实用新型名称
一种轨道板测量调板装置

摘要
本实用新型涉及一种高速铁路无砟轨道修建时安装轨道板的测量调板装置，包括基准器、三角规，三角规的长杆以及中间杆上分别设置倾斜传感器，连接长杆和中间杆的连接板下部设置激光投影装置。由于三角规长杆较常规的长杆加长，基准器可以直接安装在支撑层上，省去了要在支撑层上浇筑压型挡板的工作，取消了测试基准器过程中分为控制和加密两种工序的区别，简化了工序，节约了成本。加长三角规采用的电子倾斜传感器取代钢管水准气泡，提高了测量精度，减少了人为误差。在加长三角规上安置了激光投影装置，以提高中线的测量精度，解决了轨道板安装时四边角下弯的调节工作。随着我国高速铁路建设再创新项目的普及，该装置具有良好的市场前景。
1. 一种轨道板测量调板装置，包括基准器、三角规，其特征在于：所述三角规的长杆（1）以及中间杆（4）上分别设置倾斜传感器（3）。

2. 如权利要求1所述的一种轨道板测量调板装置，所述连接长杆和中间杆的连接板（2）下部设置激光投线装置（5）。

3. 如权利要求1或2所述的一种轨道板测量调板装置，所述长杆的长度为250mm。
一种轨道板测量调板装置

技术领域

本实用新型涉及一种高速铁路无砟轨道修建时安装轨道板的测量调板装置。

背景技术

为了适应我国高速铁路建设的要求，板式无砟轨道已经逐渐代替了传统的无砟轨道，板式无砟轨道施工时，将轨轨道板板厂事先预制生产的轨道板铺设在现场施工好的支撑层上，再通过扣件系统在轨道板上安放钢轨，轨道板铺设的精度将直接影响轨道最终的平顺性，为了确保铺设精度，可以采用日本“新干线”的单元板式无砟轨道技术，即采用基准器结合三角规的方式完成轨道板的铺设。其工作原理为在铁路路基支撑层上浇筑凸型挡台，在凸型挡台上设置基准器，设置基准器，需要经过一个测量、平差、调整；再测量、再平差、再调整的反复过程，轨道板放置在凸型挡台之间，利用三角规连接基准器和轨道板，通过三角规的测量装置完成轨道板调整。采用基准器结合三角规的方式轨道板调整效率高，但测设基准器工序繁杂，需要反复测设，轨道板调整精度低，存在较多的人为误差。

实用新型内容

本实用新型的目的是：克服现有技术的不足，提供一种测量成本低、测量精度高、测量工序简单的轨道板测量调板装置。

本实用新型的目的是通过实施下述技术方案来实现的：

一种轨道板测量调板装置，包括基准器、三角规，其特征在于：所述三角规的长杆以及中间杆上分别设置倾斜传感器。

所述连接长杆和中间杆的连接板下部设置激光投线装置。

所述长杆的长度为 250mm。

采用以上结构的轨道板测量调板装置，三角规长杆较常规的长杆加长，基准器可以直放置在支撑层上，节省了要在支撑层上浇筑凸型挡台的工作，取消了测试基准器过程中分为控制和加密两种工序的区别，简化了工序，节约了成本。加长三角规采用电子倾斜传感器取代普通水准气泡，提高了测量精度，减少了人为误差。在加长三角规上安装了激光投线装置，以提高中线的测量精度，解决了轨道板安装时中间弹性下弯的调节工作。

附图说明

图 1 是本实用新型的三角规的俯视图（其中连接板 2 省略）。
图 2 是本实用新型的三角规的侧视图（其中左侧部分长杆省略）。
图中标识：1 长杆，2 连接板，3 倾斜传感器，4 中间杆，5 激光投线装置。
具体实施方式

如图 1、2 所示，本实用新型包括包括基准器、三角规，三角规的长杆 1 以及中间杆 4 上分别设置倾斜传感器 3，连接长杆和中间杆的连接板 2 下部设置激光投线装置 5。采用本装置进行测量时，首先测量并调整基准器使其达到精度要求，然后开始安装轨道板，由于基准器安装在支撑层上，和轨道板的顶面存在一定的高差，测量调板工作开始时，在基准器和轨道板之间安置的加长三角规的长杆加长到 250mm（加长的尺寸根据基准器和轨道板之间的实际高差确定），加长三角规上安装电子倾斜传感器，提高测量精度，减少人为误差。当轨道板两端调整到位后，启动激光投线仪，在轨道板中部采用附带的激光接收标靶，接收激光信号，完成轨道板中部的调整。以上测量过程的具体实施方式如下：

1. 测设基准器

用设计院提供的曲线及坡度数据，通过软件计算基准器安置点坐标，进行以下测设工作。
（1）基准器初测

全站仪后视线路两侧 3 对 CPIII控制网点，进行自由设站。然后测量安置点位置，将基准器安置到位，横向和垂直调整基准器定位钉，将基准器三维坐标施测到位。
（2）基准器精调

再次测量测设好的基准器，用全站仪后视线路两侧 3 对 CPIII点，进行自由设站，测量基准器坐标；用精密水准仪测量高程。利用上述两组数据，通过基准器计算软件，计算偏差值，生成偏差表格，对超限的基准器进行再次调整，直到符合规范要求。

2. 检测轨道板

轨道板上设计三根基准线，基准线刻画由轨道板厂完成，其精度可以作为定位基准线。采用全站仪测量三角小棱镜基座或用钢尺等工具，复核轨道板三根基准线位置。对不合格的轨道板进行标注，退厂或在测量调板时做相应限差放宽等处理。

3. 轨道板调整
（1）在同一直轨道板的两端，安置两个加长三角规，通过加长三角规连接基准器和轨道板，开启激光投线装置的中线指示器或在中心杆上拉线，横向调整轨道板，使轨道板中心线与中线指示器或拉线重合。
（2）利用加长三角规，通过基准器坚向调整轨道板，使轨道板4个点的标高达到设计要求。曲线地段轨道板高低的调整要满足设计超高的要求。

（3）按上述（1）、（2）步骤反复调整，直至轨道板两端满足要求。

（4）开启加长三角规的激光投线装置的平整度测量尺，或在加长三角规的两个板面支撑腿上拉线，调整轨道板中间的高差，使之与两端的高差一致。

采用本实用新型装置，缩短基准器的测量时间，减少测量工序，节约浇筑成本，提高了测量精度。随着我国高速铁路建设再创新项目的普及，该装置具有良好的市场前景。