发明名称
多载波调度

摘要
本发明提供了数据块在多数据载波 (310, 320) 上的调度以及数据载波的侦听选择。在与至少一个参与的接收单元 (100) 的通信会话期间，发射单元 (200-1) 同时在第一数据载波 (310) 上发射至少第一数据块 (14) 并且在第二数据载波 (320) 上发射第二数据块 (22)。基于先前接收的数据块 (12) 的接收质量，接收单元 (100) 选择要侦听这些数据载波 (310, 320) 中的哪个，即选择接收第一 (14) 还是第二 (22) 数据块。而且，第一 (14) 和第二 (22) 数据块中的至少一个是基于与数据块 (14; 22) 和先前数据块 (12) 共有的信息，例如第一 (14) 或第二 (22) 数据块可以是先前块 (12) 的重发版本。
1. 一种由接收单元（100）来接收数据块的方法，包括下列步骤：
 - 所述接收单元（100）接收第一数据块（12）；以及
 - 基于所述第一数据块（12）的接收质量，所述接收单元（100）在携带第二数据块（14）
 的第一数据载波（310）和同时携带第三数据块（22）的第二数据载波（320）之间做出选择，
 其中，所述第一数据块（12）和所述第三数据块（22）是基于公共信息。

2. 根据权利要求1的方法，还包括下列步骤：所述接收单元（100）在所选择的数据载波
 上接收所述第二数据块（14）或所述第三数据块（22）的数据块。

3. 根据权利要求1的方法，其中，所述选择步骤包括下步步骤：基于所述接收质量并且
 基于包括所述数据块（12）或所述第二数据块（14）的至少一部分信息的潜在后续数据
 块的数量信息，所述接收单元（100）在所述第一数据载波（310）和所述第二数据载波（320）
 之间做出选择。

4. 根据权利要求1的方法，其中，数据块被集合成块帧，每个块帧都包括多个数据块，
 所述选择步骤包括下步步骤：基于所述接收质量并且基于属于与所述第一数据块（12）
 或所述第二数据块（14）相同的块帧的数据块的块检测差错信息，所述接收单元（100）在所述
 第一数据载波（310）和所述第二数据载波（320）之间做出选择。

5. 根据权利要求1的方法，其中，所述选择步骤包括下步步骤：基于所述接收质量并且
 基于与所述第一数据载波（310）和所述第二数据载波（320）中的至少一个相关的载波质
 量，所述接收单元（100）在所述第一数据载波（310）和所述第二数据载波（320）之间做出
 选择。

6. 根据权利要求1的方法，其中，所述第一数据载波（310）携带数据块的第一流（10）
 而所述第二数据载波（320）同时携带数据块的不同的第二流（20），所述第二流（20）的多个
 数据块的第二组（25）中的每个数据块都包括所述第一流（10）的多个数据块的第一组（15）
 中的数据块中的至少一部分信息，所述第一组（15）包括所述第二数据块（14）并且所述第二
 组（25）包括所述第三数据块（22）。

7. 根据权利要求1的方法，还包括下步步骤：所述接收单元（100）接收所述第一数据
 组（15）和所述第二数据组（25）中的至少一个的所述数据块的相对顺序信息。

8. 根据权利要求1的方法，其中，所述第三数据块（22）是所述第一数据块（12）的重发
 版本。

9. 一种发射数据块的方法，包括下步步骤：
 - 提供多个数据块的第一组（15）；
 - 提供多个数据块的第二组（25），所述第二组（25）是所述第一组（15）的重组版本；以及

10. 在第一数据载波（310）上发射包括所述第一组（15）的数据块的第一流（10），同时在
 第二数据载波（320）上发射包括所述第二组（25）的数据块的第二流（20）。

11. 根据权利要求9的方法，其中，提供所述第二组（25）的所述步骤包括重组所述第一
 组（15）的所述多个数据块的相对顺序以提供所述第二组（25）。

12. 根据权利要求9的方法，其中，所述第一组（15）包括第一数据块（11），在所述第一
 数据块之后为第二数据块（13），在所述第二数据块之后为包括至少第三数据块的块序列
 （17），所述第一数据块（11）和所述第二数据块（13）是基于公共信息，并且所述第二组（25）
包括所述第一数据块（21），所述第一数据块之后为包括至少第四数据块的块序列（27），
所述块序列之后为所述第二数据块（23）。

12. 根据权利要求9的方法，还包括以下步骤：
- 从预定义的调度方案组中选择调度方案，所述调度方案规定所述第一数据组
（15）和所述第二数据组（25）中的至少一个的所述数据块的相对顺序；以及
- 传递所述选择的调度方案的方法标识符。

13. 根据权利要求9的方法，其中，所述第一数据流（10）由基站（200-1）发射，所述
第二数据流（20）由有中继能力的单元（100-5）；所述第二数据流（20）同时发射。

14. 根据权利要求13的方法，还包括以下步骤：
- 把所述第二数据流（20）发射到所述有中继能力的单元（100-5）；以及
- 命令所述有中继能力的单元（100-5）转发所述第二数据流（20）。

15. 根据权利要求9的方法，其中，所述第一组（15）的数据块用第一数据速率发射，所述
第二组（25）的对应数据块用第二数据速率发射。

16. 根据权利要求9的方法，其中，数据块被集成成块帧，每个块帧都包括多个数据块，
所述第一组（15）和第二组（25）的所述数据组属于第一块帧，所述第一流（10）包括所述第一
组（15），所述第一组之后为属于第二块帧的数据块的第三组（18），并且所述第二流（20）
包括属于第三块帧的数据块的所述第三组或第四组（28），在数据块的所述第三组或第四组
之后为所述第二组（25）。

17. 一种接收单元（100），包括：
- 接收机（110），用于接收第一数据块（12）；以及
- 装置（130），用于基于所述第一数据块（12）的接收质量，在携带第二数据块（14）的
第一数据载波（310）和同时携带第三数据块（22）的第二数据载波（320）之间做出选择，其中，所述第一数据块（12）和所述第二数据块（22）是基于公共信息。

18. 根据权利要求17的接收单元，其中，所述接收机（110）被配置为用于在所述选择
装置（130）选择的数据载波上接收是所述第二数据块（14）或所述第三数据块（22）的数据
块。

19. 根据权利要求17的接收单元，其中，所述选择装置（130）被配置为用于：基于所述
接收质量并且基于包括所述第一数据块（12）或所述第二数据块（14）的至少一部分信息的
潜在后续数据块的数学信息，在所述第一数据载波（310）和所述第二数据载波（320）之间
做出选择。

20. 根据权利要求17的接收单元，其中，数据块被集成成块帧，每个块帧都包括多个数
据块，所述选择装置（130）被配置为用于：基于所述接收质量和基于属于与所述第一数据
块（12）或所述第二数据块（14）相同的块帧的数据块的块检测差错信息，在所述第一数据
载波（310）和所述第二数据载波（320）之间做出选择。

21. 根据权利要求17的接收单元，其中，所述选择装置（130）被配置为用于：基于所述
接收质量并且基于与所述第一数据载波（310）和所述第二数据载波（320）中的至少一个相
关的载波质量，在所述第一数据载波（310）和所述第二数据载波（320）之间进行选择。

22. 根据权利要求17的接收单元，其中，所述第一数据载波（310）携带数据块的第一流
（10）所述第二数据载波（320）同时携带数据块的不同的第二流（20），所述第二流（20）
的多个数据块的第二组 (25) 中的每个数据块都包括所述第一流 (10) 的多个数据块的第一组 (15) 中的数据块中的至少一部分信息。所述第一组 (15) 包括所述第二数据块 (14) 并且所述第二组 (25) 包括所述第三数据块 (22)。

23. 根据权利要求 22 的接收单元，其中，所述接收机 (110) 被配置为用于接收所述第一数据组 (15) 和所述第二数据组 (25) 中的至少一个的所述数据块的相对顺序信息。

24. 根据权利要求 17 的接收单元，其中，所述接收单元 (100) 是移动终端。

25. 一种用于发射数据块的系统 (400)，包括：
 - 装置 (220,420,520)，用于提供多个数据块的第一组 (15)；
 - 装置 (230,430,530)，用于提供是所述第一组 (15) 的重组版本的多个数据块的第二组 (25)；以及
 - 发射机设备 (210-1,210-2,410)，用于在第一数据载波 (310) 上发射包括所述第一组 (15) 的数据块的第一流 (10)，同时在第二数据载波 (320) 上发射包括所述第二组 (25) 的数据块的第二流 (20)。

26. 根据权利要求 25 的系统，其中，用于提供所述第二组 (25) 的所述装置 (230,430,530) 被配置为用于重组所述第一组 (15) 的所述多个数据块的相对顺序以提供所述第二组 (25)。

27. 根据权利要求 25 的系统，还包括装置 (250,45,550)，用于从预定义的调度方案组中选择调度方案，所选择的调度方案规定所述第一数据组 (15) 和所述第二数据组 (15) 中的至少一个的所述数据块的相对顺序。所述发射机设备 (210-1,410) 被配置为用于发射所选择的调度方案的标识符。

28. 根据权利要求 25 的系统，其中，所述发射机设备 (210-1,210-2,410) 包括第一发射机 (210-1) 和第二发射机 (210-2)，所述第一发射机 (210-1) 被配置为用于发射所述第一数据流 (10)，而所述第二发射机 (210-2) 被配置为用于发射所述第二数据流 (20)。

29. 根据权利要求 28 的系统，其中，所述第一发射机 (210-1) 被安排在基站 (200-1) 上，而所述第二发射机 (210-2) 被安排在有中继能力的单元 (100-5,200-2) 上。

30. 一种包括根据权利要求 25 的系统 (400) 的基站 (200)。
多载波调度

技术领域
[0001] 本发明通常涉及无线电信系统中的数据块调度，并且尤其涉及在多数据载波上调度数据块的发射和接收。

背景技术
[0002] 无线资源和信道的利用不断地受到许多研究和开发以便优化由于通信系统中的无线资源的有限利用度所造成的系统吞吐量。这在把新的通信服务引入现有通信系统中时尤其如此。这类新通信服务的实例是多媒体广播组播服务（MBMS）。这种MBMS服务的好处是它能使用同一物理信道把数据同时发送到若干用户，即所谓的点到多点传输。关于MBMS的更多信息请参考3GPP文档[1]。

[0003] 然而，尽管例如GSM（全球移动通信系统[GSM]）和EDGE（增强数据速率的GSM演进）通信系统之类的现有通信系统一般被用来用于提供适于传统语音服务的有保证的最小C/I（载波干扰比）水平，然而这些保证的最小C/I水平往往会过低而无法成功地提供新的高比特率服务，例如MBMS上的视频流。由于对高比特率的需要，这些服务必须使用最大数量所允许的通信资源（时隙）。

[0004] 然而，无线电链路的模拟已经表明即使当在GSM/EDGE系统中使用最大数量的通信资源时，数据块往往也不得不多次重发以提供最小保证C/I水平的可接受鲁棒性。然而，可接受鲁棒性的这类重发的数据量在现有GSM/EDGE系统中往往过高，从而导致不能接受的低吞吐量。

[0005] 对于低鲁棒性（由于很少重发）和低吞吐量（由于太多重发）之间的这种折衷的明显解决方案是引入多载波EDGE解决方案。然而，尽管这在现有通信系统的基站中可能相对比较简单明了，然而多载波解决方案将需要移动终端中的重大改变，因为这些终端不得不在模拟和数字部分中同时处理多个信道。

发明内容
[0006] 由此，需要一种解决方案，该解决方案允许在现有通信系统中实施高比特率服务并且仍然提供可接受的鲁棒性和吞吐量而无需对现有移动终端做出重大改变。
[0007] 本发明克服了现有技术方案的这些及其它缺点。
[0008] 本发明的一般目的是提供一种具有高数据块吞吐量的鲁棒数据块调度。
[0009] 本发明的另一个目的是提供一种涉及在数据载波上进行数据块同时传输的调度。
[0010] 本发明的又一个目的是提供一种被同时用于发射数据块的数据载波的选择。
[0011] 本发明的特定目的是提供一种降低数据块差错率的传输调度和接收选择。
[0012] 这些及其它目的由如所附专利权利要求所限定的本发明来满足。
[0013] 简言之，本发明涉及在多个数据载波同时传输到与发射单元一起参与通信会话的接收单元。不同载波上的这些数据块与当前通信服务有关，当前通信服务
可以是单播服务，或特别地是广播或组播服务。
[0014] 在这种多载波调度中，当第二数据块在第二数据载波上被发射时，至少一个第二数据块也同时在第一数据载波上被发射。然后，接收单元选择要侦听这些数据载波中的哪一个，即接收第一还是第二数据块。至少部分基于先前接收的与会话相关数据块的接收质量而执行这个数据载波选择。而且，这个先前的数据块以及第一和第二数据块中的至少其中之一是基于公共信息的。例如，第一和第二数据块中的一个可以包括当前数据块的信息的一部分或者可以是它的重发版本。
[0015] 通过基于接收质量在这两个数据载波之间做出选择，接收单元基本上选择是接收与先前数据块相关的进一步信息（例如，先前数据块的进一步重发）还是新信息。
[0016] 在本发明的典型实施方式中，如果接收单元如接收质量所表示的那样没有成功接收并解码先前的数据块，则接收与错误解码的信息相关的其它数据比特可能是有利的。在这种情况下，接收单元优选地选择携带与这个先前数据块有关的数据块的数据载波以便增加正确解码并解译先前和当前数据块所携带的信息的机会。然而，如果接收单元已经成功接收并解码先前的数据块，则从解码观点来看，接收与已成功解码信息相关的比特的数据块往往是浪费并且无意义的。在这种情况下，接收单元优选地选择携带数据块的数据载波，所述数据块包括与先前数据块不相关的新信息。
[0017] 特别地，在具有多个参与的接收单元的广播和组播会话中，这些单元中的一些一般已经正确接收了先前的数据块，而其它单元则没有。在这种情况下，在成功的接收单元通过选择另一个数据载波接收新数据块和新信息的同时，不成功的接收单元将获得设法接收并解码信息的新机会。由此，系统中的错误误码率将降低，而预定系统吞吐量没有任何显著降低。
[0018] 根据本发明的数据载波的选择可以基于先前数据块的接收质量之外的其它参数。例如，数据块重发的剩余数量的信息，或认为失效的控制帧和/或所采用数据载波的载波质量的信息可以与接收质量一起使用。
[0019] 发射单元适于同时在第一数据载波上发射至少第一数据块流并且在第二数据载波上发射第二块流。这个第一流包括多个数据块的第一组，而第二流同样包括多个数据块的第二组。另外，第二组是第二组数据块的重组版本（reshuffled version）。因此，第二组中每个数据块都包括与第一组中的数据块相同的信息，但是第二组的数据块的相对顺序不同于第一组中数据块的相对顺序。第一流内的第一组的位置可以与第二流内的第二组的位置相同。然而，如果在这两组传输中只有部分重叠或没有重叠，即第二组是第一组的延时且重组的版本，也是优选的。
[0020] 另外，当发射第一和第二组的数据块时可以使用不同的数据率。例如，每当数据块第一次被发射时可以使用高数据率，而这个特定块重发时则使用较低的数据率。
[0021] 在优选实施例中，基于公共信息的两个数据块的相对位置在第二组中较之第一组中这些数据块的相对位置有所不同。而且，就中间数据块的数目而言，相比于第一组，在第二组中的这些数据块之间的距离优选地较大，以便在发射第二组的数据块时增加分集。这类调度方案增加了分集并且防止了衰减问题。
[0022] 本发明提供了下列优点：
[0023] - 允许数据块的鲁棒性传输而不降低块吞吐量；
[0024] 同时的多个可用数据载波提供了降低误块率的灵活性；
[0025] 允许在通信系统中更有效地使用可用无线电资源；
[0026] 能够在低载波噪声比和载波干扰比水平上进行令人满意的高比特率和广播服务的操作，以及
[0027] 在现有通信系统中，甚至下至大约与传统语音服务相同的载波干扰比水平，都能够实施诸如 MBMS 上的视频之类的高比特率服务。
[0028] 本发明提供的其它优点将在阅读本发明的以下实施例说明之后被理解。

附图说明
[0029] 结合附图，参考以下说明可以最好地理解本发明及其进一步的目的和优点，在附图中：
[0030] 图 1 是采用本发明的通信系统的示意图；
[0031] 图 2 是说明了本发明的接收数据块的实施例的流程图；
[0032] 图 3A 和 3B 显示性地说明了在不同数据载波上发射数据块的实施例；
[0033] 图 4A 和 4B 显示性地说明了在不同载波上同时发射数据块的实施例；
[0034] 图 5 是显示性地说明了根据本发明的实施例的数据块的组成；
[0035] 图 6 是更详细地说明图 2 的选择步骤的实施例的流程图；
[0036] 图 7 是显示性地说明了在不同数据载波上发射数据块的另一个实施例；
[0037] 图 8 是显示了图 2 的数据块接收方法的附加步骤的流程图；
[0038] 图 9 是显示了根据本发明的发射数据块的实施例的流程图；
[0039] 图 10 是更详细地说明了图 9 的组生成步骤的实施例的流程图；
[0040] 图 11 显示性地说明了根据本发明的发射数据块的实施例；
[0041] 图 12 是比较本发明的实施例的性能与现有技术的框图；
[0042] 图 13 是比较本发明的实施例的性能与现有技术解解决方案的框图；
[0043] 图 14 显示性地说明了根据本发明的发射数据块的另一个实施例；
[0044] 图 15 是更详细地说明了图 9 的发射步骤的实施例的流程图；
[0045] 图 16 是说明了被表示为移动终端的根据本发明的接收单元的示意框图；
[0046] 图 17 是说明了根据本发明的发射系统的实施例的示意框图；
[0047] 图 18 是说明了根据本发明的发射系统的另一个实施例的示意框图，以及
[0048] 图 19 是说明了根据本发明的发射系统的又一个实施例的示意框图。

具体实施方式
[0049] 在附图中，相同的参考标记将被用于对应或类似的元件。
[0050] 本发明涉及在多个，即至少两个数据载波上发射和接收数据块以便增加接收单元成功接收并检测数据块的概率。本发明的第一方面提供了一种用于选择并接收在多数据载波上同时发射的数据块的方法和单元。本发明的第二方面涉及一种用于在多数据载波上同时发射数据块的方法、系统和网络节点。
[0051] 图 1 是采用本发明的通信系统 1 的示意性概观。在这个说明性的系统 1 中，存在于网络节点或基站 200-1 的无线电覆盖区域 205-1 的四个移动终端或单元 100-1 到 100-4
参与到基站 200—1 的通信会话中。所述通信会话可以是诸如多媒体广播组播服务（MBMS）之类的广播和 / 或组播（点到多点）服务。然而，本发明并不限于此，而通常可被应用到任何形式的通信服务，其中包括单播（点对点）服务，并尤其可被应用到可能需要多个无线电信道或资源的高比特率服务，而且还可被应用到不具有或具有有限确认可能性的服务。

[0052] 在图 1 的通信系统 1 中，基站 200—1 从相关的或连接的 MBMS 服务器 600 接收 MBMS 数据并且用至少两个不同的数据载波 310,320 以点到多点方式以数据块或分组的形式把这个数据发送到参与 MBMS 会话的移动终端 100—1 到 100—4。

[0053] 注意，多数据载波 310,320 上的数据块传输可以由两个不同的发射机来管理，例如两个基站 200—1,200—2。在这种情况下，第一基站 200—1 可以在第一数据载波 310 上发射数据块，而第二基站 200—2 则同时在第二不同的数据载波 320 上发射数据块。存对于这两个基站 200—1,200—2 的无线电覆盖区域 205—1,205—2 中的移动终端 100—3 可以潜在地接收两个数据载波 310,320 上的数据块。

[0054] 在另一个示例中，至少第二发射机实际上可以是移动终端 100—5 自身，那时其用作另一个移动终端 100—4 的中间继能力的单元。这将在下文中被更详细地论述。

[0055] 由此，本发明适用于通信系统 1，其中，一个发射单元或节点 200—1 或多个发射单元 200—1,200—2 ;100—5 在至少两个数据载波 310,320 上同时发射数据块。

[0056] 本发明尤其适用于 GSM（全球移动通信系统）和 EDGE（增强型数据速率 GSM 进演）通信系统，但是本发明同样可以被应用于任何 FDMA（频分多址）系统。本发明还可以被应用于采用其它分复用技术的通信系统，例如 OFDM（正交频分复用）系统或多载波 CDMA（码分多址）系统，包括多载波 WCDMA（宽带 CDMA）系统。而且，本发明还可以被应用于数字视频广播（DVB）和其它类型的无线电广播，所述数字视频广播用于卫星、移动和 / 或地面广播传输。

[0057] 根据本发明，”数据载波”是在包括广播系统的无线电通信系统中可采用的任何载波，数据载波数据以数据块或分组的形式从发射单元传送或发射到接收单元。这类数据载波的典型示例是频次载波。在采用频次的通信系统的情况下，数据载波被定义为包括频次模式，即数据块的所有无线电突发被定义是在相同数据载波上发射，尽管这些无线电突发的频率载波不需要相同。在 OFDM 或 WCDMA 系统中，数据载波可以是可用正交子载波的子集。

[0058] 图 2 说明了根据本发明的实施例的接收数据块方法的流程图。这个接收方法是基于在同时携带给定通信会话中的数据块的数据载波之间做出选择。该方法从步骤 S1 开始，其中，例如移动终端的接收单元从例如基站的发射单元接收通信会话中的第一数据块。接收单元尝试解码所接收的数据块并且通常提供表示这个第一数据块的接收质量的质量指示。

[0059] 在本发明的第一实施方式中，这个接收质量可以简单地指定接收单元是否可以正确解码数据块的全部内容。然而，根据本发明也可以采用更详细的质量表示。例如，信噪比（SNR）可以表示这类接收质量指示。可用于表示第一数据块的接收质量的参数的进一步示例包括块差错概率（BLEP）、块差错率（BLER）、比特差错概率（BEP）、比特差错率（BER）、载波干扰（C/I）比等等。由此，通常指示接收单元中或者由接收单元接收的第一数据块的接收质量的任何表示都可以根据本发明而被使用。接收质量表示可以由接收单元的解码设备来
估计，例如通过运行循环冗余校验 (CRC) 或通过接收单元中的其它质量估计单元。在给定数据块已经被发射并且由此被接收很多次的情况下，本发明的质量表示优选地是考虑到那个特定块的所有 (再) 传输的总质量的累积质量。这个原理还可以被扩展到两个数据块是基于公共信息但并不是彼此重发的情况。在这种情况下，接收质量可以是基于该两个数据块的 (单独) 接收质量的累积质量。

在下述步骤 S2 中，接收单元基于第一数据块的这个接收质量选择侦听该至少第一和第二数据载波中的一个数据载波。而且，在第二数据载波携带第三数据块的同时第一数据载波携带第二数据块，其中，这个第三数据块和先前的第一数据块基于公共信息。由此，在本发明的实施方式中，第三数据块可能是第一数据块的副本，即第三数据块包括与第一数据块相同的有效载荷信息，尽管其可能被不同地调制和 / 或编码。在另一个实施方式中，第三数据块包括第一数据块的信息的一部分。例如，第三数据块可能包括第一部分和第二 (剩余) 部分，其中第一部分包括与第二数据块的一部分中所包含的信息比特相同的信息比特，第二部分包括其它信息比特。在另一个实施方式中，第三数据块包括与第一数据块中的信息相关的信息的增量冗余。

换言之，通过基于接收质量在这两个数据载波之间做出选择，接收单元基本上选择接收第二还是第三数据块。由于第三数据块包括与先前接收的第一数据块中携带的信息相关的信息，所以在数据载波之间做出的选择也可以被认为是基于第一子块的接收质量在接收与第一数据块相关的进一步信息（例如，第一数据块的又一次重发）还是接收新信息（第二数据块）之间做出的选择。

在本发明的典型实施方式中，如果接收单元接收质量所表示地那样没有成功接收并解码第一数据块，则接收与错误解码信息相关的进一步的数据比特可能是有利的。在这种情况下，接收单元在步骤 S2 中优选地选择第二数据载波以便能够接收第三数据块并从而增加正常解码的机会并解释第一和第三数据块携带的信息。然而，如果接收单元在步骤 S1 中成功地接收并解码第一数据块，则从解码的观点来看接收第三数据块往往是浪费并且无意义的，因为这个数据块包括与已成功解码的信息相关的比特。在这种情况下，接收单元优选地选择第二数据载波以便能够接收第二数据块并且从而接收在会话期间发射的新信息。

在给定的涉及多个接收单元的广播会话中，例如 MBMS 会话中，期望在给定的时间，一些接收单元将正确接收第一数据块而其它单元不能正确解码这个数据块的所有比特。然后，正确解码的接收单元一般基于它们相应的第一块的 (高) 接收质量来选择第一数据载波以接收第二数据块中包括的新信息。相反，未正确解码单元基于它们相应的 (低) 接收质量优选地选择第二数据载波以便通过接收第三数据块而获得解码第一数据块的信息的额外机会。给予未正确解码的接收单元接收并解码信息的这个额外机会不以降低正确解码的接收单元的吞吐量或延迟时间代价，因为这些可以基于它们与第一块相关的相对较高的接收质量而选择不同于未正确解码单元来侦听另一个数据载波并传递从而接收新信息比特。

然后，在步骤 S3 中，接收单元在选择的数据载波上接收数据块，即第二或第三数据块。然后该方法结束。

如上所述的本发明的接收方法优选地被参与通信会话的所有接收单元或至少被
一个单元或一些单元采用。图 1 的步骤 S1 到 S3 优选地在通信会话期间被重复以用于在会话中发射的不同数据块。由于与相同通信会话相关的数据块在不同数据载波上的同时传输，信息和数据块的潜在传输和重发的数量被增加，而通信会话的吞吐量没有任何降低。

[0066] 在关于图 2 的上述描述中，接收单元基于先前接收的、而不是当前解码的数据块的接收质量来执行在第一和第二数据载波之间做出选择。这应该仅仅被看作是本发明的说明性示例。所述选择可以在任意目的的 n 个可用数据载波之中被执行，所述 n 个可用数据载波同时携带与通信会话相关的数据块。其中，n 是等于或大于 2 的整数。还需注意，本发明还可以被应用到有多载波能力的接收单元。在这种情况下，接收单元基于接收质量选择同时侦听 n 个可能的载波中的 m 个数据载波，其中，1 ≤ m ≤ n 并且 n ≥ 2。这为接收单元提供了进一步的优点，因为该单元可以通过仅仅侦听所有可用载波的子集而节省功率 / 电池和 / 或硬件复杂度。

[0067] 第一数据块可能已经在第一数据载波、第二数据载波或第三数据载波上被发射到接收单元，即第一数据载波与第二数据块的载波相同，第二数据载波与第三数据块的载波相同。第二和第三数据块在时间上可能直接跟随第一数据块，或者它们可能是第一数据块的传输与第二和第三数据块的传输之间的传输时间间隔。在这个传输时间间隔中，基站可以执行一些其它任务或者发射其它数据块。

[0068] 图 3A 和 3B 是基于本发明的发射数据块以允许选择数据载波的实施例的说明。在说明数据块传输的这些以及随附图中，数据载波由频率载波表示。然而，这仅仅应该被看作是根据本发明的可能数据载波的说明性而非限制性的示例。

[0069] 在通信会话中，第一数据块 12 在数据载波 f_1 上被发射到相关的一个 (或多个) 接收单元。注意，这个第一数据块 12 不一定必须是正好在会话中发射的第一数据块 12，实际上它可以是任何给定的数据块。一个 (或多个) 接收单元接收这个数据块 12 并且生成或估计表示这个数据块 12 的接收质量的质量指示。如果其它相关的数据块先前已经被发射，则这个质量指示可以是累积质量。

[0070] 在图 3A 中，包括不同于第一数据块 12 的其它信息的第二数据块 16 然后在相同的数据载波 f_1 上被发射。优选地，一个 (或多个) 接收单元同样接收第二数据块 16 并且估计这个块 16 的接收质量指示。然后，每个接收单元都基于它相应的一个 (或多个) 估计的接收质量指示在可用载波 f_1、f_2 之间进行选择。在本发明的第一实施例中，在选择过程中只采用与第一数据块 12 或第二数据块 16 相关的接收质量。然而，在本发明的优选实施例中，表示这些数据块 12、14 两者的接收质量指示优选地用于选择中以提供更多的选择基础。在后一情况下，因为两个数据块 12、16 不基于公共信息，所以两个不同的质量指示被采用而不是累积质量。

[0071] 在这个说明性的示例中，第三数据块 14 在与第一数据块 12 和第二数据块 16 相同的数据载波 f_1 上被发射并且是第一块 12 的重发版本。另一个数据载波 f_2 被用于同时发射第四数据块 22，第四数据块 22 是第二数据块 14 的重发版本。

[0072] 假定在第一传输之后接收单元不能解码第一数据块 12，而在第二数据块 16 的第一传输之后成功解码第二数据块 16。接收单元可以基于第一块 12 的 (低) 接收质量和第二块 16 的 (高) 接收质量来选择侦听第一块被重发的频率 f_1，即接收第三数据块 14。相应地，在第一传输期间成功解码第一数据块 12 而没有成功解码第二数据块 16 的接收单元
一般基于接收质量指示符来选择接收数据块 22（第二块 16 的重发版本），即侦听另一个频率 f₂。

[0073] 发射数据的这个实施例提供了在仅仅三次传输时机中发射并重发第一数据块 12 和第二数据块 16 的机会。这应该与具有单个数据载波，并且与不同传输数据块的对应现有技术情况进行比较，对应的现有技术情况将采用四次传输时机。

[0074] 图 3B 说明了稍微不同的方案，其中第一数据块 12 的重发 14 紧接在相同载波 f₁ 上的第一传输之后。当第三数据块 14 在第一频率 f₁ 上被发射时，第二数据块 22 的第一传输同时发生在另一个频率 f₂ 上。这个数据块 22 的重发在第一频率 f₁ 上。

[0075] 然后，在第一传输时正确接收了第一数据块 12 的接收单元可以选择侦听另一个载波 f₂，以便能够地在时刻 t₁ 正确接收第二数据块 22。如果第一数据块 12 的第一传输不足以实现其正确的解码，则接收单元优选地连续侦听第一载波 f₁ 以便能够接收这个块 12 的重发 14。然后，通过之后接收并解码第二块 22 的重发版本 16，这样的接收单元能够潜在地已经是在时刻 t₂ 正确接收第一数据块 12 和第二数据块 22 的信息。

[0076] 在具有单个数据载波并且在不同传输数据块的现有技术情况下，所有的接收单元都不得不一直等到时间 t₂ 才能接收第一和第二数据块中包括的信息，然而根据本发明这能够在时间 t₁ 完成 (t₁ < t₂)。

[0077] 正如通过这些简单的信令框图所说明的，本发明允许引入数据块的重发但不增加接收单元的总接收时间。

[0078] 注意，图 3B 中的数据块 14 中包括的信息可能与数据块 12 的信息相同（或至少同数据块 12 一样基于公共信息），可能与数据块 22 的信息相同（或至少同数据块 22 一样基于公共信息），或者与数据块 12, 22 无关。在同时数据块 14 和 22 基于公共信息的情况下，该两个数据块 14, 22 能够以不同数据速率被发射，被不同编码和/或具有稍微不同但是仍然相关的信息。在后一种情况下，数据块 14 例如可能是前发的发射数据块的重发版本，而数据块 22 包括与这个先前数据块相关的增量冗余。

[0079] 在上文中，已经参考基于接收质量在同时携带不同数据块的至少第一块和第二数据载波之间做出选择描述了本发明。图 4A 和 4B 说明了根据本发明的”同时传输”或”同时携带”定义。

[0080] 如本技术领域中众所周知的，数据块或无线电码在 GSM/EDGE 系统中的四个连续的 TDMA 帧中通过四个无线电突发被发射。四个连续的 TDMA 帧中的这四个无线电突发一起形成所谓的时隙。

[0081] 参看图 3A 或 3B 以及图 4A, 措辞”同时传输”包括数据块 14 和数据块 22 在相同的 TDMA 帧 30-1 到 30-4 中的对应无线电突发/时隙上，但是在不同的载波频率 f₁, f₂ 上的传输。例如，与载波频率 f₁ 上的时隙 TSI 相关的无线电突发被用于数据块 14，而与载波频率 f₂ 上的时隙 TSI 相关的无线电突发被用于数据块 22。然而，根据本发明的措辞”同时传输”不局限于这个说明性的示例，而是还包括在多路传输时存在部分重叠的情况，意味着数据块 14 的至少一部分在与发射数据块 22 的至少一部分相同的时间间隔内被发射。

[0082] 图 4B 说明了在传输中具有部分重叠的这个情况。数据块 14 在时隙 TSI 以及与四个连续 TDMA 帧 30-1 到 30-4 相关的四个无线电突发上被发射。然而，数据块 22 在时隙 TSI 以及 TDMA 帧 30-2 到 30-5 的四个无线电突发上被发射。这意味着数据块 14 的一部分
在 TDMA 帧 30-1 中被发射，在该帧中没有实施数据块 22 的传输。在 TDMA 帧 30-2 到 30-4 中，数据块 14.22 两者的数据在不同频率 f1, f2 上被发射。在最后说明的 TDMA 帧 30-5 中，只有数据块 22 的一部分被发射。

[0083] 由此，根据本发明定义的同时传输也涵盖了在这两个数据块的传输中具有部分重叠的情况。还需注意，数据块 22 不一定必须使用位于与用于数据块 14 的无线电突发相同位置上的 TDMA 帧内的无线电突发来发射。参考图 4B，数据块 14 可以在 TDMA 帧 30-1 到 30-4 中标记为 TS1 的无线电突发被发射，而数据块 22 例如可以在 TDMA 帧 30-2 到 30-5 中标记为 TS0 的无线电突发被发射。在根据本发明的另一同时传输的示例中，数据块 14 的至少一部分在与数据块 22 的至少一部分相同的 TDMA 帧内被发射。

[0084] 图 5 说明了在采用本发明的 GSM/EDGE 通信系统中的控制块或帧中的数据或无线电电的可能组织。如本领域的技术人员众所周知的，例如 MBMS 数据之类的数据发送到接收单元的数据或信息被组织成包括多个信息比特的 LLC（逻辑链路控制）块或帧。这种 LLC 帧随后被分成大小可能不同的 RLC（无线电链路控制）块。RLC 块被打包为可能具有固定的“原始比特大小”的无线电块 (RB)。由于 RLC 块潜在的不同大小，无线电块可以包括一个或多个（典型地为多至两个）块。然后，无线电块在时隙中，在一个连续 TDMA 帧中四个无线电突发上被发射。

[0085] 当应用于 GSM/EDGE 系统时本发明中定义的数据块可以是所谓的无线电块或 RLC 块。然后，根据本发明的数据载波选择可以基于先前接收的无线电块的接收质量在无线电块基础上被做出，或者基于先前接收的 RLC 块的接收质量在 RLC 块基础上被做出。在 RLC 块大小等于无线电块大小的情况下，这两个实施例之间通常没有差别，即在两个块类型之间存在一对一的关系。然而，在无线电块包括两个 RLC 块的情况下，一个在无线电块的前两个无线电突发上交织而另一个在剩余两个突发上交织，数据载波的选择则可以在突发对的基础进行。这对于诸如 MCS-8 和 MCS-9 之类的较高调制和编码方案 (MCS) 来说尤其有吸引力。然后，块报头优选地在两个数据载波上相同以简化基于 RLC 块的数据载波选择。

[0086] 实际上，数据载波的选择可以以更精细的粒度进行，即在突发到突发的基础上做出选择。例如，接收单元可以在尝试解码然后切换到另一个数据载波之前选择只接收无线电块的四个突发中的三个。这个更精细的粒度将提高性能。

[0087] 根据本发明的数据载波选择可以基于除了一个或多个数据块的接收质量之外的其它信息和参数。例如，对于接收单元来说，使用不会最小化数据块差错的平均概率的数据载波选择方案有时可能是有利的。如上所述并且如在图 5 中所说明的，数据块（无线电块和 RLC 块）被组织成 LLC 帧。如果接收单元已经断定特定 LLC 帧的一个数据块永久丢失，例如因为数据块的所有重发都已经被做出而没有成功接收，则可以认为 LLC 帧永久丢失。在这种情况下，即使接收单元具有接收那个 LLC 帧的剩余数据块的良机，而它也可能完全忽略该 LLC 帧的剩余数据块，并且相反把优先权给予其具有较低的正确接收机会的其它数据块（属于其它 LLC 帧）。由此，如果接收单元没能成功接收特定 LLC 帧的一个或多个数据块，则接收单元往往从设法接收和解码那个 LLC 帧的任何剩余数据块中什么也无法获得，因为通常只有当该单元已经正确接收那个 LLC 帧的所有数据块而至少最小数目的数据块，则 LLC 帧才被成功接收并且有意义的。

[0088] 在图 3B 中，假定第一数据块 12 属于第一 LLC 帧并且第二数据块 22 属于第二 LLC
帧。假定接收单元先前没能正确接收属于例如第一 LLC 帧的数据块，该数据块包括其任何重发。在这种情况下，即使第一数据块 12 的接收质量指定这个块没有被正确接收。接收单元也可以基于第一块的接收质量以及第一 LLC 帧的失败数据块的信道来选择侦听第二频率载波 f 2 以便设法接收属于另一个未失败 LLC 帧的第二数据块 22。

【0089】在另一个示例中，基于与先前数据块相同信道的期望数据块的剩余数量的信息，例如块的期望重发的剩余数量，可以被用于根据本发明的数据载波选择。例如，假定接收单元没能准确接收第一数据块并且被通知立刻期望在第一数据载波上只进行这个失败块的一次重发。进一步假定，接收单元当前正经历到非常差的无线电质量，因此成功接收数据块的概率很低。在这种情况下，接收单元侦听第一数据载波可能是浪费的，因为第一数据块的最后重发的正确接收以及其中信息的解码的概率可能太低。通常更好的是侦听另一个数据载波以便设法接收当在第一数据载波上发射第一数据块时在其上同时发射的新数据块的至少一些信息。

【0090】在另一个情况下，在第一数据载波上失败的第一数据块的期望重发的数量可能超过一次。在这种情况下，当第一块的重发之一在第一数据载波上被发射时，接收单元可以基于失败的第一数据块的接收质量以及这个块的重发数量的信息来选择侦听另一个数据载波。这可能是由于失败的第一数据块的接收质量指示为了成功解码其中的信息预期只接收这个块的再次重发是足够的。然后，接收单元无需侦听这个块的所有重发，而相反地可以选择在这些重发的一个或多个期间侦听另一个数据载波。

【0091】根据本发明的数据载波选择还可以部分基于与第一和/或第二数据载波相关的信道质量。例如，假定即使发生解码错误而导致第一数据块的不成功接收，当第一数据块在例如第二数据载波上发射时，信道/载波质量是好的。从估计的信道质量数据已知第二数据载波的信道质量已经恶化，而第一载波的信道质量很好。在这种情况下，侦听第一数据载波以便接收在其上发射的数据块可能更为有利。

【0092】注意，给定数据载波的低信道质量增加了在其上发射的数据块的不成功接收的概率，并且由此通常（消极地）影响该数据块的接收质量。然而，数据块的接收质量也考虑信道质量之外的其它参数，并且可能出现接收质量低而信道质量高的情况。

【0093】图 6 是更详细地说明了图 2 的选择步骤 S2 的实施例的流程图。方法从图 2 的步骤 S1 继续。在第一可选步骤 S10 中，接收单元提供基于与先前接收的数据块相同的信息的期望数据块的剩余数量的信息，例如数据块的剩余重发的数量。可选地，接下来的数据块在该至少两个数据载波上的重发的期望数量的信息可以被使用。这个信息可以从与接收单元通信并且向那里发射数据块的发射单元接收。在另一个实施例中，接收单元基于先前接收的数据块自己确定这个数量。例如，特定发射单元采用的传输方案可以是数据块总共被发射三次，即第一传输和两次重发。在这种情况下，接收单元可以基于它已经接收该数据块多少次来推断或者至少估计剩余传输的数量。该信息还可以间接地从发射单元接收，发射单元然后通知接收单元它对当前通信会话将采用的特定传输方案。然后，接收单元基于这个方案通知以及它已经接收该块多少次的信息来确定剩余重发的数量。

【0094】在下一可选步骤 S11 中，接收单元提供与先前失败数据块相关的块检测差错数据以及它们所属的 LLC 帧的信息。由此，接收单元优选地存储它认为失败的 LLC 帧的通知，其中由于它未能接收属于那个 LLC 帧的包括其任何重发的数据块或至少最小数量的数据块
而认为该 LLC 帧失败。

[0095] 在步骤 S12 中，接收单元基于第一数据块的接收质量（参见图 2 中的步骤 S1）并且基于重发质量和块差错数据或失败的 LLC 帧数据的信息的至少其中之一来选择数据载波。在第一实施例中，在选择处理中只使用接收质量和重发数量。在第二实施例中采用接收质量和块差错数据 / 失败的 LLC 帧，而在第三实施例中采用接收质量、重发数量以及块差错数据 / 失败的 LLC 帧数据。该方法然后继续到图 2 的步骤 S3。

[0096] 在本发明的又一实施例中，图 6 的选择步骤 S12 可以基于第一和 / 或第二数据载波的载波质量和接收质量并且选择性地基于重发质量和 / 或块差错数据。

[0097] 图 7 说明了根据本发明的在多个数据载波上同时发射数据块的另一个方法，其实现了基于接收质量的数据载波选择。这个图 7 说明了携带多个数据块的第一流 10 的第一频率载波 f_1，同时第二频率载波 f_2 被用于发射多个数据块的第二流 20。

[0098] 第一数据流 10 包括多个数据块的第一组 15，而第二数据流 20 同样包括多个数据块的第二组 25。另外，第二组 25 中的每个数据块基于与第一组 15 中的数据块相同的信息。在本发明的优选实施方式中，第二组 25 中的每个数据块包括第一组 15 中的数据块中的至少一部分信息，并且更加优选地，第二组 25 中的每个数据块是第一组 15 中的数据块的重复。

[0099] 第一数据流 10 内的第一组 15 的数据块位置可能与第二流 20 内的第二组 25 的对应位置一致。在这种情况下，第一组 15 的第一到最后的数据块在第一频率 f_1 上被发射，同时第二组 25 的第一到最后的数据块在第二频率 f_2 上被发射。然而，如图 7 所示，在本发明的优选实施方式中，第二组 25 的数据块的传输相对于第一组 15 的对应数据块有时间延迟。这意味着当第一组 15 的第一数据块 12 在第一载波 f_1 上被发射时，不属于第二组 25 的数据块同时在第二频率 f_2 上被发射。在两组 15,25 的传输中可能存在部分重叠，因此当在第一频率 f_1 上发射第一组 15 的至少其中一个数据块 14 时，第二组 25 的数据块 22 同时在第二组 25 上被发射。另一个实施方式可以采用两组 15,25 的数据块的不重叠传输。因此当第二组 25 的第一数据块 22 被发射时，第一组 15 的最后数据块 14 已经被发送。

[0100] 如在附图中所示的，第二组 25 可以是第一组 15 的时间延迟版本。可选地，第二组 25 可以是第一组 15 的重复版本，因此第二组 25 的数据块的相对顺序不同于第一组 15 的对应数据块的相对顺序。而且，第二组 25 可以是第一组 15 的重复版本，它也相对于第一组延迟（在传输中部分重叠或不重叠）。

[0101] 从图 7 中可以看出，接收单元可以根据频率载波的特定选择潜在地接收数据块的多达三重重发，即总计四次接收尝试。这应该与只有对应的单个频率载波（例如 f_1）的情况进行比较，其中，接收单元最多能够接收一次重发。考虑到在最真实的通信系统中，在相同的数据载波上平均只有一个或及至最多两次重发，因为否则的话吞吐量将太低。因此，本发明提供了更潜在的接收尝试，其极大地降低了残余数据块差错率而没有任何吞吐量的降低。

[0102] 假定给定接收单元已经侦听例如第一频率载波 f_1 直到时刻 t_1。然后，接收单元在这个时刻 t_1 具有继续侦听第一频率 f_1 的选择，以便接收第一组 15 的最后数据块 14 或者改变载波到第二频率 f_2 以接收第二组 25 的第一数据块 22。优选地，这个频次选择至少部分地基于表示数据块 DB219,12 的接收机总质量的累积质量。由此，如果在这个选择处理
中不使用另外的参数，则如果数据块 DB2 的两个潜在接收时机不足以正确解码累积质量反映的信息，那么接收单元优选地选择第二频率 f₂。否则，接收单元优选地继续监听第一频率 f₁。

[0103] 图 8 是说明了图 2 的接收方法的附加步骤的流程图。该方法从步骤 S20 开始，其中，接收单元提供与第一数据块组和 / 或第二数据块组相关的方案信息。由此，这个方案信息允许接收单元推断出第一和 / 或第二组中的数据块的相对顺序。这个方案信息另外还可以提供所有数据载波上的数据块传输的有序信息，例如第一和 / 或第二数据流中的数据块的相对顺序。

[0104] 发射单元可能总是采用特定（标准化）的传输方案，因此接收单元预先知道（固定的）数据块顺序。在这种情况下，当然不需要提供方案信息并且步骤 S20 可以省略。然而，可能存在发射单元可以从中选择的许多预定义的可用传输方案。这些不同的方案可以适合于不同的无线电条件，例如低或高的无线电质量、不同的数据类型、发射单元中的可用硬件等等。在这种情况下，发射单元在步骤 S20 中优选地向接收单元发送在当前通信会话中要用的特定所选择的方案的通知。这个方案通知可以是会话建立过程的一部分或者稍后被发送。如果没有可用的标准化方案，则发射单元在步骤 S20 中优选地例如在会话建立期间通知接收单元在不同载波上的后续数据块传输。这类通知例如可以陈述，每个数据块首先在第一载波上发射一次，然后在相同载波上进行第一重发。第二和第三重发其后遵循预定义的周期但是在另一个数据载波上。

[0105] 在步骤 S20 的另一个实施方式中，基于一组中或另一个数据载波上的数据块的相对顺序，接收单元确实在至少一组或至少其中一个数据载波中的数据块的相对顺序。例如，许多数据块可以先于其中一个载波（图 7 中的数据块 DB1、DB1 和 DB2）上的第一形式第二组。然后，接收单元可以基于这些之前的数据块的相对顺序来确定数据块的后续顺序。这个过程可以被扩展，例如在步骤 S20 中，接收单元使用可能在不同数据载波上迄今已接收的数据块的顺序来确定至少其中一个数据载波上的后续数据块的期望的相对顺序。

[0106] 数据块的相对顺序，即传输方案，可以被固定，这暗示在通信会话整个期间使用同一个传输方案。在其它实施方式中可以使用自适应或可改变的方案，因此在会话期间改变或更新传输方案。然后，发射单元优选地通知接收单元这个方案改变，除非接收单元可以自己推断出它。

[0107] 注意，特定传输方案不一定必须意味着给定数据载波上的数据块的相对顺序必须与另一个数据载波上的数据块的相对顺序相同。

[0108] 在下一步骤 S21 中，接收单元提供了指定将用于根据本发明的同时发射数据块的至少其中一组数据载波的载波信息。这个提供步骤 S21 可以通过发射单元例如在会话建立时发送所使用数据载波或至少其中一个数据载波的指示符而被实现。在后一种情况下，接收单元基于被通知的载波的指示符优选地识别一个（或多个）其它数据载波。

[0109] 可以在整个通信会话期间使用相同的数据载波。然而，本发明也适用于采用载波交换的通信系统。在这种情况下，发射单元或系统中一些其它的网络节点优选地通知接收单元一个（或多个）新的数据载波或跳频 v。在后一种情况下，接收单元可以根据 f₁+v、f₂+v 来计算新的频率载波。对于不同的频率载波采用不同的跳频 v₁、v₂ 也是可能的。
[0110] 还需注意，采用的数据载波的数量可以在会话期间发生改变。例如在具有两个原始数据载波的情况下，可以在会话期间添加第三个数据载波，因此总共三个数据载波被用于在会话中同时发射数据块。相反的甚是真实的，即可以移除并且不再在会话期间使用数据载波。只要有至少两个剩余数据载波可以用于同时发射数据块就行。

[0111] 方法然后继续到图 2 的步骤 S1。

[0112] 图 9 是说明了根据本发明发射数据块的实施例的流程图。方法从步骤 S30 开始，其中，例如基站的发射单元提供包括多个数据块的第一数据块组，所述多个数据块将被发射到参与的与发射单元的通信会话中的至少一个接收单元。可以从发射单元中的应用程序提供这个第一组数据块或者先前已经从另一个发射单元、网络节点或服务提供商，例如 MBMS 服务器接收到这个第一组数据块。

[0113] 在下一步骤 S31 中，第一组的多个数据块的相对顺序被重组以生成多个数据块的第二组。由此，第二组的数据块的相对顺序不同于第一组的数据块的对应顺序。第二组的数据块还包括与第一组的数据块相同的信息。

[0114] 然后，在步骤 S32 中在第一数据载波上发射包括第一数据块组的多个数据块的第一流，同时在第二数据载波上发射包括第二数据块组的多个数据块的第二流。

[0115] 在本发明的特定实施例中，第一和第二流分别包括第一和第二数据块组。这基本上意味着当第一组的数据块在第一数据载波上被发射时，第二组的数据块同时在第二数据载波上被发射。在其它的实施例中，第一和第二流分别包括除第一和第二数据块组之外的其它数据块。在这些情况下，第二组的数据块的传输可以与第一数据块组的传输一致，部分地重叠第一块组的传输或者与第一组的传输在时间上分离，因此对于这两组来说在数据块的传输中没有重叠。

[0116] 这个过程当然可以被扩展到超过两个数据载波和数据块组。例如，第一数据块组首先在第一数据载波上被发送，第二数据块组在第二数据载波上被发送（同时，重叠或不重叠），并且作为第一块组和第二块组的重组版本的第三数据块组在第三数据载波上被发送（同时，重叠或不重叠）。可选地，第一或第二块组的延迟版本可以随后在第三数据载波上被发送（重叠或不重叠）。

[0117] 然后该方法结束。

[0118] 图 10 是说明了图 9 的发射方法的附加步骤的流程图。该方法从图 9 中的步骤 S40 继续。在下一步骤 S40 中，用于第一和 / 或第二组 / 和 / 第一和 / 或第二流的传输方案被传递到接收单元。由此，块或块流中的至少一个的数据块的相对顺序在这个步骤 S40 中被发射。在标准化或预定义的可用传输方案的情况下可以发射将要采用的至少一个这类方案的标识符。否则，优选地发射更详细的块顺序信息。

[0119] 在下一步骤 S41 中，所采用的数据载波的信息被传递。这个信息可以包括所有采用的数据载波的标识符或只采用其中一个或其中一部分的标识符。在后一种情况下，接收单元可以优选地自己基于发射的一个（或多个）标识符来确定未通知的一个（或多个）载波。

[0120] 方案信息和载波信息的通信可以一起或分开地发送，例如在会话建立期间或者在会话会话期间的其它时候。可以采用静态方案和 / 或数据载波。然而，在某些应用程序中可能优选地能够适配或改变所采用的传输方案和 / 或数据载波。在这些情况下，新方案和
或一个（或多个）数据载波的信息优选地被传递到相关接收单元。

[0121] 图 11 是说明了根据本发明实施例的数据块传输的信号框图。在该附图中，包括多个数据块的第一组 15 的第一块流 10 在第一数据载波 f₁ 上被发射，同时包括多个数据块的第二组 25 的第二块流 20 在第二载波 f₂ 上被发送。在该附图中可见，第一组 15 中的每个数据块都具有第二组 25 中的对应（重发版本）；但是两组 15,25 中块的相对顺序却不同。

[0123] 在不同数据载波上使用不同块距离的另一个原因可能是增加给入接收单元在具有一定发送单元的配置中接收特定数据块的许多可能性的概率，所述许多发送单元在许多数据载波上以不同步的方式进行发射。如果不同的发送单元按相同的方式发射数据块并且只是具有不同的时间偏移，则让两个发送单元同时发射相同的块的概率将相当大。由此，这意味着相同于单个发射机来说两个发送单元将为接收单元提供接收任何给定数据块的更多机会。另一方面，如果数据块以不同序列由不同发送单元发射，则自由度显著增加并且两个发送单元除了偶尔之外很可能在同时发射相同的块。

[0124] 如果传播延迟相当时，相似的讨论也可以应用于同步网络中。即使发送单元确保不同时发射相同的块，同一个数据块仍然可能因为不同的传播延迟而从不同的发射机同时到达接收单元。

[0126] 在进一步的扩展中，对于所有的无线电突发使用一个频率 f₁ 来发射第一传输 11，而重发可以在每个突发中在不同频率上被发送以便给出最大分集。

[0127] 如图 11 中的第二流 20 所说明的，发射单元可以临时中断在一个数据载波 f₂ 上发送。对于这类发送停止可能存在不同的原因。数据载波可能临时受到非常低的无线电质量或高干扰级别，所以在那个时候发射数据块基本上没有意义。可选地，发射单元可能临时忙于执行其它任务，包括用这个载波 f₂ 发送与其它会话相关的数据。
采用图11中示出的调度方案来进行模拟。在这些模拟中,数据块是MCS-6 RLC块。

为简单起见,首先只考虑一个时隙并且假定期望比特率是~ 10kbit/s。这个数据与MBMS服务高度相关,因为在MBMS上的视频流大致要求40kbit/s并且预期MBMS中的时隙的数量是4[1],每时隙的目标比特率给出为10kbit/s。而且,使用500字节的LLC帧大小,所以其中包括七个RLC块。在这些模拟中认为~1%的LLC丢失率是可接受的。

用只具有单个数据载波(频率)的现有技术解决方案,用于MCS-6的约30kbit/s

的额定速率意味着可以选择每个RLC块的三次传输(10 = 2 x 30

1+2)

,即两次重传。这个现有技术解决方案的结果LLC丢失率在图12中用曲线"3TX"说明。明显地,该服务减低到具有<1%的丢失率11-12dB。

用两个频率,即根据本发明,每个RLC块都可以被发射6次,即在每个频率上3次,而仍然达到30kbit/s的额定速率(10 = 2 x 30

1+5)

。图11中所示的传输方案被用来获得图12中曲线"在2个频率的每个频率上3TX"。在图12中可以看出,在大约4dB更低的C/I处获得1%的丢失率。因为EFR(增强全速率)语音至少需要稍微低于10dB以很好地操作,所以通络网络往往被构成为能够提供这个C/I水平。这意味着由本发明产生的4dB增量可以是在计划用于GSM语音的通信网络的小区边界处具有或不具有可接受的MBMS质量之间的差别。

为了比较的原因,具有单频率但是具有三次和四次RLC块重发的现有技术情况还分别在附图中用曲线"4TX"和"5TX"来说明。如图12中所示的,在1%的LLC丢失率时,图11的并且根据本发明的调度方案比具有每个RLC块的四重重发的现有技术情况更好。另外,相比于具有四次重发的这个现有技术情况来说,图11的调度方案的吞吐量明显更高。

可以进一步通过例如增加所采用数据载波的数量来提高本发明的增益。随着所用

数据载波的数量增大,即使参与会话的接收单元的数量远远大于载波数量,通信系统的性能也趋近具有用于单个接收单元确认/未确认(ACK/NACK)反馈的专用传输流(EBF)的性能。

如在本领域中众所周知的,对于某些通信服务和系统来说可以使用形式为ACK/

NACK的反馈业务。在这些反馈中,没有成功接收数据块的接收单元可以通过它的基站并且请求重发该数据块。然而,因为小区内可以(同时)实施这类ACK/NACK反馈的接收单元的数量是有限的(一般是16个),所以这类反馈解决方案对于MBMS和其它广播以及组播服务来说作用较低或没有作用,其中,同时参与广播/组播会话的接收单元的平均数量可预期大于(可能是几十个移动单元)允许的反馈单元的最大数量。由此,本发明还通过能够不用任何ACK/NACK反馈而提供比较类似的性能来实现了这类组播和广播的引入。

图12中示出的结果是由单个时隙获得的。用多个时隙比较复杂。接收单元通常

不能把数据载波(频率)从一个时隙切换到下一个时隙。例如,这意味着接收单元可以用四个时隙仅为四个无线电块而不是为每个无线电块选择数据载波。然而,相同TMDA帧中的相邻时隙通常受到非常相似的衰落情况,并且如图13中所示,对于TDMA帧的所有时隙都必须使用相同数据载波的限制不需要对性能具有非常大的影响。

再次使用图11的传输方案,但是在四个时隙上的四个并行数据流上应用,即每个
RLC 块的所有重发都在与原始传输相同的时隙上。TDMA 块的所有四个时隙被给予相同的 C/I，并且在 TDMA 块之间使用理想的跳频。每个时隙模拟了 2500 个块。接收机频率方案非常简单，如果迄今为止没有被正确接收的 RLC 块正在第二频率上发射，则在第二频率 f2 上接收，否则在第一频率 f1 上接收。

[0136] 在图 13 中，曲线“1 freq”说明了只具有单频的现有技术情况，曲线“2 freq，4TS”表示具有四个时隙的上述情况，而曲线“2 freq，1TS”表示与图 12 的模拟相似只具有单个时隙的对应情况。在图 13 中可以看出，具有一个时隙的大多数增益都可以在具有四个时隙时得到保持。还需注意，MBMS 的典型操作点是为 10-3 的残余 RLCBLER。

[0137] 图 13 中的估计是假定许多频率上的跳频而做出的。如果没有跳频，则通过在具有更好 C/I 的频率上进行接收而具有能够避免衰落骤降 (fading dips) 的额外潜在优点。

[0138] 在图 13 中所使用的接收机选择方案极其简单并且可以例如通过采用先前论述的在选择中使用比接收质量更多的数据的选择方案中的其中一个而容易地被加以改进。

[0139] 还需注意，通过在一个 TDMA 帧内的四个连续时隙上而不是在四个连续 TDMA 帧上调度无线电块，完全可以防止数据载波 (频率) 不能从一个时隙改变到下一个时隙的问题。

[0140] 如上文所述，根据本发明的数据载波的选择优选地在同时发射属于不同 LLC 帧的数据块的数据跟踪波之间进行。图 14 说明了这样一种情况，其中，第一数据流 10 包括属于第一 LLC 帧的数据块的第二组 15。在这一组 15 使用第一载波 f1 发射的同时，第二载波 f2 被用于发射属于第二 LLC 帧的数据块的第三组 28。作为第二组 15 的子组版本并且由此包括属于第一 LLC 帧的数据块的第二组 25 然后在第二载波 f2 上跟踪。在第二组 25 在第二载波 f2 上被发射的同时，第一载波 f1 被用于发送属于第二 LLC 帧或第三 LLC 帧的数据块的第四组 18。由此，在根据本发明的这个传输方案中，相关的数据载波 f1, f2 同时携带属于不同 LLC 帧的数据块，从而允许接收单元避免侦听特定载波，该特定载波当前发射属于 LLC 帧的被认为是对于接收单元已失败的数据块。

[0141] 如上所述，图 1 所示的不同数据载波上的数据块不一定必须由同一个发射单元发射。如图 1 所示，第一数据载波 310 可以被第一基站 200-1 使用，而另一个数据载波 320 由第二基站 200-2 使用。如果接收单元 100-3 能够侦听这些基站 200-1,200-2 的两个小区 205-1,205-2 中的传输，则结果将与具有单个发射单元的时候相同。具有这个差异的优点是对于额外数据载波不需要额外带宽。本发明特别地有利于具有低 C/I 的接收单元，并且因为这些单元 100-3 一般很可能接近小区边界，所以相关的单元 100-3 能够侦听另一个基站 200-2 时不太可能的。在大多数情况下，基站 200-1,200-2 中的每一个都可以使用多个数据载波中的一个，因此接收单元 100-3 潜在地可以在超过两个的数据载波之中进行选择，这些数据载波可能发自相同小区或不同小区 205-1,205-2。

[0142] 在本发明的另一个实施例中，例如基站的发射单元 200-1 采用至少一个有中继能力的单元 100-5 以执行至少其中一个数据载波 320 上的传输。在这种情况下，基站 200-1 向有中继能力的单元 100-5 发送 325 第 1 或第 2 流的数据块并且命令它在给定数据载波 320 上向一个或多个接收单元 100-4 发送该流。在这个中继单元 100-5 转发其中一个数据流的同时，基站 200-1 在一个（或多个）其它数据载波 310 上发射一个（或多个）其它数据流。

[0143] 在又一个可选实施例中，基站 200-1 向有中继能力的移动单元 100-5 和接收单元
100-4 两者发送 325 第一流的的数据块。有中继能力的单元 100-5 优选地基于来自基站重组
命令重组这个第一流的数据块的顺序或在别处提供，并且把数据块作为第二流发射 320 到
接收单元 100-4。

【0144】 有中继能力的单元 100-5 可以是构成网络结构一部分的固定或移动节点，例如其
形式是中继器。在可选实施方式中，移动终端 100-5 或一些其他非网络通信单元可以被用
于这个任务。具有超过一个的有中继能力的单元的实施方式也是可能的，例如至少采用三
个数据载波的情况。

【0145】 图 15 是说明了对于采用有中继能力的单元的情况的图 9 发射方法的额外步骤的
流程图。该方法从图 9 中的步骤 S31 继续。在下一步骤 S50 中，基站把数据块的第二（或
第一）流发射到有中继能力的单元。与这个数据块传输一起或分开地，基站命令有中继能
力的单元一个或多个接收单元转发所发送的数据块。对这个数据块转发所用的数据载波
可以由基站指定并且包括在命令中或可能由中继单元自己来选择。该方法然后继续到图 9
的步骤 S32，其中，基站第一数据载波上发射第一（或第二）数据流，同时在中继能力的单
元在第二数据载波上转发第二（或第一）数据流。

【0146】 可选地，基站向有中继能力的单元发射第一数据流并且命令它重组该数据块的顺
序来生成第二流。而且，中继单元还被命令在与用来接收第一数据流的数据载波不同的数
据载波上发送这个重组的数据流。

【0147】 图 16 是根据本发明的接收单元 100 的示意框图，其被例示为移动终端或单元。然
而，本发明不限于限于移动终端或形式的接收单元 100，而是可以被应用于参与到与发射节
点进行通信会话（例如 MBMS 会话）并且适用于在整个会话期间接收数据块的任何接收单元。

【0148】 接收单元 100 包括通用输入输出 (I/O) 单元 110 以用于接收数据块并且可能用于
接收方案和载波标识符。单元 100 还包括用于解调和解码由 I/O 单元 110 接收的数据块的
解调器 / 解码器 120。这个解调器 / 解码器 120 或接收单元 100 中的其它单元还为已接收
的数据块提供接收质量。如上所述，这个接收质量可以从 CRC 检查中获得，是简单的解码 /
未解码通知或一些更精细的质量参数，比如 SNR、BLEP、BLER、BEP、BER、C/I 等等。

【0149】 载波选择器 130 在接收单元 120 中被实施用于由解调器 / 解码器 120 估计的
接收质量在多个可用载波之中选择数据载波以在特定时刻进行侦听。这个选择器 130 可以
被配置为用于从至少两个可能的载波中选择一个数据载波，或者在有多载波能力的单元
100 的情况下从至少三个可能的载波中选择至少两个载波。这些可能的数据载波还同时携
带数据块，其中一个基于与 I/O 单元 110 先前接收的数据块相同的信息并且基于所携带的
数据块解调器 / 解码器 120 来估计接收质量。

【0150】 载波选择器 130 在选择过程中还可以采用与多个先前接收的数据块相关的接收
质量、累积接收质量和 / 或采用一个或多个接收质量之外的其它数据。剩余重发数据块的
数量信息、载波质量数据和 / 或先前失败的 LLC 帧的信息还可以与接收质量一起使用。

【0151】 方案识别器 140 优选地被实施在接收单元 100 中以通过显示载波选择器 130 在不同
载波上的数据块的相对期望顺序和 / 或特定数据块的剩余重发数量。这个方案识别器 140
基本上确定在不同数据载波上的数据块的相对期望顺序。这个确定可能基于 I/O 单元 110
从发射单元接收的方案标识符，或者方案识别器 140 自己基于迄今已经由 I/O 单元 110 接
收的数据块的顺序来确定它。
对应的可选载波识别器 150 优先地被提供于接收单元 100 中以用于通知选择器 130 可能的数据载波以便在它们之中进行选择。这个识别器 150 可以来自于发射单元或其他外部单元的通知提供这个信息。可选地，识别器 150 例如基于其它载波的至少其中一个的信息来自己识别至少其中一个数据载波。

接收单元 100 的单元 110 到 150 可以被提供为软件、硬件或其组合。

图 17 是根据本发明的发射系统 400 的示例的示例框图。发射系统 400 包括用于与外部单元通信的 I/O 单元 410，包括参与到来自发射系统 400 的通信会话中的接收单元。这个 I/O 单元 410 其中一个同时在多个数据载波 310, 320 上发射数据块。I/O 单元 410 可以包括用于同时传输的天线或发射机设备或者连接到该天线或发射机设备。天线设备也可以包括多个分离的天线，其中，例如每个这类天线适合于以特定的频率发射数据块。

系统 400 还包括数据块缓冲器 440，其至少临时地存储将在（单播、广播或组播）会话中被发送的数据块。数据块它们自己可能已经由发射系统 400 中的特定应用程序生成。可选地，它们从诸如服务提供器之类的外部源，例如 MBMS 服务器，或一些其它的通信网络节点被接收。

块组提供器 (provider) 420 被配置在发射系统 400 中用以优选地从相关的数据缓冲器 440 中提供多个数据块的第一组。这个第一块组将由 I/O 单元 410 和天线设备使用数据载波 310, 320 中的一个来发射。第一组的数据块或其至少一个标识符由组提供器 420 带入块组缓冲器 (block set shuffler) 430。这个组缓冲器 430 重组第一组的数据块的相对顺序以生成至少第二数据块组。这个第二块组然后将由 I/O 单元 410 在数据载波 310, 320 的另一个上发射。改组器 430 通常自己不在缓存器 440 中重组数据块，而是重组第一组的数据块的标识符。然后，以标识符提供的顺序从缓存器 440 中取出数据块。

在优选实施例中，改组器 430 生成第二组，其中，基于公共信息的两个数据块的相对位置较之第一组中的这些数据块的相对位置有所不同。而且，在中间数据块的数量方面，第二组中的这些数据块之间的距离优选地大于第一组以便增加发射数据块时的分集。

组改组器 420 采用的特定重组方案以及第一组中的数据块的可能顺序可以由可选的方案选择器 450 提供的传输方案来规定。这个方案选择器 450 优选地从配置在发射系统 400 中或在外部提供的具有多个不同预定义可选方案的数据库 460 中选择所使用的方案。选择的特定方案可能至少部分地基于输入信息，输入信息的形式例如是当前无线电质量条件、参与的接收单元的数量、将发射哪种数据、发射系统 400 中的可用硬件等等。

在可选实施方案中，数据库 460 中没有预定义（标准化）方案并且方案选择器 450 例如基于以上所识别的输入信息自己生成一个适当的方案。

数据库 460 还可以包括载波数据，或者这种形成的数据可以被提供于专用数据库中。当 I/O 单元 410 将发射由组提供器 420 定义的第一组的数据块以及由组改组器 430 定义的第二组的块时，要采用的数据载波的通知可以从数据库 460 中获取。还可能，发射系统 400 只可以接入固定的有限数量的数据载波，并且这些数据载波在发射数据块时总是被 I/O 单元 410 采用，因此无须执行适当的数据载波的选择。可选地，外部单元可以通知发射系统 400 和 I/O 单元 410 将要采用的数据载波。

I/O 单元 410 还被优选地配置为用于向参与通信会话的一个（或多个）接收单元
转发由方案选择器 450 选择的特定使用的传输方案和/或数据载波的标识符的信息。

然后，I/O 单元 410 以第一数据载波 310 上的第一数据流和第二数据载波 320 上的第二数据流的形式发射第一和第二组的数据块，其中第一流包括第一组，第二流包括第二组。这个原理简单地被扩展到具有超过两个可用数据载波的情况。注意，尽管第一和第二数据流由 I/O 单元 410 在不同的数据载波 310、320 上同时发射，然而第一和第二组的数据块不一定必须同时发射，因为它们分别在第一和第二流内的相对位置可能不同。

1/O 单元 410 可以针对不同的数据块使用不同的数据速率。在优选实施方式中，在特定数据块第一次被发射时使用较高的数据速率。相应地，无论发生在第一组或第二组，这个数据块的重发都优选地以相对较低的数据速率来执行。

发射系统 400 的单元 410、420、430 和 450 可以被提供为软件、硬件或其组合。单元 410 到 460 可以在单网络节点，例如基站节点中的发射系统 400 中一起实施。可选地，使用在通信系统中的不同网络节点中提供的一些单元也可能实现分布式实施。

图 18 是具有专用通信网络节点 200-1、200-2 和数据块管理节点 500 的分布式发射系统 400 的示意图。在实施方式中，基站控制器 500 或一些其他的网络节点，例如基站，包括块组提供器 520、块组重新组器 530、数据缓冲器 540、方案选择器 550 和方案与载波数据库 560。这些单元的操作类似于上文关于图 17 所述的操作并且不在此做进一步论述。

只要块组提供器 520 和组重组器 530 已经基于由选择器 550 选择的传输方案而定义了第一和第二数据块组，相关的数据块就从数据缓冲器 540 被转发到由附图中的基站 200-1、200-2 表示的相关发射单元。然后，这些基站 200-1、200-2 中的每一个都将管理数据块流和组的其中一个的传输并且具有对应的数据缓冲器或高速缓存 240-1、240-2，其中数据块在使用基站 200-1、200-2 的 I/O 单元 210-1、210-2 进行传输之前被临时缓冲。例如，基站控制器 500 把第一数据流的数据块转发到第一基站 200-1，优选地与数据块应该被发射的顺序通知一起转发，除非从数据块被转发的顺序来看很明显。另外，用于第一基站 200-1 的数据载波信息以及应该开始传输的时刻信息可以被发送到基站 200-1。相应地，第二基站 200-2 优选地与顺序信息、载波信息以及时间信息一起接收第二数据块流。

然后，第一基站 200-1 在它被指派的数据载波 310 上发送第一流的数据块，同时第二基站在其相关的数据载波 320 上发射第二数据块流。

图 18 中公开的发射系统 400 可以被扩展成包括超过两个的使用不同数据载波 310、320 的专用发射单元 200-1、200-2。

发射系统 400 的单元 210-1、210-2、250、510、520、530 和 550 可以被提供为软件、硬件或其组合。数据块管理功能可以用基站控制器 500 之外的其它网络节点来执行，例如由第三基站来执行。

图 19 是发射系统 400 的另一个分布式实施方式的示意图。在这个实施方式中，由第一基站 200-1 表示的第一网络节点包括块组提供器 220、块组重组器 230、数据缓冲器 240、方案选择器 250 和方案与载波数据库 260。这些单元的操作类似于图 17 的对应单元并且不在此做进一步的论述。另外，第一基站 200-1 还适于在至少一个数据载波 310 上发送至少其中一个同时发射的数据载流。

一个（或多个）其它的数据块流由这个第一基站 200-1 的 I/O 单元 210-1 转发到由附图中第二基站 200-2 表示的至少一个有中继能力的单元。这个第二基站 200-2 然后被
指示在与第一基站 200-1 所用的数据载波不同的数据载波 320 上发射被转发的数据块。在另一个实施方式中，有中继能力的单元 200-2 可以是中继器节点、移动中继器或者实际上是移动单元。

[0171] 发射系统 400 的单元 210-1、210-2、220、230 和 250 可以被提供为软件、硬件或其组合。

[0172] 本领域的技术人员应当了解，在不脱离由随附权利要求限定的本发明范围的前提下可以对本发明做出不同的更改和改变。

[0173] 参考文献

图 1
图 4A

图 4B
图 11
图 12

LLC BLER

C/I [dB]

3 TX
4 TX
5 TX
3 TX 在2个频率的每个频率上
图 14
图 16
图 17