a2 United States Patent

Li

US011487465B2

US 11,487,465 B2
Nov. 1, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND SYSTEM FOR A LOCAL
STORAGE ENGINE COLLABORATING
WITH A SOLID STATE DRIVE
CONTROLLER

Applicant: Alibaba Group Holding Limited,
Grand Cayman (KY)

Inventor: Shu Li, Bothell, WA (US)

Assignee: Alibaba Group Holding Limited,
George Town (KY)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/119,649
Filed: Dec. 11, 2020

Prior Publication Data

US 2022/0188010 Al Jun. 16, 2022

Int. CL.

GO6F 3/06 (2006.01)

HO3M 13729 (2006.01)

GIlIB 20/12 (2006.01)

U.S. CL

CPC ... GO6F 3/0655 (2013.01); GOGF 3/0604

(2013.01); GO6F 3/067 (2013.01);
(Continued)

Field of Classification Search
CPC ... GOG6F 3/0655; GOGF 3/067, GO6F 3/0631;
GOG6F 3/0604; GOGF 3/0619;

(Continued)

254
CHUNK ORGANIZATION MODULE

(56) References Cited
U.S. PATENT DOCUMENTS

3,893,071 A
4,562,494 A

7/1975 Bossen
12/1985 Bond

(Continued)

FOREIGN PATENT DOCUMENTS

WO
WO

9418634
1994018634

8/1994
8/1994

OTHER PUBLICATIONS

https://web.archive.org/web/20071130235034/http://en.wikipedia.
org:80/wiki/logical_block_addressing wikipedia screen shot retriefed
on wayback Nov. 20, 2007 showing both physical and logical
addressing used historically to access data on storage devices (Year:
2007).

(Continued)

Primary Examiner — Mark A Giardino, Jr.
(74) Attorney, Agent, or Firm — Yao Legal Services, Inc.;
Shun Yao

(57) ABSTRACT

One embodiment provides a system which facilitates data
movement. The system allocates, in a volatile memory of a
first storage drive, a first region to be accessed directly by a
second storage drive or a first NIC. The first storage drive,
the second storage drive, and the first NIC are associated
with a first server. The system stores data in the first region.
Responsive to receiving a first request from the second
storage drive to read the data, the system transmits, by the
first storage drive to the second storage drive, the data stored
in the first region while bypassing a system memory of the
first server. Responsive to receiving, from a third storage
drive associated with a second server, a second request to
read the data, the system retrieves, by the first NIC, the data
stored in the first region while bypassing the system memory
of the first server.

16 Claims, 11 Drawing Sheets

e 200

r CHUNK METADATA

LOCAL FILE SYSTEM

s MANAGEMENT
10CAL INFORMATION
STORAGE 262
ENGINE
250

NETWORK ENGINE

™~ METADATA

250
HOST 202

™~ LBA RANGE / METADATA
256

FLASH TRANSLATION LAYER

™~ PBA/METACATA
258

A

NVMe DRIVER
220

H\JCCNTROL PATH 262

260

DATAPATH

N

58D Ssh
240 242

o 0
~
5 &

US 11,487,465 B2

Page 2
(52) US.CL 9,875,053 B2 12018 Frid
CPC ... GOGF 3/0619 (2013.01); GO6F 3/0631 ooros Bl 32088 gﬁgmm
(2013.01); HO3M 1372927 (2013.01); G1IB 9:923:562 Bl 3/2018 Vinson
20/1201 (2013.01); GI1IB 20/1217 (2013.01); 9,946,596 B2 4/2018 Hashimoto
GI1B 2020/1222 (2013.01) 10,013,169 B2 7/2018 Fisher
(58) Field of Classification Search 10190000 B1 2000 gﬂgﬁr‘“;;‘n
CPC HO3M 13/2927, G11B 20/1201; G11B 10,235,198 B2 3/2019 Qiu
20/1217; G11B 20/1222 10,268,390 B2 4/2019 Warfield
See application file for complete search history. 10,318,467 B2 6/2019 Barzik
10361,722 B2 7/2019 TLee
, 10,437.670 BL 10/2019 Koltsidas
(56) References Cited 10,459,663 B2 10/2019 Agombar
10,642,522 B2 5/2020 Li
U.S. PATENT DOCUMENTS 10.649.657 B2 5/2020 Zaidman
10,678,432 Bl 6/2020 Dreier
3’3%’823 i l(l);}ggg gitf;; 10,756,816 Bl 82020 Dreier
4,858,040 A 81989 Hazebrouck }8:3%:232 Ef igg%} i‘;ffh
5394382 A 2/1995 Hu 11,023,150 B2 6/2021 Pletka
5,602,693 A 2/1997 Brunnett 11,068.165 B2 7/2021 Sharon
5715471 A 2/1998 Otsuka 11,138,124 B2 10/2021 Tomic
5,732,093 A~ 3/1998 Huang 2001/0032324 Al 10/2001 Slaughter
5,802,551 A 9/1998 Komatsu 2001/0046295 Al 11/2001 Sako
5,930,167 A 7/1999 Lee 2002/0010783 Al 1/2002 Primak
6,098,185 A 8/2000 Wilson 2002/0039260 Al 4/2002 Kilmer
6,148,377 A 11/2000 Carter 2002/0073358 Al 6/2002 Atkinson
géfg’%g g} 2@88} g’ihgalan et al. 2002/0095403 Al 7/2002 Chandrasekaran
243, . 2002/0112085 Al 82002 Ber,
6,457,104 Bl 9/2002 Tremaine 500200161890 Al 102002 Chen
6,658478 Bl 12/2003 Singhal 2003/0074319 Al 4/2003 Jaquette
6,795,894 Bl 9/2004 Neufeld 2003/0145274 Al 7/2003 Hwang
7,351,072 B2 4/2008 Mufl' 2003/0163594 Al 82003 Aasheim
7,565454 B2 7/2009 Zuberi 2003/0163633 Al 82003 Aasheim
7,599,139 Bl 10/2009 Bombet 2003/0217080 Al 11/2003 White
7,953,899 Bl 5/2011 Hooper 2004/0010545 A1 1/2004 Pandya
7,958433 Bl 6/2011 Yoon 2004/0066741 Al 4/2004 Dinker
8,085,569 B2 12/2011 Kim 2004/0103238 Al 52004 Avraham
8,144,512 B2 3/2012 Huang 2004/0143718 Al 7/2004 Chen
8,166,233 B2 4/2012 Schibilla 2004/0255171 Al 12/2004 Zimmer
8,260,924 B2 9/2012 Koretz 2004/0267752 Al 12/2004 Wong
8,281,061 B2 10/2012 Radke 2004/0268278 Al 122004 Hoberman
8,516,284 B2 82013 Chan 2005/0097126 Al 5/2005 Cabrera
8,527,544 Bl 9/2013 Colgrove 2005/0138325 Al 6/2005 Hofstee
8,751,763 Bl 6/2014 Ramarao 2005/0144358 Al 6/2005 Conley
8,819,367 Bl 82014 Fallone 2005/0149827 Al 7/2005 Lambert
8,825,937 B2 9/2014 Atkisson 2005/0174670 Al 82005 Dunn
gggégg? g% lgggij Ef;nyges 2005/0177672 Al 82005 Rao
8,904,061 Bl 12/2014 O’Brien, III %882;8};2;22 ﬁ} ggggg E‘(‘frll’%ey
8,949,208 Bl 2/2015 Xu 2005/0235067 Al 10/2005 Creta
9,015,561 Bl 4/2015 Hu 2005/0235171 Al 10/2005 Igari
9,031,296 B2 5/2015 Kaempfer 2006/0031709 Al 2/2006 Hiraiwa
9,043,545 B2 5/2015 Kimmel 2006/0101197 Al 5/2006 Georgis
9,088,300 Bl 7/2015 Chen 2006/0156009 Al 7/2006 Shin
9,092,223 Bl 7/2015 Pani 2006/0156012 A1 7/2006 Beeson
9,129,628 Bl 9/2015 Fallone 2006/0184813 Al 82006 Bui
9,141,176 Bl 9/2015 Chen 2007/0033323 Al 2/2007 Gorobets
9,208,817 Bl 12/2015 Li 2007/0061502 Al 3/2007 Lasser
9,213,627 B2 12/2015 Van Acht 2007/0101096 Al 5/2007 Gorobets
9,213,632 Bl 12/2015 Song 2007/0204128 Al 82007 Lee
9,280472 Bl 3/2016 Dang 2007/0250756 Al 10/2007 Gower
9280487 B2 3/2016 Candelaria 2007/0266011 Al 11/2007 Rohrs
9,311,939 Bl 4/2016 Malina 2007/0283081 Al 122007 Lasser
9,336,340 Bl 572016 Dong 2007/0283104 Al 122007 Wellwood
9,436,595 Bl 9/2016 Benitez 2007/0285980 Al 12/2007 Shimizu
9495263 B2 11/2016 Pang 2008/0028223 Al 1/2008 Rhoads
g’ggg’g% gé }%8}2 8?&%3?‘1‘“1 2008/0034154 Al 2/2008 Lee
0309 o o017 Dheey 2008/0065805 Al 3/2008 Wu
037598 Bl 29017 Secbara Submamanian 2008/0082731 Al 4/2008 Karamcheti
0283608 Bl 39017 Rammood 2008/0104369 Al 5/2008 Reed
0588977 Bl 3/2017 Wang 2008/0112238 Al 5/2008 Kim
0607631 B2 37017 Ranseh 2008/0163033 Al 7/2008 Yim
9671971 B2 62017 Trika 2008/0195829 A1 82008 Wilsey
9,747,202 Bl 8/2017 Shaharabany 2008/0301532 Al 12/2008 Uchikawa
9,836,232 Bl 12/2017 Vasquez 2009/0006667 Al 1/2009 Lin
9,852,076 Bl 122017 Garg 2009/0089544 Al 4/2009 Liu

US 11,487,465 B2

Page 3
(56) References Cited 2013/0159723 A1 6/2013 Brandt
2013/0166820 Al 6/2013 Batwara
U.S. PATENT DOCUMENTS 2013/0173845 Al 7/2013 Aslam
2013/0179898 Al 7/2013 Fang
2009/0110078 Al 4/2009 Crinon 2013/0191601 Al 7/2013 Peterson
2009/0113219 Al 4/2009 Aharonov 2013/0205183 Al 8/2013 Fillingim
2009/0125788 Al 5/2009 Wheeler 2013/0219131 Al 8/2013 Alexandron
2009/0177944 A1 7/2009 Kanno 2013/0227347 Al 82013 Cho
2009/0183052 Al 7/2009 Kanno 2013/0238955 Al 9/2013 D Abreu
2009/0254705 Al 10/2009 Abali 2013/0254622 Al 9/2013 Kamno
2009/0282275 Al 11/2009 Yermalayeu 2013/0318283 Al 11/2013 Small
2009/0287956 Al 11/2009 Flynn 2013/0318395 Al 112013 Kalavade
2009/0307249 Al 12/2009 Koifinan 2013/0329492 Al 12/2013 Yang
2009/0307426 Al 12/2009 Galloway 2014/0006688 Al 1/2014 Yu
2009/0310412 Al 12/2009 Jang 2014/0019650 Al 1/2014 Li
2010/0031000 A1 2/2010 Flynn 2014/0025638 Al 1/2014 Hu
2010/0169470 Al 7/2010 Takashige 2014/0082273 Al 3/2014 Segev
2010/0217952 Al 8/2010 Iyer 2014/0082412 Al 3/2014 Matsumura
2010/0229224 Al 9/2010 FEtchegoyen 2014/0095758 Al 4/2014 Smith ... GOG6F 3/0685
2010/0241848 Al 9/2010 Smith 710/308
2010/0281254 Al 11/2010 Carro 2014/0095769 Al 4/2014 Borkenhagen
2010/0321999 Al 12/2010 Yoo 2014/0095827 Al 4/2014 Wei
2010/0325367 Al 12/2010 Kornegay 2014/0108414 Al 4/2014 Stillerman
2010/0332922 Al 12/2010 Chang 2014/0108891 Al 4/2014 Strasser
2011/0031546 Al 2/2011 Uenaka 2014/0164447 Al 6/2014 Tarafdar
2011/0055458 Al 3/2011 Kuehne 2014/0164879 Al 6/2014 Tam
2011/0055471 Al 3/2011 Thatcher 2014/0181532 Al 6/2014 Camp
2011/0060722 Al 3/2011 Li 2014/0195564 Al 7/2014 Talagala
2011/0072204 Al 3/2011 Chang 2014/0215129 Al 7/2014 Kuzmin
2011/0099418 Al 4/2011 Chen 2014/0223079 Al 82014 Zhang
2011/0153903 Al 6/2011 Hinkle 2014/0233950 Al 8/2014 Luo
2011/0161621 Al 6/2011 Sinclair 2014/0250259 Al 9/2014 Ke
2011/0161784 Al 6/2011 Selinger 2014/0279927 Al 9/2014 Constantinescu
2011/0191525 Al 8/2011 Hsu 2014/0304452 Al 10/2014 De La Iglesia
2011/0218969 Al 9/2011 Anglin 2014/0310574 Al 10/2014 Yu
2011/0231598 Al 9/2011 Hatsuda 2014/0337457 Al* 112014 Nowoczynski GOGF 16/1847
2011/0239083 Al 9/2011 Kanno 709/212
2011/0252188 Al 10/2011 Weingarten 2014/0359229 Al 12/2014 Cota-Robles
2011/0258514 Al 10/2011 Lasser 2014/0365707 Al 12/2014 Talagala
2011/0289263 Al 11/2011 Mcwilliams 2014/0379965 Al 12/2014 Gole
2011/0289280 Al 11/2011 Koseki 2015/0006792 Al 1/2015 Lee
2011/0292538 Al 12/2011 Haga 2015/0019798 Al 1/2015 Huang
2011/0296411 Al 12/2011 Tang 2015/0039849 Al 2/2015 Lewis
2011/0299317 Al 12/2011 Shaeffer 2015/0067436 Al 3/2015 Hu
2011/0302353 Al 12/2011 Confalonieri 2015/0082317 Al 3/2015 You
2011/0302408 Al 12/2011 Mcdermott 2015/0106556 Al 4/2015 Yu
2012/0017037 Al 1/2012 Riddle 2015/0106559 Al 4/2015 Cho
2012/0039117 Al 2/2012 Webb 2015/0121031 Al 4/2015 Feng
2012/0084523 Al 4/2012 Littlefield 2015/0142752 Al 5/2015 Chennamsetty
2012/0089774 Al 4/2012 Kelkar 2015/0143030 Al 5/2015 Gorobets
2012/0096330 Al 4/2012 Przybylski 2015/0186657 Al 7/2015 Nakhjiri
2012/0117399 Al 5/2012 Chan 2015/0199234 Al 7/2015 Choi
2012/0147021 Al 6/2012 Cheng 2015/0227316 Al 8/2015 Warfield
2012/0151253 Al 6/2012 Horn 2015/0234845 Al 8/2015 Moore
2012/0159099 Al 6/2012 Lindamood 2015/0269964 Al 9/2015 Fallone
2012/0159289 Al 6/2012 Piccirillo 2015/0277937 Al 10/2015 Swanson
2012/0173792 Al 7/2012 Lassa 2015/0286477 Al 10/2015 Mathur
2012/0203958 Al 8/2012 Jones 2015/0294684 Al 10/2015 Qjang
2012/0210095 Al 8/2012 Nellans 2015/0301964 Al 10/2015 Brinicombe
2012/0233523 Al 9/2012 Krishnamoorthy 2015/0304108 A1 10/2015 Obukhov
2012/0246392 Al 9/2012 Cheon 2015/0310916 A1 10/2015 Leem
2012/0278579 Al 11/2012 Goss 2015/0317095 Al 11/2015 Voigt
2012/0284587 Al 11/2012 Yu 2015/0341123 Al 11/2015 Nagarajan
2012/0324312 Al 12/2012 Moyer 2015/0347025 Al 12/2015 Law
2012/0331207 Al 12/2012 Lassa 2015/0363271 Al 12/2015 Haustein
2013/0013880 Al 1/2013 Tashiro 2015/0363328 Al 12/2015 Candelaria
2013/0013887 Al 1/2013 Sugahara 2015/0372597 Al 12/2015 Luo
2013/0016970 Al 1/2013 Koka 2016/0014039 Al 1/2016 Reddy
2013/0018852 Al 1/2013 Barton 2016/0026575 Al 1/2016 Samanta
2013/0024605 Al 1/2013 Sharon 2016/0041760 Al 2/2016 Kuang
2013/0054822 Al 2/2013 Mordani 2016/0048327 Al 2/2016 Jayasena
2013/0061029 Al 3/2013 Huff 2016/0048341 Al 2/2016 Constantinescu
2013/0073798 Al 3/2013 Kang 2016/0054922 Al 2/2016 Awasthi
2013/0080391 Al 3/2013 Raichstein 2016/0062885 Al 3/2016 Ryu
2013/0138871 Al 5/2013 Chiu 2016/0077749 Al 3/2016 Ravimohan
2013/0145085 Al 6/2013 Yu 2016/0077764 Al 3/2016 Ori
2013/0145089 Al 6/2013 Eleftheriou 2016/0077968 Al 3/2016 Sela
2013/0151759 Al 6/2013 Shim 2016/0078245 Al 3/2016 Amarendran
2013/0159251 Al 6/2013 Skrenta 2016/0098344 Al 4/2016 Gorobets

US 11,487,465 B2

Page 4

(56) References Cited 2018/0076828 Al 3/2018 Kanno

2018/0088867 Al 3/2018 Kaminaga

U.S. PATENT DOCUMENTS 2018/0107591 Al 4/2018 Smith

2018/0113631 Al 4/2018 Zhang
2016/0098350 Al 4/2016 Tang 2018/0143780 Al 5/2018 Cho
2016/0103631 Al 4/2016 Ke 2018/0150640 Al 5/2018 Li
2016/0110254 Al 4/2016 Cronie 2018/0165038 Al 6/2018 Authement
2016/0124742 Al 5/2016 Rangasamy 2018/0165169 Al 6/2018 Camp
2016/0132237 Al 5/2016 Jeong 2018/0165340 Al 6/2018 Agarwal
2016/0141047 Al 5/2016 Sehgal 2018/0167268 Al 6/2018 Liguori
2016/0154601 Al 6/2016 Chen 2018/0173620 Al 6/2018 Cen
2016/0155750 Al 6/2016 Yasuda 2018/0188970 Al 7/2018 Liu
2016/0162187 Al 6/2016 Lee 2018/0189175 AL 7/2018 i
2016/0179399 Al 6/2016 Melik-Martirosian 2018/0189182 Al 72018 Wang
2016/0188223 Al 6/2016 Camp 2018/0212951 Al 7/2018 Goodrum
2016/0188890 Al 6/2016 Naeimi 2018/0219561 Al 82018 Litsyn
2016/0203000 Al 7/2016 Parmar 2018/0226124 Al 8/2018 Perner
2016/0224267 Al 8/2016 Yang 2018/0232151 Al 8/2018 Badam
2016/0232103 Al 8/2016 Schmisseur 2018/0260148 Al 9/2018 Klein
2016/0234297 Al 8/2016 Ambach 2018/0270110 AL 9/2018 Chugtu
2016/0239074 Al 8/2016 Lee 2018/0293014 A1 10/2018 Ravimohan
2016/0239380 Al 82016 Wideman 2018/0300203 Al 10/2018 Kathpal
2016/0274636 Al 9/2016 Kim 2018/0321864 Al 11/2018 Benisty
2016/0283140 Al 9/2016 Kaushik 2018/0322024 Al 11/2018 Nagao
2016/0306699 Al 10/2016 Resch 2018/0329776 Al 11/2018 Lai
2016/0306853 Al 10/2016 Sabaa 2018/0336921 Al 112018 Ryun
2016/0321002 Al 11/2016 Jung 2018/0349396 Al 12/2018 Blagojevic
2016/0335085 Al 11/2016 Scalabrino 2018/0356992 Al 12/2018 Lamberts
2016/0342345 Al 11/2016 Kankani 2018/0357126 A1 12/2018 Dhuse
2016/0343429 Al 11/2016 Nieuwejaar 2018/0373428 Al 12/2018 Kan
2016/0350002 A1 12/2016 Vergis 2018/0373655 Al 12/2018 Liu
2016/0350385 Al 12/2016 Poder 2018/0373664 Al 12/2018 Vijayrao
2016/0364146 Al 12/2016 Kuttner 2019/0012111 Al 1/2019 Li
2016/0381442 Al 12/2016 Heanue 2019/0034454 Al 1/2019 Gangumalla
2017/0004037 Al 1/2017 Park 2019/0050312 Al 2/2019 Li
2017/0010652 A1 1/2017 Huang 2019/0050327 Al 22019 Li
2017/0068639 Al* 3/2017 DAavis ccoovvcrrrere. HO4L 49/3009 2019/0065085 Al 2/2019 Jean
2017/0075583 Al 3/2017 Alexander 2019/0073261 Al 3/2019 Halbert
2017/0075594 Al 3/2017 Badam 2019/0073262 Al 3/2019 Chen
2017/0091110 Al 3/2017 Ash 2019/0087089 Al 3/2019 Yoshida
2017/0109199 Al 4/2017 Chen 2019/0087115 AL 3/2019 Li
2017/0109232 Al 4/2017 Cha 2019/0087328 Al 3/2019 Kanno
2017/0123655 Al 5/2017 Sinclair 2019/0108145 Al 4/2019 Raghava
2017/0147499 Al 5/2017 Mohan 2019/0116127 Al 4/2019 Pismenny
2017/0161202 Al 6/2017 Erez 2019/0166725 Al 52019 Jing
2017/0162235 Al 6/2017 De 2019/0171532 Al 6/2019 Abadi
2017/0168986 Al 6/2017 Sajeepa 2019/0172820 Al 6/2019 Meyers
2017/0177217 Al 6/2017 Kanno 2019/0196748 Al 6/2019 Badam
2017/0177259 Al 6/2017 Motwani 2019/0196907 Al 6/2019 Khan
2017/0185316 Al 6/2017 Nieuwejaar 2019/0205206 Al 7/2019 Hornung
2017/0185498 Al 6/2017 Gao 2019/0212949 Al 7/2019 Pletka
2017/0192848 Al 7/2017 Pamies-Juarez 2019/0220392 Al 7/2019 Lin
2017/0199823 Al 7/2017 Hayes 2019/0227927 Al 7/2019 Miao
2017/0212680 Al* 7/2017 Waghulde GOGF 16/185 2019/0272242 Al 9/2019 Kachare
2017/0212708 Al 7/2017 Suhas 2019/0278654 Al 9/2019 Kaynak
2017/0220254 Al 8/2017 Warfield 2019/0317901 A1 10/2019 Kachare
2017/0221519 Al 82017 Matsuo 2019/0320020 Al 10/2019 Lee
2017/0228157 Al 8/2017 Yang 2019/0339998 Al 112019 Momchilov
2017/0242722 Al 82017 Qiu 2019/0361611 A1 11/2019 Hosogi
2017/0249162 Al 82017 Tsirkin 2019/0377632 Al 12/2019 Oh
2017/0262176 Al 9/2017 Kanno 2019/0377821 A1 12/2019 Pleshachkov
2017/0262178 Al 9/2017 Hashimoto 2019/0391748 Al 12/2019 Li
2017/0262217 Al 9/2017 Pradhan 2020/0004456 Al 1/2020 Williams
2017/0269998 Al 9/2017 Sunwoo 2020/0004674 Al 1/2020 Williams
2017/0277655 Al* 9/2017 Das .ccoovvvcone.... GO6F 12/023 2020/0013458 Al 1/2020 Schreck
2017/0279460 Al 9/2017 Camp 2020/0042223 Al 22020 Li
2017/0285976 Al 10/2017 Durham 2020/0042387 Al 2/2020 Shani
2017/0286311 Al 10/2017 Juenemann 2020/0082006 Al 3/2020 Rupp
2017/0322888 Al 11/2017 Booth 2020/0084918 Al 3/2020 Shen
2017/0344470 Al 11/2017 Yang 2020/0089430 Al 3/2020 Kanno
2017/0344491 A1 11/2017 Pandurangan 2020/0092209 Al 3/2020 Chen
2017/0353576 Al 12/2017 Guim Bernat 2020/0097189 Al 3/2020 Tao
2018/0024772 Al 1/2018 Madraswala 2020/0133841 Al 4/2020 Davis
2018/0024779 Al 1/2018 Kojima 2020/0143885 Al 5/2020 Kim
2018/0033491 Al 2/2018 Marelli 2020/0159425 Al 5/2020 Flynn
2018/0052797 Al 2/2018 Barzik 2020/0167091 Al 5/2020 Haridas
2018/0067847 Al 3/2018 Oh 2020/0210309 A1 7/2020 Jung
2018/0069658 Al 3/2018 Benisty 2020/0218449 Al 7/2020 Leitao
2018/0074730 Al 3/2018 Inoue 2020/0225875 Al 7/2020 Oh

US 11,487,465 B2
Page 5

(56) References Cited
U.S. PATENT DOCUMENTS

2020/0242021 Al
2020/0250032 Al
2020/0257598 Al
2020/0322287 Al
2020/0326855 Al
2020/0328192 Al 10/2020 Zaman

2020/0348888 Al 11/2020 Kim

2020/0364094 Al* 11/2020 Kahle GO6F 9/5083
2020/0371955 Al* 11/2020 Goodacre GO6F 12/0811
2020/0387327 Al 12/2020 Hsieh

2020/0401334 Al 12/2020 Saxena

2020/0409559 Al 12/2020 Sharon

2020/0409791 Al 12/2020 Devriendt

2021/0010338 Al 1/2021 Santos

2021/0075633 Al 3/2021 Sen

2021/0089392 Al 3/2021 Shirakawa

2021/0103388 Al 4/2021 Choi

2021/0124488 Al 4/2021 Stoica

7/2020 Gholamipour

8/2020 Goyal

8/2020 Yazovitsky
10/2020 Connor
10/2020 Wu

2021/0132999 Al* 5/2021 Haywood GO6F 12/1009
2021/0191635 Al 6/2021 Hu
2021/0286555 Al 9/2021 Li

OTHER PUBLICATIONS

Ivan Picoli, Carla Pasco, Bjorn Jonsson, Luc Bouganim, Philippe
Bonnet. “uFLIP-OC: Understanding Flash I/O Patterns on Open-
Channel Solid-State Drives.” APSys’17, Sep. 2017, Mumbai, India,
pp. 1-7, 2017, <10.1145/3124680.3124741>. <hal-01654985>.
EMC Powerpath Load Balancing and Failover Comparison with
native MPIO operating system solutions. Feb. 2011.

Tsuchiya, Yoshihiro et al. “DBLK: Deduplication for Primary Block
Storage”, MSST 2011, Denver, CO, May 23-27, 2011 pp. 1-5.
Chen Feng, et al. “CAFTL: A Content-Aware Flash Translation
Layer Enhancing the Lifespan of Flash Memory based Solid State
Devices”< FAST’11, San Jose, CA Feb. 15-17, 2011, pp. 1-14.
Wu, Huijun et al. “HPDedup: A Hybrid Prioritized Data Deduplica-
tion Mechanism for Primary Storage in the Cloud”, Cornell Univ.
arXiv: 1702.08153v2[cs.DC], Apr. 16, 2017, pp. 1-14https://www.
syncids.com/#.

WOW: Wise Ordering for Writes—Combining Spatial and Tempo-
ral Locality in Non-Volatile Caches by Gill (Year: 2005).

Helen H. W. Chan et al. “HashKV: Enabling Efficient Updated in
KV Storage via Hashing”, https://www.usenix.org/conference/atc18/
presentation/chan, (Year: 2018).

S. Hong and D. Shin, “NAND Flash-Based Disk Cache Using
SLC/MLC Combined Flash Memory,” 2010 International Work-
shop on Storage Network Architecture and Parallel I/Os, Incline
Village, NV, 2010, pp. 21-30.

Arpaci-Dusseau et al. “Operating Systems: Three Easy Pieces”,
Originally published 2015; Pertinent: Chapter 44; flash-based SSDs,
available at http://pages.cs.wisc.edu/~remzi/OSTEP/.

Jimenex, X., Novo, D. and P. Ienne, “Pheonix:Reviving MLC
Blocks as SLC to Extend NAND Flash Devices Lifetime,”Design,
Automation & Text in Europe Conference & Exhibition (Date),
2013.

Yang, T. Wu, H. and W. Sun, “GD-FTL: Improving the Performance
and Lifetime of TLC SSD by Downgrading Worn-out Blocks,”
IEEE 37th International Performance Computing and Communica-
tions Conference (IPCCC), 2018.

C. Wu, D. Wy, H. Chou and C. Cheng, “Rethink the Design of Flash
Translation Layers in a Component-Based View”, in IEEE Acess,
vol. 5, pp. 12895-12912, 2017.

Po-Liang Wu, Yuan-Hao Chang and T. Kuo, “A file-system-aware
FTL design for flash-memory storage systems,” 2009, pp. 393-398.
S. Choudhuri and T. Givargis, “Preformance improvement of block
based NAND flash translation layer”, 2007 S5th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and Sys-
tems Synthesis (CODES+ISSS). Saizburg, 2007, pp. 257-262.

A. Zuck, O. Kishon and S. Toledo. “L.SDM: Improving the Preformance
of Mobile Storage with a Log-Structured Address Remapping
Device Driver”, 2014 Eighth International Conference on Next
Generation Mobile Apps, Services and Technologies, Oxford, 2014,
pp. 221-228.

J. Jung and Y. Won, “nvramdisk: A Transactional Block Device
Driver for Non-Volatile RAM”, in IEEE Transactions on Comput-
ers, vol. 65, No. 2, pp. 589-600, Feb. 1, 2016.

Te I et al. (Pensieve: a Machine Assisted SSD Layer for Extending
the Lifetime: (Year: 2018).

ARM (“Cortex-R5 and Cortex-R5F”, Technical reference Manual,
Revision rlpl) (Year:2011).

* cited by examiner

US 11,487,465 B2

Sheet 1 of 11

Nov. 1, 2022

U.S. Patent

120

MEMORY
106

T SysTEM

CPU
102

e R A
122

lllllll

ssp ¥
14

$SD
12

FIG. 1A (PRIOR ART)

ETHERNET
SWITCH

160

= T
T : o <
52 € “ 2 g
> i ! w
} + ¢
[] i 1
I} E] ¥
] i "
m o u .
o
=, g ” :
D 1 H .
] i ¥
! ! :
] ¥ 1
] t +
] 1 i
S
(M RPN D o o
PR O = oy
HES R A < Z
]
LN SO O -
A
© :
© 1
~c]
N |
lll]
A III
% !
- [}
© :
-~ '
:
=% . >
E oy : o
w = & ' =
> "
w =)
A . :
1 i 3
] 1)
) i]
) 1 4 *
' HESY H
m\/\. ™ O 1 .
~— P t .
] 3)
' ¥ ¥
] ¥ u
" ¥ +
) 1 1
' LI [OOSR .
]
e RPN D 0 oV
[oo @D
“C1 o <~ o
)
e e e eme vee eom oee oo vm o ovm o ot ovm s o ol o o e oo . e o o o

SERVER

SERVER

141

101

FIG. 1B (PRIOR ART)

US 11,487,465 B2

Sheet 2 of 11

Nov. 1, 2022

U.S. Patent

9ec vee (454
)))
/ %
ass ass ass N —
05z 0E¢ QIN
H1¥d V.1vQ
292 HLYd T04LNOD 057
VIVAVLIW
7
HAAA 2WAN v
852 vic
VIYAYLIW/ Yad~U ANIONT HHOMLAN
8Ie 474
HAAYT NOILYTISNYA L HEY T NOILYWHO4NI
INFWIOVNYIN
98¢
VIVAVLIW / JONVY ¥ET/ 7~
\ 4
(s (44
WALSAS J7114 VOO N FINAOW NOILYZINYOHO MNNHO
4274
V1VAVLIW INNHO

;

¢0¢ LSOH

012
ANIONA
JOVH01S
o0

U.S. Patent

Nov. 1, 2022

Sheet 3 of 11 US 11,487,465 B2

’/—-——- 300

NIC MEMORY 310 (SET AS HOST MEMORY)

o
APPLICATION DATA

318

W |

PACKET_n 332

s
o 0 0 w
fe

A

L
PACKET_1 324 ﬁ PACKET 2 328
i 370
; $SD CONTRQLLER WRITE CACHE 340
WRITE GROUP_t WRITE GROUP 2
i 350 360
] 'l v
DATA DATA
PACKET_1 || PACKET2 | ses | sos
32 34
372
NAND FLASH NAND FLASH NAND FLASH
370 coo
32 374 376

FIG. 3

U.S. Patent Nov. 1, 2022 Sheet 4 of 11 US 11,487,465 B2

j——400
SYSTEM
s VENORY
o 406
PCle
404 422
.......... &
L \420 RN
SYSMEM
413
te 8SD sSD
SSD 412 414 115
130
ETHERNET
SWITCH
460
A
SYSTEM o SYSTEM
i MEMORY L o MEMORY
_ - N = 5
Pele P PCle
- . a4
T2~d w74
X707 P PN
' P g
SYSMEM . =
i [} o
m e s NIC 777777 ‘ Rk > ’ .o sSSD
$SD 412 % NIC 452 4o
L . J
ERVE ~
SERVER SERVER
401 o

FIG. 4B

US 11,487,465 B2

Sheet 5 of 11

Nov. 1, 2022

U.S. Patent

A
A “
" ! 285 HSYT4 ONYN
_ 955~
955~ “ WOX4/0L
L% | Zz5003
P o0 325 $3TIONINOD HSV
T a5 Ty T 1 75 GRS
A AJOWIW 040 . |yamodinooyaa |l 4l nansas | waa
L as B
t0dD YATIOYLNOD BWAN
§GG~ :
m 0I5
| AHd@l0d
7eS~] 085 1SOH WOMA/01
opg—" _
oos—*

U.S. Patent Nov. 1, 2022 Sheet 6 of 11 US 11,487,465 B2

START

ALLOCATE, IN A VOLATILE MEMORY OF A FIRST STORAGE DRIVE, A FIRST REGION
TO BE ACCESSED DIRECTLY BY A SECOND STORAGE DRIVE OR A FIRST NETWORK
INTERFACE CARD (NIC), WHEREIN THE FIRST STORAGE DRIVE, THE SECOND
STORAGE DRIVE, AND THE FIRST NIC ARE ASSOCIATED WITH A FIRST SERVER
802

STORE DATA IN THE FIRST REGION OF THE FIRST STORAGE DRIVE
604

RESPONSIVE TO RECEIVING A FIRST REQUEST FROM THE SECOND STORAGE DRIVE
TO READ THE DATA, TRANSMIT, BY THE FIRST STORAGE DRIVE TO THE SECOND
STORAGE DRIVE, THE DATA STORED IN THE FIRST REGION WHILE BYPASSING A

SYSTEM MEMORY OF THE FIRST SERVER
606

RESPONSIVE TO RECEIVING, FROM A THIRD STORAGE DEVICE ASSOCIATED WITH A
SECOND SERVER, A SECOND REQUEST TO READ THE DATA, RETRIEVE, BY THE
FIRST NIC, THE DATA STORED IN THE FIRST REGION WHILE BYPASSING THE
SYSTEM MEMORY OF THE FIRST SERVER
608

FIG. 6A

U.S. Patent Nov. 1, 2022 Sheet 7 of 11 US 11,487,465 B2

’/—— 620

STORE, BY THE FIRST NIC, THE DATA AS FORMATTED DATA WHICH INCLUDES
FORMATTING INFORMATION AND A PAYLOAD
622

SEND, BY THE FIRST NIC TO A SECOND NIC ASSOCIATED WITH THE SECOND
SERVER, THE FORMATTED DATA
624

STORE, BY THE SECOND NIC, THE FORMATTED DATA
626

SEND, BY THE SECOND NIC TC A LOCAL STORAGE ENGINE ASSOCIATED WITH THE
SECOND SERVER, METADATA ASSOCIATED WITH THE DATA
628

GENERATE, BY THE LOCAL STORAGE ENGINE, MANAGEMENT INFORMATION WHICH
INCLUDES A PHYSICAL BLOCK ADDRESS OF A NON-VOLATILE MEMORY OF THE
THIRD STORAGE DRIVE TO WHICH THE DATA IS TO BE WRITTEN
630

SEND, BY THE LOCAL STORAGE ENGINE, THE MANAGEMENT INFORMATION TO THE
THIRD STORAGE DRIVE
632

SEND, BY THE SECOND NIC, THE PAYLOAD TO THE THIRD STORAGE DRIVE
634

RECEIVE, BY THE THIRD STORAGE DRIVE, THE MANAGEMENT INFORMATION FROM
THE LOCAL STORAGE ENGINE AND THE PAYLOAD FROM THE SECOND NIC
636

WRITE, BY THE THIRD STORAGE DRIVE, THE DATA TO THE NON-VOLATILE MEMORY
OF THE THIRD STORAGE DRIVE BASED ON THE RECEIVED MANAGEMENT
INFORMATION
638

RETURN

FIG. 6B

U.S. Patent Nov. 1, 2022 Sheet 8 of 11 US 11,487,465 B2

START

STORE, BY THE THIRD STORAGE DRIVE, IN A BUFFER OF THE THIRD STORAGE
DRIVE, THE PAYLOAD AS PART OF A GROUP
102

STORE OTHER PAYLOADS IN THE GROUP, WHEREIN THE OTHER PAYLOADS ARE
— ASSOCIATED WITH OTHER MANAGEMENT INFORMATION
704

DETERMINE WHETHER A SIZE OF THE PAYLOAD AND THE OTHER PAYLOADS MEETS
A PREDETERMINED GROUP SIZE
106

TOTAL
SIZE MEETS PREDET.
GROUP SIZE?
708

NO

YES

WRITE, FROM THE BUFFER OF THE THIRD STORAGE DRIVE TO THE NON-VOLATILE
MEMORY, THE PAYLOAD AND THE OTHER PAYLOADS OF THE GROUP
710

RETURN

FIG. 7

U.S. Patent Nov. 1, 2022 Sheet 9 of 11 US 11,487,465 B2

START

RECEIVING, BY A CONTROLLER OF THE THIRD STORAGE DRIVE, THE DATA
802

>/—800

PERFORMING, BY THE CRC MODULE, A FIRST REDUNDANCY CHECK ON THE
RECEIVED DATA TO OBTAIN CRC DATA
804

STORING, BY THE DDR CONTROLLER IN THE FIRST REGION OF THE VOLATILE
MEMORY, THE CRC DATA
806

DETERMINING TO WRITE THE STORED CRC DATA FROM THE FIRST REGION OF THE
VOLATILE MEMORY TO THE NON-VOLATILE MEMORY
808

RETRIEVING, BY THE DDR CONTROLLER, THE STORED CRC DATA
810

PERFORMING, BY THE CRC MODULE, A SECOND REDUNDANCY CHECK ON THE
RETRIEVED CRC DATA TO OBTAIN CRC-CHECKED DATA
812

RESPONSIVE TO VERIFYING THE CRC-CHECKED DATA, ENCODING, BY THE ECC
ENCODING/DECODING MODULE OF THE FLASH CONTROLLER, THE CRC-CHECKED
DATA TO OBTAIN ECC-ENCODED DATA
814

WRITING THE ECC-ENCODED DATA TO THE NON-VOLATILE MEMORY
816

RETURN

FIG. 8

U.S. Patent Nov. 1, 2022 Sheet 10 of 11

US 11,487,465 B2

COMPUTER SYSTEM 900
TN
— A — e
1
]
STORAGE PROCESSOR I CONTROLLER \I\’ﬂ%",\';gg's
DEVICE 902 l 904 906
908 : 24U
\
/ N -
A ~.
/ S~
/ ~ -
/ >~
~
o
OPERATING SYSTEM)
216
CONTENT-PROCESSING
SYSTEM 918
COMMUNICATION [DATA-READING
MODULE MODULE KEYBOARD
\ 920 928 912
SYSMEM REGION- [DATA-WRITING
MANAGING MODULE MODULE /

922

930

\,

[PACKET-FORMATTING)} [CACHE-MANAGING

MODULE MODULE
924 932

[METADATA-MANAGING) [ERROR-DETECTING

MODULE MODULE
926 934

hll.l..../ h...l--.a h----a h--l--a

DATA
936

FIG. 9

POINTING
DEVICE
914

oy o 1 o s o B o o o 7 2 o A o o T o T R o o
Y " 7" o o - o " " " " " " - " 7 " " - " o - - o "

-
~

~a -

PERIPHERAL
INPUT/OQUTPUT
USER DEVICES

910

U.S. Patent Nov. 1, 2022 Sheet 11 of 11 US 11,487,465 B2

APPARATUS
1000
COMMUNICATION UNIT DATA-READING UNIT
1002 1010
SYSMEM REGION-MANAGING
ONIT DATA-WRITING UNIT
1004 1012
PACKET-FORMATTING UNIT CACHE-MANAGING UNIT
1006 1014
METADATA-MANAGING UNIT ERROR-DETECTING UNIT
1008 1016

FIG. 10

US 11,487,465 B2

1
METHOD AND SYSTEM FOR A LOCAL
STORAGE ENGINE COLLABORATING
WITH A SOLID STATE DRIVE
CONTROLLER

BACKGROUND
Field

This disclosure is generally related to the field of data
storage. More specifically, this disclosure is related to a
method and system for a local storage engine collaborating
with a solid state drive (SSD) controller.

Related Art

Today, various storage systems are being used to store and
access the ever-increasing amount of digital content. A
storage system can include storage servers with one or more
storage devices or drives (such as a solid-state drive (SSD)).
In the architecture of an existing storage system, a central
processing unit (CPU) complex can include a CPU and
system memory, which can serve as the data hub. Data
transfers both within a storage server (e.g., between storage
drives of the same storage server) and between storage
servers (e.g., between storages drive of different storage
servers) can result in multiple folds of memory copy which
involve the CPU and system memory. These data transfers
can result in an increased latency, an increased consumption
of memory bandwidth, and an increased utilization of the
CPU complex or core. In scenarios which involve a large
amount of data transfer, the system performance and
resource consumption can suffer and limit the efficiency of
the overall storage system.

SUMMARY

One embodiment provides a system which facilitates data
movement while bypassing the system memory. During
operation, the system allocates, in a volatile memory of a
first storage drive, a first region to be accessed directly by a
second storage drive. The system stores data in the first
region of the first storage drive. Responsive to receiving a
first request from the second storage drive to read the data,
the system transmits, by the first storage drive to the second
storage drive, the data stored in the first region while
bypassing a system memory of a first server.

In some embodiments, the first storage drive and the
second storage drive are associated with the first server.

In some embodiments, the first region of the first storage
drive is to be further accessed by a third storage drive via a
first network interface card (NIC). The first NIC is associ-
ated with the first server, and the third storage drive is
associated with a second server

In some embodiments, responsive to receiving, from the
third storage drive, a second request to read the data, the
system retrieves, by the first NIC, the data stored in the first
region while bypassing the system memory of the first
server. The system stores, by the first NIC, the data as
formatted data which includes formatting information and a
payload. The system sends, by the first NIC to a second NIC
associated with the second server, the formatted data. The
system stores, by the second NIC, the formatted data. The
system sends, by the second NIC to a local storage engine
associated with the second server, metadata associated with
the data. The system generates, by the local storage engine,
management information which includes a physical block

15

25

30

35

40

45

2

address of a non-volatile memory of the third storage drive
to which the data is to be written. The system sends, by the
local storage engine, the management information to the
third storage drive. The system sends, by the second NIC,
the payload to the third storage drive. The system receives,
by the third storage drive, the management information from
the local storage engine and the payload from the second
NIC. The system writes, by the third storage drive, the data
to the non-volatile memory of the third storage drive based
on the received management information.

In some embodiments, the formatting information
includes one or more of a frame header, an Internet Protocol
(IP) header, and a Transmission Control Protocol (TCP)
header. The payload includes one or more of application data
and user data. Sending, by the first NIC to the second NIC,
the formatted data further involves sending the formatted
data through an Ethernet switch.

In some embodiments, the system sets, in the second NIC,
a second region of a volatile memory of the second NIC as
a host memory which is directly accessible by the third
storage drive. The system stores, by the second NIC, the
formatted data in the second region of the second NIC.

In some embodiments, subsequent to sending, by the
second NIC to the local storage engine, the metadata, the
system performs the following operations. The system gen-
erates, by a network engine of the local storage engine, the
management information, which includes one or more of an
order and a merged size. The system groups, by a chunk
organization module of the local storage engine, multiple
chunks of data in parallel. The system allocates, by a local
file system of the local storage engine, a logical extent or a
range of logical block addresses (LBAs) based on metadata
associated with the multiple chunks. The system sends, by
the file system to a flash translation layer module of the local
storage engine, the allocated LBAs. The system receives, by
the flash translation layer module, the allocated LBAs. The
system generates, by the flash translation layer module,
physical block addresses (PBAs) mapped to the allocated
LBAs. The system transmits, by the flash translation layer
module to a Non-Volatile Memory Express (NVMe) driver,
the PBAs and the metadata. The system transmits, by the
NVMe driver to a controller of the third storage drive, the
PBAs and the metadata.

In some embodiments, the system writes, by the third
storage drive, the data to the non-volatile memory based on
the received management information by performing the
following operations. The system stores, by the third storage
drive, in a buffer of the third storage drive, the payload as
part of a group. The system stores other payloads in the
group, wherein the other payloads are associated with other
management information. The system determines that a size
of'the payload and the other payloads meets a predetermined
group size. The system writes, from the buffer of the third
storage drive to the non-volatile memory, the payload and
the other payloads of the group.

In some embodiments, the system writes, by the third
storage drive, the data to the non-volatile memory by
performing the following operations. The system receives,
by a controller of the third storage drive, the data. The
controller includes a Non-Volatile Memory Express
(NVMe) controller, a double data rate (DDR) controller
associated with the volatile memory, a cyclic redundancy
check (CRC) module, and a flash controller, wherein the
flash controller includes an error correction code (ECC)
encoding/decoding module. The system performs, by the
CRC module, a first redundancy check on the received data
to obtain CRC data. The system stores, by the DDR con-

US 11,487,465 B2

3

troller in the first region of the volatile memory, the CRC
data. The system determines to write the stored CRC data
from the first region of the volatile memory to the non-
volatile memory. The system retrieves, by the DDR control-
ler, the stored CRC data. The system performs, by the CRC
module, a second redundancy check on the retrieved CRC
data to obtain CRC-checked data. Responsive to verifying
the CRC-checked data, the system encodes, by the ECC
encoding/decoding module of the flash controller, the CRC-
checked data to obtain ECC-encoded data. The system
writes the ECC-encoded data to the non-volatile memory.

In some embodiments, the data stored in the first region
of the first storage drive is transferred from the second
storage drive or the first NIC while bypassing the system
memory of the first server.

In some embodiments, subsequent to the first storage
drive transmitting to the second storage drive the data stored
in the first region while bypassing the system memory of the
first server, the system retrieves, by the second storage drive,
the data stored in the first region while bypassing the system
memory of the first server.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A illustrates an exemplary environment with a data
transfer between storage drives in a same storage server, in
accordance with the prior art.

FIG. 1B illustrates an exemplary environment with a data
transfer between storage drives in different storage servers,
in accordance with the prior art.

FIG. 2 illustrates an exemplary environment with separate
control and data paths, which facilitates bypassing system
memory, in accordance with an embodiment of the present
application.

FIG. 3 illustrates an exemplary environment with data
movement from a network interface card to a storage drive,
in accordance with an embodiment of the present applica-
tion.

FIG. 4A illustrates an exemplary environment with a data
transfer between storage drives in a same storage server,
which facilitates bypassing system memory, in accordance
with an embodiment of the present application.

FIG. 4B illustrates an exemplary environment with a data
transfer between storage drives in different storage servers,
which facilitates bypassing system memory, in accordance
with an embodiment of the present application.

FIG. 5A illustrates an exemplary environment for data
access with a cyclic redundancy check (CRC) in a storage
controller, in accordance with an embodiment of the present
application.

FIG. 5B illustrates an exemplary environment for data
access with a CRC in a storage controller, in accordance
with an embodiment of the present application.

FIG. 6A presents a flowchart illustrating a method for
facilitating data movement while bypassing system memory,
including a data transfer between storage drives in a same
storage server, in accordance with an embodiment of the
present application.

FIG. 6B presents a flowchart illustrating a method for
facilitating data movement while bypassing system memory,
including a data transfer between storage drives in different
storage servers, in accordance with an embodiment of the
present application.

FIG. 7 presents a flowchart illustrating a method for
facilitating data movement while bypassing system memory,

10

15

20

25

30

35

40

45

50

55

60

65

4

including writing data in groups to a non-volatile memory,
in accordance with an embodiment of the present applica-
tion.

FIG. 8 presents a flowchart illustrating a method for
facilitating data movement while bypassing system memory,
including operations to ensure data integrity, in accordance
with an embodiment of the present application.

FIG. 9 illustrates an exemplary computer system that
facilitates data movement while bypassing system memory,
in accordance with an embodiment of the present applica-
tion.

FIG. 10 illustrates an exemplary apparatus that facilitates
data movement by bypassing system memory, in accordance
with an embodiment of the present application.

In the figures, like reference numerals refer to the same
figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the embodiments,
and is provided in the context of a particular application and
its requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present disclosure. Thus, the
embodiments described herein are not limited to the embodi-
ments shown, but are to be accorded the widest scope
consistent with the principles and features disclosed herein.
Overview

The embodiments described herein provide a system
which addresses the inefficiencies associated with data trans-
fers in existing storage systems which consume CPU
resources and system memory bandwidth, by providing a
system which bypasses the system memory.

As described above, in existing storage systems, a CPU
complex can include a CPU and system memory, which can
serve as the data hub. Data transfers both within a storage
server (e.g., between storage drives of the same storage
server) and between storage servers (e.g., between storages
drive of different storage servers) can result in multiple folds
of memory copy which involve the CPU and system
memory, as described below in relation to FIGS. 1A and 1B.
These data transfers can result in an increased latency, an
increased consumption of memory bandwidth, and an
increased utilization of the CPU complex or core. In sce-
narios which involve a large amount of data transfer, the
system performance and resource consumption can suffer
and limit the efficiency of the overall storage system.

The embodiments described herein address these limita-
tions by providing a system which separates the data path
and the control path, by allocating or exposing a portion of
a volatile memory of a first SSD as a region which can be
directly accessed by a second SSD (in a single server
scenario, as described below in relation to FIG. 4A) or a
network interface card (NIC) (in a storage cluster scenario,
as described below in relation to FIG. 4B).

In the single server scenario (where the first and second
SSD are associated with the same single server), the first
SSD can allocate a region of its volatile memory to be
directly accessible by other SSDs (and a NIC) associated
with the same single server. The second SSD can subse-
quently directly access and retrieve data stored in the
allocated region of the first SSD, which allows the data
transfer to bypass the system memory of the server.

US 11,487,465 B2

5

In the storage cluster scenario, when data is transferred
from a first storage drive of a first storage server to a second
storage drive of a second storage server, the data can pass
through a first NIC of the first storage server and a second
NIC of'the second storage server. Formatting and retrieval of
data from the NICs can be used to bypass the system
memory, which can result in a more efficient overall storage
system.

For example, for data which is to be transferred from the
first storage drive to the second storage drive, the first NIC
can retrieve the data directly from the allocated region of the
first storage drive, while bypassing the system memory. The
first NIC can format the data (e.g., into a network packet
with formatting information and a payload), and transmit the
network packet to the second NIC (e.g., via an Ethernet
switch). In the control path, the second NIC can send the
metadata to a local storage engine of the second server,
which can perform management operations as described
below in relation to FIG. 2, and the local storage engine can
send the management information (such as the metadata and
an assigned physical block address (PBA)) to the second
storage drive. In the data path, the second NIC can send to
the second storage drive (and the second storage drive can
receive or retrieve from the second NIC) the data as the
payload only directly from the second NIC, again bypassing
the system memory.

Thus, by allocating a region of the non-volatile memory
of a first storage drive and making the allocated region
directly accessible to a second storage drive in the same first
server, the system can bypass system memory of the first
server in the single server scenario. Furthermore, by allo-
cating the region of the first storage drive and making the
allocated region directly accessible to the first NIC (e.g., in
the same first server), and by allowing data stored in a
second NIC to be accessible by a third storage drive in the
same second server (e.g., data stored in the second NIC is
accessible by the third storage drive in the second server),
the system can also bypass system memory in the storage
cluster scenario.

The described embodiments can also perform consecutive
data fetching based on groups in a write cache of the SSD
controller, as described below in relation to FIG. 3. In
addition, the described embodiments can ensure the integrity
of the data stored in the volatile memory of a storage drive,
as described below in relation to FIG. 5.

A “distributed storage system” or a “storage system” can
include multiple storage servers. A “storage server” or a
“storage system” can refer to a computing device which can
include multiple storage devices or storage drives. A “stor-
age device” or a “storage drive” refers to a device or a drive
with a non-volatile memory which can provide persistent
storage of data, e.g., a solid-state drive (SSD), or a flash-
based storage device. A storage system can also be a
computer system.

“Non-volatile memory” refers to storage media which
may be used for persistent storage of data, e.g., flash
memory of a NAND die of an SSD, magnetoresistive
random access memory (MRAM), phase change memory
(PCM), resistive random access memory (ReRAM), or
another non-volatile memory.

“Volatile memory” refers to storage media which can
include, e.g., dynamic random access memory (DRAM),
double data rate (DDR) DRAM, and DDR dual in-line
memory modules (DIMM). In general, data stored in volatile
memory is not protected in the event of a power loss or other

5

10

15

20

25

30

35

40

45

50

55

60

65

6

failure. In some cases, volatile memory can be protected
from such data loss with a power protection module or other
power loss component.

The terms “sysmem” and “region of a volatile memory”
are used interchangeably in this disclosure and refer to a
portion of a volatile memory of a first storage drive, where
the portion or region is allocated to be accessed directly by
a second storage drive or a NIC, and where the first storage
drive, the second storage drive, and the NIC are associated
with the same server. The allocated sysmem or region can
serve as system memory for the storage device in a more
efficient manner than the conventional system memory
associated with a host or a storage server.

A “computing device” refers to any server, device, node,
entity, drive, or any other entity which can provide any
computing capabilities.

The term “write cache” refers to a data cache, buffer, or
region which can store data in a persistent memory or a
non-volatile memory.

Exemplary Data Transfer in the Prior Art

FIG. 1A illustrates an exemplary environment 100 with a
data transfer between storage drives in a same storage server,
in accordance with the prior art. Environment 100 can
include: a central processing unit (CPU) 102, an associated
Peripheral Component Interconnect Express (PCle) inter-
face 104, and an associated system memory 106; and solid
state drives (SSDs) 112 and 114. CPU 102 can communicate
with SSDs 112 and 114 via PCle interface 104. During
operation, in order to move data from one drive to another
drive (e.g., from a source drive such as SSD 112 to a
destination drive such as SSD 114), the data is first copied
from the source drive into system memory, i.e., transferred
from SSD 112, via PCle 104, to CPU 102, to system memory
106 (via a communication 120). The data is then written
from system memory to the destination drive, i.e., trans-
ferred from system memory 106 to CPU 102 and, via PCle
304, to SSD 114 (via a communication 122). Thus, the host
CPU and system memory are involved in the transfer of data
from the source storage drive to the destination storage
drive, which can increase the latency and inefficiency of the
overall storage system.

FIG. 1B illustrates an exemplary environment 130 with a
data transfer between storage drives in different storage
servers, in accordance with the prior art. Environment 130
can include an Ethernet switch 160 and a cluster of servers,
where each server can include a CPU and a system memory,
and be associated with multiple SSDs and a network inter-
face card (NIC). For example, a first server 101 can include:
a CPU 102, an associated PCle interface 104, and an
associated system memory 106; one or more SSDs, such as
an SSD 112; and a NIC 132. A second server 141 can
include: a CPU 142, an associated PCle interface 144, and
an associated system memory 146; one or more SSDs, such
as an SSD 154; and a NIC 152. CPU 102 can communicate
with SSD 112 via PCle interface 104, and CPU 142 can
communicate with SSD 154 via PCle interface 144. The two
depicted servers 101 and 141 can communicate with each
other through Ethernet switch 160 via their respective NICs
132 and 152.

During operation, in order to move data from one drive in
the first server to another drive in the second server (e.g.,
from a source drive such as SSD 112 of server 101 to a
destination drive such as SSD 154 of server 141), the data
is first copied from the source drive into system memory of
the first server, i.e., transferred from SSD 112, via PCle 104,
to CPU 102, to system memory 106 (via a communication
path 160). The data is then written from system memory to

US 11,487,465 B2

7

NIC 132, i.e., transferred from system memory 106 to CPU
102 and, via PCle 104, to NIC 132 (via a communication
path 162). NIC 132 can generate formatting information for
the data, and perform other packet processing, data reorder-
ing, and concatenation operations.

NIC 132 can transfer the formatted data (e.g., formatting
information and payload) to Ethernet switch 160 (via a
communication 164), and, based on the formatting informa-
tion, Ethernet switch 160 can transfer the data to NIC 152
(via a communication 168). NIC 152 can perform packet
processing, data reordering, and concatenation operations.
NIC 152 can send the data to be copied into system memory
of the second server, i.e., transferred from NIC 152, via PCle
144, to CPU 142, to system memory 146 (via a communi-
cation path 170). The data is then written from system
memory to the destination drive, i.e., transferred from sys-
tem memory 146 to CPU 142 and, via PCle 144, to SSD 154
(via a communication path 172).

Thus, in environment 130, the host CPU and system
memory of both servers are involved in the transfer of data
from the source storage drive to the destination storage
drive, which can increase the latency and inefficiency of the
overall storage system. In addition, the NICs of both servers
can consume a non-trivial amount of time, energy, band-
width, and other resources on packet processing, data reor-
dering, concatenation, and other operations related to for-
matting and processing network packets. These operations
can further increase the latency and inefficiency of the
overall storage system.

Moreover, in the storage cluster depicted in environment
130, the system can experience a non-trivial amount of
traffic due to, e.g., managing data replicas, rebalancing data,
etc. Moving multiple copies of data within the storage
cluster can result in a performance bottleneck due to the
latency involved in memory copy operations, as described
above.

Exemplary Environment with Separate Control and Data
Paths

FIG. 2 illustrates an exemplary environment 200 with
separate control and data paths, which facilitates bypassing
system memory, in accordance with an embodiment of the
present application. Environment 200 can include: a host
202 with a local storage engine 210; a NIC 230; and SSDs
240, 242, and 246. Local storage engine can include: a
network engine 214; a chunk organization module 212; a
local file system 216; a flash translation layer (FTL) module
218; and a Non-Volatile Memory Express (NVMe) driver
220.

NIC 230 can store data as formatted data which includes
formatting information and a payload. For example, pay-
loads 232, 234, and 236 are indicated in FIG. 2 with
left-slanting diagonal lines. Assume that metadata 250 is
associated with the data indicated by payload 234 in NIC
230. NIC 230 can send metadata 250 to host 202 for
processing, and host 202, after processing the metadata as
described below, can send a physical block address (PBA)
and metadata back to SSDs 240-246 (via a control path 262).
At the same or a similar time, NIC 230 can send the payload
data itself directly to SSDs 240-246 (e.g., via a data path
260).

Local storage engine 210 can perform a series of opera-
tions on metadata 250. Upon receiving metadata 250 from
NIC 230, network engine 214 can generate management
information, e.g., an order, a merged size, and other meta-
data for the data indicated by payload 234. Network engine
214 can send management information 252 to chunk orga-
nization module 212.

20

30

40

45

50

55

60

8

Chunk organization module 212 can group received net-
work packets into multiple chunks in parallel, and can send
chunk metadata 254 to local file system 216. Local file
system 216 can use chunk metadata 254 to allocate the
logical extent (e.g., a range of logical block addresses
(LBAs)) to accommodate the data, and can send LBA
range/metadata 256 to FTL module 218.

FTL module 218 can receive the incoming [.LBAs, includ-
ing LBAs allocated to chunks associated with the data
indicated by payload 234, from multiple chunks in a random
order, which is similar to the pattern associated with a
random write operation. FTL module 218 can implement the
mapping of the LBAs to physical block addresses (PBAs),
e.g., by generating or mapping PBAs for the incoming
LBAs, and storing the mapping in a data structure. FTL
module 218 can send PBA/metadata 258 to NVMe driver
220, which can perform any necessary data processing, and
can send PBA/metadata 258 to controllers (not shown) of
SSDs 240-246, via control path 262.

The PBA and metadata information received by control-
lers of SSDs 240-246 via control path 262, along with the
payload data received by the controllers of SSDs 240-246
via control path 260, can accomplish the programming of the
NAND flash in SSDs 240-246. Thus, the operations and
communications depicted in environment 200 demonstrate
how the local storage engine collaborating with the SSD
controller for metadata/data transmission can result in an
improved system for both data transmission and storage
efficiency.

Data Movement from a NIC to a Storage Drive

FIG. 3 illustrates an exemplary environment 300 with
data movement from a network interface card to a storage
drive, in accordance with an embodiment of the present
application. Environment 300 can include: a NIC memory
310 (which is set as host memory); an SSD controller write
cache 340; and a non-volatile memory 370, such as NAND
flash storage modules, units, or components 372, 374, and
376. NIC memory 310 can store formatted data, which can
include formatting information and a payload. For example,
NIC memory can store network packets as: formatting
information 322 for a payload or application data indicated
by a packet_1 324; formatting information 326 for a payload
or application data indicated by a packet_2 328; and for-
matting information 330 for a payload or application data
indicated by a packet_n 332.

Each network packet can include formatting information
and a payload or application data. For example, formatting
information 326 and packet_2 328 can include: a frame
header 312, an Internet Protocol (IP) header 314, and a
Transmission Control Protocol (TCP) header 316 which are
part of formatting information 326, as indicated by right-
slanting diagonal lines; and application data 318, which can
correspond to the payload of packet_2 328.

The SSD controller can store data in write cache 340 in
write groups of a predetermined size, and when the data
stored in a given write group reaches the predetermined size,
the SSD controller can write the data in the given write
group to the NAND flash. For example, write cache 340 can
include a write group_1 350 and a write group_2 360.
Environment 300 can depict that the payload or application
data indicated by packet_1 324 has been written as a data
packet_1 352 to write group_1 350 of write cache 340.
Another payload can then be written to write group_1 350,
as indicated by packet_2 328 being written to write group_1
350 as a data packet_2 354 (via a communication 370).

The system can determine that the data stored in write
group _1 350 meets or has reached a predetermined group

US 11,487,465 B2

9

size, and can write the data to non-volatile memory 370 (i.e.,
NAND flash 372-376). The predetermined group size can be
based on, e.g., a size of a page in the NAND flash or a
number of available channels for processing data in a
parallel manner.

Exemplary Environment for Data Transfer: Single Server
Scenario and Storage Cluster Scenario

FIG. 4A illustrates an exemplary environment 400 with a
data transfer between storage drives in a same storage server,
which facilitates bypassing system memory, in accordance
with an embodiment of the present application. Environment
400 can include: a central processing unit (CPU) 402, an
associated Peripheral Component Interconnect Express
(PCle) interface 404, and an associated system memory 406;
and solid-state drives (SSDs) 412, 414, and 416. A respec-
tive SSD can expose a portion of its memory as system
memory, which allows other SSDs (or a NIC) in the same
server to directly retrieve data from the exposed system
memory of the respective SSD. The other SSDs can also
send data directly to this exposed system memory on the
respective SSD.

For example, during operation, the system can allocate, in
the volatile memory of SSD 412, a first region (system
memory or sysmem) 413 to be accessed directly by a second
storage drive (such as SSD 414 via a communication 420) or
a first NIC (as described below in relation to FIG. 4B). In
addition, SSD 416 (or SSD 414) can send or write data
directly to the allocated first region (system memory) 413 of
SSD 412 (via, e.g., a communication 422). This allows data
to be retrieved from or written to SSD 412 while bypassing
system memory 406, thus eliminating the need to copy the
data into the system memory or DIMM of the server itself
(which challenge is described above in relation to the prior
art environment of FIG. 1A).

FIG. 4B illustrates an exemplary environment 430 with a
data transfer between storage drives in different storage
servers, which facilitates bypassing system memory, in
accordance with an embodiment of the present application.
Environment 430 can include an Ethernet switch 460 and a
cluster of servers, where each server can include a CPU and
a system memory, and be associated with multiple SSDs and
a network interface card (NIC). For example, a first server
401 can include: a CPU 402, an associated PCle interface
404, and an associated system memory 406; one or more
SSDs, such as an SSD 412; and a NIC 432. A second server
441 can include: a CPU 442, an associated PCle interface
444, and an associated system memory 446; one or more
SSDs, such as an SSD 454; and a NIC 452. The two depicted
servers 401 and 441 can communicate with each other
through Ethernet switch 460 via their respective NICs 432
and 452.

A first SSD of the first server can expose a portion of its
memory as system memory, which allows a first NIC of the
first server to directly retrieve data from the exposed system
memory of the respective SSD. The first NIC can send the
retrieved data, along with network formatting information,
to a second NIC of a second server. A second SSD of the
second server can retrieve the data directly from the second
NIC (as described above in relation to FIG. 3.

For example, during operation, the system can allocate, in
the volatile memory of SSD 412, a first region (system
memory or sysmem) 413 to be accessed directly by NIC 432
(or by other SSDs of server 401). SSD 412 can store data in
the allocated first region sysmem 413. SSD 454 can generate
a request to retrieve data from SSD 412 (or the system can
determine that SSD 412 is to send data to SSD 454). NIC
432 can retrieve the requested data from sysmem 413 of

20

25

30

40

45

55

10

SSD 412 (via a communication 470). NIC 432 can generate
formatting information for the data, and perform other
packet processing, data reordering, and concatenation opera-
tions, i.e., by adjusting the data into a predefined format such
as described above in relation to FIG. 3.

NIC 432 can transfer the formatted data (including for-
matting information and payload) to Ethernet switch 460
(via a communication 472), and, based on the formatting
information, Ethernet switch 460 can transfer the data to
NIC 452 (via a communication 474). NIC 452 can perform
packet processing, data reordering, and concatenation opera-
tions. NIC 452 can store the data as formatted data which
includes formatting information and a payload. NIC 452 can
send the payload data directly to SSD 454 (via communi-
cations 476, which can correspond to the operations
described above in relation to FIG. 2). SSD 454 can also
allocate a region (not shown) of its volatile memory as a
system memory which can be accessed directly by NIC 452
or other SSDs of server 441. Moreover, SSD 454 can
retrieve the payload data directly from NIC 452 by accessing
the formatted data and selecting only the portions of payload
data, e.g., by dropping the formatting information or for-
matting bits (via communications 476). SSD 454 can then
group the data and write the data to its NAND flash based
on the pages and PBAs as assigned by the FTL at the host
side, as described above in relation to FIG. 2.

Thus, FIG. 4B depicts an environment or system which
allows data to be retrieved from (or written to) SSD 412 by
SSD 454 while bypassing both system memory 406 and 446,
thus eliminating the need to copy the data into the system
memory or DIMM of both servers 401 and 441 (which
challenge is described above in relation to the prior art
environment of FIG. 1B).

Controller Operations for Ensuring Data Quality

FIG. 5A illustrates an exemplary environment 500 for
data access with a cyclic redundancy check (CRC) in a
storage controller, in accordance with an embodiment of the
present application. Environment 500 can include a storage
controller with associated components or modules, and can
also include a volatile memory of a storage device and
non-volatile memory of the storage device. The storage
controller can include: a PCle physical layer (PHY) 510; an
NVMe controller 512; a DDR controller 514; a cyclic
redundancy check (CRC) module 518; and a flash controller
520 with an error correction code (ECC) encoding/decoding
module 522. DDR controller 514 can communicate with a
volatile memory DDR 516 and an allocated region sysmem
517 of volatile memory 516. Note that sysmem 517 can
serve as the allocated and exposed region of system memory
which can be directly accessed by other SSDs or the NIC in
the same server. For example, sysmem 517 can correspond
to sysmem 413 of SSD 412 of FIG. 4A, as the allocated
region from which data can be directly retrieved (e.g.,
communication 420) or to which data can be directly written
(e.g., communication 420) by a storage device of the same
server. Sysmem 517 can also correspond to sysmem 413 of
FIG. 4B, as the allocated region from which data can be
directly retrieved by a NIC of the same server (e.g., com-
munication 470).

Data can be sent to or received from host 530, and can
also be sent to or received from NAND flash 532. For
example, as indicated by a communication path 534, data
can be received from host 530. This data can be the data
fetched directly from the allocated sysmem which bypasses
the server’s system memory or DIMM. The fetched data can
travel through PCle PHY 510 to NVMe controller 512, and
NVMe controller 512 can operate to process the data as

US 11,487,465 B2

11

needed. CRC 518 can perform a CRC check on the data,
which can then be passed via DDR controller 514 to be
temporarily buffered, with power loss protection, in sysmem
517 of DDR 516 (as indicated by communication path 534).

Subsequently, as indicated by a communication path 536,
the data can be sent to the NAND flash. When reading out
the stored data from sysmem 517 of DDR 516, the data is
passed via DDR controller 514 back to CRC 518, which can
check the CRC to ensure the integrity, correctness, or
accuracy of the data. CRC 518 can send the CRC-checked
data to ECC 522 of flash controller 520. ECC 522 can
perform ECC encoding on the data, and can send the
ECC-encoded data to the NAND flash (via 532 as part of
communication path 536).

FIG. 5B illustrates an exemplary environment 540 for
data access with a CRC in a storage controller, in accordance
with an embodiment of the present application. Environment
540 can include a CRC module 542, a memory module 544,
and a CRC module 546. CRC modules 542 and 546 can
correspond to CRC module 518 of FIG. 5A; memory 544
can correspond to sysmem 517 of DDR 516 of FIG. 5A; a
path 554 can correspond to path 534 of FIG. 5A; and a path
556 can correspond to path 536 of FIG. 5A.

Environment 540 depicts a high-level view of the com-
munications described above in relation to FIG. 5A. During
operation, the system (by CRC 542) can receive data to be
stored in non-volatile memory via path 554. CRC 542 can
perform a first redundancy check and send the CRC data to
memory 544 (via path 554). The system can store the CRC
data in memory 544, and can subsequently retrieve (by CRC
546) the stored CRC data from memory 544. CRC 546 can
perform a second redundancy check, and send the CRC-
checked data onwards, e.g., to ECC 522 (via path 556).
Method for Facilitating Data Movement by Bypassing Sys-
tem Memory: Single Server Scenario and Storage Cluster
Scenario

FIG. 6A presents a flowchart 600 illustrating a method for
facilitating data movement while bypassing system memory,
including a data transfer between storage drives in a same
storage server, in accordance with an embodiment of the
present application. During operation, the system allocates,
in a volatile memory of a first storage drive, a first region to
be accessed directly by a second storage drive or a first
network interface card (NIC), wherein the first storage drive,
the second storage drive, and the first NIC are associated
with a first server (operation 602). The system stores data in
the first region of the first storage drive (operation 604).
Responsive to receiving a first request from the second
storage drive to read the data, the system transmits, by the
first storage drive to the second storage drive, the data stored
in the first region while bypassing a system memory of the
first server (operation 606). Responsive to receiving, from a
third storage drive associated with a second server, a second
request to read the data, the system retrieves, by the first
NIC, the data stored in the first region while bypassing the
system memory of the first server (operation 608). The
operation continues at Label A of FIG. 6B.

FIG. 6B presents a flowchart 620 illustrating a method for
facilitating data movement while bypassing system memory,
including a data transfer between storage drives in different
storage servers, in accordance with an embodiment of the
present application. The system stores, by the first NIC, the
data as formatted data which includes formatting informa-
tion and a payload (operation 622). The system sends, by the
first NIC to a second NIC associated with the second server,
the formatted data (operation 624). The system stores, by the
second NIC, the formatted data (operation 626). The system

20

25

30

40

45

50

12

sends, by the second NIC to a local storage engine associ-
ated with the second server, metadata associated with the
data (operation 628).

The system generates, by the local storage engine, man-
agement information which includes a physical block
address of a non-volatile memory of the third storage drive
to which the data is to be written (operation 630). The
system sends, by the local storage engine, the management
information to the third storage drive (operation 632). The
system sends, by the second NIC, the payload to the third
storage drive (operation 634). The system receives, by the
third storage drive, the management information from the
local storage engine and the payload from the second NIC
(operation 636). The system writes, by the third storage
drive, the data to the non-volatile memory of the third
storage drive based on the received management informa-
tion (operation 638), and the operation returns.

Method for Facilitating Data Movement by Writing Data in
Groups to a Non-Volatile Memory

FIG. 7 presents a flowchart 700 illustrating a method for
facilitating data movement while bypassing system memory,
including writing data in groups to a non-volatile memory,
in accordance with an embodiment of the present applica-
tion. During operation, the system stores, by the third
storage drive, in a buffer of the third storage drive, the
payload as part of a group (operation 702). The system stores
other payloads in the group, wherein the other payloads are
associated with other management information (operation
704). The system determines whether a size of the payload
and the other payloads meets a predetermined group size
(operation 706). If it does not (decision 708), the operation
returns to operation 704. If it does (decision 708), the system
writes, from the buffer of the third storage drive to the
non-volatile memory, the payload and the other payloads of
the group (operation 710). Writing the payload and the other
payloads of the group to the non-volatile memory can be
based on the PBA, metadata, and other management infor-
mation received from a local storage engine of a host, as
described above in relation to FIG. 2.

FIG. 8 presents a flowchart 800 illustrating a method for
facilitating data movement while bypassing system memory,
including operations to ensure data integrity, in accordance
with an embodiment of the present application. During
operation, the system receives, by a controller of the third
storage drive, the data (operation 802). The controller can
include a Non-Volatile Memory Express (NVMe) controller,
a double data rate (DDR) controller associated with the
volatile memory, a cyclic redundancy check (CRC) module,
and a flash controller. The flash controller can include an
error correction code (ECC) encoding/decoding module.
The system performs, by the CRC module, a first redun-
dancy check on the received data to obtain CRC data
(operation 804). The system stores, by the DDR controller in
the first region of the volatile memory, the CRC data
(operation 806). The system determines to write the stored
CRC data from the first region of the volatile memory to the
non-volatile memory (operation 808). This determination
can be based on a size of a write group in a write cache or
buffer of the SSD controller, as described above in relation
to FIG. 3.

The system retrieves, by the DDR controller, the stored
CRC data (operation 810). The system performs, by the
CRC module, a second redundancy check on the retrieved
CRC data to obtain CRC-checked data (operation 812).
Responsive to verifying the CRC-checked data, the system
encodes, by the ECC encoding/decoding module of the flash
controller, the CRC-checked data to obtain ECC-encoded

US 11,487,465 B2

13

data (operation 814). The system writes the ECC-encoded
data to the non-volatile memory (operation 816), and the
operation returns.

Exemplary Computer System and Apparatus

FIG. 9 illustrates an exemplary computer system 900 that
facilitates data movement while bypassing system memory,
in accordance with an embodiment of the present applica-
tion. Computer system 900 includes a processor 902, a
volatile memory 906, and a storage device 908. In some
embodiments, computer system 900 can include a controller
904 (indicated by the dashed lines). Volatile memory 906
can include, e.g., random access memory (RAM), that
serves as a managed memory, and can be used to store one
or more memory pools. Storage device 908 can include
persistent storage which can be managed or accessed via
processor 902 (or controller 904). Furthermore, computer
system 900 can be coupled to peripheral input/output (I/O)
user devices 910, e.g., a display device 911, a keyboard 912,
and a pointing device 914. Storage device 908 can store an
operating system 916, a content-processing system 918, and
data 936.

Content-processing system 918 can include instructions,
which when executed by computer system 900, can cause
computer system 900 or processor 902 to perform methods
and/or processes described in this disclosure. Specifically,
content-processing system 918 can include instructions for
receiving and transmitting data packets, including data to be
read or written, an input/output (I/O) request (e.g., a read
request or a write request), metadata, management informa-
tion, a PBA, an LBA, a payload, formatting information,
CRC data, and ECC-encoded data (communication module
920).

Content-processing system 918 can further include
instructions for allocating, in a volatile memory of a first
storage drive, a first region to be accessed directly by a
second storage drive or a first network interface card (NIC),
wherein the first storage drive, the second storage drive, and
the first NIC are associated with a first server (sysmem
region-managing module 922). Content-processing system
918 can include instructions for storing data in the first
region of the first storage drive (data-writing module 930).
Content-processing system 918 can include instructions for,
responsive to receiving a first request from the second
storage drive to read the data (communication module 920),
transmitting, by the first storage drive to the second storage
drive, the data stored in the first region while bypassing a
system memory of the first server (communication module
920 and sysmem region-managing module 922). Content-
processing system 918 can also include instructions for,
responsive to receiving, from a third storage drive associated
with a second server, a second request to read the data
(communication module 920), retrieving, by the first NIC,
the data stored in the first region while bypassing the system
memory of the first server (data-reading module 928 and
sysmem region-managing module 922).

Content-processing system 918 can additionally include
instructions for storing, by the first NIC, the data as format-
ted data which includes formatting information and a pay-
load (packet-formatting module 924). Content-processing
system 918 can include instructions for sending, by the first
NIC to a second NIC associated with the second server, the
formatted data (communication module 920). Content-pro-
cessing system 918 can include instructions for storing, by
the second NIC, the formatted data (data-writing module
930). Content-processing system 918 can include instruc-
tions for sending, by the second NIC to a local storage
engine associated with the second server, metadata associ-

10

15

20

25

30

35

40

45

55

60

65

14

ated with the data (communication module 920 and meta-
data-managing module 926). Content-processing system
918 can also include instructions for generating, by the local
storage engine, management information which includes a
physical block address of a non-volatile memory of the third
storage drive to which the data is to be written (metadata-
managing module 920). Content-processing system 918 can
include instructions for sending, by the local storage engine,
the management information to the third storage drive
(communication module 920 and metadata-managing mod-
ule 926). Content-processing system 918 can include
instructions for sending, by the second NIC, the payload to
the third storage drive (communication module 920). Con-
tent-processing system 918 can include instructions for
receiving, by the third storage drive, the management infor-
mation from the local storage engine and the payload from
the second NIC (communication module 920). Content-
processing system 918 can include instructions for writing,
by the third storage drive, the data to the non-volatile
memory of the third storage drive based on the received
management information (data-writing module 930). Con-
tent-processing system 918 can include instructions for
performing the operations described above in relation to
FIG. 2.

Content-processing system 918 can further include
instructions for storing, by the third storage drive, in a buffer
of the third storage drive, the payload as part of a group
(data-writing module 930 and cache-managing module 932).
Content-processing system 918 can include instructions for
storing other payloads in the group, wherein the other
payloads are associated with other management information
(data-writing module 930 and cache-managing module 932).
Content-processing system 918 can include instructions for
determining that a size of the payload and the other payloads
meets a predetermined group size (cache-managing module
932). Content-processing system 918 can include instruc-
tions for writing, from the buffer of the third storage drive
to the non-volatile memory, the payload and the other
payloads of the group (data-writing module 930). Content-
processing system 918 can include instructions for perform-
ing the operations described above in relation to FIG. 7.

Content-processing system 918 can also include instruc-
tions for receiving, by a controller of the third storage drive,
the data (communication module 920). Content-processing
system 918 can include instructions for performing, by the
CRC module, a first redundancy check on the received data
to obtain CRC data (error-detecting module 934). Content-
processing system 918 can include instructions for storing,
by the DDR controller in the first region of the volatile
memory, the CRC data (data-writing module 930 and sys-
mem region-managing module 922). Content-processing
system 918 can include instructions for determining to write
the stored CRC data from the first region of the volatile
memory to the non-volatile memory (sysmem region-man-
aging module 922). Content-processing system 918 can
include instructions for retrieving, by the DDR controller,
the stored CRC data (data-reading module 928). Content-
processing system 918 can include instructions for perform-
ing, by the CRC module, a second redundancy check to
obtain CRC-checked data (error-detecting module 934).
Content-processing system 918 can include instructions for,
responsive to verifying the CRC checked data, encoding, by
the ECC encoding/decoding module of the flash controller,
the CRC-checked data to obtain ECC-encoded data (error-
detecting module 934). Content-processing system 918 can
include instructions for writing the ECC-encoded data to the
non-volatile memory (data-writing module 930). Content-

US 11,487,465 B2

15

processing system 918 can include instructions for perform-
ing the operations described above in relation to FIG. 8.

Data 936 can include any data that is required as input or
generated as output by the methods and/or processes
described in this disclosure. Specifically, data 936 can store
at least: data; a request; a read request; a write request; an
input/output (/O) request; data or metadata associated with
a read request, a write request, or an 1/O request; formatted
data; encoded data; CRC data; CRC-checked data; ECC-
encoded data; an indicator or identifier of a storage drive, a
local storage engine, a NIC, a switch, or a server; formatting
information; a frame header; an IP header; a TCP header; a
payload; application data; user data; a network packet;
metadata; management information; a logical block address
(LBA); a physical block address (PBA); an indicator of a
region or an allocated region of a volatile memory; a chunk
of data; chunk metadata; a logical extent or range of LBAs;
a group of data; a predetermined group size; a size of a
payload; and a size of multiple payloads stored in a group.

FIG. 10 illustrates an exemplary apparatus 1000 that
facilitates data movement while bypassing system memory,
in accordance with an embodiment of the present applica-
tion. Apparatus 1000 can comprise a plurality of units or
apparatuses which may communicate with one another via a
wired, wireless, quantum light, or electrical communication
channel. Apparatus 1000 may be realized using one or more
integrated circuits, and may include fewer or more units or
apparatuses than those shown in FIG. 10. Furthermore,
apparatus 1000 may be integrated in a computer system, or
realized as a separate device or devices capable of commu-
nicating with other computer systems and/or devices.

Apparatus 1000 can comprise modules or units 1002-
1016 which are configured to perform functions or opera-
tions similar to modules 920-934 of computer system 900 of
FIG. 9, including: a communication unit 1002; a sysmem
region-managing unit 1004; a packet-formatting unit 1006;
a metadata-managing unit 1008; a data-reading unit 1010; a
data-writing unit 1012; a cache-managing unit 1014; and an
error-detecting unit 1016.

The data structures and code described in this detailed
description are typically stored on a computer-readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system. The
computer-readable storage medium includes, but is not
limited to, volatile memory, non-volatile memory, magnetic
and optical storage devices such as disk drives, magnetic
tape, CDs (compact discs), DVDs (digital versatile discs or
digital video discs), or other media capable of storing
computer-readable media now known or later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-
readable storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.

Furthermore, the methods and processes described above
can be included in hardware modules. For example, the
hardware modules can include, but are not limited to,
application-specific integrated circuit (ASIC) chips, field-
programmable gate arrays (FPGAs), and other program-
mable-logic devices now known or later developed. When
the hardware modules are activated, the hardware modules
perform the methods and processes included within the
hardware modules.

10

15

20

25

30

35

40

45

50

55

60

65

16

The foregoing embodiments described herein have been
presented for purposes of illustration and description only.
They are not intended to be exhaustive or to limit the
embodiments described herein to the forms disclosed.
Accordingly, many modifications and variations will be
apparent to practitioners skilled in the art. Additionally, the
above disclosure is not intended to limit the embodiments
described herein. The scope of the embodiments described
herein is defined by the appended claims.

What is claimed is:

1. A computer-implemented method, comprising:

allocating, in a volatile memory of a first storage drive, a

first region to be accessed directly by a second storage
drive,

wherein the first storage drive and the second storage

drive are associated with a first server, wherein the first
region of the first storage drive is to be further accessed
by a third storage drive via a first network interface card
(NIC), wherein the first NIC is associated with the first
server, and wherein the third storage drive is associated
with a second server;

storing data in the first region of the first storage drive;

responsive to receiving a first request from the second

storage drive to read the data, transmitting, by the first
storage drive to the second storage drive, the data
stored in the first region while bypassing a system
memory of the first server;

responsive to receiving, from the third storage drive, a

second request to read the data, retrieving, by the first
NIC, the data stored in the first region while bypassing
the system memory of the first server;

sending, by the first NIC to a second NIC associated with

the second server, the data as formatted data which

includes formatting information and a payload;

sending, by the second NIC to a local storage engine

associated with the second server, metadata associated

with the data, which causes the local storage engine to:

allocate, by a file system of the local storage engine, a
logical extent or a range of logical block addresses
(LBAs) based on metadata associated with multiple
chunks of data;

send, by the file system to a flash translation layer
(FTL) module of the local storage engine, the allo-
cated LBAs;

generate, by the FTL module, physical block addresses
(PBAs) mapped to the allocated LLBAs, wherein
management information includes the PBAs, the
metadata, and one or more of an order and a merged
size; and

transmit, to the third storage drive, the management
information;

receiving, by the third storage drive, the management

information from the local storage engine and the
payload from the second NIC; and

writing, by the third storage drive, the data to the non-

volatile memory of the third storage drive based on the
received management information.

2. The method of claim 1, further comprising:

storing, by the first NIC, the data as formatted data which

includes formatting information and a payload;
storing, by the second NIC, the formatted data; and
sending, by the second NIC, the payload to the third
storage drive.
3. The method of claim 2,
wherein the formatting information includes one or more
of a frame header, an Internet Protocol (IP) header, and
a Transmission Control Protocol (TCP) header,

US 11,487,465 B2

17

wherein the payload includes one or more of application

data and user data, and

wherein sending, by the first NIC to the second NIC, the

formatted data further involves sending the formatted
data through an Ethernet switch.
4. The method of claim 2, further comprising:
setting, in the second NIC, a second region of a volatile
memory of the second NIC as a host memory which is
directly accessible by the third storage drive; and

storing, by the second NIC, the formatted data in the
second region of the second NIC.

5. The method of claim 1, wherein sending, by the second
NIC to the local storage engine associated with the second
server, the metadata associated with the data further causes
the local storage engine to:

generate, by a network engine of the local storage engine,

the management information, which includes one or
more of the order and the merged size;

group, by a chunk organization module of the local

storage engine, multiple chunks of data in parallel;
receive, by the FTL module, the allocated LBAs;
transmit, by the FTL module to a Non-Volatile Memory
Express (NVMe) driver, the PBAs and the metadata;
and

transmit, by the NVMe driver to a controller of the third

storage drive, the PBAs and the metadata.

6. The method of claim 1, wherein writing, by the third
storage drive, the data to the non-volatile memory based on
the received management information comprises:

storing, by the third storage drive, in a buffer of the third

storage drive, the payload as part of a group;

storing other payloads in the group, wherein the other

payloads are associated with other management infor-
mation;
determining that a size of the payload and the other
payloads meets a predetermined group size; and

writing, from the buffer of the third storage drive to the
non-volatile memory, the payload and the other pay-
loads of the group.

7. The method of claim 1, wherein writing, by the third
storage drive, the data to the non-volatile memory com-
prises:

receiving, by a controller of the third storage drive, the

data,
wherein the controller includes a Non-Volatile Memory
Express (NVMe) controller, a double data rate (DDR)
controller associated with the volatile memory, a cyclic
redundancy check (CRC) module, and a flash control-
ler, wherein the flash controller includes an error cor-
rection code (ECC) encoding/decoding module;

performing, by the CRC module, a first redundancy check
on the received data to obtain CRC data;

storing, by the DDR controller in the first region of the

volatile memory, the CRC data;

determining to write the stored CRC data from the first

region of the volatile memory to the non-volatile
memory;

retrieving, by the DDR controller, the stored CRC data;

performing, by the CRC module, a second redundancy

check on the retrieved CRC data to obtain CRC-
checked data;

responsive to verifying the CRC-checked data, encoding,

by the ECC encoding/decoding module of the flash
controller, the CRC-checked data to obtain ECC-en-
coded data; and

writing the ECC-encoded data to the non-volatile

memory.

5

10

15

20

25

30

35

40

45

50

55

60

o

5

18

8. The method of claim 1, wherein subsequent to the first
storage drive transmitting to the second storage drive the
data stored in the first region while bypassing the system
memory of the first server, the method further comprises:

retrieving, by the second storage drive, the data stored in

the first region while bypassing the system memory of
the first server.

9. A computer system, comprising:

a processor; and

a memory coupled to the processor and storing instruc-

tions which, when executed by the processor, cause the
processor to perform a method, the method comprising:
allocating, in a volatile memory of a first storage drive,
a first region to be accessed directly by a second
storage drive,
wherein the first storage drive and the second storage
drive are associated with a first server, wherein the
first region of the first storage drive is to be further
accessed by a third storage drive via a first network
interface card (NIC), wherein the first NIC is asso-
ciated with the first server, and wherein the third
storage drive is associated with a second server;
storing data in the first region of the first storage drive;
responsive to receiving a first request from the second
storage drive to read the data, transmitting, by the
first storage drive to the second storage drive, the
data stored in the first region while bypassing a
system memory of the first server;
responsive to receiving, from the third storage drive, a
second request to read the data, retrieving, by the
first NIC, the data stored in the first region while
bypassing the system memory of the first server;
sending, by the first NIC to a second NIC associated
with the second server, the data as formatted data
which includes formatting information and a pay-
load;
sending, by the second NIC to a local storage engine
associated with the second server, metadata associ-
ated with the data, which causes the local storage
engine to:
allocate, by a file system of the local storage engine,
a logical extent or a range of logical block
addresses (LBAs) based on metadata associated
with multiple chunks of data;
send, by the file system to a flash translation layer
(FTL) module of the local storage engine, the
allocated LBAs;
generate, by the FTL module, physical block
addresses (PBAs) mapped to the allocated LBAs,
wherein management information includes the
PBAs, the metadata, and one or more of an order
and a merged size; and
transmit, to the third storage drive, the management
information;
receiving, by the third storage drive, the management
information from the local storage engine and the
payload from the second NIC; and
writing, by the third storage drive, the data to the
non-volatile memory of the third storage drive based
on the received management information.

10. The computer system of claim 9, wherein the method
further comprises:

storing, by the first NIC, the data as formatted data which

includes formatting information and a payload;
storing, by the second NIC, the formatted data;

sending, by the second NIC, the payload to the third

storage drive.

US 11,487,465 B2

19

11. The computer system of claim 10,

wherein the formatting information includes one or more
of a frame header, an Internet Protocol (IP) header, and
a Transmission Control Protocol (TCP) header,

wherein the payload includes one or more of application
data and user data, and

wherein sending, by the first NIC to the second NIC, the

formatted data further involves sending the formatted
data through an Ethernet switch.
12. The computer system of claim 10, wherein the method
further comprises:
setting, in the second NIC, a second region of a volatile
memory of the second NIC as a host memory which is
directly accessible by the third storage drive; and

storing, by the second NIC, the formatted data in the
second region of the second NIC.

13. The computer system of claim 9, wherein sending, by
the second NIC to the local storage engine associated with
the second server, the metadata associated with the data
further causes the local storage engine:

generate, by a network engine of the local storage engine,

the management information, which includes one or
more of the order and the merged size;

group, by a chunk organization module of the local

storage engine, multiple chunks of data in parallel;
receive, by the FTL module, the allocated LBAs;
transmit, by the FTL module to a Non-Volatile Memory
Express (NVMe) driver, the PBAs and the metadata;
and

transmit, by the NVMe driver to a controller of the third

storage drive, the PBAs and the metadata.

14. The computer system of claim 9, wherein writing, by
the third storage drive, the data to the non-volatile memory
based on the received management information comprises:

storing, by the third storage drive, in a buffer of the third

storage drive, the payload as part of a group;

storing other payloads in the group, wherein the other

payloads are associated with other management infor-
mation;
determining that a size of the payload and the other
payloads meets a predetermined group size; and

writing, from the buffer of the third storage drive to the
non-volatile memory, the payload and the other pay-
loads of the group.

15. The computer system of claim 9, wherein writing, by
the third storage drive, the data to the non-volatile memory
comprises:

receiving, by a controller of the third storage drive, the

data,
wherein the controller includes a Non-Volatile Memory
Express (NVMe) controller, a double data rate (DDR)
controller associated with the volatile memory, a cyclic
redundancy check (CRC) module, and a flash control-
ler, wherein the flash controller includes an error cor-
rection code (ECC) encoding/decoding module;

performing, by the CRC module, a first redundancy check
on the received data to obtain CRC data;

storing, by the DDR controller in the first region of the

volatile memory, the CRC data;

determining to write the stored CRC data from the first

region of the volatile memory to the non-volatile
memory;

retrieving, by the DDR controller, the stored CRC data;

performing, by the CRC module, a second redundancy

check on the retrieved CRC data to obtain CRC-
checked data;

5

10

15

20

25

30

35

45

50

55

60

65

20

responsive to verifying the CRC-checked data, encoding,
by the ECC encoding/decoding module of the flash
controller, the CRC-checked data to obtain ECC-en-
coded data; and

writing the ECC-encoded data to the non-volatile
memory.

16. An apparatus, comprising:

a region-managing module configured to allocate, in a
volatile memory of a first storage drive, a first region to
be accessed directly by a second storage drive or a first
network interface card (NIC),

wherein the first storage drive, the second storage drive,
and the first NIC are associated with a first server,
wherein the first region of the first storage drive is to be
further accessed by a third storage drive via a first
network interface card (NIC), wherein the first NIC is
associated with the first server, and wherein the third
storage drive is associated with a second server;

a data-writing module configured to store data in the first
region of the first storage drive;

a communication module configured receive a first
request from the second storage drive to read the data,

wherein the data-writing module is configured to, respon-
sive to the communication module receiving the first
request, transmit, by the first storage drive to the second
storage drive, the data stored in the first region while
bypassing a system memory of the first server,

wherein the communication module is further configured
to receive, from the third storage drive, a second
request to read the data; and

a data-reading module configured to, responsive to the
communication module receiving the second request,
retrieve, by the first NIC, the data stored in the first
region while bypassing the system memory of the first
server,

wherein the communication module is further configured
to:
send, by the first NIC to a second NIC associated with

the second server, the data as formatted data which
includes formatting information and a payload; and
send, by the second NIC to a local storage engine
associated with the second server, metadata associ-
ated with the data,
wherein a metadata-managing unit is configured to,
responsive to the second NIC sending the metadata
to the local storage engine:
allocate, by a file system of the local storage engine,
a logical extent or a range of logical block
addresses (LBAs) based on metadata associated
with multiple chunks of data;
send, by the file system to a flash translation layer
(FTL) module of the local storage engine, the
allocated LBAs;
generate, by the FTL module, physical block
addresses (PBAs) mapped to the allocated LBAs,
wherein management information includes the
PBAs, the metadata, and one or more of an order
and a merged size; and
transmit, to the third storage drive, the management
information;
wherein the communication module is further config-
ured to receive, by the third storage drive, the
management information from the local storage
engine and the payload from the second NIC, and
wherein the data-writing module is further configured
to write, by the third storage drive, the data to the

US 11,487,465 B2
21

non-volatile memory of the third storage drive based
on the received management information.

#* #* #* #* #*

22

