An aquatic baseball game includes an open channel defining a baseball diamond formed in a flat, planar member. The corners of the baseball diamond define three bases and a home plate. Safe and out zones are provided at each of the corners in fluid flow communication with the channel. A stream of water is circulated through the diamond-shaped channel, the rate of flow thereof being regulated by a player of the game. The stream of water has a direction of flow which is opposite to the desired direction of normal movement around the bases of a baseball diamond. When the game is played, aquatic animals that tend to swim against the direction of flow of the current of water are deposited within the channel proximate to the corner representing the home plate. The reverse flow of the stream of water through the channel induces the aquatic animal to move around the bases to simulate running of the bases by a baseball player. Various blocking means are described for limiting the movement of the aquatic animals when the latter move into a safe zone or an out zone or when the animal is taken out of play due to a reversal of movement in the region of one of the corners representing a base.
AQUATIC BASEBALL GAME

BACKGROUND OF THE INVENTION

The present invention generally relates to baseball games, and more particularly to an aquatic baseball game, wherein the running of the bases is effected by aquatic animals swimming upstream in a water-filled open diamond-shaped channel.

Baseball is an established sport which enjoys substantial popularity. Numerous toys and games are known which seek to simulate the playing of the game indoors by one or more players.

The known baseball games typically entail chance, wherein a pair of dice or other chance-determining means is utilized for determining the extent or manner of movement of each player about the baseball diamond. Other games are known which are miniaturized mechanical, electrical or vibrating models of playing fields, bats, balls, etc. With the latter games, the degree of skill of the players becomes an important factor in the outcome of the game.

However, there is not known at the present time a baseball game which utilizes aquatic animals for "running" the bases. With the game disclosed herein, a player, as well as the aquatic animal which moves around the baseball diamond, determines the outcome of the game. The player participates in the running of the bases by controlling or regulating the conditions under which his aquatic animal must swim or move between the bases. Means are described in the application, by way of example, for regulating the conditions created by the player and encountered by the aquatic animals. The aquatic baseball game of the present invention can be played by following the accepted rules of baseball with slight modifications to accommodate the specific nature of the game.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide an aquatic baseball game which enjoys aquatic animals to run the bases.

It is another object of the present invention to provide an aquatic baseball game wherein aquatic animals run the bases and wherein the players of the game can regulate the swimming conditions of the aquatic animals to thereby participate in the determination of the outcome of the game.

To achieve the above objects, as well as others which will become apparent hereafter, an aquatic baseball game in accordance with the present invention comprises an open channel defining a baseball diamond the corners of which define three bases and a home plate. The channel is suitable for movement therethrough of aquatic animals that instinctively tend to swim against the direction of flow of a current of water, the movement of the aquatic animals within the channel simulating the "running" of the bases by a baseball player. Safe and out zones are provided at each of the corners in fluid flow communication with said channel, movement in one or the other of said zones at any of said corners respectively representing an out or a safe play. Circulating means are provided for circulating a stream of water through the diamond-shaped channel, said stream of water having a direction of flow which is opposite to the desired direction of movement of the aquatic animals. In this manner, the reverse flow of a stream of water through the channel induces the aquatic animals to move around the bases to simulate running of the bases by a baseball player.

BRIEF DESCRIPTION OF THE DRAWINGS

With the above and additional objects and advantages in view, as will hereinafter appear, this invention comprises the devices, combinations and arrangements of parts hereinafter described and illustrated in the accompanying drawings of a preferred embodiment in which:

FIG. 1 is a top plan view of the aquatic baseball game in accordance with the present invention;

FIG. 2 is an enlarged top plan view of a portion of the aquatic baseball game shown in FIG. 1, showing the details of the water discharge means or spillway, the water receiving means or reservoir, as well as the corner of the baseball diamond representing the home plate or base;

FIGS. 3 and 4 are cross sectional views of the baseball game shown in FIG. 2, taken along line A—A, showing a valve or gate associated with the spillway or water discharge means in two different vertical positions representing different rates of discharge of water into the diamond-shaped channel;

FIG. 5 is a cross sectional view of the aquatic baseball game shown in FIG. 2, taken along line B—B, showing the details of the transverse wall downstream of the diamond-shaped channel which blocks the flow of water into the reservoir when below a predetermined level;

FIGS. 6 and 7 respectively represent "out" and "safe" blocking means or markers positionable within the channel for limiting the flow of water and movement of the aquatic animals therein in accordance with the rules of the game;

FIG. 8 is a front elevational view of a starting gate or bat marker receivable within the channel downstream of the first base corner in the region of the home plate corner for preventing the upstream movement of an aquatic animal prior to a predetermined time;

FIG. 9 is a fragmented and enlarged top elevation view of the corner of the baseball diamond shown in FIG. 1 representing the second base, further showing the manner in which the blocking means shown in FIGS. 6 and 7 are positioned or disposed to block the movement of an aquatic animal when the latter moves into a safe or an out zone; and

FIG. 10 is similar to FIG. 9, but showing the manner in which an out blocking means as shown in FIG. 6 is utilized to block the movement of an aquatic animal which reverses its directions of movement in the region of a base.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now specifically to the drawings, wherein identical or similar parts are identified by the same reference numerals throughout, and first referring to FIGS. 1 and 2, the aquatic baseball game of the present invention is generally designated by the reference numeral 10.

The baseball game 10 in accordance with the presently preferred embodiment is fabricated from or constructed of a member made of any suitable material in which a channel, to be described, can be formed. Advantageously, the member or baseball board or plat-
form 11 is made from an elastomeric material such as polystyrene. Alternately, the baseball board 11 can be molded from any suitable elastomeric plastic material.

An important feature of the present invention is the provision of an open channel, generally designated by the reference numeral 12, which defines a baseball diamond. The corners of which define three bases and a home plate, as to be described.

The open channel 12 comprises series-connected channel sections 14–17 having respective bottom walls or bottom floor surfaces 14a–17a. The channel sections 17 and the channel section 14 define a corner 18, which represents the home plate or base of a baseball diamond. Similarly, the respective channel sections form corners 19, 20 and 21 which represents first, second and third bases of the baseball diamond.

The end of the channel 17 proximate to the corner 18 is fork-shaped and branches off into an "out" channel portion 22 and a "safe" channel portion 24. The channel portion 24 is closed at the end thereof by a transverse wall 25, while the channel portion 22 is in fluid flow communication with a water discharging or supplying means, as to be described hereafter. The channel portions 22 and 24 shall be designated as "out" and "safe" zones for purposes of the specification and claims.

Similarly, safe and out zones are provided at each of the corners 19–21. Thus, safe zone 26 and out zone 28 are provided at the corner 19 representing the first base. Optionally, an enlarged channel portion or holding bay 30 is provided which is in fluid flow communication with the out zone channel portion 28. The significance of the zones as well as of the enlarged channel portion 30 will be described hereafter. Similarly, a safe zone 32, an out zone 34 and an enlarged channel portion 36 is provided at the corner 20 representing the second base. The corner 21, representing third base, is similarly provided with a safe zone 38, an out zone 40 and an enlarged channel portion 42. As shown in FIG. 1, the safe and out zones comprise straight channel portions respectively aligned with and forming extensions in fluid flow communication with the channel sections defining each respective corner, the channel portions extending beyond the latter and dimensioned to receive an aquatic animal. However, it should be clear, that the specific configuration of the channel portions representing the out and safe zones is not critical for the purposes of the present invention. Various modifications in the outline or transverse dimensions of the channel portions representing the safe and out zones may be made, with varying degrees of advantage.

According to a presently preferred embodiment, said channel 12 has a bottom floor surface, comprising of surfaces 14a–17a, which is level along the entire extent of the channel 12. In accordance with another presently preferred embodiment, the channel 12 has a bottom floor surface which is graded. In this case, the bottom floor surface extends gradually downwardly from the corner 18 representing home plate towards the corners 21, 20 and 19 representing third, second and first bases respectively and from the first base corner 19 towards the home plate corner 18. The highest and lowest points of the bottom surface respectively are the ends of the bottom surfaces 17a and 14a proximate to the corner 18. In this manner, water deposited within the channel portion 22, at the highest point of the bottom floor surface, flows in a direction opposite the direction of normal movement of players in a baseball game towards the lowest point of the bottom floor surface, as to be more fully described hereafter.

As suggested above, the aquatic baseball game of the present invention is played in conjunction with aquatic animals that instinctively tend to swim against the direction of flow of a current of water which "run the bases" in a manner to be described. In order to provide a reverse flow of a stream of water through the channel 12, to induce an aquatic animal to move around the bases in a manner to simulate running of the bases by a baseball player, it is an important feature of the present invention to provide circulating means for circulating a stream of water through the diamond-shaped channel 12. The specific means utilized for creating the desired circulation of water flow, as designated by the arrows in FIG. 4, it is not critical for the purpose of the present invention. However, irrespective of the means utilized, it is desirable to provide the circulating means with means for regulating the rate or speed at which the water circulates within the channel 12. In this manner, a player can actively participate in the outcome of the game by setting the conditions under which the aquatic animals must move within the channel 12 since a strong flow of water will prevent the animal from heading upstream against it, whereas a weak stream will not induce it to swim upstream.

According to the presently preferred embodiment, the diamond-shaped open channel 12 is discontinuous or open in the region of the home plate corner 18 to form two channel ends. One channel end, downstream of the corner 19 representing the first base, forms a home plate starting location for movement of the aquatic animal, as to be described hereafter. The other channel end, upstream of the corner 21 representing the third base, comprises the home plate finish location for receiving the aquatic animals which swim the length of the channel 12 from and return to the corner 18 representing the home plate. To accomplish the above mentioned water circulation, a water supply means or spillway in the form of a chamber or enclosure 50 is provided in fluid flow communication with the open end or channel portion 22. A water collecting means or reservoir in the form of an enclosure 82 is provided in fluid flow communication with the open end of the channel 12 downstream of the corner 19. Water is supplied by the spillway 50 which is caused to circulate around the channel 12 from one end thereof to the other end thereof and be deposited in the water collecting reservoir 82.

Referring to FIGS. 1 and 2, the water supply or discharge means 50 is in the form of a chamber, enclosure or spillway 52 and is provided with a bottom wall 54 and vertically disposed lateral walls 56. The walls 56 have opposing edges spaced from one another to form a vertical slot 58, best shown in FIGS. 3 and 4, which communicates the interior of the spillway 52 with the channel 12, as will be described hereafter.

Referring to FIGS. 3 and 4, it will be noted that the spillway 52 advantageously rises above the level of the board 11 and channel 12. A slotted block 60 has opposing slots dimensioned to receive the opposing edges of the walls 56, the slotted block being suitable for slidable movement in the vertical direction to selectively increase or decrease the opening or slot 58. In this manner, the slotted block 60 functions as a valve or
gate which is suitable for regulating the rate of flow of the water which is discharged from the spillway 50 to the channel 12. To facilitate accurate regulation of water discharge, markings 61a may be provided on the slotted block 60, the markings 61a being in the nature of a scale which can be variably positioned with reference to stationary marker 62a.

The slot 58 opens into an upstream channel enlargement 62 which is formed in the board 11 similarly as is the channel 12. Advantageously, the bottom wall or surface 64 of the upstream channel enlargement 62 is at a level lower than that of the bottom wall 54 but higher than that of the bottom surface of the out channel portion 22. This insures water flow from the spillway 52 into the channel section 66. Alternately, inclining or grading the surface 64 or the provision of a step 68, as shown further insures that the discharged water from the spillway 52 enters the channel 12.

Referring to FIGS. 1, 2 and 5, the details of the downstream end of the channel 12 are shown. The reference numeral 70 represents a channel portion which functions as a downstream aquatic animal holding bay when in use. Water is placed prior to permitting the same to move from corner 18 to corner 19 or from the home plate to first base. This will be described hereafter.

Since the water flows from corner 19 towards corner 18, as shown by the arrows, trapping means are provided downstream of the channel section 14 proximate to the reservoir 82 for permitting flow of water into the reservoir while preventing the aquatic animals from moving into the latter. The trapping means includes a transverse wall or dam 72 having a length less than the width of the channel portion 70 to form spaces 74 between the transverse wall 72 and the side walls of the channel. The spaces 74 are dimensioned to prevent passage of an aquatic animal therethrough. Although two spaces 74 are shown, it is equally possible to utilize only one space.

Baffle means may optionally be provided disposed in the region of each space for preventing an aquatic animal from being transported by water flow into the region of the spaces 74. In the preferred embodiment, the baffle means includes a vertical pin 76 positioned upstream of each space 74 and spaced relative to the transverse wall 72 and the side wall of the channel 12 distances less than the dimensions of the aquatic animals. In this manner, aquatic animals transported by water flow towards a space 74 is stopped by the pins 76 and one of the side walls. A screen (not shown) may optionally be inserted between the pins 76 and the transverse wall 72 so that aquatic animals small enough to bypass the pins may be prevented from escaping into the reservoir 82.

A further wall 78 is provided downstream of the channel portion 70 which rises from the floor or bottom surface of the channel portion 70 to a predetermined height above the bottom surface thereof. In this manner, water discharging from the spillway or chamber 52 causes water to accumulate in the channel 12 to the height of the wall 78 to assure continuous supply of water in the channel for the aquatic animals. Advantageously, the upper edge of the wall 78 is provided with a cut-out portion to break the capillary surface tension of the water accumulated in the channel 12 in the region of the wall 78. In the presently preferred embodiment, the cut-out portion is V-shaped, although any other suitable shaped cut-out may be utilized, with varying degrees of advantage. In this manner, water spills over the transverse wall 78 into the reservoir 82 when the level of water in the channel 12 rises above the predetermined height. In the presently preferred embodiment, the transverse wall 78 extends approximately to a height midway between the upper and lower extremities of the channel 12. The height to which the water rises within the channel prior to spilling into the reservoir 82 is less than the height of the upper extremity of the channel 12. In this manner, the water spills into the reservoir 82 prior to overflow of water out of the channel 12.

As mentioned above, the chamber or spillway 52 extends upwardly from the level of the channel 12 and has a top opening. In this manner, water may be deposited into the spillway 52 through the top opening, the water discharging through the slot 58 opening into the channel enlargement 62. On the other hand, the reservoir 82 comprises an enclosure or cavity extending downwardly from the level of the channel 12. The reservoir 82 is also provided with a top opening. In this manner, water may be withdrawn from the reservoir 82 through the top opening. In the aquatic baseball game as shown in the FIGURES, the water is also received by the reservoir from the channel 12 through the top opening.

To assure a continued flow of a stream of water through the channel 12, without depleting an initial water supply deposited within the spillway 52, suitable water transfer means are provided for transferring water from the reservoir 82 to the spillway 52 to raise the level of water above the channel 12 in the spillway 52 and to lower the level of water below the channel 12 in the reservoir. In this manner, continued transfer of water from the reservoir 82 to the spillway 52 causes a current of water to flow therewith around the bases beginning and ending in the region of the home plate corner 18 in a direction opposite to the normal direction of movement between the bases and suitable to induce an aquatic animal to move around the bases to simulate the running of the bases by a baseball player.

A water carrier 118 is illustrated in FIG. 2 which is exemplary of water transfer means suitable for transferring water from the reservoir 82 to the spillway 52. The water carrier 118 is in the form of a tubular member 120 provided with a resilient bulb 122 at one end and an opening 126 at the other end of suitable diameter to enable water as well as an animal to be collected with a quantity of water by means of suction, as by releasing an originally compressed resilient bulb 122. Water or an animal contained within the water carrier may be released by pressure applied to an originally extended resilient bulb 122. Advantageously, the water carrier 118 is provided with an enlarged spherical portion 124 suitable for collecting the water or aquatic animals collected by the water carrier. The spherical portion 124 permits observation of the collected animals as well as preventing the latter from being drawn within the resilient bulb 122, wherein they may be injured when the bulb is compressed or squeezed.

A series of holes is provided on the planar board member 11 proximate to the corners 19-21, for reasons which will be described hereafter. Thus, a pair of holes 85 are disposed on opposite sides of the channel section 14 proximate to the downstream holding bay.
70. Holes 86-89 are provided at each of the corners 19-21 as shown, each of the holes being disposed adjacent to two other holes on other sides of channel sections or channel portions as shown. A hole 90 is provided adjacent the corner formed by the channel portions 22 and 24 while holes 92 and 94 are disposed on opposite sides of the channel section 17 at the upstream end thereof. As will be described hereafter, the holes just described are utilized for receiving portions of blocking members or markers which have blocking tabs simultaneously receivable within the channel sections or channel portions.

Optionally provided on the baseball game platform 11 are a pair of holding bays 96, 100, one for each side, each provided with nine individual compartments 96 and 102 each having open tops and normally filled with water for housing the aquatic animals which are not participating in the running of the bases at any particular time. The holding bays 96, 100 correspond to or are analogous to the "dugouts" in which baseball players stay while awaiting their turn at play.

Also optionally provided is a score card 104 which may be impressed upon the board 11 in any conventional manner. The score card 104 is advantageously provided with a backing suitable for writing thereon so that the score during the game can be recorded.

Referring to FIG. 1, a levelling device 106 is shown in the form of a cylindrical depression or surface 108 formed in the platform or board 11. A cylindrical ball 110 is disposed within the cylindrical depression 108, the ball being permitted to position itself at the lowest point in the depression due to gravitational forces. Markings 112 are provided about the cylindrical depression 108 for indicating when the ball 110 reaches a position corresponding to a level condition of the planar member 11. In this manner, the flow of current of water through the channel 12 can be reliably and accurately regulated.

Referring to FIGS. 6-8, various blocking means for blocking the flow of water within a channel as well as for limiting the movements of an aquatic animal as contemplated by the present invention are illustrated. Three types of blocking means or markers are shown. In FIG. 6, a device representing an out marker 116 is shown which includes an upright portion 128 and a blocking tab 130. The blocking tab 130 is shown to be configured and dimensioned to correspond to the transverse dimensions of the channel sections and portions, whereby the blocking tab 130 is receivable within the channels to effectively block the flow of water or to limit the movements of an aquatic animal therein. The markers are in each case secured to the board or platform 11 by means of depending pins 132 which are receivable within the above described holes within the platform 11. The out marker 116 is provided at the top of the upright portion 128 with a ball representation 134 with a marking or designation 136 indicating that the device is an out marker.

The device representing a safe play or safe marker 140 is identical in construction the marking or designation 142 indicates that it is a safe marker. Similarly, a device representing a bat which functions as a starting gate or bat marker 114 is identical to the above described blocking means with the exception that a bat representation 144 is provided at the top of the upright portion 128 and a suitable marking or designation 146 is provided.

At each of the corners 18-21 there is provided a safe channel portion 24, 26, 32 and 38 respectively. When an aquatic animal reaches one of the corners and enters into one of the safe zones or one of said channel portions, a safe marker 140 can be positioned on the board 11 to block the aquatic animal within the safe zone until th next play commences. Consequently, the safe markers 140 can be positioned within holes 94 and 90 at the home plate or between holes 86 and 88 at each of the base corners.

Similarly, when an animal enters one of the out zones or channel portions 22, 28, 34 and 40, the animal can be taken out of play by locking the same within the out zone by use of an out marker 116. At the home plate, the out marker 116 can be placed within the holes 90, 92 while at the base corners, the marker can be placed within the holes 88 and 89. The positions of the safe marker 140 as well as that of the out marker 116 is exemplified in FIG. 9.

Referring to FIG. 10, two further possible positions of the out markers 116 is suggested at each of the base corners 19-21. The purpose and manner of positioning the out markers in this matter will be described hereafter. With respect to the home plate, an out marker may also be positioned within the holes 92 and 94 for similar reasons to be described.

As suggested above, an aquatic animal is originally disposed within the downstream holding bay 70. To prevent the movement of the animal towards the first base corner 19 prior to the desired time therefor, a starting gate or bat marker 114 is positioned within the holes 85. The blocking tab 130 of the starting gate 114 prevents the aquatic animal from moving upstream until the desired time.

In providing a brief description of the manner of playing the game 10, it should first be noted that the accepted rules of baseball apply to this game to the extent which this is possible. Furthermore, it should be clear that the rules may be varied as desired to provide variations of the game.

The first step in playing the game, involves levelling the board or platform 11 by any conventional means, and when provided, by means of the levelling device 106. Once the board has been positioned in a level plane, the holding bays 96 and 102 can be filled with water and aquatic animals which are to be utilized are each placed into an individual compartment. The present invention does not require the use of any particular aquatic animal, as long as the same is small enough to be received within and swim within the channels above described and as long as the aquatic animal has an instinctive tendency to swim opposite or upstream of a current flow of water. An example of such aquatic animals which are particularly suitable for this purpose are brine shrimp. When using brine shrimp, the transverse width of the channel 12 may be approximately in the range between ¼ inch to ½ inch. A satisfactory width in this connection has been found to be ¾ inch.

With all the blocking means 116, 140 and 114 removed from the board, and with the slot of the block 60 raised to communicate the interior of the spillway 52 with the upstream channel enlargement 62 by way of slot 58, water is deposited within the spillway 52 through the open top thereof. Because the bottom wall or surface 54 of the spillway 52 is at a level higher than the bottom wall or surface 64 of the channel enlargement 62, the water deposited within the spillway dis-
3,853,317

charges through the slot 58 into the channel enlargement. The water thus discharged flows downstream through the channel portion 66, channel portion 22, channel sections 17, 16, 15 and 14, as indicated by the arrows, and into the downstream holding bay or channel portion 70. It should be clear that as the water accumulates within the latter described channels, water also enters and fills the channel portion 24 as well as the safe and out zones in fluid communication with the channel sections at each of the corners 19–21.

When sufficient water has accumulated within the various channel sections and portions to thereby rise therein above a predetermined level determined by the height of the wall 78, some of the water may be caused to spill over into the reservoir 82.

When all the above mentioned channels have been filled to the desired level with water, a starting gate or bat marker 114 is positioned with its pins 132 within the holes 85 to seal or close the downstream holding bay 70. A first aquatic animal is removed from one of the compartments 98 and disposed within the holding bay 70. Advantageously, the player for whom the bases are being run by the aquatic animal within the holding bay 70 controls or regulates the rate or speed at which the stream of water flows within the channel 12. This action is analogous to "pitching" a ball by a baseball player wherein the pitcher regulates or controls the type of play which a batter can effect. The batter in this game is the aquatic animal disposed within the holding bay 70. As mentioned above, the rate of flow of the stream of water can be regulated by raising or lowering the slotted block 60 on the walls 56 to change the length of the discharged slot 58. Another mode of regulating the rate of flow of water is the variation of water level within the spillway or chamber 52. The level of water within the spillway can be regulated by the player by filling the spillway with additional water from an external source or reservoir. Once a volume of water has accumulated within the reservoir 82, the player may withdraw water from the reservoir 82 and replenish the spillway 52 to adjustably vary in the level of water within the spillway 52 as desired.

Once a stream of water is caused to flow within the channel 12, the starting gate 114 is removed to thereby open the downstream holding bay 70 to permit upstream movement of the aquatic animal towards the corner 19 representing first base.

If the aquatic animal enters into the safe zone 26, the player can position a safe marker 140 within the holes 87 and 88 to maintain the aquatic animal within the safe zone until the next play commences. However, if the aquatic animal instead moves into the channel portion 28, an out zone, the opposing player can block the animal within the channel portion 28 or the enlargement 30 by means of an out marker 116 whose pins are respectively received within the holes 88 and 89. Locking an aquatic animal in an out zone in this fashion removes the animal from play and the latter may be replaced into its respective compartment 98. Each time an aquatic animal moves into an out zone or is blocked by an out marker in accordance with the rules of the game, this represents one out for the player whose aquatic animals are running the bases.

In regulating the rate of flow of the stream of water through the channel 12, a player must be careful to provide a minimal rate sufficient to induce the animals to swim upstream. At the same time, however, the player must not increase the rate unduly higher rates of flow will tend to carry the animal downstream, opposite to the desired direction of movement of the animal. As a further inducement not to unduly increase the rate of flow of water within the channel 12, a proposed rule of the game is to take an animal out of the game which moves from one channel section to another channel section at a corner representing a base than reversing its direction of flow from the newly entered channel section into the former channel section. For example, if an aquatic animal moves from channel section 14 to the channel section 15 in the region of the corner 19 representing first base and then, due to an unduly high rate of flow of water, reverses its direction or is carried back into the channel section 14, the aquatic animal is deemed to be out. When such reversal takes place, the opposing player can take the animal out of the game by blocking its further upstream movement by the utilization of an out marker 116, as suggested in FIG. 10. The out marker may either be placed within holes 86 and 89, holes 86 and 87, or holes 92 and 94.

After an aquatic animal has been locked within a safe zone and after animals which have been taken out of play have been returned to their respective compartments, the second play may commence by depositing a second aquatic animal within the downstream holding bay 70 with the starting gate or bat marker 114 in place within the holes 85. The second play proceeds as above described, the normal baseball rules as to double plays, etc., applying in the playing of the aquatic game.

From the above description, it is evident that the aquatic baseball game in accordance with the present invention is particularly suitable for playing the game of baseball indoors in a manner which permits active participation by the players who can decidedly help determine the outcome of the game by controlling the conditions thereof. However, the outcome of the game is also determined to a great extent upon the strength and the stamina of the aquatic animals which are utilized to "run the bases." By selecting the "batting order" in which aquatic animals succeed "at bat" in the successive plays, the players can make many of the important decisions normally required in baseball games.

The characteristics or "batting averages" of the aquatic animals are known to the players because of the separation of the aquatic animals into the individual compartments or holding bays. While the above description has suggested several variations in the commonly accepted rules of baseball, it should be clear that the above rules are not limiting and any desirable or suitable rule modifications may be made without effecting the general principles of the present invention. For example, when baffle means are not provided downstream of the holding bay 70, a possible rule may be that movement of an animal one or more times (such as three times corresponding to three strikes) into the reservoir 82 before moving into the channel section 14 takes the animal out of play. To the extent possible, however, the general rules of baseball are advantageously applied.

Numerous alterations of the structure herein disclosed will suggest themselves to those skilled in the art. However, it is to be understood that the present disclosure relates to a preferred embodiment which is for purposes of illustration only and is not to be construed as a limitation of the invention.

What is claimed is:
1. A baseball game wherein movement between the bases is performed by aquatic animals that instinctively tend to swim against the direction of flow of a current of water, the game comprising an open channel defining a baseball diamond the corners of which define three bases and a home plate; safe and out zones provided in proximity to each of the corners in fluid-flow communication with said channel, movement into one or the other of said zones in proximity to any of said corners respectively representing an out or a safe play; and circulating means for circulating a stream of water through said diamond-shaped channel, said stream of water having a direction of flow which is opposite to the desired direction of movement of the aquatic animals, wherein the reverse flow of a stream of water through the channel induces an aquatic animal to move around the bases to simulate running of the bases by a baseball player.

2. A baseball game as defined in claim 1, wherein said open channel is formed in a molded structure.

3. A baseball game as defined in claim 2, wherein said molded structure is of an elastomeric material.

4. A baseball game as defined in claim 1, wherein said channel has a bottom floor surface, which is level along the entire extent of said channel.

5. A baseball game as defined in claim 1, wherein said channel has a bottom floor surface which is graded, said bottom floor surface extending gradually downwardly from the corner representing home plate towards the corners representing third, second and first bases respectively and from said first base corner towards said home plate corner, the highest and lowest points of said bottom floor surface being provided at said home plate corner, whereby water deposited in said channel at the highest point of said bottom floor surface flows in a direction opposite to the direction of normal movement of players in a baseball game.

6. A baseball game as defined in claim 1, wherein said channel comprises four straight channel sections extending between the corners thereof representing said bases and said home plate, said safe and out zones comprising straight channel portions respectively aligned with and forming extensions in fluid-flow communication with the channel sections defining each respective corner, the channel portions extending beyond the latter and dimensioned to receive an aquatic animal.

7. A baseball game as defined in claim 6, further comprising enlarged receiving portions in fluid-flow communication with the out zone channel portions at each of the corners representing the bases.

8. A baseball game as defined in claim 1, further comprising blocking means for confining an aquatic animal which enters a respective zone, said blocking means being dimensioned and configured to correspond to the transverse dimensions of said channel portions, whereby said blocking means, when positioned within a channel portion, blocks the movement of an aquatic animal and prevents the latter from re-entering one of said channel sections.

9. A baseball game as defined in claim 1, wherein said channel comprises four elongate channel sections, further comprising out blocking means configured to be receivable within said channel sections at the ends thereof in the regions of the corners of said channel, whereby an aquatic animal which moves from a first to a second channel section and subsequently reverses its movement from said second to said first channel section may be taken out of play by positioning said out blocking means in the region of a respective corner upstream of the aquatic animal to thereby prevent a further reversal and movement upstream of said channel and re-entry into said second channel section.

10. A baseball game as defined in claim 1, wherein said channel is open in the region of said home plate to form two channel ends, one channel end downstream of the corner representing the first base comprising the home plate starting location for movement of the aquatic animals, and an other channel end upstream of the corner representing the third base comprising the home plate finish location for receiving the aquatic animals which move the length of said channel from and returning to the corner representing said home plate.

11. A baseball game as defined in claim 10, further comprising water supply means in communication with said other channel end, and water collecting means in communication with said one channel end, whereby water supplied by said water supply means is caused to circulate around said channel from said other channel end towards said one channel end and be deposited in said water collecting means.

12. A baseball game as defined in claim 1, wherein said channel is open in the region of said home plate to form two channel ends, said circulating means comprising water discharging means communicating with one channel end in the region of the corner representing the home plate for discharging water into the latter, water receiving means communicating with the other channel in the region of the corner representing the home plate for receiving water from the latter; and water transfer means for transferring water from said water receiving means to said water discharging means to raise the level of water above said channel in said water discharging means and to lower the level of water below said channel in said water receiving means, whereby continued transfer of water from said water receiving means to said water discharging means causes a current of water to flow therebetween around the bases beginning and ending in the region of said home plate in a direction opposite to normal movement between the bases and suitable to induce an aquatic animal to move around the bases to simulate the running of the bases by a baseball player.

13. A baseball game as defined in claim 12, further comprising valve means for controlling the rate of discharge of water from said water discharging means, whereby the rate of flow of water within said channel can be regulated by a player to influence the movements of an aquatic animal.

14. A baseball game as defined in claim 13, wherein said water discharging means comprises a spillway in the form of a chamber open at the top thereof, the interior of said chamber being in fluid communication with said channel by means of an elongate vertical slot formed in the walls of said chamber, said valve means comprising a slotted block the slots of which sealingly receive the edges of said walls defining said slot, said block being slidable in the vertical direction to effectively change the length of said slot and thereby the opening through which water may flow.

15. A baseball game as defined in claim 12, further comprising trapping means provided downstream in said channel proximate to said water receiving means
for permitting flow of water and preventing the aquatic animals from moving into the latter.

16. A baseball game as defined in claim 15, wherein said trapping means comprises a transverse wall in said channel, said transverse wall having a length less than the width of said said channel to form at least one space between said transverse wall and a side wall of said channel, said space being dimensioned to prevent passage of an aquatic animal therethrough.

17. A baseball game as defined in claim 16, wherein two spaces are formed, one between each end edge of said transverse wall and another side wall of said channel.

18. A baseball game as defined in claim 17, further comprising baffle means disposed in the region of each space for preventing an aquatic animal from being transported by water flow into the region of said spaces.

19. A baseball game as defined in claim 18, wherein said baffle means comprises a vertical pin positioned upstream of each space and spaced relative to said transverse wall and side wall of said channel distances less than the dimensions of the aquatic animals, whereby an aquatic animal transported by water flows towards a space is stopped by said pin and one of said side walls.

20. A baseball game as defined in claim 12, wherein said water discharging means comprises an enclosure extending upwardly from the level of said channel, said enclosure having a top opening and a discharge opening in the region of said channel, whereby water may be deposited into said enclosure through said top opening, the water discharging through said discharge opening into said channel.

21. A baseball game as defined in claim 12, wherein said water receiving means comprises an enclosure extending downwardly from the level of said channel, said enclosure having a top opening, whereby water may be withdrawn from said enclosure through said top opening, the water being received by said enclosure from said channel.

22. A baseball game as defined in claim 21, wherein a transverse vertical wall is disposed downstream in said channel, said transverse wall rising from the floor of said channel to a predetermined height above the floor thereof, whereby depositing water into said water discharging means causes water to accumulate in said channel to the height of said wall to assure a continuous supply of water in said channel for the aquatic animals.

23. A baseball game as defined in claim 22, wherein the upper edge of said transverse wall is provided with a cut-out portion to break the capillary surface tension of the water accumulated in said channel in the region of said transverse wall, whereby water spills over said transverse wall into said enclosure when the level of water in said channel rises above said predetermined height.

24. A baseball game as defined in claim 23, wherein said cut-out portion is V-shaped.

25. A baseball game as defined in claim 22, wherein said transverse wall extends approximately to a height midway between the upper and lower extremities of said channel, the height to which water rises prior to spilling into said enclosure being less than the height of the upper extremity of said channel, whereby the water spills into said enclosure prior to overflow of water out of said channel.

26. A baseball game as defined in claim 12, wherein said water transfer means comprises a tubular member provided at one end with a resilient bulb and at the other end with an opening of suitable diameter to enable water and the animal to be collected with a quantity of water by means of suction, and to be released by pressure applied to said resilient bulb.

27. A baseball game as defined in claim 12, further comprising a starting gate provided with a blocking tab having a width approximately that of said channel, and positioning means for removably positioning said blocking tab in said channel downstream thereof, whereby positioning said blocking tab in said channel and placing aquatic animals downstream of said blocking tab prevents the animals from swimming upstream in said channel until said starting gate is removed.

28. A baseball game as defined in claim 1, wherein said channel is formed in a substantially flat planar member, and further comprising levelling means for levelling said planar member in a horizontal position, whereby the flow of a current of water can be reliably and accurately regulated.

29. A baseball game as defined in claim 28, wherein said levelling means comprises a semi-cylindrical depression within said planar member; a cylindrical ball disposed within said depression, said ball being permitted to position itself at the lowest point in said depression due to gravitational forces; and marking means associated with said depression for indicating when said ball reaches a position corresponding to a level condition of said planar member.

30. A baseball game as defined in claim 1, wherein said open channel has a transverse width in the range approximately between ¼ and ½ inch.

31. A baseball game as defined in claim 30, wherein said width is % inch.

* * * * *