发明名称
利用掩埋的共振柱的地震波防尘壁

摘要
本发明涉及一种用于保护建筑物免受地震影响的抗震屏障，并且更具体地，涉及一种利用掩埋的共振柱的地震波防尘壁，这些共振柱能够减弱建筑物外部的地震波，而不是将抗震装置安装在建筑物中。根据本发明的利用掩埋的共振柱的地震波防尘壁，各个建筑物不是被单独保护的，而是防尘壁上的一个区域都得到了保护，以将地震的震级降低到使用者所希望的水平。
1. 一种通过在地下掩埋多根共振柱而形成的抗震屏障，其中，每根共振柱被平面的屏障部分或者弯曲的屏障部分封闭，形成内部腔体，并且所述平面的屏障部分或者所述弯曲的屏障部分中的至少一者具有至少一个贯通部分，所述贯通部分从所述腔体的外部与所述腔体连通。

2. 根据权利要求1所述的抗震屏障，其中，所述共振柱具有1至30Hz的共振频率。

3. 根据权利要求1或2所述的抗震屏障，其中，所述共振柱具有圆柱形形状、六面体形状、八面体形状或者球形形状，并且所述共振柱借助于所述贯通部分互连。

4. 根据权利要求1或2所述的抗震屏障，其中，所述共振柱具有折射率（n）和宽度（W），所述折射率（n）和宽度（W）被调整以获得所述降低的目标震级（M），并且所述宽度在从20m至100m的范围内以减少震级1。

5. 根据权利要求1或2所述的抗震屏障，其中，每个共振柱的所述腔体具有从1m³至100m³的体积。

6. 根据权利要求1或2所述的抗震屏障，其中，所述共振柱被掩埋在地下1m至100m之间。
利用掩埋的共振柱的地震波防尘壁

技术领域
[0001] 本发明主要涉及一种用于保护建筑物免受地震影响的抗震装置，更具体地涉及一种用于保护抗震屏障或者地震震源区之外的建筑物的技术，这种技术通过在建筑物之外掩埋多根共振柱而用作抗震屏障或者地震震源区来阻止地震波的传播，而不是在建筑物本身中安装抗震装置。

背景技术
[0002] 地震是不可避免的典型自然灾害中的一种，并且对财产，最重要的是对那些居住在地震带或地震带附近的居民造成威胁。为了减少地震所引发的破坏，已经进行了许多关于建筑物抗震设计（包括早期地震警告系统）的研究。因此，相当有效地防止了居住在地震带或地震带附近的居民受到地震影响。
[0003] 然而，每年全世界仍然有数千万人在地震中死亡或受伤。近年来于2011年3月11日发生在日本本州岛仙台的东海岸的地震说明了无论抗震设计如何优秀，建筑物永远不会是安全的。不受地震危险的影响的。
[0004] 现有的抗震构造方法是在最初建造建筑物时针对建筑物本身采用诸如抗震、隔震和减震等的抗震技术。然而，这些抗震构造方法应当针对每个建筑物单独提供，因此成本很高。因此，应该提供一种独立的方法，该方法能够保护建筑物或明显改善甚至针对之前建造的建筑物的抗震保护。
[0005] 本发明涉及一种降低地震破坏的方法，这种方法基于完全区别于现有的传统抗震设计的新颖设计。现有方法是在地震波到达建筑物之后对每个建筑物进行独立保护的点保护。而本发明的方法是区域保护方法，该方法在地震波到达一个或多个建筑物之前提前中断地震波并且保护一片区域。为这，对应于地震波频率的共振柱被掩埋在地震波路径上。这种结构在地震波经过共振柱时吸收地震波并且防止伴随的地震波到达建筑物。本发明的这种效果在于利用近年来学术界所积极研究的声学材料的原理。
[0006] 地震波从根本上来说是一种声波。在所有声波经过共振柱之后，接近共振频率的声波被吸收，并且不能经过这些结构。该原理来自声学材料。然而，至今还没有将声学材料原理应用于防止地震破坏的技术的示例。

发明内容
[0007] 技术问题
[0008] 现有的抗震设计保护建筑物本身。这种设计与建筑物的基本结构相关联，并且因此在将抗震设计应用于之后建造的建筑物以提高其抗震性能时产生很多费用。特别是，一旦原子能发电厂或钢厂的现有建筑完工并投入使用，则很难改变抗震设计来提高其抗震性。
[0009] 因此，本发明已经考虑了相关领域中的上述问题，并且设计用来在建筑物周围掩埋共振柱的方式来安装抗振装置，并且共同保护所有建筑物，在这些建筑物周围埋有能够
在地震波到达建筑物之前减弱地震波的抗震屏障。

[0011] 本发明提供了一种通过将多根共振柱（100）埋入而在地面上形成的抗震屏障（150），其中每个共振柱被平面的屏障部分（1）或弯曲的屏障部分（2）封闭以形成内部空间，并且平面的屏障部分或弯曲的屏障部分中的至少一个用于从墙体外部与墙体连通的贯通部分（10）。抗震屏障的形状可以是直形、半圆形和杆形等，并且与遮蔽被保护的区域匹配。

[0012] 共振柱将电气工程的电容电感 LC 振荡器实施成机械工程的电感电容振荡器。地震波的能量经过共振柱前进，并且被转化成声能和热能。因此，当地震波经过多根共振柱时，地震波的衰减突然以指数方式减少。

[0013] 随着地震屏障的宽度增加，增加了地震波的衰减的减少程度。当地震波的振幅在李希特表的基础上得到有效时，地震屏障的衰减应该如方程（10）所示，近似于地震波的波长。地震波的波长不是恒定的，通常可以被近似为 100m。

[0014] 根据地震屏障的长度来确定共振柱的数量。如图 8 中所示，发生了衍射现象，其中地震波在地震屏障的一个端部处发生弯曲。因此，当地震屏障的长度应该比地震波的波长还要长时，加宽了受保护的区域。

[0015] 共振柱（100）可以具有圆柱形状、六面体形状、八面体形状或球形形状。共振柱的共振频率与地震波的共振频率相匹配，并且通过三个因素来确定，即共振柱的内部体积、共振柱的入口的贯通部分的面积和贯通部分的长度，而与共振柱的形状无关。随着入口的面积变得更大，内部体积变得更小，并且贯通部分的长度变得更短，高频率被阻隔。当存在多个贯通部分时，共振柱遵循串联的串联和并联连接的组合方式。

[0016] 当共振柱如图 5 和图 6 所示，以 4 排 4 列的方式进行埋入和填塞时，内部的空的空间用作电容器，并且因此无论共振柱的形状如何都应该是空的。每个共振柱的贯通部分朝向该空的空间开孔，并且因此共振柱借助于贯通部分互连。

[0017] 由于地震波是混合有不同频率的波，因此具有不同共振频率的多个共振柱被混合和堆砌成使其贯通部分在竖直和水平方向上如电路元件的连接一样进行互连。

[0018] 如果具有大约 50cm 直径的 5 个贯通部分在具有大约 30cm 厚度的共振柱中开孔，则一个共振柱（100）的体积视地震波的波长而定，可以处于从 1.0m³ 至 100m³ 的范围内。

[0019] 共振柱（100）可以被埋入在地下，距离一个共振柱的高度为从 1m 至 100m 范围内，这个范围是地基工程的深度或者地震波的频率。

[0020] 有利效果

[0021] 与传统建筑结构相比，抗震屏障更适用于高密度的建筑，因此，抗震屏障是通过减少地震波的衰减来提高抵御地震的能力的。因此，在地震波到达建筑物之前，地震波被减弱。因此，抗震屏障可以有效地应用于已经存在的建筑物。因此，不需要进行改变建筑物本身的设计。
[0023] 图 1 示出了用于实现负的有效模量的试验的共振柱的结构，其中模量是二维切模量和三维体积模量，并且剪切模量和体积模量彼此相同，当发生共振时它们变为负的。

[0024] 图 2 是示性图，示出了根据声波经过共振柱行进时的频率 (ω)、弹性模量 G_{tt} (ω) 的实数部分 (实线) 在哪个区域变化为负值，其中虚数部分 (虚线) 在该区域变为负值并且能量被吸收。

[0025] 图 3 是示意图，示出了根据本发明在上侧和下侧具有贯通部分的圆柱形共振柱的形状，其可以在调整贯通部分的数值的情况下调整共振频率。

[0026] 图 4 是示意性的俯视图，示出了根据本发明的用于构造抗震屏蔽的多个圆柱形共振柱在水平方向上彼此接触，其中每个共振柱的内部空间用作电容器，并且每个共振柱的4个横向贯通部分中的其中一个贯通部分相对内部空间是敞开的。

[0027] 图 5 是示意性的侧视图，示出了根据本发明的用于构造利用掩埋的共振柱的抗震屏蔽的六面体共振柱在水平方向上相连，其中每个共振柱的内部是空的，以便用作电容器，并且每个共振柱的横向贯通部分的入口相对内部空间是敞开的。

[0028] 图 6 显示了当在地下面和内中观察利用根据本发明的掩埋的共振柱安装的抗震屏蔽时的布置，其中 Z_{c} 是抗震屏蔽的深度，并且至少对应于地基工程的深度，X_{c} 是抗震屏蔽的宽度，因此抗震屏蔽的宽度越宽，则地震波的震级越低。

[0029] 图 7 显示了根据本发明的利用被掩埋的共振柱的抗震屏蔽被安装在地下室，以封闭建筑物的周围。

[0030] 图 8 显示了从顶部观察根据本发明的利用被掩埋的共振柱的抗震屏蔽时所观察到的受保护区域，其中受保护区域的边缘是由于波的现象而使一部分地震波发生渗透所处的区域，并且受保护区域只是部分受保护的。

具体实施方式

[0031] 下面将参照附图对本发明的优选实施方式进行具体描述。然而，下面的这些实施方式被提供以便允许本领域技术人员充分理解并且可对这些实施方式进行各种修改。本发明的范围不被限制为本文所描述的实施方式。在每个附图中，相同的附图标记被用于指代相同的或类似的部件。

[0032] 地震波是一种声波，并且由作为体波的初 (P) 波和次 (S) 波以及作为面波的雷利 (R) 波和勒夫 (L) 波组成。此外，波的不同波长是非均匀混合的。在这些波中，R 波和 L 波对建筑物造成破坏。

[0033] R 波和 L 波被称为面波的原因在于，这些波仅存在于与表面相距相当于大约 1 个波长的深度，并且当超过相当于大约一个波长的深度时突然以指数方式减少。面波具有比体波慢得多的速度，并且比体波更不均匀，并且具有大约为 1 至 3km/sec 的度、30Hz 或者更少的频率以及 100m 或者更短的波长。因此面波在 150m 或更多的 1.5 倍波长的深度处几乎被忽略。

[0034] 所有声波具有由密度和弹性模量的比率所确定的速度。弹性模量根据所应用的维度被分为三类，即应用于一维的杨氏模量、应用于二维的剪切模量和应用于三维的体积模量。剪切模量可以作为特殊情况来对待，其中一个平面被固定在体积模量处。面波从宏观角度来看是二维波，从微观角度来看是三维波。
[0035] 所有声波的速度通过方程 1 的介质的密度 ρ 和弹性模量 G 被确定。当声波经过共振柱时，没有波在对应于共振柱的频率区域附近的特定的频率区域进行传播，原因如下。

[0036] 通常，当向物体施加压力时，物体被压缩。抵抗压缩的能力是弹性模量。由于当施加压力时体积减小，因此弹性模量通常是正值。如果体积抵抗外开压力进行膨胀，则弹性模量变为负值。当波向共振柱中的空气施加时，共振柱中的波彼此叠加，产生共振干涉，以便产生共振柱中的空气反向膨胀的效果。弹性模量变为负值所处的频率区域是从如方程 4 中的共振频率至略高于该共振频率的一个频率的区域。

[0037] 当弹性模量由于共振变为负值时，波速根据方程 1 变为虚数。当波速变为虚数时，折射率 n 和波向量也如方程 5 和 6 中所示变为虚数，并且因此波的性质以指数方式减少。这与下列原理相符，即，当通过乐器吹口向管乐器施加空气压力时，管乐器内发生共振，并且压力能转化成声能。当波的性质以指数方式减少时，则波消失，而不发生传播。

[0038] 下面将用数学方式再次进行描述。地震波的速度通过方程 1 被确定为密度 ρ 和弹性模量 G 的比例的平方根。

[0039] 方程 1

$$v = \sqrt{\frac{G}{\rho}}$$

[0041] 当弹性模量 G 变成负值时，速度 v 变为虚数。与速度的倒数成比例的折射率 n 根据方程 2 变为虚数。

[0042] 方程 2

$$n = \frac{c}{v}$$

[0044] 在方程 2 中，n 代表折射率，c 代表声波的背景速度。当弹性模量 G 变为负值时，折射率 n 和波向量变为虚数，并且该波消失。该虚数的物理量是超材料的概念。该超材料指的是这样一种材料，该材料具有之前未被观察到的或者通过传统材料难以实现的电磁材料或声学材料的响应。

[0045] 图 1 显示了在试验中成功实现负的弹性模量的共振柱的一种结构和对应于该结构的 LC 电路。

[0046] 具有负弹性模量的共振柱 100 的结构具有主体，该主体的平面被密封并且在该主体的一个平面上形成一个通孔 10。如果存在多个通孔部分，则这些通孔部分遵循串联和并联连接的组合。

[0047] 当穿过共振部分 10 的声波的压力积聚在腔体 30 中，并且发生共振时，声波所引起的空气压力扩张，并且弹性模量变为负值。这是声学超材料的原理。

[0048] 图 2 是针对方程 3 的曲线图，其中，当多个共振柱串联联接时，频率 w 被设定为自变量，并且弹性模量的实数部分（实线）和虚数部分（虚线）被设定为因变量。该曲线图示出了材料的弹性模量 G_{eff} 如何根据频率 w 进行变化。

[0049] 方程 3

$$\frac{1}{G_{\text{eff}}} = \frac{1}{G_0} \left[1 - \frac{F w^2}{w^2 - w_0^2 + i \Gamma w}\right]$$

[0050] 在方程 3 中，F 是根据共振柱的组合方式（即，共振柱之间的间隔或共振柱的布
置）而通过试验确定的几何因子，并且是损耗因子。当相连的共振柱增加时，F 的值增加，并且弹性模量的实数部分变为负值所处的区域增加。当损耗因子非常小时，弹性模量的实数部分变为负值所处的频率区域可以如方程 4 所示被给出范围。

\[w_0 < w < \sqrt{1 + F} w_0 \]

在方程 4 中，\(w_0 \) 是共振柱 100 的共振频率。

当发生共振时，地震波减少的效果产生在从共振频率到高于共振频率的给定频率的区域。地震波是非均匀波，其频率大多数为 1 至 30Hz。因此，根据本发明的共振柱的共振频率范围优选被设定为从 1 至 30Hz 的范围。

参照图 2，弹性模量的实数部分变为负值所处的区域是发生共振并且声音的波向量变为虚数所处的区域。该区域的虚数部分变为负值。当虚数部分变为负值时，能量被吸收。

被吸收的能量在共振柱 100 中被转化成热能和声能。假设被吸收的能量完全被转化成声能，则声音强度可以在方程 15 中找到。

根据方程 2，介质的折射率作为波在介质中的速度 V 的倒数被给出。也就是说，当 \(c_{r,1} \) 在特定的频率区域变为负值时，折射率 n 变为虚数，并且折射率可以如方程 5 中一样来表示。

\[n = i |n| \]

诸如 L 波和 R 波的面波采用通过震级和正弦函数的乘积所获得的平面波的形式。当面波的行进方向为 X 方向，并且折射率是虚数时，波方程可以通过方程 6 来表示。

\[A e^{i k_x x} = A e^{-\frac{2\pi m x}{\lambda}} = A e^{-\frac{-2\pi m x}{\lambda}} \]

根据方程 6，当面波行进时，即当 x 增加时，波的震级以指数方式消失。

在此，根据李希特震级的震级 M 可以如方程 7 来表示。

\[M = \log \frac{A}{A_0} \]

在方程 7 中，A 是在距离中 100km 的位置处测定的地震波最大震级，\(A_0 \) 是当没有地震发生时的背景波的最大震级，并且被设定为 1 m(10^-6 m)。

当地震波经过作为地震屏障的抗震屏障时，声波的震级如方程 8 中所示被减少。

\[A e^{-\frac{2\pi m x}{\lambda}} = A e^{-\frac{-2\pi m x}{\lambda}} \]

当地震波经过共振柱之前的初始震级被定义为 \(M_i \)，并且地震波经过共振柱之后的最终震级被定义为 \(M_f \) 时，方程 8 如方程 9 中所示被给出。
方程 9

$$A_o \cdot 10^M \cdot e^{-\frac{2\pi nx}{\lambda}} = A_o \cdot 10^M.$$

方程 10

$$x_c = \frac{\ln 10}{2\pi} \left(\frac{l - \lambda M}{\lambda} \right) = 0.366 \frac{\lambda M}{\lambda}$$

方程 11

$$x_c = \frac{36.6 \times 3}{2} \simeq 55$$

方程 12

$$C = \frac{V}{\rho \nu^2}$$

方程 13

$$L = \rho \left(\frac{L}{S} \right)$$

在此，V 是共振柱 100 的体积，x 是共振柱的介质（空气）的密度，并且 ν 是背景速度。L’是共振部分 10 的缩窄部分 15 的有效长度，并且 S 是共振部分 10 的入口的横截面面积。有效长度是将共振部分的入口的半径与共振部分的厚度相加得到的值。当共振部分的入口不是圆形时，其半径是当其面积相当于圆形时的半径。
在此，图3的共振柱100的共振频率遵循方程14。

方程14

\[\omega_c = \frac{1}{\sqrt{LC}} = \sqrt{\frac{S}{L/V}} v \]

方程14的共振频率是通过方程1和13获得的共振频率。

方程14中，v是背景速度。根据方程14，共振柱100的共振频率取决于共振柱100的结构。也就是说，当在共振柱10中开孔的贯通部分10的有效长度L’变得更长时，当贯通部分的入口横截面面积S变得更窄时，并且当共振柱内的体积变得更大时，共振柱以较低的频率共振。

方程15

\[\beta = 20 \log \left(M + b \log \frac{100}{D} \right) \text{ (dB)} \]

当假设地震波在抗震屏障处被转化成声音和热时，并且只被完全转化成声音时，声音的强度用分贝表示。在方程15中，M是地震波在材料上的确定的地震波的震级，并且b是通过试验获得的常数，大约为1.5。D用于表示距离震中的距离，单位为km（参照下面的参考文件1和2）。

1）现代物理学学报B，卷27，编号20，第1350140页（Jul. 2013）的文章“由声学材料构成的人工地震阴影区”，作者Sang-Hoon Kim和Mukanda P.

2）地震学原理，（剑桥，2010）第15章，作者A.Udias

下面，更具体地展示根据本发明的利用掩埋的共振柱的抗震屏障的实施方式，并且应该理解的是，本发明不被限制为下面所呈现的实施方式。

实施方式

首先，用作抗震屏障的基本单元的共振柱100被制造。如在方程10中，抗震屏障的宽度与抗震屏障的折射率成反比。因此，当共振柱由具有较高折射率的材料制成时，抗震屏障的宽度可以进一步被减少。

图3是示意图，示出了根据本发明在上侧和下侧具有贯通部分的圆柱形共振柱的形状。

参照图3，具有与上部和下部贯通部分10相同作用的贯通部分10形成在圆柱形共振柱100的两个径向侧。共振柱的每个贯通部分用作电容器，并且共振柱的内部被用作电容器。

图4是俯视示意图，示出了圆柱形共振柱的联接。这些共振柱通过贯通部分的配合入口彼此联接。

参照图4，用作电容器的贯通部分与用作电容器的内部空间部分相连。共振柱的上部和下部贯通部分也在竖直方向上彼此配合和连接。

当具有不同共振频率的共振柱100进行混合和连接时，具有不同频率的地震波区域可以被吸收。

图5是俯视示意图，示出了相连的六面体共振柱。
参照图 5，用作电感器的贯通部分与用作电容器的内部空间部分相连。
共振柱的上部和下部贯通部分也在竖直方向上彼此配合和连接。
图 6 是利用共振柱来安装的抗震屏障的剖视图，该共振柱用于根据本发明来减少
地面震动。
在图 6 中，Zc 表示共振柱 100 被掩埋所处的位置处的地下深度。
此外，共振柱 100 被掩埋所处的深度优选由于或深于建筑物的地基工程。然而，不
需要比 100m 的波长长度更深。
一个被掩埋用于抗震屏障的共振柱的体积 V 取决于地震波的频率，并且被设定在
从 1 至 100m³ 的范围内。抗震屏障的宽度 Xc 可以被匹配和调整为所需的抗震水平。
图 7 示出了利用掩埋的共振柱的抗震屏障被安装在地下，从而封闭建筑物的整个
周围。根据本发明的抗震作用可以被有效地应用于任意方向上的地震波。
图 8 是俯视图，示出了根据本发明的利用共振柱的抗震屏障保护建筑物免受地震
影响的平面的范围。由于地震波的涡流现象而部分渗透的地震波所处的区域发生在受保护
的平面和未受保护的平面之间。因此，对于地震波渗透所处的部分区域的保护可能并不足
够。
通过共振柱 100 形成的抗震屏障被掩埋在地下，并且不在外部出现。
当考虑海底地震在没有阻碍的情况下到达陆地时，通过挖沟并用水填满的方式安
装的抗震屏障效果不大。
尽管本发明的实施方式已经出于说明的目的被公开，本领域技术人员将理解的
是，在不背离本发明的范围和精神的情况下，如附带的权利要求所公开的，可以进行各种修
改、添加和替换。
附图标记说明
10 贯通部分
20 入口
30 腔体
100 共振柱
110 空的空间
150 抗震屏障
1. 一种通过在地下掩埋多根共振柱而形成的抗震屏障，其中，每根共振柱被平面的屏障部分或弯曲的屏障部分封闭，以形成内部腔体；所述平面的屏障部分或所述弯曲的屏障部分中的至少一者具有至少一个贯通部分，该贯通部分从所述腔体的外部与所述腔体连通；并且所述共振柱被掩埋在地下 1m 至 100m 之间。

2. 根据权利要求 1 所述的抗震屏障，其中，所述共振柱具有 1 至 30Hz 的共振频率。

3. 根据权利要求 1 或 2 所述的抗震屏障，其中，所述共振柱具有圆柱形形状、六面体形状、八面体形状或球形形状，并且所述共振柱借助于所述贯通部分相连。

4. 根据权利要求 1 或 2 所述的抗震屏障，其中，所述抗震屏障具有折射率 \(n \) 和宽度 \(X_c \)，所述折射率 \(n \) 和宽度 \(X_c \) 被调整以获得拟被降低的目标震级 (M)，并且所述宽度在从 20m 至 100m 的范围内以减少震级 1。

5. 根据权利要求 1 或 2 所述的抗震屏障，其中，每个共振柱的所述腔体具有从 1m³ 至 100m³ 的体积。
按照条约第19条修改的声明或说明

[0001] 中国国家知识产权局 PCT 处：

[0003] 权利要求第 1-5 项，用以替换原权利要求第 1-6 项。