;
and solid-state drives (SSDs) 412, 414, and 416. A respec-
tive SSD can expose a portion of its memory as system
memory, which allows other SSDs (or a NIC) in the same
server to directly retrieve data from the exposed system
memory of the respective SSD. The other SSDs can also
send data directly to this exposed system memory on the
respective SSD.

For example, during operation, the system can allocate, in
the volatile memory of SSD 412, a first region (system
memory or sysmem) 413 to be accessed directly by a second
storage drive (such as SSD 414 via a communication 420) or
a first NIC (as described below in relation to FIG. 4B). In
addition, SSD 416 (or SSD 414) can send or write data
directly to the allocated first region (system memory) 413 of
SSD 412 (via, e.g., a communication 422). This allows data
to be retrieved from or written to SSD 412 while bypassing
system memory 406, thus eliminating the need to copy the
data into the system memory or DIMM of the server itself
(which challenge is described above in relation to the prior
art environment of FIG. 1A).

FIG. 4B illustrates an exemplary environment 430 with a
data transfer between storage drives in different storage
servers, which facilitates bypassing system memory, in
accordance with an embodiment of the present application.
Environment 430 can include an Ethernet switch 460 and a
cluster of servers, where each server can include a CPU and
a system memory, and be associated with multiple SSDs and
a network interface card (NIC). For example, a first server
401 can include: a CPU 402, an associated PCle interface
404, and an associated system memory 406; one or more
SSDs, such as an SSD 412; and a NIC 432. A second server
441 can include: a CPU 442, an associated PCle interface
444, and an associated system memory 446; one or more
SSDs, such as an SSD 454; and a NIC 452. The two depicted
servers 401 and 441 can communicate with each other
through Ethernet switch 460 via their respective NICs 432
and 452.

A first SSD of the first server can expose a portion of its
memory as system memory, which allows a first NIC of the
first server to directly retrieve data from the exposed system
memory of the respective SSD. The first NIC can send the
retrieved data, along with network formatting information,
to a second NIC of a second server. A second SSD of the
second server can retrieve the data directly from the second
NIC (as described above in relation to FIG. 3.

For example, during operation, the system can allocate, in
the volatile memory of SSD 412, a first region (system
memory or sysmem) 413 to be accessed directly by NIC 432
(or by other SSDs of server 401). SSD 412 can store data in
the allocated first region sysmem 413. SSD 454 can generate
a request to retrieve data from SSD 412 (or the system can
determine that SSD 412 is to send data to SSD 454). NIC
432 can retrieve the requested data from sysmem 413 of
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SSD 412 (via a communication 470). NIC 432 can generate
formatting information for the data, and perform other
packet processing, data reordering, and concatenation opera-
tions, i.e., by adjusting the data into a predefined format such
as described above in relation to FIG. 3.

NIC 432 can transfer the formatted data (including for-
matting information and payload) to Ethernet switch 460
(via a communication 472), and, based on the formatting
information, Ethernet switch 460 can transfer the data to
NIC 452 (via a communication 474). NIC 452 can perform
packet processing, data reordering, and concatenation opera-
tions. NIC 452 can store the data as formatted data which
includes formatting information and a payload. NIC 452 can
send the payload data directly to SSD 454 (via communi-
cations 476, which can correspond to the operations
described above in relation to FIG. 2). SSD 454 can also
allocate a region (not shown) of its volatile memory as a
system memory which can be accessed directly by NIC 452
or other SSDs of server 441. Moreover, SSD 454 can
retrieve the payload data directly from NIC 452 by accessing
the formatted data and selecting only the portions of payload
data, e.g., by dropping the formatting information or for-
matting bits (via communications 476). SSD 454 can then
group the data and write the data to its NAND flash based
on the pages and PBAs as assigned by the FTL at the host
side, as described above in relation to FIG. 2.

Thus, FIG. 4B depicts an environment or system which
allows data to be retrieved from (or written to) SSD 412 by
SSD 454 while bypassing both system memory 406 and 446,
thus eliminating the need to copy the data into the system
memory or DIMM of both servers 401 and 441 (which
challenge is described above in relation to the prior art
environment of FIG. 1B).

Controller Operations for Ensuring Data Quality

FIG. 5A illustrates an exemplary environment 500 for
data access with a cyclic redundancy check (CRC) in a
storage controller, in accordance with an embodiment of the
present application. Environment 500 can include a storage
controller with associated components or modules, and can
also include a volatile memory of a storage device and
non-volatile memory of the storage device. The storage
controller can include: a PCle physical layer (PHY) 510; an
NVMe controller 512; a DDR controller 514; a cyclic
redundancy check (CRC) module 518; and a flash controller
520 with an error correction code (ECC) encoding/decoding
module 522. DDR controller 514 can communicate with a
volatile memory DDR 516 and an allocated region sysmem
517 of volatile memory 516. Note that sysmem 517 can
serve as the allocated and exposed region of system memory
which can be directly accessed by other SSDs or the NIC in
the same server. For example, sysmem 517 can correspond
to sysmem 413 of SSD 412 of FIG. 4A, as the allocated
region from which data can be directly retrieved (e.g.,
communication 420) or to which data can be directly written
(e.g., communication 420) by a storage device of the same
server. Sysmem 517 can also correspond to sysmem 413 of
FIG. 4B, as the allocated region from which data can be
directly retrieved by a NIC of the same server (e.g., com-
munication 470).

Data can be sent to or received from host 530, and can
also be sent to or received from NAND flash 532. For
example, as indicated by a communication path 534, data
can be received from host 530. This data can be the data
fetched directly from the allocated sysmem which bypasses
the server’s system memory or DIMM. The fetched data can
travel through PCle PHY 510 to NVMe controller 512, and
NVMe controller 512 can operate to process the data as
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needed. CRC 518 can perform a CRC check on the data,
which can then be passed via DDR controller 514 to be
temporarily buffered, with power loss protection, in sysmem
517 of DDR 516 (as indicated by communication path 534).

Subsequently, as indicated by a communication path 536,
the data can be sent to the NAND flash. When reading out
the stored data from sysmem 517 of DDR 516, the data is
passed via DDR controller 514 back to CRC 518, which can
check the CRC to ensure the integrity, correctness, or
accuracy of the data. CRC 518 can send the CRC-checked
data to ECC 522 of flash controller 520. ECC 522 can
perform ECC encoding on the data, and can send the
ECC-encoded data to the NAND flash (via 532 as part of
communication path 536).

FIG. 5B illustrates an exemplary environment 540 for
data access with a CRC in a storage controller, in accordance
with an embodiment of the present application. Environment
540 can include a CRC module 542, a memory module 544,
and a CRC module 546. CRC modules 542 and 546 can
correspond to CRC module 518 of FIG. 5A; memory 544
can correspond to sysmem 517 of DDR 516 of FIG. 5A; a
path 554 can correspond to path 534 of FIG. 5A; and a path
556 can correspond to path 536 of FIG. 5A.

Environment 540 depicts a high-level view of the com-
munications described above in relation to FIG. 5A. During
operation, the system (by CRC 542) can receive data to be
stored in non-volatile memory via path 554. CRC 542 can
perform a first redundancy check and send the CRC data to
memory 544 (via path 554). The system can store the CRC
data in memory 544, and can subsequently retrieve (by CRC
546) the stored CRC data from memory 544. CRC 546 can
perform a second redundancy check, and send the CRC-
checked data onwards, e.g., to ECC 522 (via path 556).
Method for Facilitating Data Movement by Bypassing Sys-
tem Memory: Single Server Scenario and Storage Cluster
Scenario

FIG. 6A presents a flowchart 600 illustrating a method for
facilitating data movement while bypassing system memory,
including a data transfer between storage drives in a same
storage server, in accordance with an embodiment of the
present application. During operation, the system allocates,
in a volatile memory of a first storage drive, a first region to
be accessed directly by a second storage drive or a first
network interface card (NIC), wherein the first storage drive,
the second storage drive, and the first NIC are associated
with a first server (operation 602). The system stores data in
the first region of the first storage drive (operation 604).
Responsive to receiving a first request from the second
storage drive to read the data, the system transmits, by the
first storage drive to the second storage drive, the data stored
in the first region while bypassing a system memory of the
first server (operation 606). Responsive to receiving, from a
third storage drive associated with a second server, a second
request to read the data, the system retrieves, by the first
NIC, the data stored in the first region while bypassing the
system memory of the first server (operation 608). The
operation continues at Label A of FIG. 6B.

FIG. 6B presents a flowchart 620 illustrating a method for
facilitating data movement while bypassing system memory,
including a data transfer between storage drives in different
storage servers, in accordance with an embodiment of the
present application. The system stores, by the first NIC, the
data as formatted data which includes formatting informa-
tion and a payload (operation 622). The system sends, by the
first NIC to a second NIC associated with the second server,
the formatted data (operation 624). The system stores, by the
second NIC, the formatted data (operation 626). The system
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sends, by the second NIC to a local storage engine associ-
ated with the second server, metadata associated with the
data (operation 628).

The system generates, by the local storage engine, man-
agement information which includes a physical block
address of a non-volatile memory of the third storage drive
to which the data is to be written (operation 630). The
system sends, by the local storage engine, the management
information to the third storage drive (operation 632). The
system sends, by the second NIC, the payload to the third
storage drive (operation 634). The system receives, by the
third storage drive, the management information from the
local storage engine and the payload from the second NIC
(operation 636). The system writes, by the third storage
drive, the data to the non-volatile memory of the third
storage drive based on the received management informa-
tion (operation 638), and the operation returns.

Method for Facilitating Data Movement by Writing Data in
Groups to a Non-Volatile Memory

FIG. 7 presents a flowchart 700 illustrating a method for
facilitating data movement while bypassing system memory,
including writing data in groups to a non-volatile memory,
in accordance with an embodiment of the present applica-
tion. During operation, the system stores, by the third
storage drive, in a buffer of the third storage drive, the
payload as part of a group (operation 702). The system stores
other payloads in the group, wherein the other payloads are
associated with other management information (operation
704). The system determines whether a size of the payload
and the other payloads meets a predetermined group size
(operation 706). If it does not (decision 708), the operation
returns to operation 704. If it does (decision 708), the system
writes, from the buffer of the third storage drive to the
non-volatile memory, the payload and the other payloads of
the group (operation 710). Writing the payload and the other
payloads of the group to the non-volatile memory can be
based on the PBA, metadata, and other management infor-
mation received from a local storage engine of a host, as
described above in relation to FIG. 2.

FIG. 8 presents a flowchart 800 illustrating a method for
facilitating data movement while bypassing system memory,
including operations to ensure data integrity, in accordance
with an embodiment of the present application. During
operation, the system receives, by a controller of the third
storage drive, the data (operation 802). The controller can
include a Non-Volatile Memory Express (NVMe) controller,
a double data rate (DDR) controller associated with the
volatile memory, a cyclic redundancy check (CRC) module,
and a flash controller. The flash controller can include an
error correction code (ECC) encoding/decoding module.
The system performs, by the CRC module, a first redun-
dancy check on the received data to obtain CRC data
(operation 804). The system stores, by the DDR controller in
the first region of the volatile memory, the CRC data
(operation 806). The system determines to write the stored
CRC data from the first region of the volatile memory to the
non-volatile memory (operation 808). This determination
can be based on a size of a write group in a write cache or
buffer of the SSD controller, as described above in relation
to FIG. 3.

The system retrieves, by the DDR controller, the stored
CRC data (operation 810). The system performs, by the
CRC module, a second redundancy check on the retrieved
CRC data to obtain CRC-checked data (operation 812).
Responsive to verifying the CRC-checked data, the system
encodes, by the ECC encoding/decoding module of the flash
controller, the CRC-checked data to obtain ECC-encoded
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data (operation 814). The system writes the ECC-encoded
data to the non-volatile memory (operation 816), and the
operation returns.

Exemplary Computer System and Apparatus

FIG. 9 illustrates an exemplary computer system 900 that
facilitates data movement while bypassing system memory,
in accordance with an embodiment of the present applica-
tion. Computer system 900 includes a processor 902, a
volatile memory 906, and a storage device 908. In some
embodiments, computer system 900 can include a controller
904 (indicated by the dashed lines). Volatile memory 906
can include, e.g., random access memory (RAM), that
serves as a managed memory, and can be used to store one
or more memory pools. Storage device 908 can include
persistent storage which can be managed or accessed via
processor 902 (or controller 904). Furthermore, computer
system 900 can be coupled to peripheral input/output (I/O)
user devices 910, e.g., a display device 911, a keyboard 912,
and a pointing device 914. Storage device 908 can store an
operating system 916, a content-processing system 918, and
data 936.

Content-processing system 918 can include instructions,
which when executed by computer system 900, can cause
computer system 900 or processor 902 to perform methods
and/or processes described in this disclosure. Specifically,
content-processing system 918 can include instructions for
receiving and transmitting data packets, including data to be
read or written, an input/output (I/O) request (e.g., a read
request or a write request), metadata, management informa-
tion, a PBA, an LBA, a payload, formatting information,
CRC data, and ECC-encoded data (communication module
920).

Content-processing system 918 can further include
instructions for allocating, in a volatile memory of a first
storage drive, a first region to be accessed directly by a
second storage drive or a first network interface card (NIC),
wherein the first storage drive, the second storage drive, and
the first NIC are associated with a first server (sysmem
region-managing module 922). Content-processing system
918 can include instructions for storing data in the first
region of the first storage drive (data-writing module 930).
Content-processing system 918 can include instructions for,
responsive to receiving a first request from the second
storage drive to read the data (communication module 920),
transmitting, by the first storage drive to the second storage
drive, the data stored in the first region while bypassing a
system memory of the first server (communication module
920 and sysmem region-managing module 922). Content-
processing system 918 can also include instructions for,
responsive to receiving, from a third storage drive associated
with a second server, a second request to read the data
(communication module 920), retrieving, by the first NIC,
the data stored in the first region while bypassing the system
memory of the first server (data-reading module 928 and
sysmem region-managing module 922).

Content-processing system 918 can additionally include
instructions for storing, by the first NIC, the data as format-
ted data which includes formatting information and a pay-
load (packet-formatting module 924). Content-processing
system 918 can include instructions for sending, by the first
NIC to a second NIC associated with the second server, the
formatted data (communication module 920). Content-pro-
cessing system 918 can include instructions for storing, by
the second NIC, the formatted data (data-writing module
930). Content-processing system 918 can include instruc-
tions for sending, by the second NIC to a local storage
engine associated with the second server, metadata associ-
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ated with the data (communication module 920 and meta-
data-managing module 926). Content-processing system
918 can also include instructions for generating, by the local
storage engine, management information which includes a
physical block address of a non-volatile memory of the third
storage drive to which the data is to be written (metadata-
managing module 920). Content-processing system 918 can
include instructions for sending, by the local storage engine,
the management information to the third storage drive
(communication module 920 and metadata-managing mod-
ule 926). Content-processing system 918 can include
instructions for sending, by the second NIC, the payload to
the third storage drive (communication module 920). Con-
tent-processing system 918 can include instructions for
receiving, by the third storage drive, the management infor-
mation from the local storage engine and the payload from
the second NIC (communication module 920). Content-
processing system 918 can include instructions for writing,
by the third storage drive, the data to the non-volatile
memory of the third storage drive based on the received
management information (data-writing module 930). Con-
tent-processing system 918 can include instructions for
performing the operations described above in relation to
FIG. 2.

Content-processing system 918 can further include
instructions for storing, by the third storage drive, in a buffer
of the third storage drive, the payload as part of a group
(data-writing module 930 and cache-managing module 932).
Content-processing system 918 can include instructions for
storing other payloads in the group, wherein the other
payloads are associated with other management information
(data-writing module 930 and cache-managing module 932).
Content-processing system 918 can include instructions for
determining that a size of the payload and the other payloads
meets a predetermined group size (cache-managing module
932). Content-processing system 918 can include instruc-
tions for writing, from the buffer of the third storage drive
to the non-volatile memory, the payload and the other
payloads of the group (data-writing module 930). Content-
processing system 918 can include instructions for perform-
ing the operations described above in relation to FIG. 7.

Content-processing system 918 can also include instruc-
tions for receiving, by a controller of the third storage drive,
the data (communication module 920). Content-processing
system 918 can include instructions for performing, by the
CRC module, a first redundancy check on the received data
to obtain CRC data (error-detecting module 934). Content-
processing system 918 can include instructions for storing,
by the DDR controller in the first region of the volatile
memory, the CRC data (data-writing module 930 and sys-
mem region-managing module 922). Content-processing
system 918 can include instructions for determining to write
the stored CRC data from the first region of the volatile
memory to the non-volatile memory (sysmem region-man-
aging module 922). Content-processing system 918 can
include instructions for retrieving, by the DDR controller,
the stored CRC data (data-reading module 928). Content-
processing system 918 can include instructions for perform-
ing, by the CRC module, a second redundancy check to
obtain CRC-checked data (error-detecting module 934).
Content-processing system 918 can include instructions for,
responsive to verifying the CRC checked data, encoding, by
the ECC encoding/decoding module of the flash controller,
the CRC-checked data to obtain ECC-encoded data (error-
detecting module 934). Content-processing system 918 can
include instructions for writing the ECC-encoded data to the
non-volatile memory (data-writing module 930). Content-
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processing system 918 can include instructions for perform-
ing the operations described above in relation to FIG. 8.

Data 936 can include any data that is required as input or
generated as output by the methods and/or processes
described in this disclosure. Specifically, data 936 can store
at least: data; a request; a read request; a write request; an
input/output (/O) request; data or metadata associated with
a read request, a write request, or an 1/O request; formatted
data; encoded data; CRC data; CRC-checked data; ECC-
encoded data; an indicator or identifier of a storage drive, a
local storage engine, a NIC, a switch, or a server; formatting
information; a frame header; an IP header; a TCP header; a
payload; application data; user data; a network packet;
metadata; management information; a logical block address
(LBA); a physical block address (PBA); an indicator of a
region or an allocated region of a volatile memory; a chunk
of data; chunk metadata; a logical extent or range of LBAs;
a group of data; a predetermined group size; a size of a
payload; and a size of multiple payloads stored in a group.

FIG. 10 illustrates an exemplary apparatus 1000 that
facilitates data movement while bypassing system memory,
in accordance with an embodiment of the present applica-
tion. Apparatus 1000 can comprise a plurality of units or
apparatuses which may communicate with one another via a
wired, wireless, quantum light, or electrical communication
channel. Apparatus 1000 may be realized using one or more
integrated circuits, and may include fewer or more units or
apparatuses than those shown in FIG. 10. Furthermore,
apparatus 1000 may be integrated in a computer system, or
realized as a separate device or devices capable of commu-
nicating with other computer systems and/or devices.

Apparatus 1000 can comprise modules or units 1002-
1016 which are configured to perform functions or opera-
tions similar to modules 920-934 of computer system 900 of
FIG. 9, including: a communication unit 1002; a sysmem
region-managing unit 1004; a packet-formatting unit 1006;
a metadata-managing unit 1008; a data-reading unit 1010; a
data-writing unit 1012; a cache-managing unit 1014; and an
error-detecting unit 1016.

The data structures and code described in this detailed
description are typically stored on a computer-readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system. The
computer-readable storage medium includes, but is not
limited to, volatile memory, non-volatile memory, magnetic
and optical storage devices such as disk drives, magnetic
tape, CDs (compact discs), DVDs (digital versatile discs or
digital video discs), or other media capable of storing
computer-readable media now known or later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-
readable storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.

Furthermore, the methods and processes described above
can be included in hardware modules. For example, the
hardware modules can include, but are not limited to,
application-specific integrated circuit (ASIC) chips, field-
programmable gate arrays (FPGAs), and other program-
mable-logic devices now known or later developed. When
the hardware modules are activated, the hardware modules
perform the methods and processes included within the
hardware modules.
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The foregoing embodiments described herein have been
presented for purposes of illustration and description only.
They are not intended to be exhaustive or to limit the
embodiments described herein to the forms disclosed.
Accordingly, many modifications and variations will be
apparent to practitioners skilled in the art. Additionally, the
above disclosure is not intended to limit the embodiments
described herein. The scope of the embodiments described
herein is defined by the appended claims.

What is claimed is:

1. A computer-implemented method, comprising:

allocating, in a volatile memory of a first storage drive, a

first region to be accessed directly by a second storage
drive,

wherein the first storage drive and the second storage

drive are associated with a first server, wherein the first
region of the first storage drive is to be further accessed
by a third storage drive via a first network interface card
(NIC), wherein the first NIC is associated with the first
server, and wherein the third storage drive is associated
with a second server;

storing data in the first region of the first storage drive;

responsive to receiving a first request from the second

storage drive to read the data, transmitting, by the first
storage drive to the second storage drive, the data
stored in the first region while bypassing a system
memory of the first server;

responsive to receiving, from the third storage drive, a

second request to read the data, retrieving, by the first
NIC, the data stored in the first region while bypassing
the system memory of the first server;

sending, by the first NIC to a second NIC associated with

the second server, the data as formatted data which

includes formatting information and a payload;

sending, by the second NIC to a local storage engine

associated with the second server, metadata associated

with the data, which causes the local storage engine to:

allocate, by a file system of the local storage engine, a
logical extent or a range of logical block addresses
(LBAs) based on metadata associated with multiple
chunks of data;

send, by the file system to a flash translation layer
(FTL) module of the local storage engine, the allo-
cated LBAs;

generate, by the FTL module, physical block addresses
(PBAs) mapped to the allocated LLBAs, wherein
management information includes the PBAs, the
metadata, and one or more of an order and a merged
size; and

transmit, to the third storage drive, the management
information;

receiving, by the third storage drive, the management

information from the local storage engine and the
payload from the second NIC; and

writing, by the third storage drive, the data to the non-

volatile memory of the third storage drive based on the
received management information.

2. The method of claim 1, further comprising:

storing, by the first NIC, the data as formatted data which

includes formatting information and a payload;
storing, by the second NIC, the formatted data; and
sending, by the second NIC, the payload to the third
storage drive.
3. The method of claim 2,
wherein the formatting information includes one or more
of a frame header, an Internet Protocol (IP) header, and
a Transmission Control Protocol (TCP) header,
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wherein the payload includes one or more of application

data and user data, and

wherein sending, by the first NIC to the second NIC, the

formatted data further involves sending the formatted
data through an Ethernet switch.
4. The method of claim 2, further comprising:
setting, in the second NIC, a second region of a volatile
memory of the second NIC as a host memory which is
directly accessible by the third storage drive; and

storing, by the second NIC, the formatted data in the
second region of the second NIC.

5. The method of claim 1, wherein sending, by the second
NIC to the local storage engine associated with the second
server, the metadata associated with the data further causes
the local storage engine to:

generate, by a network engine of the local storage engine,

the management information, which includes one or
more of the order and the merged size;

group, by a chunk organization module of the local

storage engine, multiple chunks of data in parallel;
receive, by the FTL module, the allocated LBAs;
transmit, by the FTL module to a Non-Volatile Memory
Express (NVMe) driver, the PBAs and the metadata;
and

transmit, by the NVMe driver to a controller of the third

storage drive, the PBAs and the metadata.

6. The method of claim 1, wherein writing, by the third
storage drive, the data to the non-volatile memory based on
the received management information comprises:

storing, by the third storage drive, in a buffer of the third

storage drive, the payload as part of a group;

storing other payloads in the group, wherein the other

payloads are associated with other management infor-
mation;
determining that a size of the payload and the other
payloads meets a predetermined group size; and

writing, from the buffer of the third storage drive to the
non-volatile memory, the payload and the other pay-
loads of the group.

7. The method of claim 1, wherein writing, by the third
storage drive, the data to the non-volatile memory com-
prises:

receiving, by a controller of the third storage drive, the

data,
wherein the controller includes a Non-Volatile Memory
Express (NVMe) controller, a double data rate (DDR)
controller associated with the volatile memory, a cyclic
redundancy check (CRC) module, and a flash control-
ler, wherein the flash controller includes an error cor-
rection code (ECC) encoding/decoding module;

performing, by the CRC module, a first redundancy check
on the received data to obtain CRC data;

storing, by the DDR controller in the first region of the

volatile memory, the CRC data;

determining to write the stored CRC data from the first

region of the volatile memory to the non-volatile
memory;

retrieving, by the DDR controller, the stored CRC data;

performing, by the CRC module, a second redundancy

check on the retrieved CRC data to obtain CRC-
checked data;

responsive to verifying the CRC-checked data, encoding,

by the ECC encoding/decoding module of the flash
controller, the CRC-checked data to obtain ECC-en-
coded data; and

writing the ECC-encoded data to the non-volatile

memory.
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8. The method of claim 1, wherein subsequent to the first
storage drive transmitting to the second storage drive the
data stored in the first region while bypassing the system
memory of the first server, the method further comprises:

retrieving, by the second storage drive, the data stored in

the first region while bypassing the system memory of
the first server.

9. A computer system, comprising:

a processor; and

a memory coupled to the processor and storing instruc-

tions which, when executed by the processor, cause the
processor to perform a method, the method comprising:
allocating, in a volatile memory of a first storage drive,
a first region to be accessed directly by a second
storage drive,
wherein the first storage drive and the second storage
drive are associated with a first server, wherein the
first region of the first storage drive is to be further
accessed by a third storage drive via a first network
interface card (NIC), wherein the first NIC is asso-
ciated with the first server, and wherein the third
storage drive is associated with a second server;
storing data in the first region of the first storage drive;
responsive to receiving a first request from the second
storage drive to read the data, transmitting, by the
first storage drive to the second storage drive, the
data stored in the first region while bypassing a
system memory of the first server;
responsive to receiving, from the third storage drive, a
second request to read the data, retrieving, by the
first NIC, the data stored in the first region while
bypassing the system memory of the first server;
sending, by the first NIC to a second NIC associated
with the second server, the data as formatted data
which includes formatting information and a pay-
load;
sending, by the second NIC to a local storage engine
associated with the second server, metadata associ-
ated with the data, which causes the local storage
engine to:
allocate, by a file system of the local storage engine,
a logical extent or a range of logical block
addresses (LBAs) based on metadata associated
with multiple chunks of data;
send, by the file system to a flash translation layer
(FTL) module of the local storage engine, the
allocated LBAs;
generate, by the FTL module, physical block
addresses (PBAs) mapped to the allocated LBAs,
wherein management information includes the
PBAs, the metadata, and one or more of an order
and a merged size; and
transmit, to the third storage drive, the management
information;
receiving, by the third storage drive, the management
information from the local storage engine and the
payload from the second NIC; and
writing, by the third storage drive, the data to the
non-volatile memory of the third storage drive based
on the received management information.

10. The computer system of claim 9, wherein the method
further comprises:

storing, by the first NIC, the data as formatted data which

includes formatting information and a payload;
storing, by the second NIC, the formatted data;

sending, by the second NIC, the payload to the third

storage drive.
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11. The computer system of claim 10,

wherein the formatting information includes one or more
of a frame header, an Internet Protocol (IP) header, and
a Transmission Control Protocol (TCP) header,

wherein the payload includes one or more of application
data and user data, and

wherein sending, by the first NIC to the second NIC, the

formatted data further involves sending the formatted
data through an Ethernet switch.
12. The computer system of claim 10, wherein the method
further comprises:
setting, in the second NIC, a second region of a volatile
memory of the second NIC as a host memory which is
directly accessible by the third storage drive; and

storing, by the second NIC, the formatted data in the
second region of the second NIC.

13. The computer system of claim 9, wherein sending, by
the second NIC to the local storage engine associated with
the second server, the metadata associated with the data
further causes the local storage engine:

generate, by a network engine of the local storage engine,

the management information, which includes one or
more of the order and the merged size;

group, by a chunk organization module of the local

storage engine, multiple chunks of data in parallel;
receive, by the FTL module, the allocated LBAs;
transmit, by the FTL module to a Non-Volatile Memory
Express (NVMe) driver, the PBAs and the metadata;
and

transmit, by the NVMe driver to a controller of the third

storage drive, the PBAs and the metadata.

14. The computer system of claim 9, wherein writing, by
the third storage drive, the data to the non-volatile memory
based on the received management information comprises:

storing, by the third storage drive, in a buffer of the third

storage drive, the payload as part of a group;

storing other payloads in the group, wherein the other

payloads are associated with other management infor-
mation;
determining that a size of the payload and the other
payloads meets a predetermined group size; and

writing, from the buffer of the third storage drive to the
non-volatile memory, the payload and the other pay-
loads of the group.

15. The computer system of claim 9, wherein writing, by
the third storage drive, the data to the non-volatile memory
comprises:

receiving, by a controller of the third storage drive, the

data,
wherein the controller includes a Non-Volatile Memory
Express (NVMe) controller, a double data rate (DDR)
controller associated with the volatile memory, a cyclic
redundancy check (CRC) module, and a flash control-
ler, wherein the flash controller includes an error cor-
rection code (ECC) encoding/decoding module;

performing, by the CRC module, a first redundancy check
on the received data to obtain CRC data;

storing, by the DDR controller in the first region of the

volatile memory, the CRC data;

determining to write the stored CRC data from the first

region of the volatile memory to the non-volatile
memory;

retrieving, by the DDR controller, the stored CRC data;

performing, by the CRC module, a second redundancy

check on the retrieved CRC data to obtain CRC-
checked data;
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responsive to verifying the CRC-checked data, encoding,
by the ECC encoding/decoding module of the flash
controller, the CRC-checked data to obtain ECC-en-
coded data; and

writing the ECC-encoded data to the non-volatile
memory.

16. An apparatus, comprising:

a region-managing module configured to allocate, in a
volatile memory of a first storage drive, a first region to
be accessed directly by a second storage drive or a first
network interface card (NIC),

wherein the first storage drive, the second storage drive,
and the first NIC are associated with a first server,
wherein the first region of the first storage drive is to be
further accessed by a third storage drive via a first
network interface card (NIC), wherein the first NIC is
associated with the first server, and wherein the third
storage drive is associated with a second server;

a data-writing module configured to store data in the first
region of the first storage drive;

a communication module configured receive a first
request from the second storage drive to read the data,

wherein the data-writing module is configured to, respon-
sive to the communication module receiving the first
request, transmit, by the first storage drive to the second
storage drive, the data stored in the first region while
bypassing a system memory of the first server,

wherein the communication module is further configured
to receive, from the third storage drive, a second
request to read the data; and

a data-reading module configured to, responsive to the
communication module receiving the second request,
retrieve, by the first NIC, the data stored in the first
region while bypassing the system memory of the first
server,

wherein the communication module is further configured
to:
send, by the first NIC to a second NIC associated with

the second server, the data as formatted data which
includes formatting information and a payload; and
send, by the second NIC to a local storage engine
associated with the second server, metadata associ-
ated with the data,
wherein a metadata-managing unit is configured to,
responsive to the second NIC sending the metadata
to the local storage engine:
allocate, by a file system of the local storage engine,
a logical extent or a range of logical block
addresses (LBAs) based on metadata associated
with multiple chunks of data;
send, by the file system to a flash translation layer
(FTL) module of the local storage engine, the
allocated LBAs;
generate, by the FTL module, physical block
addresses (PBAs) mapped to the allocated LBAs,
wherein management information includes the
PBAs, the metadata, and one or more of an order
and a merged size; and
transmit, to the third storage drive, the management
information;
wherein the communication module is further config-
ured to receive, by the third storage drive, the
management information from the local storage
engine and the payload from the second NIC, and
wherein the data-writing module is further configured
to write, by the third storage drive, the data to the
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non-volatile memory of the third storage drive based
on the received management information.
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