(54) 发明名称

一种含阿普斯特的药物组合物

(57) 摘要

本发明涉及一种含阿普斯特的药物组合物，所述组合物含有阿普斯特和环糊精或环糊精衍生物。本发明通过将阿普斯特与环糊精或环糊精衍生物制备成复合物从而改善阿普斯特的溶解性能，提高产品的稳定性。
1. 一种含阿普斯特的药物组合物，所述药物组合物含有阿普斯特和环糊精或环糊精衍生物。

2. 根据权利要求1所述的药物组合物，其中，所述组合物是将阿普斯特与环糊精或环糊精衍生物制备成组合物。

3. 根据权利要求1所述的药物组合物，其中，所述阿普斯特与环糊精或环糊精衍生物的摩尔比为1:0.01-20。

4. 根据权利要求1所述的药物组合物，其中，所述阿普斯特与环糊精或环糊精衍生物的摩尔比为1:0.1-10。

5. 根据权利要求1所述的药物组合物，其中，所述阿普斯特与环糊精或环糊精衍生物的摩尔比为1:0.2-5。

6. 根据权利要求1所述的药物组合物，其中所述环糊精或环糊精衍生物为选自环糊精、羟丙基环糊精、葡糖基环糊精、麦芽糖基环糊精和磺烃基醚环糊精及其盐中的至少一种。

7. 根据权利要求6所述的药物组合物，其中所述环糊精或环糊精衍生物为β-环糊精或羟丙基-β-环糊精。

8. 根据权利要求1-7所述的药物组合物，其还包含选自稀释剂、崩解剂、粘合剂、助流剂和润滑剂中的药学可接受的物质。
一种含阿普斯特的药物组合物

技术领域

本发明涉及医药领域，具体涉及一种含阿普斯特的药物组合物。

背景技术

阿普斯特（apremilast），化学名为S-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰基氨基甲基嘌呤-1,3-二酮，其化学结构式为：

阿普斯特于2014年3月25日获美国FDA批准上市，商品名为Otezla，用于治疗银屑病和银屑病关节炎。

由于阿普斯特的水溶性差，在水中的近似饱和溶解度小于0.03mg/ml。因此其制剂特性存在下述问题：(a) 在未使用表面活性剂的介质中溶出缓慢，无法完全溶出；(b) 具有溶出延迟的倾向；(c) 稳定性差等。已经有研究试图增加阿普斯特的溶解性和生物利用度。WO2013119607A2 报道了含缓释修饰赋形剂的阿普斯特药物制剂。CN103442698A 制备了阿普斯特的控释口服剂型形式，通过增加药物在胃肠道中的释放时间来提高难溶性药物的生物利用度。

作为首个获批上市的磷酸二酯酶（PDE4）抑制剂类新型小分子口服药，阿普斯特的应用前景良好。已知阿普斯特是公开于美国专利 US6011050A 中的降低哺乳动物中未知的TNFa 水平，抑制哺乳动物中的 PDE4 的药物。中国专利 CN 100427085C 和 CN1965823B 也分别公开了其通过抑制 PDE4 可以用于治疗哮喘、慢性阻塞性肺病和类风湿性关节炎、银屑病等。

发明内容

本发明的目的是提供一种溶解性好、稳定的阿普斯特药物组合物。本发明通过将阿普斯特与环糊精或环糊精衍生物制备成化合物而改善阿普斯特的溶解性能，提高产品的稳定性。

本发明的目的是通过以下技术方案实现的：

一种含阿普斯特的药物组合物，所述药物包含阿普斯特和环糊精或环糊精衍生物，具体是将阿普斯特与环糊精或环糊精衍生物制备成化合物。所述阿普斯特与环糊精或环糊精衍生物的摩尔比为1:0.01-20，优选1:0.1-10，更优选1:0.2-5。

其中所述环糊精或环糊精衍生物为选自环糊精、羟丙基环糊精、葡糖基环糊精、麦芽糖基环糊精和磺基基醚环糊精及其盐中的至少一种。
优选地，所述环糊精或环糊精衍生物为 β-环糊精或羟丙基-β-环糊精。

本发明的阿普普特的药物组合物，其还包含选自稀释剂、崩解剂、粘合剂、助流剂和润滑剂中的药学可接受的物质。

本发明的药物组合物可用于各种类型的口服药物。各种类型的药物是片剂、胶囊剂、颗粒剂和干混悬剂。

本发明的环糊精或环糊精衍生物和活性成分阿普普特可由商业购得。

阿普普特与环糊精或环糊精衍生物化合物的制备可按已知方法制备（山东中医杂志，2000，19（4）：241-243）。如：饱和水溶液法（重结晶或沉淀法）、超声波法、研磨法、冷冻干燥法和喷雾干燥法。

附图说明

图 1. 进行环糊精或环糊精衍生物包含的阿普普特片剂与阿普普特参比片的体外溶出试验结果示意图。

具体实施方式

本发明更详细的解释可以参考下列实施例。这些实施例并不限制本发明。

实施例 1

将阿普普特（5g）与 β-环糊精（25g）加入水（400ml）中，60℃保温下使用高剪切乳化机（10000rpm）混合 2 小时，过滤后 60℃干燥除去水分得到含阿普普特的药物组合物。

实施例 2

将阿普普特（2g）与羟丙基-β-环糊精（15g）加入水（100ml）中，超声分散 1 小时，过滤分离上层清液并使用真空冻干得到含阿普普特的药物组合物。

实施例 3：片剂的制备

片剂处方组成，每 50 片组成如下：

<table>
<thead>
<tr>
<th>组分</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>阿普普特 / β-环糊精组合物</td>
<td>24.0%</td>
</tr>
<tr>
<td>一水乳糖</td>
<td>50.5%</td>
</tr>
<tr>
<td>微晶纤维素</td>
<td>20.0%</td>
</tr>
<tr>
<td>交联羧甲基纤维素钠</td>
<td>2.0%</td>
</tr>
<tr>
<td>聚乙稀吡咯烷酮</td>
<td>3.0%</td>
</tr>
<tr>
<td>纯化水</td>
<td>/</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

制备工艺：将 3.595g 实施例 1 制备的阿普普特和 β-环糊精组合物（阿普司特 HPLC 含量 0.4172mg/mg）加入到湿法混合制粒机中，并与一水乳糖（7.58g）、微晶纤维素（PH101）（3.0g）、交联羧甲基纤维素钠（0.15g）、聚乙稀吡咯烷酮（PVP K30）（0.45g）混合。再加入纯化水（3.6ml）制软材，18 目制粒。60℃干燥 1-2 小时，24 目筛整粒后加入交联羧甲基纤维素钠（0.15g）和硬脂酸镁（0.075g）混合均匀得到颗粒。将 300mg 颗粒放在片模（Φ9mm）中并以 6-8KN 压力压制成片，得到 50 片阿普司特片（每片含 30mg 阿普司特）。

实施例 4：片剂的制备

<table>
<thead>
<tr>
<th>组分</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>阿普普特 / 羟丙基-β-环糊精组合物</td>
<td>49.3%</td>
</tr>
<tr>
<td>一水乳糖</td>
<td>25.2%</td>
</tr>
</tbody>
</table>
制备工艺：将7.4g实施例2制备的阿普斯特和羟丙基-β-环糊精，含2%环糊精HPLC含量0.2035mg/mg加入到湿法混合制粒机中，并与一水乳糖(3.78g)、微晶纤维素(PH101)3.0g，交联羧甲基纤维素钠(0.15g)、聚乙烯吡咯烷酮(PVP K30)(0.45g)混合。再加入纯化水(3.6ml)制软材，18目制粒。60℃干燥1~2小时，24目筛整粒后加入交联羧甲基纤维素钠(0.15g)和硬脂酸镁(0.075g)混合均匀得到颗粒。将300mg颗粒放在片模(Φ9mm)中并以6~8KN压力压制成片，得到50片阿普司特片(每片含30mg阿普司特)。

【0019】 试验例1：溶解性的测定

分别将阿普斯特、实施例1和实施例2制备的阿普斯特组合物溶解于水中，制备饱和溶液，检测其溶解度。结果如表1所示。

【0020】 表1 水中近似饱和溶解度比较

<table>
<thead>
<tr>
<th></th>
<th>近似饱和溶解度mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>未进行环糊精或环糊精衍生物包合的阿普斯特</td>
<td>0.0170</td>
</tr>
<tr>
<td>实施例1</td>
<td>0.7121</td>
</tr>
<tr>
<td>实施例2</td>
<td>1.4311</td>
</tr>
</tbody>
</table>

如表1所示，与未进行环糊精或环糊精衍生物包合的阿普斯特相比较，加入β-环糊精和羟丙基-β-环糊精显著地增加了阿普斯特的水溶解度。

【0021】 试验例2：稳定性测定

对比实施例3，实施例4和阿普斯特参比片(Otezla®30mg，批号F0002A，美国Celgene公司)降解物HPLC含量测定结果。

【0022】 降解物HPLC含量测定方法：根据中国药典二部附录XIX C原料药与药物制剂稳定性试验指导原则要求，对本发明中实施例3、实施例4中分别获得的阿普斯特片剂与阿普斯特参比片(Otezla®30mg，批号F0002A，美国Celgene公司)，分别进行高湿条件稳定性试验。样品在相对湿度75%的条件下裸露放置30天后取样，用HPLC测定各制剂中阿普斯特的降解物的总量。HPLC分析条件如下：

色谱柱：Agilent Eclipse XDB-C18(4.6mm×250mm,5μm)
柱温：30℃
洗脱溶剂：甲醇：水(含0.5%三乙胺，用磷酸调pH至2.4)=60:40
洗脱溶剂的流量：1.0ml/min
检测器：紫外检测器(检测波长：230nm)
稳定性试验的结果如表2所示。

【0023】 表2 稳定性试验结果

<table>
<thead>
<tr>
<th></th>
<th>实施例3</th>
<th>实施例4</th>
<th>阿普斯特参比片</th>
</tr>
</thead>
<tbody>
<tr>
<td>阿普斯特降解杂质生成量(%)</td>
<td>0.012</td>
<td>0.015</td>
<td>0.113</td>
</tr>
</tbody>
</table>

以上测定结果表明，进行环糊精或羟丙基-β-环糊精包合的阿普斯特片剂与普通阿普斯特片剂相比，阿普斯特降解杂质的生成显著受到抑制。

【0024】 试验例3：体外溶出度测定
对比实施例3，实施例4和阿普斯特参比片（Otezla® 30mg，批号F0002A，美国Celgene公司）的体外释放度。

【0025】体外释放度测定方法：照溶出度测定法（中国药典2010年版二部附录XC第二法），以900ml 25mM pH6.8 磷酸钠缓冲液为介质，转速为每分钟75转，依法操作，于5, 10, 15, 20, 30, 45, 60min取样10ml，及时补加等温同体积介质。样品离心（15000rpm, 5min）后取上清液，用高效液相色谱法（HPLC）分析测定从各片剂中的阿普斯特的溶出量。HPLC分析条件与试验例2中所示的条件相同。溶出试验的结果如图1和表3所示。

【0026】表3 溶出度试验结果

<table>
<thead>
<tr>
<th>时间（分钟）</th>
<th>实施例3</th>
<th>实施例4</th>
<th>阿普斯特参比片</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>36.8</td>
<td>38.6</td>
<td>22.3</td>
</tr>
<tr>
<td>10</td>
<td>48.5</td>
<td>56.1</td>
<td>32.8</td>
</tr>
<tr>
<td>15</td>
<td>59.0</td>
<td>68.5</td>
<td>40.4</td>
</tr>
<tr>
<td>20</td>
<td>66.1</td>
<td>78.0</td>
<td>43.5</td>
</tr>
<tr>
<td>30</td>
<td>73.4</td>
<td>87.5</td>
<td>49.0</td>
</tr>
<tr>
<td>45</td>
<td>78.0</td>
<td>91.3</td>
<td>54.2</td>
</tr>
<tr>
<td>60</td>
<td>81.3</td>
<td>93.3</td>
<td>55.1</td>
</tr>
</tbody>
</table>

可见，进行环糊精或羟丙基-β-环糊精包合的阿普斯特在未添加表面活性剂的介质中可迅速溶出。

【0027】如上所述，本发明可以增加难溶性药物阿普斯特的溶解性和溶解速度，并且所得的含阿普斯特的药物组合物稳定性更好。