

US011487465B2

(12) United States Patent

(45) Date of Patent:

(10) **Patent No.:**

US 11,487,465 B2 Nov. 1, 2022

(54) METHOD AND SYSTEM FOR A LOCAL STORAGE ENGINE COLLABORATING WITH A SOLID STATE DRIVE CONTROLLER

(71) Applicant: Alibaba Group Holding Limited,

Grand Cayman (KY)

(72) Inventor: Shu Li, Bothell, WA (US)

(73) Assignee: Alibaba Group Holding Limited,

George Town (KY)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 17/119,649

(22) Filed: Dec. 11, 2020

(65) Prior Publication Data

US 2022/0188010 A1 Jun. 16, 2022

(51) **Int. Cl. G06F 3/06** (2006.01) **H03M 13/29** (2006.01)
G11B 20/12 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC G06F 3/0655; G06F 3/067; G06F 3/0631; G06F 3/0604; G06F 3/0619;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

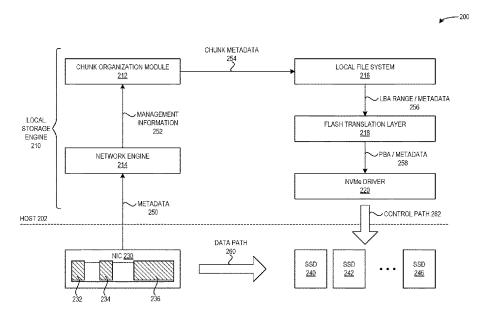
3,893,071 A 7/1975 Bossen 4,562,494 A 12/1985 Bond (Continued)

FOREIGN PATENT DOCUMENTS

WO 9418634 8/1994 WO 1994018634 8/1994

OTHER PUBLICATIONS

https://web.archive.org/web/20071130235034/http://en.wikipedia.org:80/wiki/logical_block_addressing wikipedia screen shot retriefed on wayback Nov. 20, 2007 showing both physical and logical addressing used historically to access data on storage devices (Year: 2007).


(Continued)

Primary Examiner — Mark A Giardino, Jr. (74) Attorney, Agent, or Firm — Yao Legal Services, Inc.; Shun Yao

(57) ABSTRACT

One embodiment provides a system which facilitates data movement. The system allocates, in a volatile memory of a first storage drive, a first region to be accessed directly by a second storage drive or a first NIC. The first storage drive, the second storage drive, and the first NIC are associated with a first server. The system stores data in the first region. Responsive to receiving a first request from the second storage drive to read the data, the system transmits, by the first storage drive to the second storage drive, the data stored in the first region while bypassing a system memory of the first server. Responsive to receiving, from a third storage drive associated with a second server, a second request to read the data, the system retrieves, by the first NIC, the data stored in the first region while bypassing the system memory of the first server.

16 Claims, 11 Drawing Sheets

US 11,487,465 B2 Page 2

(52)	U.S. Cl.				9,875,053	В2	1/2018	Frid
/		G06F 3/	0619 (2013.01); G06F 3	3/0631	9,910,705	B1	3/2018	Mak
			<i>93M 13/2927</i> (2013.01);		9,912,530 9,923,562		3/2018 3/2018	Singatwaria Vincon
			01); G11B 20/1217 (201		9,946,596	B2		Hashimoto
			G11B 2020/1222 (20		10,013,169	B2	7/2018	Fisher
(58)	Field of Cla	ssificatio	n Search	,	10,199,066			Feldman
. /	CPC	H03M 1	3/2927; G11B 20/1201;	G11B	10,229,735 10,235,198		3/2019	Natarajan Qiu
			20/1217; G11B 20)/1222	10,268,390	B2	4/2019	Warfield
	See applicat	ion file fo	r complete search histor	y.	10,318,467		6/2019	
					10,361,722 10,437,670		7/2019 10/2019	Lee Koltsidas
(56)		Referen	ces Cited		10,459,663			Agombar
	US	PATENT	DOCUMENTS		10,642,522		5/2020	
	0.2.		20001121112		10,649,657 10,678,432		5/2020 6/2020	Zaidman Dreier
	,718,067 A	1/1988			10,756,816		8/2020	
	1,775,932 A 1,858,040 A	10/1988	Oxley Hazebrouck		10,928,847	B2	2/2021	
	,394,382 A	2/1995			10,990,526		4/2021 6/2021	
5	,602,693 A	2/1997	Brunnett		11,023,150 11,068,165		7/2021	
	5,715,471 A		Otsuka		11,138,124	B2	10/2021	Tomic
	5,732,093 A 5,802,551 A	3/1998 9/1998	Komatsu		2001/0032324			Slaughter
5	,930,167 A	7/1999	Lee		2001/0046295 2002/0010783		11/2001 1/2002	
	5,098,185 A		Wilson		2002/0039260		4/2002	
	5,148,377 A 5,226,650 B1	11/2000 5/2001	Mahajan et al.		2002/0073358			Atkinson
	5,243,795 B1	6/2001			2002/0095403 2002/0112085		8/2002	Chandrasekaran Berg
	,457,104 B1	9/2002	Tremaine		2002/0112089		10/2002	
	5,658,478 B1 5,795,894 B1	12/2003	Singhal Neufeld		2003/0074319		4/2003	Jaquette
	,351,072 B2	4/2008			2003/0145274 2003/0163594		7/2003	Hwang Aasheim
7	,565,454 B2	7/2009			2003/0163633			Aasheim
	7,599,139 B1 7,953,899 B1		Bombet Hooper		2003/0217080	A1	11/2003	White
	,958,433 B1	6/2011			2004/0010545		1/2004	
8	,085,569 B2	12/2011	Kim		2004/0066741 2004/0103238		4/2004 5/2004	Avraham
	3,144,512 B2	3/2012			2004/0143718		7/2004	
	3,166,233 B2 3,260,924 B2	9/2012	Schibilla Koretz		2004/0255171		12/2004	
8	3,281,061 B2	10/2012			2004/0267752 2004/0268278		12/2004 12/2004	Wong Hoberman
	3,452,819 B1		Sorenson, III		2005/0038954		2/2005	Saliba
	3,516,284 B2 3,527,544 B1	8/2013 9/2013	Colgrove		2005/0097126			Cabrera
8	,751,763 B1		Ramarao		2005/0138325 2005/0144358		6/2005	Hofstee Conley
	3,819,367 B1		Fallone		2005/0149827			Lambert
	3,825,937 B2 3,832,688 B2	9/2014	Atkisson Tang		2005/0174670		8/2005	
	3,868,825 B1	10/2014			2005/0177672 2005/0177755		8/2005 8/2005	
	,904,061 B1		O'Brien, III		2005/0177735		9/2005	
	3,949,208 B1 9,015,561 B1	2/2015 4/2015			2005/0235067		10/2005	Creta
_	,031,296 B2		Kaempfer		2005/0235171 2006/0031709		10/2005	Igarı Hiraiwa
9	,043,545 B2	5/2015	Kimmel		2006/0031709			Georgis
	0,088,300 B1 0,092,223 B1	7/2015 7/2015			2006/0156009		7/2006	
	,129,628 B1		Fallone		2006/0156012 2006/0184813		7/2006 8/2006	Beeson
	,141,176 B1	9/2015			2007/0033323			Gorobets
	,208,817 B1 ,213,627 B2	12/2015	Lı Van Acht		2007/0061502		3/2007	
	,213,632 B1	12/2015			2007/0101096 2007/0204128		5/2007 8/2007	Gorobets
	,280,472 B1	3/2016	Dang		2007/0204128		10/2007	
	9,280,487 B2 9,311,939 B1		Candelaria Malina		2007/0266011	A1	11/2007	Rohrs
	,336,340 B1	5/2016			2007/0283081		12/2007	Lasser Wellwood
9	,436,595 B1	9/2016	Benitez		2007/0283104 2007/0285980		12/2007	
	,495,263 B2	11/2016			2008/0028223			Rhoads
	9,529,601 B1 9,529,670 B2		Dharmadhikari O'Connor		2008/0034154		2/2008	
9	,569,454 B2	2/2017	Ebsen		2008/0065805 2008/0082731		3/2008	Wu Karamcheti
	,575,982 B1		Sankara Subramanian		2008/0082/31		5/2008	
	9,588,698 B1 9,588,977 B1	3/2017 3/2017	Karamcheti Wang		2008/0112238		5/2008	
9	.607.631 B2		Rausch		2008/0163033		7/2008	
9	,671,971 B2	6/2017	Trika		2008/0195829		8/2008	
	0,747,202 B1 0,836,232 B1		Shaharabany Vasquez		2008/0301532 2009/0006667		1/2/2008	Uchikawa Lin
	,852,076 B1	12/2017			2009/0089544		4/2009	
			Ę.					

US 11,487,465 B2 Page 3

(56) Refe	rences Cited	2013/0159723 A1	6/2013	Brandt
U.S. PATE	NT DOCUMENTS	2013/0166820 A1 2013/0173845 A1	6/2013 7/2013	Batwara Aslam
		2013/0179898 A1	7/2013	Fang Peterson
	109 Crinon 109 Aharonov	2013/0191601 A1 2013/0205183 A1		Fillingim
	009 Wheeler	2013/0219131 A1	8/2013	Alexandron
2009/0177944 A1 7/20	09 Kanno	2013/0227347 A1	8/2013	
	09 Kanno	2013/0238955 A1 2013/0254622 A1	9/2013	D Abreu Kanno
	109 Abali 109 Yermalayeu	2013/0318283 A1	11/2013	
	09 Flynn			Kalavade
	09 Koifman	2013/0329492 A1 2014/0006688 A1	12/2013 1/2014	
	109 Galloway 109 Jang	2014/0000033 A1 2014/0019650 A1	1/2014	
	olo Flynn	2014/0025638 A1	1/2014	
2010/0169470 A1 7/20	10 Takashige	2014/0082273 A1 2014/0082412 A1	3/2014	Segev Matsumura
	110 Iyer 110 Etchegoyen	2014/0082412 A1 2014/0095758 A1*		Smith G06F 3/0685
	olo Smith			710/308
2010/0281254 A1 11/20	10 Carro	2014/0095769 A1		Borkenhagen
	10 Yoo	2014/0095827 A1 2014/0108414 A1	4/2014	Stillerman
	110 Kornegay 110 Chang	2014/0108414 A1		Strasser
	11 Uenaka	2014/0164447 A1		Tarafdar
	11 Kuehne	2014/0164879 A1	6/2014 6/2014	
	11 Thatcher 11 Li	2014/0181532 A1 2014/0195564 A1		Talagala
	011 Chang	2014/0215129 A1		Kuzmin
2011/0099418 A1 4/20	11 Chen	2014/0223079 A1	8/2014	
	011 Hinkle	2014/0233950 A1 2014/0250259 A1	8/2014 9/2014	
	011 Sinclair 011 Selinger	2014/0279927 A1		Constantinescu
	11 Hsu			De La Iglesia
	11 Anglin		10/2014	Yu Nowoczynski G06F 16/1847
	011 Hatsuda 011 Kanno	201 4 /0337437 A1	11/2014	709/212
	11 Weingarten	2014/0359229 A1	12/2014	Cota-Robles
	11 Lasser			Talagala
	011 Mewilliams 011 Koseki	2014/0379965 A1 2015/0006792 A1	12/2014 1/2015	
	11 Roseki 11 Haga	2015/0019798 A1	1/2015	Huang
2011/0296411 A1 12/20	11 Tang	2015/0039849 A1	2/2015	
	011 Shaeffer 011 Confalonieri	2015/0067436 A1 2015/0082317 A1	3/2015 3/2015	
	11 Comaronien 111 Mcdermott	2015/0002517 A1 2015/0106556 A1	4/2015	
2012/0017037 A1 1/20	12 Riddle	2015/0106559 A1	4/2015	
	012 Webb	2015/0121031 A1 2015/0142752 A1	4/2015	Feng Chennamsetty
	112 Littlefield 112 Kelkar	2015/0142732 A1 2015/0143030 A1		Gorobets
	12 Przybylski	2015/0186657 A1		Nakhjiri
	012 Chan	2015/0199234 A1 2015/0227316 A1	7/2015	Choi Warfield
	112 Cheng 112 Horn	2015/0227516 AT 2015/0234845 AT		
2012/0159099 A1 6/20	12 Lindamood	2015/0269964 A1	9/2015	Fallone
	12 Piccirillo	2015/0277937 A1		Swanson
	112 Lassa 112 Jones	2015/0286477 A1 2015/0294684 A1	10/2015 10/2015	Oiang
	12 Nellans			Brinicombe
	12 Krishnamoorthy			Obukhov
	112 Cheon 112 Goss	2015/0310916 A1 2015/0317095 A1	10/2015 11/2015	
	112 G088 112 Yu	2015/0341123 A1	11/2015	Nagarajan Nagarajan
2012/0324312 A1 12/20	12 Moyer	2015/0347025 A1	12/2015	Law
	112 Lassa 113 Tashiro			Haustein Candelaria
	13 Sugahara		12/2015	
2013/0016970 A1 1/20	13 Koka	2016/0014039 A1	1/2016	Reddy
	113 Barton	2016/0026575 A1 2016/0041760 A1	1/2016 2/2016	Samanta Kuang
	113 Sharon 113 Mordani	2016/0041760 A1 2016/0048327 A1		Jayasena
2013/0061029 A1 3/20	13 Huff	2016/0048341 A1	2/2016	Constantinescu
	13 Kang	2016/0054922 A1		Awasthi
	113 Raichstein 113 Chiu	2016/0062885 A1 2016/0077749 A1	3/2016	Ryu Ravimohan
	oris Cinu 113 Yu	2016/0077764 A1	3/2016	
	13 Eleftheriou	2016/0077968 A1	3/2016	Sela
	13 Shim	2016/0078245 A1		Amarendran
2013/0159251 A1 6/20	13 Skrenta	2016/0098344 A1	4/2016	Gorobets

US 11,487,465 B2 Page 4

(56)	Referen	ices Cited	2018/0076828		3/2018	
IIC	DATENIT	DOCUMENTS	2018/0088867 2018/0107591		3/2018 4/2018	Kaminaga
0.5.	PATENT	DOCUMENTS	2018/0107391		4/2018	
2016/0098350 A1	4/2016	Tang	2018/0143780	A1	5/2018	Cho
2016/0103631 A1	4/2016		2018/0150640 2018/0165038		5/2018	Li Authement
2016/0110254 A1 2016/0124742 A1		Cronie Rangasamy	2018/0165169		6/2018	
2016/0132237 A1	5/2016		2018/0165340		6/2018	Agarwal
2016/0141047 A1	5/2016	Sehgal	2018/0167268			Liguori
2016/0154601 A1 2016/0155750 A1	6/2016	Chen Yasuda	2018/0173620 2018/0188970		6/2018 7/2018	
2016/0153730 A1 2016/0162187 A1	6/2016		2018/0189175		7/2018	
2016/0179399 A1	6/2016	Melik-Martirosian	2018/0189182		7/2018	
2016/0188223 A1	6/2016	Camp Naeimi	2018/0212951 2018/0219561		8/2018	Goodrum Litsyn
2016/0188890 A1 2016/0203000 A1		Parmar	2018/0226124		8/2018	
2016/0224267 A1	8/2016	Yang	2018/0232151		8/2018	
2016/0232103 A1		Schmisseur	2018/0260148 2018/0270110		9/2018 9/2018	Chugtu
2016/0234297 A1 2016/0239074 A1	8/2016	Ambach Lee	2018/0293014			Ravimohan
2016/0239380 A1	8/2016	Wideman	2018/0300203		10/2018	
2016/0274636 A1	9/2016		2018/0321864 2018/0322024		11/2018 11/2018	
2016/0283140 A1 2016/0306699 A1	10/2016	Kaushik Resch	2018/0329776		11/2018	
2016/0306853 A1	10/2016	Sabaa	2018/0336921		11/2018	
2016/0321002 A1	11/2016		2018/0349396 2018/0356992			Blagojevic Lamberts
2016/0335085 A1 2016/0342345 A1		Scalabrino Kankani	2018/0357126		12/2018	
2016/0343429 A1	11/2016	Nieuwejaar	2018/0373428		12/2018	
2016/0350002 A1	12/2016		2018/0373655 2018/0373664		12/2018	Liu Vijayrao
2016/0350385 A1 2016/0364146 A1	12/2016	Poder Kuttner	2019/0012111		1/2019	
2016/0381442 A1		Heanue	2019/0034454			Gangumalla
2017/0004037 A1	1/2017		2019/0050312 2019/0050327		2/2019 2/2019	
2017/0010652 A1 2017/0068639 A1*		Huang Davis H04L 49/3009	2019/0065085		2/2019	
2017/0008039 A1 2017/0075583 A1		Alexander	2019/0073261	A1	3/2019	Halbert
2017/0075594 A1		Badam	2019/0073262 2019/0087089		3/2019	Chen Yoshida
2017/0091110 A1 2017/0109199 A1	3/2017 4/2017		2019/0087089		3/2019	
2017/0109133 A1 2017/0109232 A1	4/2017		2019/0087328		3/2019	
2017/0123655 A1		Sinclair	2019/0108145 2019/0116127			Raghava Pismenny
2017/0147499 A1 2017/0161202 A1	5/2017 6/2017	Mohan Erez	2019/0116127		5/2019	
2017/0161202 A1 2017/0162235 A1	6/2017		2019/0171532	A1	6/2019	Abadi
2017/0168986 A1		Sajeepa	2019/0172820 2019/0196748			Meyers Badam
2017/0177217 A1 2017/0177259 A1		Kanno Motwani	2019/0196748		6/2019	
2017/0185316 A1		Nieuwejaar	2019/0205206			Hornung
2017/0185498 A1	6/2017	Gao	2019/0212949 2019/0220392		7/2019 7/2019	
2017/0192848 A1 2017/0199823 A1	7/2017 7/2017	Pamies-Juarez	2019/0220392		7/2019	
2017/0212680 A1*		Waghulde G06F 16/185	2019/0272242			Kachare
2017/0212708 A1	7/2017	Suhas	2019/0278654 2019/0317901			Kaynak Kachare
2017/0220254 A1 2017/0221519 A1		Warfield Matsuo	2019/0320020		10/2019	
2017/0228157 A1	8/2017		2019/0339998			Momchilov
2017/0242722 A1	8/2017		2019/0361611 2019/0377632		11/2019 12/2019	U
2017/0249162 A1 2017/0262176 A1		Tsirkin Kanno	2019/0377821			Pleshachkov
2017/0262178 A1		Hashimoto	2019/0391748		12/2019	
2017/0262217 A1		Pradhan	2020/0004456 2020/0004674			Williams Williams
2017/0269998 A1 2017/0277655 A1*		Sunwoo Das G06F 12/023	2020/0013458			Schreck
2017/0279460 A1	9/2017		2020/0042223		2/2020	
2017/0285976 A1		Durham	2020/0042387 2020/0082006		2/2020 3/2020	
2017/0286311 A1 2017/0322888 A1	10/2017	Juenemann Booth	2020/0084918		3/2020	
2017/0344470 A1	11/2017		2020/0089430		3/2020	
2017/0344491 A1		Pandurangan Carina Panant	2020/0092209		3/2020	
2017/0353576 A1 2018/0024772 A1		Guim Bernat Madraswala	2020/0097189 2020/0133841		3/2020 4/2020	
2018/0024772 A1		Kojima	2020/0143885		5/2020	
2018/0033491 A1	2/2018	Marelli	2020/0159425		5/2020	•
2018/0052797 A1		Barzik	2020/0167091			Haridas
2018/0067847 A1 2018/0069658 A1	3/2018 3/2018	On Benisty	2020/0210309 2020/0218449		7/2020 7/2020	
2018/0074730 A1	3/2018		2020/0225875		7/2020	

(56) References Cited

U.S. PATENT DOCUMENTS

2020/0242021	$\mathbf{A}1$	7/2020	Gholamipour
2020/0250032	$\mathbf{A}1$	8/2020	Goyal
2020/0257598	$\mathbf{A}1$	8/2020	Yazovitsky
2020/0322287	$\mathbf{A}1$	10/2020	Connor
2020/0326855	$\mathbf{A}1$	10/2020	Wu
2020/0328192	$\mathbf{A}1$	10/2020	Zaman
2020/0348888	$\mathbf{A}1$	11/2020	Kim
2020/0364094	A1*	11/2020	Kahle G06F 9/5083
2020/0371955	A1*	11/2020	Goodacre G06F 12/0811
2020/0387327	A1	12/2020	Hsieh
2020/0401334	A1	12/2020	Saxena
2020/0409559	A1	12/2020	Sharon
2020/0409791	A1	12/2020	Devriendt
2021/0010338	A1	1/2021	Santos
2021/0075633	$\mathbf{A}1$	3/2021	Sen
2021/0089392	A1	3/2021	Shirakawa
2021/0103388	A1	4/2021	Choi
2021/0124488	$\mathbf{A}1$	4/2021	Stoica
2021/0132999	A1*	5/2021	Haywood G06F 12/1009
2021/0191635	$\mathbf{A}1$	6/2021	Hu
2021/0286555	$\mathbf{A}1$	9/2021	Li

OTHER PUBLICATIONS

Ivan Picoli, Carla Pasco, Bjorn Jonsson, Luc Bouganim, Philippe Bonnet. "uFLIP-OC: Understanding Flash I/O Patterns on Open-Channel Solid-State Drives." APSys'17, Sep. 2017, Mumbai, India, pp. 1-7, 2017, <10.1145/3124680.3124741>. <hal-01654985>. EMC Powerpath Load Balancing and Failover Comparison with native MPIO operating system solutions. Feb. 2011. Tsuchiya, Yoshihiro et al. "DBLK: Deduplication for Primary Block Storage", MSST 2011, Denver, CO, May 23-27, 2011 pp. 1-5. Chen Feng, et al. "CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan of Flash Memory based Solid State Devices" FAST'>FAST">FAST'>FAST">FAS

WOW: Wise Ordering for Writes—Combining Spatial and Temporal Locality in Non-Volatile Caches by Gill (Year: 2005).

Helen H. W. Chan et al. "HashKV: Enabling Efficient Updated in KV Storage via Hashing", https://www.usenix.org/conference/atc18/presentation/chan, (Year: 2018).

presentation/chan, (Year: 2018). S. Hong and D. Shin, "NAND Flash-Based Disk Cache Using SLC/MLC Combined Flash Memory," 2010 International Workshop on Storage Network Architecture and Parallel I/Os, Incline Village, NV, 2010, pp. 21-30.

Arpaci-Dusseau et al. "Operating Systems: Three Easy Pieces", Originally published 2015; Pertinent: Chapter 44; flash-based SSDs, available at http://pages.cs.wisc.edu/~remzi/OSTEP/.

Jimenex, X., Novo, D. and P. Ienne, "Pheonix:Reviving MLC Blocks as SLC to Extend NAND Flash Devices Lifetime," Design, Automation & Text in Europe Conference & Exhibition (Date), 2013.

Yang, T. Wu, H. and W. Sun, "GD-FTL: Improving the Performance and Lifetime of TLC SSD by Downgrading Worn-out Blocks," IEEE 37th International Performance Computing and Communications Conference (IPCCC), 2018.

C. Wu, D. Wu, H. Chou and C. Cheng, "Rethink the Design of Flash Translation Layers in a Component-Based View", in IEEE Acess, vol. 5, pp. 12895-12912, 2017.

Po-Liang Wu, Yuan-Hao Chang and T. Kuo, "A file-system-aware FTL design for flash-memory storage systems," 2009, pp. 393-398. S. Choudhuri and T. Givargis, "Preformance improvement of block based NAND flash translation layer", 2007 5th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Systems Synthesis (CODES+ISSS). Saizburg, 2007, pp. 257-262.

A. Zuck, O. Kishon and S. Toledo. "LSDM: Improving the Preformance of Mobile Storage with a Log-Structured Address Remapping Device Driver", 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, Oxford, 2014, pp. 221-228.

J. Jung and Y. Won, "nvramdisk: A Transactional Block Device Driver for Non-Volatile RAM", in IEEE Transactions on Computers, vol. 65, No. 2, pp. 589-600, Feb. 1, 2016.

Te I et al. (Pensieve: a Machine Assisted SSD Layer for Extending the Lifetime: (Year: 2018).

ARM ("Cortex-R5 and Cortex-R5F", Technical reference Manual, Revision r1p1) (Year:2011).

^{*} cited by examiner

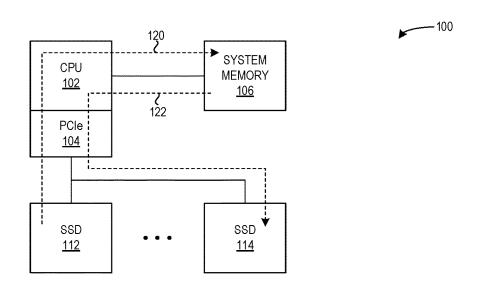


FIG. 1A (PRIOR ART)

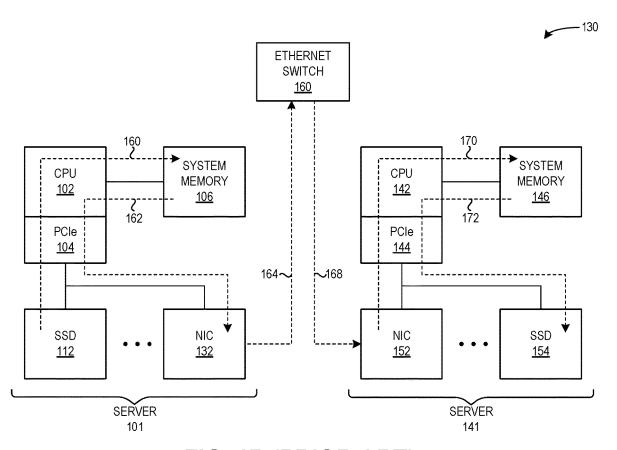
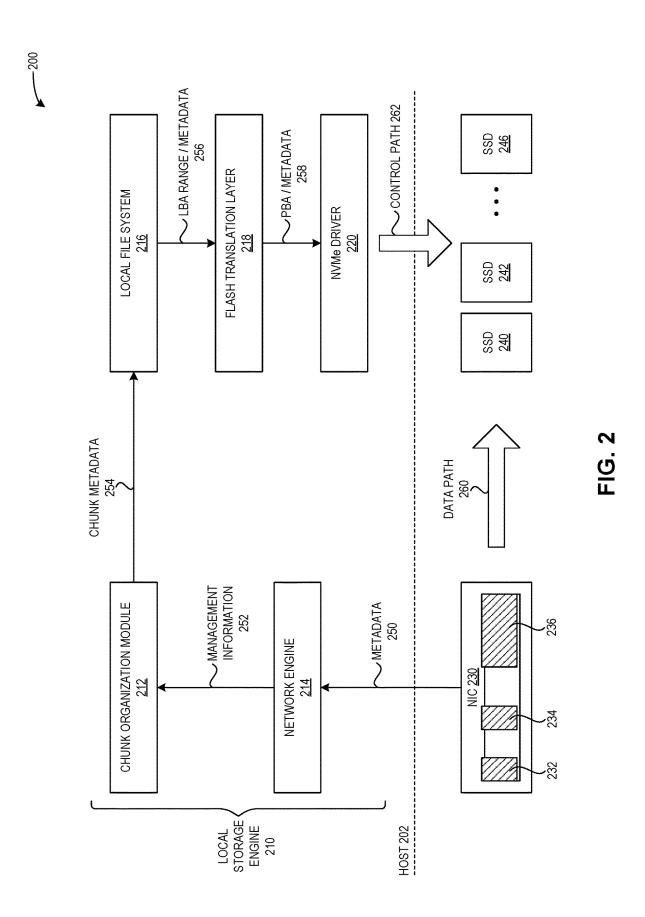



FIG. 1B (PRIOR ART)

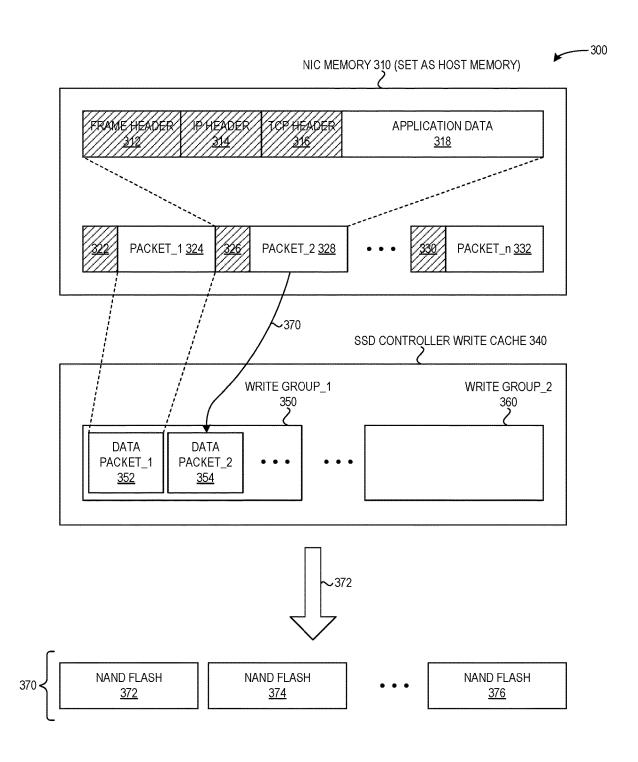


FIG. 3

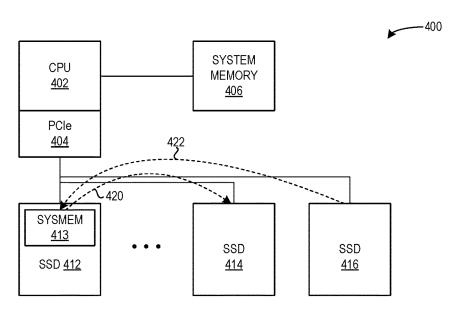


FIG. 4A

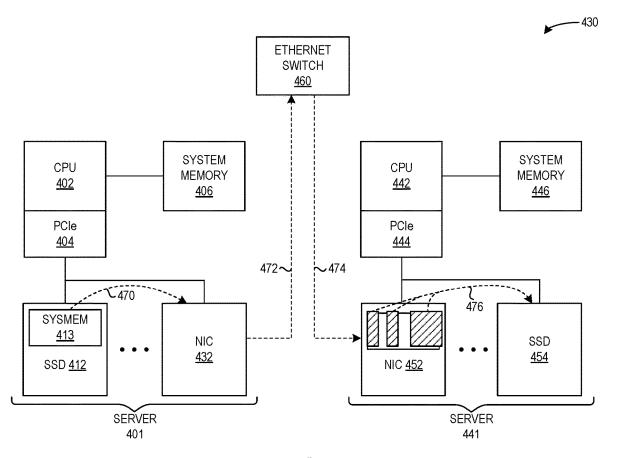
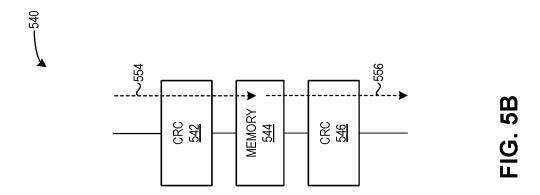
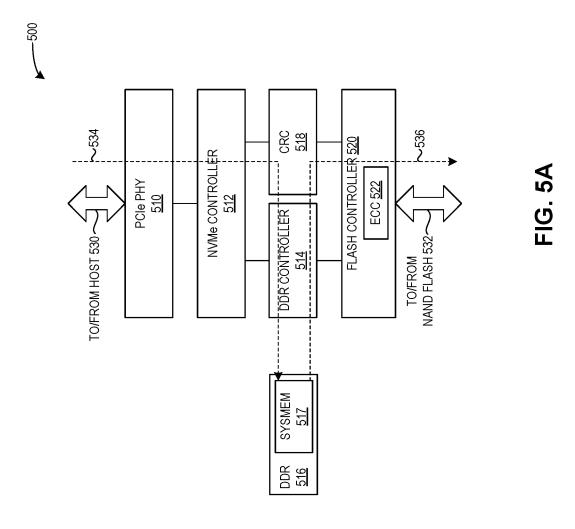




FIG. 4B

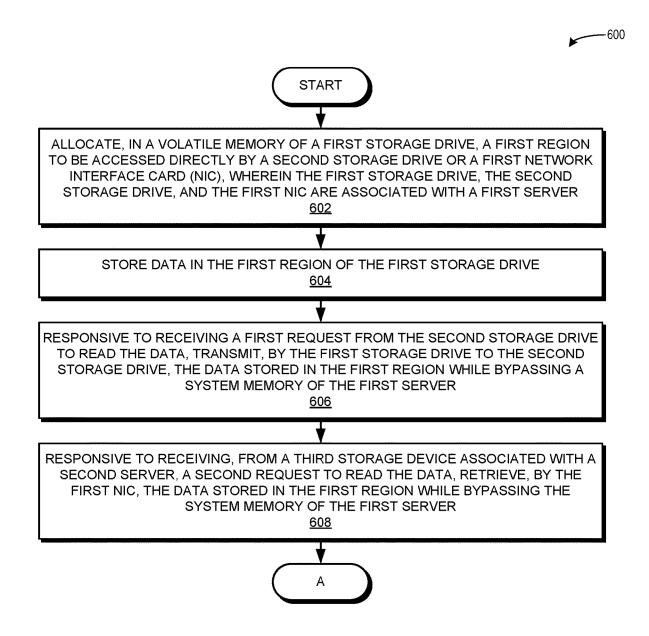
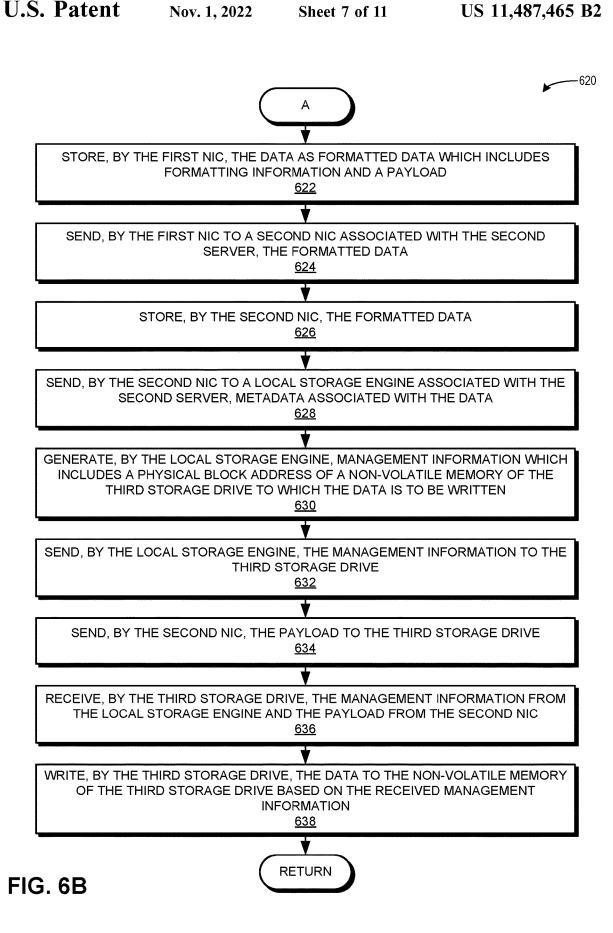



FIG. 6A

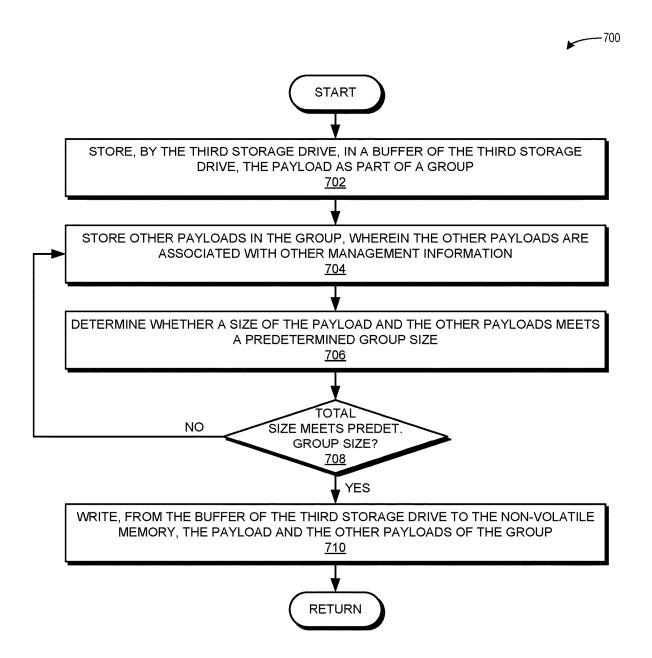


FIG. 7

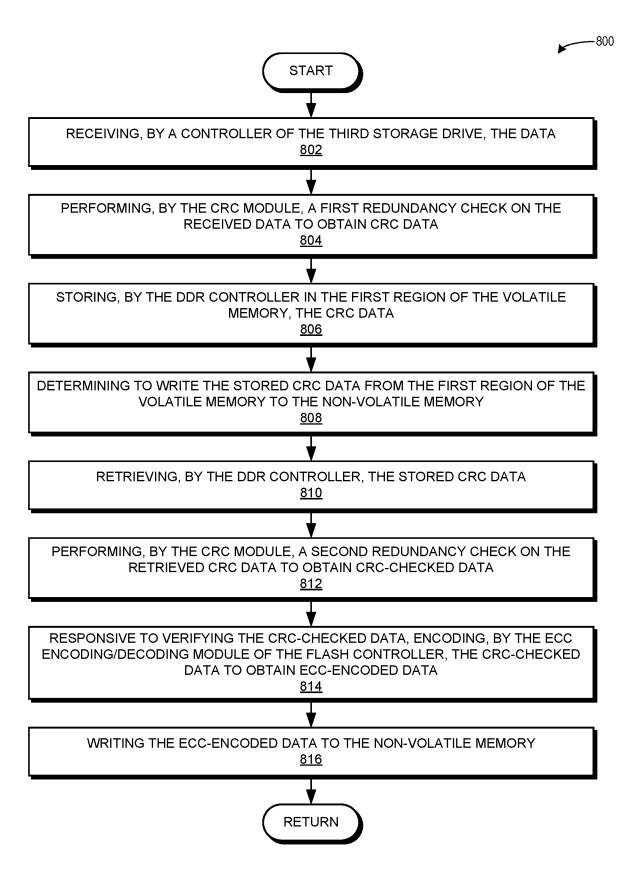


FIG. 8

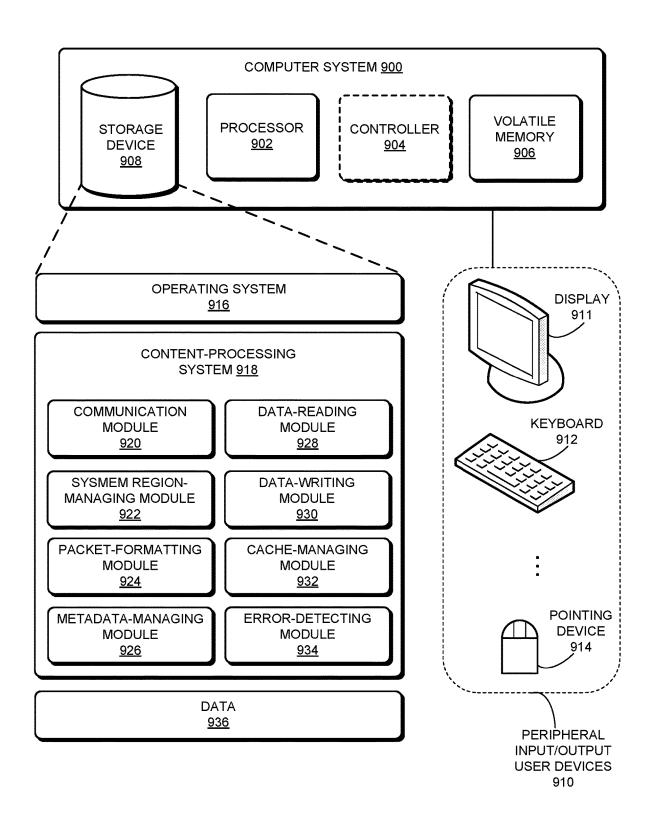


FIG. 9

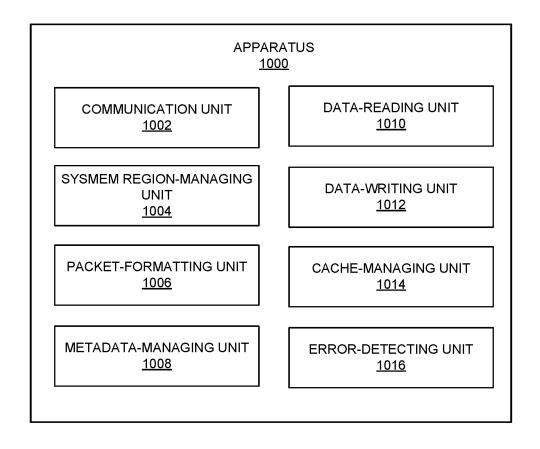


FIG. 10

METHOD AND SYSTEM FOR A LOCAL STORAGE ENGINE COLLABORATING WITH A SOLID STATE DRIVE CONTROLLER

BACKGROUND

Field

This disclosure is generally related to the field of data storage. More specifically, this disclosure is related to a method and system for a local storage engine collaborating with a solid state drive (SSD) controller.

Related Art

Today, various storage systems are being used to store and access the ever-increasing amount of digital content. A storage system can include storage servers with one or more storage devices or drives (such as a solid-state drive (SSD)). 20 In the architecture of an existing storage system, a central processing unit (CPU) complex can include a CPU and system memory, which can serve as the data hub. Data transfers both within a storage server (e.g., between storage drives of the same storage server) and between storage 25 servers (e.g., between storages drive of different storage servers) can result in multiple folds of memory copy which involve the CPU and system memory. These data transfers can result in an increased latency, an increased consumption of memory bandwidth, and an increased utilization of the 30 CPU complex or core. In scenarios which involve a large amount of data transfer, the system performance and resource consumption can suffer and limit the efficiency of the overall storage system.

SUMMARY

One embodiment provides a system which facilitates data movement while bypassing the system memory. During operation, the system allocates, in a volatile memory of a 40 first storage drive, a first region to be accessed directly by a second storage drive. The system stores data in the first region of the first storage drive. Responsive to receiving a first request from the second storage drive to read the data, the system transmits, by the first storage drive to the second 45 storage drive, the data stored in the first region while bypassing a system memory of a first server.

In some embodiments, the first storage drive and the second storage drive are associated with the first server.

In some embodiments, the first region of the first storage 50 drive is to be further accessed by a third storage drive via a first network interface card (NIC). The first NIC is associated with the first server, and the third storage drive is associated with a second server

In some embodiments, responsive to receiving, from the 55 third storage drive, a second request to read the data, the system retrieves, by the first NIC, the data stored in the first region while bypassing the system memory of the first server. The system stores, by the first NIC, the data as formatted data which includes formatting information and a 60 payload. The system sends, by the first NIC to a second NIC associated with the second server, the formatted data. The system stores, by the second NIC, the formatted data. The system sends, by the second NIC to a local storage engine associated with the second server, metadata associated with 65 the data. The system generates, by the local storage engine, management information which includes a physical block

2

address of a non-volatile memory of the third storage drive to which the data is to be written. The system sends, by the local storage engine, the management information to the third storage drive. The system sends, by the second NIC, the payload to the third storage drive. The system receives, by the third storage drive, the management information from the local storage engine and the payload from the second NIC. The system writes, by the third storage drive, the data to the non-volatile memory of the third storage drive based on the received management information.

In some embodiments, the formatting information includes one or more of a frame header, an Internet Protocol (IP) header, and a Transmission Control Protocol (TCP) header. The payload includes one or more of application data and user data. Sending, by the first NIC to the second NIC, the formatted data further involves sending the formatted data through an Ethernet switch.

In some embodiments, the system sets, in the second NIC, a second region of a volatile memory of the second NIC as a host memory which is directly accessible by the third storage drive. The system stores, by the second NIC, the formatted data in the second region of the second NIC.

In some embodiments, subsequent to sending, by the second NIC to the local storage engine, the metadata, the system performs the following operations. The system generates, by a network engine of the local storage engine, the management information, which includes one or more of an order and a merged size. The system groups, by a chunk organization module of the local storage engine, multiple chunks of data in parallel. The system allocates, by a local file system of the local storage engine, a logical extent or a range of logical block addresses (LBAs) based on metadata associated with the multiple chunks. The system sends, by the file system to a flash translation layer module of the local 35 storage engine, the allocated LBAs. The system receives, by the flash translation layer module, the allocated LBAs. The system generates, by the flash translation layer module, physical block addresses (PBAs) mapped to the allocated LBAs. The system transmits, by the flash translation layer module to a Non-Volatile Memory Express (NVMe) driver, the PBAs and the metadata. The system transmits, by the NVMe driver to a controller of the third storage drive, the PBAs and the metadata.

In some embodiments, the system writes, by the third storage drive, the data to the non-volatile memory based on the received management information by performing the following operations. The system stores, by the third storage drive, in a buffer of the third storage drive, the payload as part of a group. The system stores other payloads in the group, wherein the other payloads are associated with other management information. The system determines that a size of the payload and the other payloads meets a predetermined group size. The system writes, from the buffer of the third storage drive to the non-volatile memory, the payload and the other payloads of the group.

In some embodiments, the system writes, by the third storage drive, the data to the non-volatile memory by performing the following operations. The system receives, by a controller of the third storage drive, the data. The controller includes a Non-Volatile Memory Express (NVMe) controller, a double data rate (DDR) controller associated with the volatile memory, a cyclic redundancy check (CRC) module, and a flash controller, wherein the flash controller includes an error correction code (ECC) encoding/decoding module. The system performs, by the CRC module, a first redundancy check on the received data to obtain CRC data. The system stores, by the DDR con-

troller in the first region of the volatile memory, the CRC data. The system determines to write the stored CRC data from the first region of the volatile memory to the non-volatile memory. The system retrieves, by the DDR controller, the stored CRC data. The system performs, by the CRC module, a second redundancy check on the retrieved CRC data to obtain CRC-checked data. Responsive to verifying the CRC-checked data, the system encodes, by the ECC encoding/decoding module of the flash controller, the CRC-checked data to obtain ECC-encoded data. The system writes the ECC-encoded data to the non-volatile memory.

In some embodiments, the data stored in the first region of the first storage drive is transferred from the second storage drive or the first NIC while bypassing the system memory of the first server.

In some embodiments, subsequent to the first storage drive transmitting to the second storage drive the data stored in the first region while bypassing the system memory of the first server, the system retrieves, by the second storage drive, 20 the data stored in the first region while bypassing the system memory of the first server.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A illustrates an exemplary environment with a data transfer between storage drives in a same storage server, in accordance with the prior art.

FIG. 1B illustrates an exemplary environment with a data transfer between storage drives in different storage servers, ³⁰ in accordance with the prior art.

FIG. 2 illustrates an exemplary environment with separate control and data paths, which facilitates bypassing system memory, in accordance with an embodiment of the present application.

FIG. 3 illustrates an exemplary environment with data movement from a network interface card to a storage drive, in accordance with an embodiment of the present application.

FIG. 4A illustrates an exemplary environment with a data transfer between storage drives in a same storage server, which facilitates bypassing system memory, in accordance with an embodiment of the present application.

FIG. 4B illustrates an exemplary environment with a data 45 transfer between storage drives in different storage servers, which facilitates bypassing system memory, in accordance with an embodiment of the present application.

FIG. **5**A illustrates an exemplary environment for data access with a cyclic redundancy check (CRC) in a storage 50 controller, in accordance with an embodiment of the present application.

FIG. 5B illustrates an exemplary environment for data access with a CRC in a storage controller, in accordance with an embodiment of the present application.

FIG. 6A presents a flowchart illustrating a method for facilitating data movement while bypassing system memory, including a data transfer between storage drives in a same storage server, in accordance with an embodiment of the present application.

FIG. **6**B presents a flowchart illustrating a method for facilitating data movement while bypassing system memory, including a data transfer between storage drives in different storage servers, in accordance with an embodiment of the present application.

FIG. 7 presents a flowchart illustrating a method for facilitating data movement while bypassing system memory,

4

including writing data in groups to a non-volatile memory, in accordance with an embodiment of the present applica-

FIG. **8** presents a flowchart illustrating a method for facilitating data movement while bypassing system memory, including operations to ensure data integrity, in accordance with an embodiment of the present application.

FIG. 9 illustrates an exemplary computer system that facilitates data movement while bypassing system memory, in accordance with an embodiment of the present application.

FIG. 10 illustrates an exemplary apparatus that facilitates data movement by bypassing system memory, in accordance with an embodiment of the present application.

In the figures, like reference numerals refer to the same figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the embodiments described herein are not limited to the embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. Overview

The embodiments described herein provide a system which addresses the inefficiencies associated with data transfers in existing storage systems which consume CPU resources and system memory bandwidth, by providing a system which bypasses the system memory.

As described above, in existing storage systems, a CPU complex can include a CPU and system memory, which can serve as the data hub. Data transfers both within a storage server (e.g., between storage drives of the same storage server) and between storage servers (e.g., between storage servers) can result in multiple folds of memory copy which involve the CPU and system memory, as described below in relation to FIGS. 1A and 1B. These data transfers can result in an increased latency, an increased consumption of memory bandwidth, and an increased utilization of the CPU complex or core. In scenarios which involve a large amount of data transfer, the system performance and resource consumption can suffer and limit the efficiency of the overall storage system.

The embodiments described herein address these limitations by providing a system which separates the data path and the control path, by allocating or exposing a portion of a volatile memory of a first SSD as a region which can be directly accessed by a second SSD (in a single server scenario, as described below in relation to FIG. 4A) or a network interface card (NIC) (in a storage cluster scenario, as described below in relation to FIG. 4B).

In the single server scenario (where the first and second SSD are associated with the same single server), the first SSD can allocate a region of its volatile memory to be directly accessible by other SSDs (and a NIC) associated with the same single server. The second SSD can subsequently directly access and retrieve data stored in the allocated region of the first SSD, which allows the data transfer to bypass the system memory of the server.

In the storage cluster scenario, when data is transferred from a first storage drive of a first storage server to a second storage drive of a second storage server, the data can pass through a first NIC of the first storage server and a second NIC of the second storage server. Formatting and retrieval of data from the NICs can be used to bypass the system memory, which can result in a more efficient overall storage system.

For example, for data which is to be transferred from the first storage drive to the second storage drive, the first NIC can retrieve the data directly from the allocated region of the first storage drive, while bypassing the system memory. The first NIC can format the data (e.g., into a network packet with formatting information and a payload), and transmit the network packet to the second NIC (e.g., via an Ethernet switch). In the control path, the second NIC can send the metadata to a local storage engine of the second server, which can perform management operations as described below in relation to FIG. 2, and the local storage engine can 20 send the management information (such as the metadata and an assigned physical block address (PBA)) to the second storage drive. In the data path, the second NIC can send to the second storage drive (and the second storage drive can receive or retrieve from the second NIC) the data as the 25 payload only directly from the second NIC, again bypassing the system memory.

Thus, by allocating a region of the non-volatile memory of a first storage drive and making the allocated region directly accessible to a second storage drive in the same first server, the system can bypass system memory of the first server in the single server scenario. Furthermore, by allocating the region of the first storage drive and making the allocated region directly accessible to the first NIC (e.g., in the same first server), and by allowing data stored in a second NIC to be accessible by a third storage drive in the same second server (e.g., data stored in the second NIC is accessible by the third storage drive in the second server), the system can also bypass system memory in the storage cluster scenario.

The described embodiments can also perform consecutive data fetching based on groups in a write cache of the SSD controller, as described below in relation to FIG. 3. In addition, the described embodiments can ensure the integrity 45 of the data stored in the volatile memory of a storage drive, as described below in relation to FIG. 5.

A "distributed storage system" or a "storage system" can include multiple storage servers. A "storage server" or a "storage system" can refer to a computing device which can 50 include multiple storage devices or storage drives. A "storage device" or a "storage drive" refers to a device or a drive with a non-volatile memory which can provide persistent storage of data, e.g., a solid-state drive (SSD), or a flash-based storage device. A storage system can also be a 55 computer system.

"Non-volatile memory" refers to storage media which may be used for persistent storage of data, e.g., flash memory of a NAND die of an SSD, magnetoresistive random access memory (MRAM), phase change memory 60 (PCM), resistive random access memory (ReRAM), or another non-volatile memory.

"Volatile memory" refers to storage media which can include, e.g., dynamic random access memory (DRAM), double data rate (DDR) DRAM, and DDR dual in-line 65 memory modules (DIMM). In general, data stored in volatile memory is not protected in the event of a power loss or other

6

failure. In some cases, volatile memory can be protected from such data loss with a power protection module or other power loss component.

The terms "sysmem" and "region of a volatile memory" are used interchangeably in this disclosure and refer to a portion of a volatile memory of a first storage drive, where the portion or region is allocated to be accessed directly by a second storage drive or a NIC, and where the first storage drive, the second storage drive, and the NIC are associated with the same server. The allocated sysmem or region can serve as system memory for the storage device in a more efficient manner than the conventional system memory associated with a host or a storage server.

A "computing device" refers to any server, device, node, entity, drive, or any other entity which can provide any computing capabilities.

The term "write cache" refers to a data cache, buffer, or region which can store data in a persistent memory or a non-volatile memory.

Exemplary Data Transfer in the Prior Art

FIG. 1A illustrates an exemplary environment 100 with a data transfer between storage drives in a same storage server, in accordance with the prior art. Environment 100 can include: a central processing unit (CPU) 102, an associated Peripheral Component Interconnect Express (PCIe) interface 104, and an associated system memory 106; and solid state drives (SSDs) 112 and 114. CPU 102 can communicate with SSDs 112 and 114 via PCIe interface 104. During operation, in order to move data from one drive to another drive (e.g., from a source drive such as SSD 112 to a destination drive such as SSD 114), the data is first copied from the source drive into system memory, i.e., transferred from SSD 112, via PCIe 104, to CPU 102, to system memory 106 (via a communication 120). The data is then written from system memory to the destination drive, i.e., transferred from system memory 106 to CPU 102 and, via PCIe 304, to SSD 114 (via a communication 122). Thus, the host CPU and system memory are involved in the transfer of data from the source storage drive to the destination storage drive, which can increase the latency and inefficiency of the overall storage system.

FIG. 1B illustrates an exemplary environment 130 with a data transfer between storage drives in different storage servers, in accordance with the prior art. Environment 130 can include an Ethernet switch 160 and a cluster of servers, where each server can include a CPU and a system memory, and be associated with multiple SSDs and a network interface card (NIC). For example, a first server 101 can include: a CPU 102, an associated PCIe interface 104, and an associated system memory 106; one or more SSDs, such as an SSD 112; and a NIC 132. A second server 141 can include: a CPU 142, an associated PCIe interface 144, and an associated system memory 146; one or more SSDs, such as an SSD 154; and a NIC 152. CPU 102 can communicate with SSD 112 via PCIe interface 104, and CPU 142 can communicate with SSD 154 via PCIe interface 144. The two depicted servers 101 and 141 can communicate with each other through Ethernet switch 160 via their respective NICs 132 and 152.

During operation, in order to move data from one drive in the first server to another drive in the second server (e.g., from a source drive such as SSD 112 of server 101 to a destination drive such as SSD 154 of server 141), the data is first copied from the source drive into system memory of the first server, i.e., transferred from SSD 112, via PCIe 104, to CPU 102, to system memory 106 (via a communication path 160). The data is then written from system memory to

NIC 132, i.e., transferred from system memory 106 to CPU 102 and, via PCIe 104, to NIC 132 (via a communication path 162). NIC 132 can generate formatting information for the data, and perform other packet processing, data reordering, and concatenation operations.

NIC 132 can transfer the formatted data (e.g., formatting information and payload) to Ethernet switch 160 (via a communication 164), and, based on the formatting information, Ethernet switch 160 can transfer the data to NIC 152 (via a communication 168). NIC 152 can perform packet 10 processing, data reordering, and concatenation operations. NIC 152 can send the data to be copied into system memory of the second server, i.e., transferred from NIC 152, via PCIe 144, to CPU 142, to system memory 146 (via a communication path 170). The data is then written from system 15 memory to the destination drive, i.e., transferred from system memory 146 to CPU 142 and, via PCIe 144, to SSD 154 (via a communication path 172).

Thus, in environment 130, the host CPU and system memory of both servers are involved in the transfer of data 20 from the source storage drive to the destination storage drive, which can increase the latency and inefficiency of the overall storage system. In addition, the NICs of both servers can consume a non-trivial amount of time, energy, bandwidth, and other resources on packet processing, data reordering, concatenation, and other operations related to formatting and processing network packets. These operations can further increase the latency and inefficiency of the overall storage system.

Moreover, in the storage cluster depicted in environment 30 130, the system can experience a non-trivial amount of traffic due to, e.g., managing data replicas, rebalancing data, etc. Moving multiple copies of data within the storage cluster can result in a performance bottleneck due to the latency involved in memory copy operations, as described 35 above

Exemplary Environment with Separate Control and Data Paths

FIG. 2 illustrates an exemplary environment 200 with separate control and data paths, which facilitates bypassing 40 system memory, in accordance with an embodiment of the present application. Environment 200 can include: a host 202 with a local storage engine 210; a NIC 230; and SSDs 240, 242, and 246. Local storage engine can include: a network engine 214; a chunk organization module 212; a 45 local file system 216; a flash translation layer (FTL) module 218; and a Non-Volatile Memory Express (NVMe) driver 220

NIC 230 can store data as formatted data which includes formatting information and a payload. For example, payloads 232, 234, and 236 are indicated in FIG. 2 with left-slanting diagonal lines. Assume that metadata 250 is associated with the data indicated by payload 234 in NIC 230. NIC 230 can send metadata 250 to host 202 for processing, and host 202, after processing the metadata as 55 described below, can send a physical block address (PBA) and metadata back to SSDs 240-246 (via a control path 262). At the same or a similar time, NIC 230 can send the payload data itself directly to SSDs 240-246 (e.g., via a data path 260).

Local storage engine 210 can perform a series of operations on metadata 250. Upon receiving metadata 250 from NIC 230, network engine 214 can generate management information, e.g., an order, a merged size, and other metadata for the data indicated by payload 234. Network engine 65 214 can send management information 252 to chunk organization module 212.

8

Chunk organization module 212 can group received network packets into multiple chunks in parallel, and can send chunk metadata 254 to local file system 216. Local file system 216 can use chunk metadata 254 to allocate the logical extent (e.g., a range of logical block addresses (LBAs)) to accommodate the data, and can send LBA range/metadata 256 to FTL module 218.

FTL module 218 can receive the incoming LBAs, including LBAs allocated to chunks associated with the data indicated by payload 234, from multiple chunks in a random order, which is similar to the pattern associated with a random write operation. FTL module 218 can implement the mapping of the LBAs to physical block addresses (PBAs), e.g., by generating or mapping PBAs for the incoming LBAs, and storing the mapping in a data structure. FTL module 218 can send PBA/metadata 258 to NVMe driver 220, which can perform any necessary data processing, and can send PBA/metadata 258 to controllers (not shown) of SSDs 240-246, via control path 262.

The PBA and metadata information received by controllers of SSDs 240-246 via control path 262, along with the payload data received by the controllers of SSDs 240-246 via control path 260, can accomplish the programming of the NAND flash in SSDs 240-246. Thus, the operations and communications depicted in environment 200 demonstrate how the local storage engine collaborating with the SSD controller for metadata/data transmission can result in an improved system for both data transmission and storage efficiency.

Data Movement from a NIC to a Storage Drive

FIG. 3 illustrates an exemplary environment 300 with data movement from a network interface card to a storage drive, in accordance with an embodiment of the present application. Environment 300 can include: a NIC memory 310 (which is set as host memory); an SSD controller write cache 340; and a non-volatile memory 370, such as NAND flash storage modules, units, or components 372, 374, and 376. NIC memory 310 can store formatted data, which can include formatting information and a payload. For example, NIC memory can store network packets as: formatting information 322 for a payload or application data indicated by a packet_1 324; formatting information 326 for a payload or application data indicated by a packet_2 328; and formatting information 330 for a payload or application data indicated by a packet_n 332.

Each network packet can include formatting information and a payload or application data. For example, formatting information 326 and packet_2 328 can include: a frame header 312, an Internet Protocol (IP) header 314, and a Transmission Control Protocol (TCP) header 316 which are part of formatting information 326, as indicated by right-slanting diagonal lines; and application data 318, which can correspond to the payload of packet_2 328.

The SSD controller can store data in write cache **340** in write groups of a predetermined size, and when the data stored in a given write group reaches the predetermined size, the SSD controller can write the data in the given write group to the NAND flash. For example, write cache **340** can include a write group_1 **350** and a write group_2 **360**. Environment **300** can depict that the payload or application data indicated by packet_1 **324** has been written as a data packet_1 **352** to write group_1 **350** of write cache **340**. Another payload can then be written to write group_1 **350**, as indicated by packet_2 **328** being written to write group_1 **350** as a data packet_2 **354** (via a communication **370**).

The system can determine that the data stored in write group _1 350 meets or has reached a predetermined group

size, and can write the data to non-volatile memory 370 (i.e., NAND flash 372-376). The predetermined group size can be based on, e.g., a size of a page in the NAND flash or a number of available channels for processing data in a parallel manner.

Exemplary Environment for Data Transfer: Single Server Scenario and Storage Cluster Scenario

FIG. 4A illustrates an exemplary environment 400 with a data transfer between storage drives in a same storage server, which facilitates bypassing system memory, in accordance 10 with an embodiment of the present application. Environment 400 can include: a central processing unit (CPU) 402, an associated Peripheral Component Interconnect Express (PCIe) interface 404, and an associated system memory 406; and solid-state drives (SSDs) 412, 414, and 416. A respective SSD can expose a portion of its memory as system memory, which allows other SSDs (or a NIC) in the same server to directly retrieve data from the exposed system memory of the respective SSD. The other SSDs can also send data directly to this exposed system memory on the 20 respective SSD.

For example, during operation, the system can allocate, in the volatile memory of SSD 412, a first region (system memory or sysmem) 413 to be accessed directly by a second storage drive (such as SSD 414 via a communication 420) or 25 a first NIC (as described below in relation to FIG. 4B). In addition, SSD 416 (or SSD 414) can send or write data directly to the allocated first region (system memory) 413 of SSD 412 (via, e.g., a communication 422). This allows data to be retrieved from or written to SSD 412 while bypassing 30 system memory 406, thus eliminating the need to copy the data into the system memory or DIMM of the server itself (which challenge is described above in relation to the prior art environment of FIG. 1A).

FIG. 4B illustrates an exemplary environment 430 with a 35 data transfer between storage drives in different storage servers, which facilitates bypassing system memory, in accordance with an embodiment of the present application. Environment 430 can include an Ethernet switch 460 and a cluster of servers, where each server can include a CPU and 40 a system memory, and be associated with multiple SSDs and a network interface card (NIC). For example, a first server 401 can include: a CPU 402, an associated PCIe interface 404, and an associated system memory 406; one or more SSDs, such as an SSD 412; and a NIC 432. A second server 45 441 can include: a CPU 442, an associated PCIe interface 444, and an associated system memory 446; one or more SSDs, such as an SSD 454; and a NIC 452. The two depicted servers 401 and 441 can communicate with each other through Ethernet switch 460 via their respective NICs 432 50 and 452.

A first SSD of the first server can expose a portion of its memory as system memory, which allows a first NIC of the first server to directly retrieve data from the exposed system memory of the respective SSD. The first NIC can send the 55 retrieved data, along with network formatting information, to a second NIC of a second server. A second SSD of the second server can retrieve the data directly from the second NIC (as described above in relation to FIG. 3.

For example, during operation, the system can allocate, in 60 the volatile memory of SSD 412, a first region (system memory or sysmem) 413 to be accessed directly by NIC 432 (or by other SSDs of server 401). SSD 412 can store data in the allocated first region sysmem 413. SSD 454 can generate a request to retrieve data from SSD 412 (or the system can 65 determine that SSD 412 is to send data to SSD 454). NIC 432 can retrieve the requested data from sysmem 413 of

10

SSD **412** (via a communication **470**). NIC **432** can generate formatting information for the data, and perform other packet processing, data reordering, and concatenation operations, i.e., by adjusting the data into a predefined format such as described above in relation to FIG. **3**.

NIC 432 can transfer the formatted data (including formatting information and payload) to Ethernet switch 460 (via a communication 472), and, based on the formatting information, Ethernet switch 460 can transfer the data to NIC 452 (via a communication 474). NIC 452 can perform packet processing, data reordering, and concatenation operations. NIC 452 can store the data as formatted data which includes formatting information and a payload. NIC 452 can send the payload data directly to SSD 454 (via communications 476, which can correspond to the operations described above in relation to FIG. 2). SSD 454 can also allocate a region (not shown) of its volatile memory as a system memory which can be accessed directly by NIC 452 or other SSDs of server 441. Moreover, SSD 454 can retrieve the payload data directly from NIC 452 by accessing the formatted data and selecting only the portions of payload data, e.g., by dropping the formatting information or formatting bits (via communications 476). SSD 454 can then group the data and write the data to its NAND flash based on the pages and PBAs as assigned by the FTL at the host side, as described above in relation to FIG. 2.

Thus, FIG. 4B depicts an environment or system which allows data to be retrieved from (or written to) SSD 412 by SSD 454 while bypassing both system memory 406 and 446, thus eliminating the need to copy the data into the system memory or DIMM of both servers 401 and 441 (which challenge is described above in relation to the prior art environment of FIG. 1B).

Controller Operations for Ensuring Data Quality

FIG. 5A illustrates an exemplary environment 500 for data access with a cyclic redundancy check (CRC) in a storage controller, in accordance with an embodiment of the present application. Environment 500 can include a storage controller with associated components or modules, and can also include a volatile memory of a storage device and non-volatile memory of the storage device. The storage controller can include: a PCIe physical layer (PHY) 510; an NVMe controller 512; a DDR controller 514; a cyclic redundancy check (CRC) module 518; and a flash controller 520 with an error correction code (ECC) encoding/decoding module 522. DDR controller 514 can communicate with a volatile memory DDR 516 and an allocated region sysmem 517 of volatile memory 516. Note that sysmem 517 can serve as the allocated and exposed region of system memory which can be directly accessed by other SSDs or the NIC in the same server. For example, sysmem 517 can correspond to sysmem 413 of SSD 412 of FIG. 4A, as the allocated region from which data can be directly retrieved (e.g., communication 420) or to which data can be directly written (e.g., communication 420) by a storage device of the same server. Sysmem 517 can also correspond to sysmem 413 of FIG. 4B, as the allocated region from which data can be directly retrieved by a NIC of the same server (e.g., communication 470).

Data can be sent to or received from host 530, and can also be sent to or received from NAND flash 532. For example, as indicated by a communication path 534, data can be received from host 530. This data can be the data fetched directly from the allocated sysmem which bypasses the server's system memory or DIMM. The fetched data can travel through PCIe PHY 510 to NVMe controller 512, and NVMe controller 512 can operate to process the data as

needed. CRC **518** can perform a CRC check on the data, which can then be passed via DDR controller **514** to be temporarily buffered, with power loss protection, in sysmem **517** of DDR **516** (as indicated by communication path **534**).

11

Subsequently, as indicated by a communication path **536**, 5 the data can be sent to the NAND flash. When reading out the stored data from sysmem **517** of DDR **516**, the data is passed via DDR controller **514** back to CRC **518**, which can check the CRC to ensure the integrity, correctness, or accuracy of the data. CRC **518** can send the CRC-checked 10 data to ECC **522** of flash controller **520**. ECC **522** can perform ECC encoding on the data, and can send the ECC-encoded data to the NAND flash (via **532** as part of communication path **536**).

FIG. 5B illustrates an exemplary environment 540 for 15 data access with a CRC in a storage controller, in accordance with an embodiment of the present application. Environment 540 can include a CRC module 542, a memory module 544, and a CRC module 546. CRC modules 542 and 546 can correspond to CRC module 518 of FIG. 5A; memory 544 20 can correspond to sysmem 517 of DDR 516 of FIG. 5A; a path 554 can correspond to path 534 of FIG. 5A; and a path 556 can correspond to path 536 of FIG. 5A.

Environment **540** depicts a high-level view of the communications described above in relation to FIG. **5A**. During operation, the system (by CRC **542**) can receive data to be stored in non-volatile memory via path **554**. CRC **542** can perform a first redundancy check and send the CRC data to memory **544** (via path **554**). The system can store the CRC data in memory **544**, and can subsequently retrieve (by CRC **30 546**) the stored CRC data from memory **544**. CRC **546** can perform a second redundancy check, and send the CRC-checked data onwards, e.g., to ECC **522** (via path **556**). Method for Facilitating Data Movement by Bypassing System Memory: Single Server Scenario and Storage Cluster **35** Scenario

FIG. 6A presents a flowchart 600 illustrating a method for facilitating data movement while bypassing system memory, including a data transfer between storage drives in a same storage server, in accordance with an embodiment of the 40 present application. During operation, the system allocates, in a volatile memory of a first storage drive, a first region to be accessed directly by a second storage drive or a first network interface card (NIC), wherein the first storage drive, the second storage drive, and the first NIC are associated 45 with a first server (operation 602). The system stores data in the first region of the first storage drive (operation 604). Responsive to receiving a first request from the second storage drive to read the data, the system transmits, by the first storage drive to the second storage drive, the data stored 50 in the first region while bypassing a system memory of the first server (operation 606). Responsive to receiving, from a third storage drive associated with a second server, a second request to read the data, the system retrieves, by the first NIC, the data stored in the first region while bypassing the 55 system memory of the first server (operation 608). The operation continues at Label A of FIG. 6B.

FIG. 6B presents a flowchart 620 illustrating a method for facilitating data movement while bypassing system memory, including a data transfer between storage drives in different 60 storage servers, in accordance with an embodiment of the present application. The system stores, by the first NIC, the data as formatted data which includes formatting information and a payload (operation 622). The system sends, by the first NIC to a second NIC associated with the second server, 65 the formatted data (operation 624). The system stores, by the second NIC, the formatted data (operation 626). The system

12

sends, by the second NIC to a local storage engine associated with the second server, metadata associated with the data (operation 628).

The system generates, by the local storage engine, management information which includes a physical block address of a non-volatile memory of the third storage drive to which the data is to be written (operation 630). The system sends, by the local storage engine, the management information to the third storage drive (operation 632). The system sends, by the second NIC, the payload to the third storage drive (operation 634). The system receives, by the third storage drive, the management information from the local storage engine and the payload from the second NIC (operation 636). The system writes, by the third storage drive, the data to the non-volatile memory of the third storage drive based on the received management information (operation 638), and the operation returns.

Method for Facilitating Data Movement by Writing Data in Groups to a Non-Volatile Memory

FIG. 7 presents a flowchart 700 illustrating a method for facilitating data movement while bypassing system memory, including writing data in groups to a non-volatile memory, in accordance with an embodiment of the present application. During operation, the system stores, by the third storage drive, in a buffer of the third storage drive, the payload as part of a group (operation 702). The system stores other payloads in the group, wherein the other payloads are associated with other management information (operation 704). The system determines whether a size of the payload and the other payloads meets a predetermined group size (operation 706). If it does not (decision 708), the operation returns to operation 704. If it does (decision 708), the system writes, from the buffer of the third storage drive to the non-volatile memory, the payload and the other payloads of the group (operation 710). Writing the payload and the other payloads of the group to the non-volatile memory can be based on the PBA, metadata, and other management information received from a local storage engine of a host, as described above in relation to FIG. 2.

FIG. 8 presents a flowchart 800 illustrating a method for facilitating data movement while bypassing system memory, including operations to ensure data integrity, in accordance with an embodiment of the present application. During operation, the system receives, by a controller of the third storage drive, the data (operation 802). The controller can include a Non-Volatile Memory Express (NVMe) controller, a double data rate (DDR) controller associated with the volatile memory, a cyclic redundancy check (CRC) module, and a flash controller. The flash controller can include an error correction code (ECC) encoding/decoding module. The system performs, by the CRC module, a first redundancy check on the received data to obtain CRC data (operation 804). The system stores, by the DDR controller in the first region of the volatile memory, the CRC data (operation 806). The system determines to write the stored CRC data from the first region of the volatile memory to the non-volatile memory (operation 808). This determination can be based on a size of a write group in a write cache or buffer of the SSD controller, as described above in relation to FIG. 3.

The system retrieves, by the DDR controller, the stored CRC data (operation 810). The system performs, by the CRC module, a second redundancy check on the retrieved CRC data to obtain CRC-checked data (operation 812). Responsive to verifying the CRC-checked data, the system encodes, by the ECC encoding/decoding module of the flash controller, the CRC-checked data to obtain ECC-encoded

data (operation 814). The system writes the ECC-encoded data to the non-volatile memory (operation 816), and the operation returns.

Exemplary Computer System and Apparatus

FIG. 9 illustrates an exemplary computer system 900 that 5 facilitates data movement while bypassing system memory, in accordance with an embodiment of the present application. Computer system 900 includes a processor 902, a volatile memory 906, and a storage device 908. In some embodiments, computer system 900 can include a controller 904 (indicated by the dashed lines). Volatile memory 906 can include, e.g., random access memory (RAM), that serves as a managed memory, and can be used to store one or more memory pools. Storage device 908 can include persistent storage which can be managed or accessed via 15 processor 902 (or controller 904). Furthermore, computer system 900 can be coupled to peripheral input/output (I/O) user devices 910, e.g., a display device 911, a keyboard 912, and a pointing device 914. Storage device 908 can store an operating system 916, a content-processing system 918, and 20

Content-processing system 918 can include instructions, which when executed by computer system 900, can cause computer system 900 or processor 902 to perform methods and/or processes described in this disclosure. Specifically, 25 content-processing system 918 can include instructions for receiving and transmitting data packets, including data to be read or written, an input/output (I/O) request (e.g., a read request or a write request), metadata, management information, a PBA, an LBA, a payload, formatting information, 30 CRC data, and ECC-encoded data (communication module 920).

Content-processing system 918 can further include instructions for allocating, in a volatile memory of a first storage drive, a first region to be accessed directly by a 35 second storage drive or a first network interface card (NIC), wherein the first storage drive, the second storage drive, and the first NIC are associated with a first server (sysmem region-managing module 922). Content-processing system 918 can include instructions for storing data in the first 40 region of the first storage drive (data-writing module 930). Content-processing system 918 can include instructions for, responsive to receiving a first request from the second storage drive to read the data (communication module 920), transmitting, by the first storage drive to the second storage 45 drive, the data stored in the first region while bypassing a system memory of the first server (communication module 920 and sysmem region-managing module 922). Contentprocessing system 918 can also include instructions for, responsive to receiving, from a third storage drive associated 50 with a second server, a second request to read the data (communication module 920), retrieving, by the first NIC, the data stored in the first region while bypassing the system memory of the first server (data-reading module 928 and sysmem region-managing module 922).

Content-processing system 918 can additionally include instructions for storing, by the first NIC, the data as formatted data which includes formatting information and a payload (packet-formatting module 924). Content-processing system 918 can include instructions for sending, by the first NIC to a second NIC associated with the second server, the formatted data (communication module 920). Content-processing system 918 can include instructions for storing, by the second NIC, the formatted data (data-writing module 930). Content-processing system 918 can include instructions for sending, by the second NIC to a local storage engine associated with the second server, metadata associ-

14

ated with the data (communication module 920 and metadata-managing module 926). Content-processing system 918 can also include instructions for generating, by the local storage engine, management information which includes a physical block address of a non-volatile memory of the third storage drive to which the data is to be written (metadatamanaging module 920). Content-processing system 918 can include instructions for sending, by the local storage engine, the management information to the third storage drive (communication module 920 and metadata-managing module 926). Content-processing system 918 can include instructions for sending, by the second NIC, the payload to the third storage drive (communication module 920). Content-processing system 918 can include instructions for receiving, by the third storage drive, the management information from the local storage engine and the payload from the second NIC (communication module 920). Contentprocessing system 918 can include instructions for writing, by the third storage drive, the data to the non-volatile memory of the third storage drive based on the received management information (data-writing module 930). Content-processing system 918 can include instructions for performing the operations described above in relation to FIG. 2.

Content-processing system 918 can further include instructions for storing, by the third storage drive, in a buffer of the third storage drive, the payload as part of a group (data-writing module 930 and cache-managing module 932). Content-processing system 918 can include instructions for storing other payloads in the group, wherein the other payloads are associated with other management information (data-writing module 930 and cache-managing module 932). Content-processing system 918 can include instructions for determining that a size of the payload and the other payloads meets a predetermined group size (cache-managing module 932). Content-processing system 918 can include instructions for writing, from the buffer of the third storage drive to the non-volatile memory, the payload and the other payloads of the group (data-writing module 930). Contentprocessing system 918 can include instructions for performing the operations described above in relation to FIG. 7.

Content-processing system 918 can also include instructions for receiving, by a controller of the third storage drive, the data (communication module 920). Content-processing system 918 can include instructions for performing, by the CRC module, a first redundancy check on the received data to obtain CRC data (error-detecting module 934). Contentprocessing system 918 can include instructions for storing, by the DDR controller in the first region of the volatile memory, the CRC data (data-writing module 930 and sysmem region-managing module 922). Content-processing system 918 can include instructions for determining to write the stored CRC data from the first region of the volatile memory to the non-volatile memory (sysmem region-managing module 922). Content-processing system 918 can include instructions for retrieving, by the DDR controller, the stored CRC data (data-reading module 928). Contentprocessing system 918 can include instructions for performing, by the CRC module, a second redundancy check to obtain CRC-checked data (error-detecting module 934). Content-processing system 918 can include instructions for, responsive to verifying the CRC checked data, encoding, by the ECC encoding/decoding module of the flash controller, the CRC-checked data to obtain ECC-encoded data (errordetecting module 934). Content-processing system 918 can include instructions for writing the ECC-encoded data to the non-volatile memory (data-writing module 930). Content-

processing system 918 can include instructions for performing the operations described above in relation to FIG. 8.

Data 936 can include any data that is required as input or generated as output by the methods and/or processes described in this disclosure. Specifically, data 936 can store 5 at least: data; a request; a read request; a write request; an input/output (I/O) request; data or metadata associated with a read request, a write request, or an I/O request; formatted data; encoded data; CRC data; CRC-checked data; ECCencoded data; an indicator or identifier of a storage drive, a local storage engine, a NIC, a switch, or a server; formatting information; a frame header; an IP header; a TCP header; a payload; application data; user data; a network packet; metadata; management information; a logical block address (LBA); a physical block address (PBA); an indicator of a region or an allocated region of a volatile memory; a chunk of data; chunk metadata; a logical extent or range of LBAs; a group of data; a predetermined group size; a size of a payload; and a size of multiple payloads stored in a group. 20

FIG. 10 illustrates an exemplary apparatus 1000 that facilitates data movement while bypassing system memory, in accordance with an embodiment of the present application. Apparatus 1000 can comprise a plurality of units or apparatuses which may communicate with one another via a 25 wired, wireless, quantum light, or electrical communication channel. Apparatus 1000 may be realized using one or more integrated circuits, and may include fewer or more units or apparatuses than those shown in FIG. 10. Furthermore, apparatus 1000 may be integrated in a computer system, or 30 realized as a separate device or devices capable of communicating with other computer systems and/or devices.

Apparatus 1000 can comprise modules or units 1002-1016 which are configured to perform functions or operations similar to modules 920-934 of computer system 900 of 35 FIG. 9, including: a communication unit 1002; a sysmem region-managing unit 1004; a packet-formatting unit 1006; a metadata-managing unit 1008; a data-reading unit 1010; a data-writing unit 1012; a cache-managing unit 1014; and an error-detecting unit 1016.

The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not 45 limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.

The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.

Furthermore, the methods and processes described above can be included in hardware modules. For example, the 60 hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules 65 perform the methods and processes included within the hardware modules.

16

The foregoing embodiments described herein have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the embodiments described herein to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the embodiments described herein. The scope of the embodiments described herein is defined by the appended claims.

What is claimed is:

1. A computer-implemented method, comprising:

allocating, in a volatile memory of a first storage drive, a first region to be accessed directly by a second storage drive,

wherein the first storage drive and the second storage drive are associated with a first server, wherein the first region of the first storage drive is to be further accessed by a third storage drive via a first network interface card (NIC), wherein the first NIC is associated with the first server, and wherein the third storage drive is associated with a second server;

storing data in the first region of the first storage drive; responsive to receiving a first request from the second storage drive to read the data, transmitting, by the first storage drive to the second storage drive, the data stored in the first region while bypassing a system memory of the first server;

responsive to receiving, from the third storage drive, a second request to read the data, retrieving, by the first NIC, the data stored in the first region while bypassing the system memory of the first server;

sending, by the first NIC to a second NIC associated with the second server, the data as formatted data which includes formatting information and a payload;

sending, by the second NIC to a local storage engine associated with the second server, metadata associated with the data, which causes the local storage engine to: allocate, by a file system of the local storage engine, a logical extent or a range of logical block addresses (LBAs) based on metadata associated with multiple chunks of data:

send, by the file system to a flash translation layer (FTL) module of the local storage engine, the allocated LBAs;

generate, by the FTL module, physical block addresses (PBAs) mapped to the allocated LBAs, wherein management information includes the PBAs, the metadata, and one or more of an order and a merged size; and

transmit, to the third storage drive, the management information;

receiving, by the third storage drive, the management information from the local storage engine and the payload from the second NIC; and

writing, by the third storage drive, the data to the nonvolatile memory of the third storage drive based on the received management information.

2. The method of claim 1, further comprising:

storing, by the first NIC, the data as formatted data which includes formatting information and a payload;

storing, by the second NIC, the formatted data; and sending, by the second NIC, the payload to the third storage drive.

3. The method of claim 2,

wherein the formatting information includes one or more of a frame header, an Internet Protocol (IP) header, and a Transmission Control Protocol (TCP) header,

- wherein the payload includes one or more of application data and user data, and
- wherein sending, by the first NIC to the second NIC, the formatted data further involves sending the formatted data through an Ethernet switch.
- 4. The method of claim 2, further comprising:
- setting, in the second NIC, a second region of a volatile memory of the second NIC as a host memory which is directly accessible by the third storage drive; and
- storing, by the second NIC, the formatted data in the 10 second region of the second NIC.
- 5. The method of claim 1, wherein sending, by the second NIC to the local storage engine associated with the second server, the metadata associated with the data further causes the local storage engine to:
 - generate, by a network engine of the local storage engine, the management information, which includes one or more of the order and the merged size;
 - group, by a chunk organization module of the local storage engine, multiple chunks of data in parallel; receive, by the FTL module, the allocated LBAs;
 - transmit, by the FTL module to a Non-Volatile Memory Express (NVMe) driver, the PBAs and the metadata;
 - transmit, by the NVMe driver to a controller of the third 25 storage drive, the PBAs and the metadata.
- 6. The method of claim 1, wherein writing, by the third storage drive, the data to the non-volatile memory based on the received management information comprises:
 - storing, by the third storage drive, in a buffer of the third 30 storage drive, the payload as part of a group;
 - storing other payloads in the group, wherein the other payloads are associated with other management infor-
 - determining that a size of the payload and the other 35 payloads meets a predetermined group size; and
 - writing, from the buffer of the third storage drive to the non-volatile memory, the payload and the other payloads of the group.
- 7. The method of claim 1, wherein writing, by the third 40 storage drive, the data to the non-volatile memory comprises:
 - receiving, by a controller of the third storage drive, the
 - wherein the controller includes a Non-Volatile Memory 45 Express (NVMe) controller, a double data rate (DDR) controller associated with the volatile memory, a cyclic redundancy check (CRC) module, and a flash controller, wherein the flash controller includes an error correction code (ECC) encoding/decoding module; 50
 - performing, by the CRC module, a first redundancy check on the received data to obtain CRC data;
 - storing, by the DDR controller in the first region of the volatile memory, the CRC data;
 - determining to write the stored CRC data from the first 55 region of the volatile memory to the non-volatile
 - retrieving, by the DDR controller, the stored CRC data; performing, by the CRC module, a second redundancy check on the retrieved CRC data to obtain CRC- 60 checked data;
 - responsive to verifying the CRC-checked data, encoding, by the ECC encoding/decoding module of the flash controller, the CRC-checked data to obtain ECC-encoded data: and
 - writing the ECC-encoded data to the non-volatile memory.

18

- 8. The method of claim 1, wherein subsequent to the first storage drive transmitting to the second storage drive the data stored in the first region while bypassing the system memory of the first server, the method further comprises:
 - retrieving, by the second storage drive, the data stored in the first region while bypassing the system memory of the first server.
 - 9. A computer system, comprising:
 - a processor; and
 - a memory coupled to the processor and storing instructions which, when executed by the processor, cause the processor to perform a method, the method comprising: allocating, in a volatile memory of a first storage drive, a first region to be accessed directly by a second storage drive.
 - wherein the first storage drive and the second storage drive are associated with a first server, wherein the first region of the first storage drive is to be further accessed by a third storage drive via a first network interface card (NIC), wherein the first NIC is associated with the first server, and wherein the third storage drive is associated with a second server;
 - storing data in the first region of the first storage drive; responsive to receiving a first request from the second storage drive to read the data, transmitting, by the first storage drive to the second storage drive, the data stored in the first region while bypassing a system memory of the first server;
 - responsive to receiving, from the third storage drive, a second request to read the data, retrieving, by the first NIC, the data stored in the first region while bypassing the system memory of the first server;
 - sending, by the first NIC to a second NIC associated with the second server, the data as formatted data which includes formatting information and a pay-
 - sending, by the second NIC to a local storage engine associated with the second server, metadata associated with the data, which causes the local storage
 - allocate, by a file system of the local storage engine, a logical extent or a range of logical block addresses (LBAs) based on metadata associated with multiple chunks of data;
 - send, by the file system to a flash translation layer (FTL) module of the local storage engine, the allocated LBAs:
 - generate, by the FTL module, physical block addresses (PBAs) mapped to the allocated LBAs, wherein management information includes the PBAs, the metadata, and one or more of an order and a merged size; and
 - transmit, to the third storage drive, the management information:
 - receiving, by the third storage drive, the management information from the local storage engine and the payload from the second NIC; and
 - writing, by the third storage drive, the data to the non-volatile memory of the third storage drive based on the received management information.
- 10. The computer system of claim 9, wherein the method further comprises:
 - storing, by the first NIC, the data as formatted data which includes formatting information and a payload;
 - storing, by the second NIC, the formatted data;
 - sending, by the second NIC, the payload to the third storage drive.

19

- 11. The computer system of claim 10,
- wherein the formatting information includes one or more of a frame header, an Internet Protocol (IP) header, and a Transmission Control Protocol (TCP) header,
- wherein the payload includes one or more of application 5 data and user data, and
- wherein sending, by the first NIC to the second NIC, the formatted data further involves sending the formatted data through an Ethernet switch.
- 12. The computer system of claim 10, wherein the method further comprises:
 - setting, in the second NIC, a second region of a volatile memory of the second NIC as a host memory which is directly accessible by the third storage drive; and
 - storing, by the second NIC, the formatted data in the second region of the second NIC.
- 13. The computer system of claim 9, wherein sending, by the second NIC to the local storage engine associated with the second server, the metadata associated with the data 20 further causes the local storage engine:
 - generate, by a network engine of the local storage engine, the management information, which includes one or more of the order and the merged size;
 - group, by a chunk organization module of the local 25 storage engine, multiple chunks of data in parallel;
 - receive, by the FTL module, the allocated LBAs;
 - transmit, by the FTL module to a Non-Volatile Memory Express (NVMe) driver, the PBAs and the metadata; and
 - transmit, by the NVMe driver to a controller of the third storage drive, the PBAs and the metadata.
- 14. The computer system of claim 9, wherein writing, by the third storage drive, the data to the non-volatile memory based on the received management information comprises: 35 storing, by the third storage drive, in a buffer of the third storage drive, the payload as part of a group;
 - storing other payloads in the group, wherein the other payloads are associated with other management information;
 - determining that a size of the payload and the other payloads meets a predetermined group size; and
 - writing, from the buffer of the third storage drive to the non-volatile memory, the payload and the other payloads of the group.
- 15. The computer system of claim 9, wherein writing, by the third storage drive, the data to the non-volatile memory comprises:
 - receiving, by a controller of the third storage drive, the data.
 - wherein the controller includes a Non-Volatile Memory Express (NVMe) controller, a double data rate (DDR) controller associated with the volatile memory, a cyclic redundancy check (CRC) module, and a flash controller, wherein the flash controller includes an error correction code (ECC) encoding/decoding module;
 - performing, by the CRC module, a first redundancy check on the received data to obtain CRC data;
 - storing, by the DDR controller in the first region of the volatile memory, the CRC data;
 - determining to write the stored CRC data from the first region of the volatile memory to the non-volatile memory;
 - retrieving, by the DDR controller, the stored CRC data; performing, by the CRC module, a second redundancy 65 check on the retrieved CRC data to obtain CRC-checked data;

20

- responsive to verifying the CRC-checked data, encoding, by the ECC encoding/decoding module of the flash controller, the CRC-checked data to obtain ECC-encoded data; and
- writing the ECC-encoded data to the non-volatile memory.
- 16. An apparatus, comprising:
- a region-managing module configured to allocate, in a volatile memory of a first storage drive, a first region to be accessed directly by a second storage drive or a first network interface card (NIC),
- wherein the first storage drive, the second storage drive, and the first NIC are associated with a first server, wherein the first region of the first storage drive is to be further accessed by a third storage drive via a first network interface card (NIC), wherein the first NIC is associated with the first server, and wherein the third storage drive is associated with a second server;
- a data-writing module configured to store data in the first region of the first storage drive;
- a communication module configured receive a first request from the second storage drive to read the data,
- wherein the data-writing module is configured to, responsive to the communication module receiving the first request, transmit, by the first storage drive to the second storage drive, the data stored in the first region while bypassing a system memory of the first server,
- wherein the communication module is further configured to receive, from the third storage drive, a second request to read the data; and
- a data-reading module configured to, responsive to the communication module receiving the second request, retrieve, by the first NIC, the data stored in the first region while bypassing the system memory of the first server.
- wherein the communication module is further configured to:
 - send, by the first NIC to a second NIC associated with the second server, the data as formatted data which includes formatting information and a payload; and
 - send, by the second NIC to a local storage engine associated with the second server, metadata associated with the data,
 - wherein a metadata-managing unit is configured to, responsive to the second NIC sending the metadata to the local storage engine:
 - allocate, by a file system of the local storage engine, a logical extent or a range of logical block addresses (LBAs) based on metadata associated with multiple chunks of data;
 - send, by the file system to a flash translation layer (FTL) module of the local storage engine, the allocated LBAs;
 - generate, by the FTL module, physical block addresses (PBAs) mapped to the allocated LBAs, wherein management information includes the PBAs, the metadata, and one or more of an order and a merged size; and
 - transmit, to the third storage drive, the management information;
 - wherein the communication module is further configured to receive, by the third storage drive, the management information from the local storage engine and the payload from the second NIC, and
 - wherein the data-writing module is further configured to write, by the third storage drive, the data to the

non-volatile memory of the third storage drive based on the received management information.

* * * * *