wo 2018/053343 A1 | 00000 OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
22 March 2018 (22.03.2018)

(10) International Publication Number

WO 2018/053343 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2017/051897

(22) International Filing Date:
15 September 2017 (15.09.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
201641031479

(71) Applicant: ORACLE INTERNATIONAL CORPO-
RATION [US/US]; 500 Oracle Parkway M/S 50P7, Red-
wood Shores, California 94065 (US).

(72) Inventors: PARK, Hoyong; 1196 Osuna Place, San
Jose, California 95129 (US). BISHNOI, Sandeep; 133

15 September 2016 (15.09.2016) IN

74

62y

Seminary Drive, Apt. K, Mill Valley, California 94941
(US). THUKKARAM, Prabhu; 2525 Harlow Lane,
San Ramon, California 94582 (US). KUMAR, Santosh;
Flat#B4-326, Janapriya Greenwood Apartment, Somashet-
tyhalli, Yesvantpur Hobli, Bangalore 560090 (IN). AD-
VANI, Pavan; D-1006,Rohan Vasantha Apts, Varthur
Main Road, Marathahalli, Bangalore 560037 (IN). MU-
LAY, Kunal;, 181, Tilak Nagar ext, Indore, Madhya
Pradesh 452018 (IN). TOILLION, Jeffrey; 28 Pinchurst
Lane, Half Moon Bay, California 94019 (US).

Agent: ROTHWELL, Rodney et al.; Mailstop: IP Docket-
ing - 22, 1100 Peachtree Street, Suite 2800, Atlanta, Geor-
gia 30309 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(54) Title: MANAGING SNAPSHOTS AND STATE WITH MICRO-BATCHING

Receive 2
micro-batch stream
of input events

. 705

L1

Process the input
avents using a
continuous ouery
processing engine o
genarate a set of
output events

L4

Generate a snapshot
of & current state of
a systam based at
lgast in part on the
output sat of svents

e 715

¥

Generate & first
directory structure
o 2coess snapshot

information

associated with the

stiapshot of the
currertt slate of the

system

e 720

'

Generate a second
directory structure
to genarate g list of
snapshots gssocialed
with the current state
of the system

[725

Jeterming & process
to generate, add,
and/or clean the list
of snapshots

e 730

FiGG. 7

(57) Abstract: An event processing system for processing events in an event stream is disclosed. The system can execute instructions to
receive a micro-batch stream of input events, process the input events using the CQL engine to generate a set of output events, generate,
using a snapshot management algorithm implemented by the CQL engine, a snapshot of a current state of a system based at least in
part on the set of output events related to the application, generate a first directory structure to access snapshot information associated
with the snapshot of the current state of the system, generate a second directory structure to generate a list of snapshots associated with
the current state of the system, and determine based at least in part on the snapshot management algorithm, a process to get, add, or
clean the list of snapshots associated with the current state of the system.

[Continued on next page]

WO 2018/053343 A1 { NI /00PN 0 0

HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KIL, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2018/053343 PCT/US2017/051897

MANAGING SNAPSHOTS AND STATE WITH MICRO-BATCHING

CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] The present application claims priority and benefit from India Provisional Application
No. 201641031479, filed September 15, 2016, entitled “MANAGING SNAPSHOTS AND
STATE WITH MICRO-BATCHING,” the entire contents of which are incorporated herein by

reference for all purposes.

[0002] This application is related to Application Serial No. , filed on the same
day herewith, Attorney Docket No. 088325-1052956 entitled “COMPLEX EVENT
PROCESSING FOR MICRO-BATCH STREAMING,” the entire contents of which are hereby

incorporated by reference as if fully set forth herein.

BACKGROUND
[0003] In traditional database systems, data is stored in one or more databases usually in the
form of tables. The stored data is then queried and manipulated using a data management
language such as a structured query language (SQL). For example, a SQL query may be defined
and executed to identify relevant data from the data stored in the database. A SQL query is thus
executed on a finite set of data stored in the database. Further, when a SQL query is executed, it
is executed once on the finite data set and produces a finite static result. Databases are thus best

equipped to run queries over finite stored data sets.

[0004] A number of modern applications and systems however generate data in the form of
continuous data or event streams instead of a finite data set. Examples of such applications
include but are not limited to sensor data applications, financial tickers, network performance
measuring tools (e.g. network monitoring and traffic management applications), clickstream
analysis tools, automobile traffic monitoring, and the like. Such applications have given rise to a
need for a new breed of applications that can process the data streams. For example, a

temperature sensor may be configured to send out temperature readings.

WO 2018/053343 PCT/US2017/051897

[0005] Managing and processing data for these types of event stream-based applications
involves building data management and querying capabilities with a strong temporal focus. A
different kind of querying mechanism is needed that comprises long-running queries over
continuous unbounded sets of data. While some vendors now offer product suites geared towards
event streams processing, these product offerings still lack the processing flexibility required for

handling today's event processing needs.

BRIEF SUMMARY
[0006] Techniques are provided (e.g., a method, a system, non-transitory computer-readable
medium storing code or instructions executable by one or more processors) for processing events
of an event stream. In an embodiment, an event processing system is disclosed. A system of one
or more computers can be configured to perform particular operations or actions by virtue of
having software, firmware, hardware, or a combination of them installed on the system that in
operation causes or cause the system to perform the actions. One or more computer programs
can be configured to perform particular operations or actions by virtue of including instructions
that, when executed by data processing apparatus, cause the apparatus to perform the actions.
One general aspect includes a method for managing snapshots created from a continuous query
language (CQL) engine, including: receiving, by a computing device, a micro-batch stream of
input events related to an application. The method also includes processing, by the computing
device, the input events using the CQL engine to generate a set of output events related to the
application. The method also includes generating, by the computing device and using a snapshot
management algorithm implemented by the CQL engine, a snapshot of a current state of a
system based at least in part on the set of output events related to the application. The method
also includes generating, by the computing device, a first directory structure to access snapshot
information associated with the snapshot of the current state of the system. The method also
includes generating, by the computing device, a second directory structure to generate a list of
snapshots associated with the current state of the system. The method also includes determining,
by the computing device, based at least in part on the snapshot management algorithm, a process
to get, add, or clean the list of snapshots associated with the current state of the system. Other

embodiments of this aspect include corresponding computer systems, apparatus, and computer

WO 2018/053343 PCT/US2017/051897

programs recorded on one or more computer storage devices, each configured to perform the
actions of the methods.

[0007] Implementations may include one or more of the following features. The method where
the micro-batch stream is a continuous stream of data discretize into sub-second micro-batches.
The method where the processing the input events includes processing the input events based at
least in part on a transformed query plan. The method further including storing, by the
computing device, the set of output events related to the application in an output queue; and
transmitting, by the computing device, the output events in the output queue when all of the input
events have been processed. The method where the micro-batch stream includes micro-batches
of data or resilient distributed datasets (RDDs). The method where the processing each of the
input events includes performing a computation on each of the input based at least in part on the
transformed query plan. The method further including receiving, by the computing device, a
continuous query, applying a transformation to the continuous query to generate a query plan for
the continuous query, and transforming the query plan using a transformation algorithm to
generate the transformed query plan, where the continuous query includes pattern matching.
Implementations of the described techniques may include hardware, a method or process, or

computer software on a computer-accessible medium.

[0008] One general aspect includes a system, including: a memory configured to store
computer-executable instructions; and a processor configured to access the memory and execute
the computer-executable instructions to:. The system also includes receive a micro-batch stream
of input events related to an application. The system also includes process the input events using
the CQL engine to generate a set of output events related to the application. The system also
includes generate, using a snapshot management algorithm implemented by the CQL engine, a
snapshot of a current state of a system based at least in part on the set of output events related to
the application. The system also includes generate a first directory structure to access snapshot
information associated with the snapshot of the current state of the system. The system also
includes generate a second directory structure to generate a list of snapshots associated with the
current state of the system. The system also includes determine based at least in part on the
snapshot management algorithm, a process to get, add, or clean the list of snapshots associated

with the current state of the system. Other embodiments of this aspect include corresponding

WO 2018/053343 PCT/US2017/051897

computer systems, apparatus, and computer programs recorded on one or more computer storage

devices, each configured to perform the actions of the methods.

[0009] Implementations may include one or more of the following features. The system where
the micro-batch stream is a continuous stream of data discretize into sub-second micro-batches.
The system where the processing the input events includes processing the input events based at
least in part on a transformed query plan. The system where the computer executable instructions
are further executable to store the set of output events related to the application in an output
queue; and transmit the output events in the output queue when all of the input events have been
processed. The system where the micro-batch stream includes micro-batches of data or resilient
distributed datasets (RDDs). The system where the processing each of the input events includes
performing a computation on each of the input based at least in part on the transformed query
plan. The system where the computer executable instructions are further executable to receive a
continuous query, apply a transformation to the continuous query to generate a query plan for the
continuous query, and transform the query plan using a transformation algorithm to generate the
transformed query plan, where the continuous query includes pattern matching. Implementations
of the described techniques may include hardware, a method or process, or computer software on

a computer-accessible medium.

[0010] One general aspect includes a computer-readable medium storing computer-executable
code that, when executed by a processor, cause the processor to perform operations including:
receiving a micro-batch stream of input events related to an application. The computer - readable
medium also includes processing the input events using the CQL engine to generate a set of
output events related to the application. The computer - readable medium also includes
generating, using a snapshot management algorithm implemented by the CQL engine, a snapshot
of a current state of a system based at least in part on the set of output events related to the
application. The computer - readable medium also includes generating a first directory structure
to access snapshot information associated with the snapshot of the current state of the system.
The computer - readable medium also includes generating a second directory structure to
generate a list of snapshots associated with the current state of the system. The computer -

readable medium also includes determining based at least in part on the snapshot management

WO 2018/053343 PCT/US2017/051897

algorithm, a process to get, add, or clean the list of snapshots associated with the current state of
the system. Other embodiments of this aspect include corresponding computer systems,
apparatus, and computer programs recorded on one or more computer storage devices, each

configured to perform the actions of the methods.

[0011] Implementations may include one or more of the following features. The computer-
readable medium where the micro-batch stream is a continuous stream of data discretize into
sub-second micro-batches. The computer-readable medium where the processing the input
events includes processing the input events based at least in part on a transformed query plan.
The computer-readable medium where operations further include storing the set of output events
related to the application in an output queue; and transmitting the output events in the output
queue when all of the input events have been processed. The computer-readable medium where
the micro-batch stream includes micro-batches of data or resilient distributed datasets (RDDs).
The computer-readable medium where the processing each of the input events includes
performing a computation on each of the input based at least in part on the transformed query
plan. Implementations of the described techniques may include hardware, a method or process,

or computer software on a computer-accessible medium.

[0012] A system of one or more computers can be configured to perform particular operations
or actions by virtue of having software, firmware, hardware, or a combination of them installed
on the system that in operation causes or cause the system to perform the actions. One or more
computer programs can be configured to perform particular operations or actions by virtue of
including instructions that, when executed by data processing apparatus, cause the apparatus to
perform the actions. One general aspect includes a method for processing of a micro-batching
stream to support fully stateful query processing, including: receiving, by a computing device, a
continuous query. The method also includes applying, by the computing device, a transformation
to the continuous query to generate a query plan for the continuous query. The method also
includes monitoring, by the computing device, the continuous query using a monitoring
transformation process. The method also includes receiving, by the computing device, a micro-
batch stream of input events related to an application. The method also includes processing, by

the computing device, the input events of the micro-batch stream based at least in part on the

WO 2018/053343 PCT/US2017/051897

monitoring transformation process to generate a set of output events related to the application.
Other embodiments of this aspect include corresponding computer systems, apparatus, and
computer programs recorded on one or more computer storage devices, each configured to

perform the actions of the methods.

[0013] Implementations may include one or more of the following features. The method
where the processing is performed using a continuous query processing engine, and the
processing includes processing each of the input events incrementally to generate the output
events. The method where transformation is a directly acyclic graph (dag) transformation. The
method further including storing, by the computing device, the set of output events related to the
application in an output queue; and transmitting, by the computing device, the output events in
the output queue when all of the input events have been processed. The method where the micro-
batch stream includes micro-batches of data or resilient distributed datasets (RDDs), and the dag
transformation is a set of vertices and edges, where the vertices represent the RDDs and the
edges represent an operation to be applied on the RDDs. The method where the processing each
of the input events includes performing a computation on each of the input based at least in part
on a transformed query plan. The method where the continuous query includes pattern matching.
Implementations of the described techniques may include hardware, a method or process, or

computer software on a computer-accessible medium.

[0014] One general aspect includes a system, including: a memory configured to store
computer-executable instructions; and a processor configured to access the memory and execute
the computer-executable instructions to:. The system also includes receive a continuous query.
The system also includes apply a transformation to the continuous query to generate a query plan
for the continuous query. The system also includes monitor the continuous query using a
monitoring transformation process. The system also includes receive a micro-batch stream of
input events related to an application. The system also includes process the input events of the
micro-batch stream based at least in part on the monitoring transformation process to generate a
set of output events related to the application. Other embodiments of this aspect include
corresponding computer systems, apparatus, and computer programs recorded on one or more

computer storage devices, each configured to perform the actions of the methods.

WO 2018/053343 PCT/US2017/051897

[0015] Implementations may include one or more of the following features. The system where
the processing is performed using a continuous query processing engine, and the processing
includes processing each of the input events incrementally to generate the output events. The
system where transformation is a directly acyclic graph (dag) transformation. The system where
the computer-executable instructions are further executable to store the set of output events
related to the application in an output queue; and transmit the output events in the output queue
when all of the input events have been processed. The system where the micro-batch stream
includes micro-batches of data or resilient distributed datasets (RDDs), and the dag
transformation is a set of vertices and edges, where the vertices represent the RDDs and the
edges represent an operation to be applied on the RDDs. The system where the processing each
of the input events includes performing a computation on each of the input based at least in part
on a transformed query plan. The system where the continuous query includes pattern matching.
Implementations of the described techniques may include hardware, a method or process, or

computer software on a computer-accessible medium.

[0016] One general aspect includes a computer-readable medium storing computer-executable
code that, when executed by a processor, cause the processor to perform operations including:
receiving a continuous query. The computer - readable medium also includes applying a
transformation to the continuous query to generate a query plan for the continuous query. The
computer - readable medium also includes monitoring the continuous query using a monitoring
transformation process. The computer - readable medium also includes receiving a micro-batch
stream of input events related to an application. The computer - readable medium also includes
processing the input events of the micro-batch stream based at least in part on the monitoring
transformation process to generate a set of output events related to the application. Other
embodiments of this aspect include corresponding computer systems, apparatus, and computer
programs recorded on one or more computer storage devices, each configured to perform the

actions of the methods.

[0017] Implementations may include one or more of the following features. The computer-
readable medium where the processing is performed using a continuous query processing engine,

and the processing includes processing each of the input events incrementally to generate the

WO 2018/053343 PCT/US2017/051897

output events. The computer-readable medium where transformation is a directly acyclic graph
(dag) transformation. The computer-readable medium where the operations further include
storing the set of output events related to the application in an output queue; and transmitting the
output events in the output queue when all of the input events have been processed. The
computer-readable medium where the micro-batch stream includes micro-batches of data or
resilient distributed datasets (RDDs), and the dag transformation is a set of vertices and edges,
where the vertices represent the RDDs and the edges represent an operation to be applied on the
RDDs. The computer-readable medium where the continuous query includes pattern matching.
Implementations of the described techniques may include hardware, a method or process, or

computer software on a computer-accessible medium.

[0018] The techniques described above and below may be implemented in a number of ways
and in a number of contexts. Several example implementations and contexts are provided with
reference to the following figures, as described below in more detail. However, the following

implementations and contexts are but a few of many.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1is a graphical representation of an Event Processing Network in accordance with

an embodiment of the present disclosure.

[0020] FIG. 2 depicts a simplified high level diagram of an event processing system in

accordance with an embodiment of the present disclosure.

[0021] FIG. 3 is an example system or architecture in which a stream processing application
configured for stateful processing with micro-batching stream processing can be implemented in

accordance with an embodiment of the present disclosure.

[0022] FIG. 4 shows a flowchart that illustrates processing of a micro-batching stream in

accordance with an embodiment of the present disclosure.

[0023] FIG. 5is an example system or architecture in which a CQL Engine Tracker is

implemented in accordance with an embodiment of the present disclosure.

WO 2018/053343 PCT/US2017/051897

[0024] FIG. 6A is an exemplary data structure of a Map directory structure implemented in

accordance with an embodiment of the present disclosure.

[0025] FIG. 6B is an exemplary data structure of a Map directory structure implemented in

accordance with an embodiment of the present disclosure.

[0026] FIG. 7 shows a flowchart that illustrates processing of a micro-batching stream in

accordance with an embodiment of the present disclosure.

[0027] FIG. 8 shows a flowchart that illustrates processing of a micro-batching in accordance

with an embodiment of the present disclosure.

[0028] FIG. 9 depicts a simplified diagram of a distributed system for implementing an

embodiment of the present disclosure.

[0029] FIG. 101s a simplified block diagram of one or more components of a system
environment by which services provided by one or more components of an embodiment system

may be offered as cloud services, in accordance with an embodiment of the present disclosure.

[0030] FIG. 11 illustrates an example computer system that may be used to implement an

embodiment of the present disclosure.

DETAILED DESCRIPTION
[0031] In the following description, various embodiments will be described. For purposes of
explanation, specific configurations and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be apparent to one skilled in the art that
the embodiments may be practiced without the specific details. Furthermore, well-known

features may be omitted or simplified in order not to obscure the embodiment being described.

Overview of Complex Event Processing (CEP)

[0032] Complex Event Processing (CEP) provides a modular platform for building
applications based on an event-driven architecture. At the heart of the CEP platform is the
Continuous Query Language (CQL) which allows applications to filter, query, and perform
pattern matching operations on streams of data using a declarative, SQL-like language.

Developers may use CQL in conjunction with a lightweight Java programming model to write

WO 2018/053343 PCT/US2017/051897

applications. Other platform modules include a feature-rich IDE, management console,

clustering, distributed caching, event repository, and monitoring, to name a few.

[0033] As event-driven architecture and complex event processing have become prominent
features of the enterprise computing landscape, more and more enterprises have begun to build
mission-critical applications using CEP technology. Today, mission-critical CEP applications
can be found in many different industries. For example, CEP technology is being used in the
power industry to make utilities more efficient by allowing them to react instantaneously to
changes in demand for electricity. CEP technology is being used in the credit card industry to
detect potentially fraudulent transactions as they occur in real time. The list of mission-critical
CEP applications continues to grow. The use of CEP technology to build mission-critical
applications has led to a need for CEP applications to be made highly available and fault-

tolerant.

[0034] Today's Information Technology (IT) environments generate continuous streams of
data for everything from monitoring financial markets and network performance, to business
process execution and tracking RFID tagged assets. CEP provides a rich, declarative
environment for developing event processing applications to improve the effectiveness of
business operations. CEP can process multiple event streams to detect patterns and trends in real
time and provide enterprises the necessary visibility to capitalize on emerging opportunities or

mitigate developing risks.

[0035] A continuous stream of data (also referred to as an event stream) may include a stream
of data or events that may be continuous or unbounded in nature with no explicit end. Logically,
an event or data stream may be a sequence of data elements (also referred to as events), each data
element having an associated timestamp. A continuous event stream may be logically
represented as a bag or set of elements (s, T), where "s" represents the data portion, and "T" is in
the time domain. The "s" portion is generally referred to as a tuple or event. An event stream

may thus be a sequence of time-stamped tuples or events.

[0036] In some aspects, the timestamps associated with events in a stream may equate to a
clock time. In other examples, however, the time associated with events in an event stream may

be defined by the application domain and may not correspond to clock time but may, for

10

WO 2018/053343 PCT/US2017/051897

example, be represented by sequence numbers instead. Accordingly, the time information
associated with an event in an event stream may be represented by a number, a timestamp, or any
other information that represents a notion of time. For a system receiving an input event stream,
the events arrive at the system in the order of increasing timestamps. There could be more than

one event with the same timestamp.

[0037] Insome examples, an event in an event stream may represent an occurrence of some
worldly event (e.g., when a temperature sensor changed value to a new value, when the price of a
stock symbol changed) and the time information associated with the event may indicate when the

worldly event represented by the data stream event occurred.

[0038] For events received via an event stream, the time information associated with an event
may be used to ensure that the events in the event stream arrive in the order of increasing
timestamp values. This may enable events received in the event stream to be ordered based upon
their associated time information. In order to enable this ordering, timestamps may be associated
with events in an event stream in a non-decreasing manner such that a later-generated event has a
later timestamp than an earlier-generated event. As another example, if sequence numbers are
being used as time information, then the sequence number associated with a later-generated
event may be greater than the sequence number associated with an earlier-generated event. In
some examples, multiple events may be associated with the same timestamp or sequence
number, for example, when the worldly events represented by the data stream events occur at the
same time. Events belonging to the same event stream may generally be processed in the order
imposed on the events by the associated time information, with earlier events being processed

prior to later events.

[0039] The time information (e.g., timestamps) associated with an event in an event stream
may be set by the source of the stream or alternatively may be set by the system receiving the
stream. For example, in certain embodiments, a heartbeat may be maintained on a system
receiving an event stream, and the time associated with an event may be based upon a time of
arrival of the event at the system as measured by the heartbeat. It is possible for two events in an

event stream to have the same time information. It is to be noted that while timestamp ordering

11

WO 2018/053343 PCT/US2017/051897

requirement is specific to one event stream, events of different streams could be arbitrarily

interleaved.

[0040] An event stream has an associated schema "S," the schema comprising time
information and a set of one or more named attributes. All events that belong to a particular
event stream conform to the schema associated with that particular event stream. Accordingly,
for an event stream (s, T), the event stream may have a schema 'S' as (<time stamp>,
<attribute(s)>), where <attributes> represents the data portion of the schema and can comprise
one or more attributes. For example, the schema for a stock ticker event stream may comprise
attributes <stock symbol>, and <stock price>. Each event received via such a stream will have a
time stamp and the two attributes. For example, the stock ticker event stream may receive the

following events and associated timestamps:

(<timestamp N>, <NVDA, 4>)

(<timestamp N+1>, <ORCL,62>)
(<timestamp N+2> <PCAR,38>)
(<timestamp N+3>, <SPOT,53>)
(<timestamp N+4> <PDCQO,44>)
(<timestamp N+5>, <PTEN,50>)

[0041] In the above stream, for stream element (<timestamp N+1>, <ORCL,62>), the event is
<ORCL,62> with attributes "stock symbol" and "stock value." The timestamp associated with
the stream element is "timestamp N+1". A continuous event stream is thus a flow of events,

each event having the same series of attributes.

[0042] As noted, a stream may be the principle source of data that CQL queries may act on. A
stream S may be a bag (also referred to as a “multi-set”) of elements (s, T), where “s” is in the
schema of S and “T” is in the time domain. Additionally, stream elements may be tuple-
timestamp pairs, which can be represented as a sequence of timestamped tuple insertions. In
other words, a stream may be a sequence of timestamped tuples. In some cases, there may be

more than one tuple with the same timestamp. And, the tuples of an input stream may be

12

WO 2018/053343 PCT/US2017/051897

requested to arrive at the system in order of increasing timestamps. Alternatively, a relation (also
referred to as a “time varying relation,” and not to be confused with “relational data,” which may
include data from a relational database) may be a mapping from the time domain to an
unbounded bag of tuples of the schema R. In some examples, a relation may be an unordered,
time-varying bag of tuples (i.e., an instantaneous relation). In some cases, at each instance of
time, a relation may be a bounded set. It can also be represented as a sequence of timestamped
tuples that may include insertions, deletes, and/or updates to capture the changing state of the
relation. Similar to streams, a relation may have a fixed schema to which each tuple of the
relation may conform. Further, as used herein, a continuous query may generally be capable of
processing data of (i.e., queried against) a stream and/or a relation. Additionally, the relation may

reference data of the stream.

[0043] In some aspects, the CQL engine may include a full blown query language. As such, a
user may specify computations in terms of a query. Additionally, the CQL engine may be
designed for optimizing memory, utilizing query language features, operator sharing, rich pattern
matching, rich language constructs, etc. Additionally, in some examples, the CQL engine may
process both historical data and streaming data. For example, a user can set a query to send an
alert when California sales hit above a certain target. Thus, in some examples, the alert may be

based at least in part on historical sales data as well as incoming live (i.e., real-time) sales data.

[0044] In some examples, the CQL engine or other features of the below described concepts
may be configured to combine a historical context (i.e., warehouse data) with incoming data in a
real-time fashion. Thus, in some cases, the present disclosure may describe the boundary of
database stored information and in-flight information. Both the database stored information and
the inflight information may include BI data. As such, the database may, in some examples, be a
BI server or it may be any type of database. Further, in some examples, the features of the
present disclosure may enable the implementation of the above features without users knowing
how to program or otherwise write code. In other words, the features may be provided in a
feature-rich user interface (UI) or other manner that allows non-developers to implement the

combination of historical data with real-time data.

13

WO 2018/053343 PCT/US2017/051897

[0045] In some examples, the above concepts may be utilized to leverage the rich real-time
and continuous event processing capabilities associated with complex event processing. Several
features may be supported such as, but not limited to, archived relations. As such, in order to
leverage such features (e.g., rich, real-time and continuous event processing), the system may be
configured to transparently deal with startup state and runtime state of relational data. In other
words, the system may be configured to manage a query that is non-empty at the instant of its

creation (i.e., an archived relation).

[0046] In some examples, an archived relation may be utilized. As such, when a CQL engine
sees a query that indicates that it is based on an archived relation, that archived relation may also
indicate that there are certain entities it can call to query for historical context, for example. In
some examples, a data definition language (DDL) may indicate annotations about the archived
relation such as, but not limited to, how do to the query, what are the important columns in the
table, and/or where to send the rest of the data. In some examples, once the query is constructed
in the CQL engine (e.g., as a graph), the system may analyze the query graph. Additionally, in
some aspects, there are certain operators that are stateful, like “distinct,” “group aggr,” “pattern,”
and/or “group by.” However, stateless operators may just take input and send it to the parent, for
example, down-stream operators. So, one approach is to store this entire table here. However,
utilizing archived relations, the system may analyze the query graph and decide which of the
lowest stateful operator that it can use to query the archive. In some examples, the system (or one
or more computer-implemented methods) may retrieve the state at the lowest stateful operator
reached while traversing the graph. For example, the query graph may be analyzed in a
topological order from the source. Based at least in part on this first stateful operator, the CQL
engine may then determine the optimal amount of data to be fetched in order to initialize the

state of the operators for a query defined over an archived relation.

[0047] In at least one non-limiting example, source operators like relation and/or source may
come first in the topological traversal with query output and/or root coming last. For example, if
the CQL query looks like: select sum(c1) from R1 where c2>c25, the plan for this query may
look like: RelationSource 2 SELECT - GroupAggr. Thus, following the topological order, and

since RelationSource and SELECT are both stateless, the lowest stateful operator may be

14

WO 2018/053343 PCT/US2017/051897

GroupAggr. In this way, the stateful operators of a query (GroupAggr in this example) may
enable the query engine to populate the query engine with historical data from a data store prior
to receiving streaming data. This may be enabled based at least in part on the fact that the query

is analyzing an archived relation and the archived relation has been indicated as such.

[0048] In some examples, a window size for a given archived relation may be specified by a
user. A window, in some aspects, in relation to an archived relation, may include a node in a
query graph that analyzes or otherwise evaluates incoming streamed content. In other words, the
window may define the amount of streamed content that be analyzed and/or processed by the

query engine and/or the amount of historical data that will be included in the archived relation.

[0049] At ahigh level, once a window is applied on a Stream it becomes a Relation and then
regular relational logic may be applied, as with relational databases. As tuples arrive and leave
the window, the Relation under consideration changes with queries compiled against it emitting
results at the same time. CQL may support RANGE (up to nanoseconds granularity), ROWS,
PARTITION BY and extensible windows. These windows are examples of stream-to-relation
operators. On the other hand, ISTREAM (i.e., insert stream), DSTREAM (i.e., delete stream) and
RSTREAM (i.e., relation stream) are relation-to-stream operators. In some examples, a user,
developer, and/or manager may set the window size (e.g., via a Ul) provided by the query engine
or one or more computing systems operating or hosting the query engine. In some examples, a
window on a stream may be a time-based range window. For example, a configurable value
window on an archived relation may be specified using window size and the attribute on which
the window is calculated. When there is a configurable value window specified on top of
archived relation, a snapshot query may be computed and the snapshot tuples which are within
window limits may be output. Additionally, after state initialization, the value window may be
applied on incoming active data. In some examples, only the incoming active data will be
inserted into window whose window attribute’s value is differing from current event time for less

than the window size.

[0050] Additionally, in some examples, features of the present disclosure may also leverage
the continuous query processing capabilities of the CQL engine and/or CEP engine to support

real-time data analysis. In some aspects, the CQL engine and/or CEP engine may have

15

WO 2018/053343 PCT/US2017/051897

traditionally been a stream-oriented analysis engine; however, it may be enhanced to support
stream-oriented data that is backed by a durable store (e.g., the archived relation described
above). For example, the present disclosure describes features that may support the notion of a
data object (DO) which is a durable store (database and/or table). Modifications made to a DO
may cause change notifications to be broadcast to interested listeners creating, in effect, a data
stream. This data stream may be consumed by the CQL engine and/or CEP engine in support of
any running queries; however, the CQL engine and/or CEP engine may not have been designed
to take into account the existing data in the DO backing store. For example, the CQL engine
and/or CEP engine may request that the initial state of the query running in the CQL engine
and/or CEP engine reflect the current state of the DO including all the data currently in the DO
backing store. Once this query is so initialized, the CQL engine and/or CEP engine only need to
concern itself with the stream of DO change notifications from that point on in traditional

stream-oriented style.

[0051] In some aspects, the CQL engine and/or CEP engine may traditionally process streams
or non-archived relations, so there may be no initial state. For example, a query may be loaded,
wherein it may start running and listening for changes, etc. In some cases, if a user asks for sales
by state, in a bar chart, and then somebody makes a new sale, the table may get updated and the
user may expect to see a change in the graph, pushed out to them. However, if they close the
dashboard and come back a week later and bring up some sales, the user may expect to have the
sum of sales according to the table of summed sales data. In other words, the query may need to

bring the query up to the state of the archive and then listen for active changes.

[0052] In some aspects, for example, the CQL engine may be pre-initialized with the archived
data. Once initialized, the CQL engine may listen to a Java Messaging Service (JMS) or other
messenger for change notifications (e.g., based at least in part on API calls for inserting, deleting,
etc., data from the archive). Thus, services can listen and if the JMS publishes on the same topic
that the listening service is listening on, it may receive the data. The services don’t have to know
who is publishing or whether they are, or not. The listening service can just listen, and if
something happens, the listening service may hear it. In some examples, this is how persistence

is decoupled, for instance, from its consumers. Additionally, in some examples, an alert engine

16

WO 2018/053343 PCT/US2017/051897

may raise alerts based on what the alert engine hears, potentially, and further, a SQL engine, that

may be listening in on process queries of relevance to the listener.

[0053] In some examples, a query may be started in CQL, SQL, and/or CEP engine and
instructions may be configured to get the archive data (e.g., to prime the pump) and then start
listening to these JMS messages. However, with numerous inserts, deletes, etc., this could
include a large amount of information. Additionally, there could be a lag time before the
message is heard by the listener and the listening may, in some examples, jump in, query the
archive, come back, and start listening. Thus, there is a potential for missing and/or double

counting an event.

[0054] Additionally, if the engine merely runs the query, while it’s running the query things
can go into JMS and be published where the engine wasn’t listening. So, the engine may be
configured to setup the listener first, run the archive query, and then come back and actually start
pulling out of the queue, so that it doesn’t miss anything. Thus, the JMS may queue things up
and, if things back up it’s okay while the engine is doing a query because it can catch up later
and it doesn’t have to worry about whether it’s synchronous. If it’s not here, listening, it won’t

miss it, it just gets queued until the engine comes back, as long as it has its listener established.

[0055] Additionally, in some examples, a system column may be added to a user’s data. This
system column may be for indicating transaction IDs to attempt to handle the double counting
and/or missing operation problem. However, in other examples, the system may provide or
otherwise generate a transaction context table. Additionally, there may be two additional
columns TRANSACTION_CID and TRANSACTION_TID. The context table may always be
maintained by persistence service so as to know thread (context)wise of the last committed
transaction ID. The transaction IDs may be guaranteed to be committed in ascending order for a
thread (context). For example, when a server comes up, it may run the persistence service. Each
one may allocate a set of context IDs and transaction IDs for determining whether data of the
pre-initialized information includes all of the data that has passed through the JMS. Additionally,
in some cases, multiple output servers may be utilized (in compliance with JTA and/or to

implement high availability (HA), wherein each server may manage a single set of

17

WO 2018/053343 PCT/US2017/051897

context/transaction tables that are completely separate from the other tables managed by the

other servers.

[0056] In some embodiments, when a continuous (for example, a CQL) query is created or
registered, it may undergo parsing and semantic analysis at the end of which a logical query plan
is created. When the CQL query is started, for example, by issuing an “alter query <queryname>
start” DDL, the logical query plan may be converted to a physical query plan. In one example,
the physical query plan may be represented as a directed acyclic graph (DAG) of physical
operators. Then, the physical operators may be converted into execution operators to arrive at the
final query plan for that CQL query. The incoming events to the CQL engine reach the source
operator(s) and eventually move downstream with operators in the way performing their

processing on those events and producing appropriate output events.

Event Processing Applications

[0057] The quantity and speed of both raw infrastructure and business events is exponentially
growing in IT environments. Whether it is streaming stock data for financial services, streaming
satellite data for the military or real-time vehicle- location data for transportation and logistics
businesses, companies in multiple industries must handle large volumes of complex data in real-
time. In addition, the explosion of mobile devices and the ubiquity of high-speed connectivity
adds to the explosion of mobile data. At the same time, demand for business process agility and
execution has also grown. These two trends have put pressure on organizations to increase their
capability to support event-driven architecture patterns of implementation. Real-time event
processing requires both the infrastructure and the application development environment to
execute on event processing requirements. These requirements often include the need to scale
from everyday use cases to extremely high velocities of data and event throughput, potentially
with latencies measured in microseconds rather than seconds of response time. In addition, event

processing applications must often detect complex patterns in the flow of these events.

[0058] The Oracle Stream Analytics platform targets a wealth of industries and functional

areas. The following are some use cases:

18

WO 2018/053343 PCT/US2017/051897

[0059] Telecommunications: Ability to perform real-time call detail (CDR) record monitoring

and distributed denial of service attack detection.

[0060] Financial Services: Ability to capitalize on arbitrage opportunities that exist in
millisecond or microsecond windows. Ability to perform real-time risk analysis, monitoring and

reporting of financial securities trading and calculate foreign exchange prices.

[0061] Transportation: Ability to create passenger alerts and detect baggage location in case of
flight discrepancies due to local or destination-city weather, ground crew operations, airport

security, etc.

[0062] Public Sector/Military: Ability to detect dispersed geographical enemy information,
abstract it, and decipher high probability of enemy attack. Ability to alert the most appropriate

resources to respond to an emergency.
[0063] Insurance: Ability to learn and to detect potentially fraudulent claims.

[0064] IT Systems: Ability to detect failed applications or servers in real-time and trigger

corrective measures.

[0065] Supply Chain and Logistics: Ability to track shipments in real-time and detect and

report on potential delays in arrival.

Real Time Streaming & Event Processing Analvtics

[0066] With exploding data from increased number of connected devices, there is an increase
in large volumes of dynamically changing data; not only the data moving within organizations,
but also outside the firewall. High-velocity data brings high value, especially to volatile business
processes. However, some of this data loses its operational value in a short time frame. Big Data
allows the luxury of time in processing for actionable insight. Fast Data, on the other hand,
requires extracting the maximum value from highly dynamic and strategic data. It requires
processing much faster and facilitates taking timely action as close to the generated data as

possible. The Oracle Stream Analytics platform delivers on Fast Data with responsiveness.

19

WO 2018/053343 PCT/US2017/051897

Oracle Edge Analytics pushes processing to the network edge, correlating, filtering and

analyzing data for actionable insight in real-time.

[0067] The Oracle Stream Analytics platform provides ability to join the incoming streaming
events with persisted data, thereby delivering contextually aware filtering, correlation,
aggregation and pattern matching. It delivers lightweight, out of the box adapters for common
event sources. It also provides an easy-to-use adapter framework for custom adapter
development. With this platform, organizations can identify and anticipate opportunities, and
threats represented by seemingly unrelated events. Its incremental processing paradigm can
process events using a minimum amount of resources providing extreme low latency processing.
It also allows it to create extremely timely alerts, and detect missing or delayed events

immediately, such as the following:

[0068] Correlated events: If event A happens, event B almost always follows within 2 seconds
of it.

[0069] Missing or Out-of-Sequence events: Events A, B, C should occur in order. C is seen

immediately after A, without B.

[0070] Causal events: Weight of manufactured items is slowly trending lower or the reading

falls outside acceptable norms. This signals a potential problem or future maintenance need.

[0071] In addition to real-time event sourcing, the Oracle Stream Analytics platform design
environment and runtime execution supports standards-based, continuous query execution across
both event streams and persisted data stores like databases and high performance data grids. This
enables the platform to act as the heart of intelligence for systems needing answers in
microseconds or minutes to discern patterns and trends that would otherwise go unnoticed. Event
Processing use cases require the speed of in-memory processing with the mathematical accuracy
and reliability of standard database SQL. This platform queries listen to incoming event streams
and execute registered queries continuously, in-memory on each event, utilizing advanced,
automated algorithms for query optimization. While based on an in-memory execution model,
however, this platform leverages standard ANSI SQL syntax for query development, thus
ensuring accuracy and extensibility of query construction. This platform is fully compliant with

the ANSI SQL °99 standard and was one of the first products available in the industry to support

20

WO 2018/053343 PCT/US2017/051897

ANSI SQL reviewed extensions to standard SQL for real-time, continuous query pattern
matching. The CQL engine optimizes the execution of queries within a processor leaving the

developer to focus more on business logic rather than optimization.

[0072] The Oracle Stream Analytics platform allows for both SQL and Java code to be
combined to deliver robust event processing applications. Leveraging standard industry
terminology to describe event sources, processors, and event output or sinks, this platform
provides a meta-data driven approach to defining and manipulating events within an application.
Its developers use a visual, directed- graph canvas and palette for application design to quickly
outline the flow of events and processing across both event and data sources. Developing the
flow through drag and drop modeling and configuration wizards, the developer can then enter the
appropriate metadata definitions to connect design to implementation. When necessary or
preferred, with one click, developers are then able to drop into custom Java code development or

use the Spring® framework directly to code advanced concepts into their application.

[0073] Event driven applications are frequently characterized by the need to provide low and
deterministic latencies while handling extremely high rates of streaming input data. The
underpinning of the Oracle Stream Analytics platform is a lightweight Java container based on
an OSGi® backplane. It contains mature components from the WebLogic JEE application server,
such as security, logging and work management algorithms, but leverages those services in a
real-time event-processing environment. An integrated real-time kernel provides unique services
to optimize thread and memory management supported by a IMX framework enabling the
interaction with the container for performance and configuration. Web 2.0 rich internet
applications can communicate with the platform using the HTTP publish and subscribe services,
which enables them to subscribe to an application channel and have the events pushed to the
client. With a small footprint this platform is a lightweight, Java-based container, that delivers

faster time-to- production and lower total cost of ownership.

[0074] The Oracle Stream Analytics platform has the ability to handle millions of events per
second with microseconds of processing latencies on standard, commodity hardware or optimally
with Oracle Exalogic and its portfolio of other Engineered Systems. This is achieved through a

complete “top-down" layered solution, not only with a design focus on high performance event

21

WO 2018/053343 PCT/US2017/051897

processing use cases, but also a tight integration with enterprise-class real-time processing
infrastructure components. The platform architecture of performance-oriented server clusters
focuses on reliability, fault tolerance and extreme flexibility with tight integration into the Oracle
Coherence technology and enables the enterprise to predictably scale mission-critical

applications across a data grid, ensuring continuous data availability and transactional integrity.

[0075] In addition, this platform allows for deterministic processing, meaning the same events
can be fed into multiple servers or the same server at different rates achieving the same results
each time. This enables incredible advantages over systems that only rely on the system clock of

the running server.

[0076] The techniques described above and below may be implemented in a number of ways
and in a number of contexts. Several example implementations and contexts are provided with
reference to the following figures, as described below in more detail. However, the following

implementations and contexts are but a few of many.

Framework for Event by Event Processing in Micro-batch based Stream Processing

Systems

[0077] In recent years, data stream management systems (DSMs) have been developed that
can execute queries in a continuous manner over potentially unbounded, real-time data streams.
Among the new DSMs, these systems generally employ micro-batching based stream processing
in order to provide a combination of batch processing and stream processing from a single
framework. An example of such a system is a Spark Streaming application that runs on the
Spark® platform. Micro-batching stream processing has some shortcomings due to the nature of
the design of the system where stateful processing can be complex. One such shortcoming is not
being able to perform a ‘pattern matching’ operation. Pattern matching is an important feature
that is desirable that the Stream Processing system should support and Pattern Matching requires
highly stateful processing in order to run state machines to detect patterns from an unbound

stream of events.

[0078] By using the Oracle Stream Analytics Platform described above, the proposed solution

combines stateful processing with micro-batching stream processing. Essentially, the solution

22

WO 2018/053343 PCT/US2017/051897

combines Complex Event Processing (CEP) and Micro-batching stream processing. The stateful
processing is processed by a CQL Engine, which is a continuous query processing engine written
in Continuous Query Language(CQL). In order to support fully stateful query processing, in one

embodiment, the CQL Query Engine is added into the micro-batching stream processing.

[0079] In an embodiment, a CQL transformation algorithm is disclosed that can be added to a
Directly Acyclic Graph (DAG) transformation. In certain embodiments, the transformation
algorithm may be implemented as follows: (i) the driver from a stream processing application
launches the CQLEngine to one or more of Executors as long running tasks which never return;
(1) the CQLEngines keep running and maintain the query state; (iii) on each micro-match job,
CQL Transformation runs as part of the micro-batch job; (iv) when the CQL Transformation gets
executed, the input events of a micro-batch are sent to the CQLEngine; the CQLEngine handles
each event in the micro-batch event-by-event, performs incremental computation for the queries,
and creates output events; (v) the output events are captured in a queue while the events in the
micro-batch are processed; (vi) after every event in the micro-batch is completed with the
CQLEngine, the output events in the result queue are returned as the result of the CQL
Transformation; and (vii) the next transformation of the CQL Transformation can consume the

output events with no additional transformations.

[0080] The disclosed CQL transformation algorithm/process provides the ability to add the
CQL transformation to process CQL in a general stream processing system. Additionally, by
using the CQL engine, the functional processing and the stateful processing can be combined.
The disclosed process solves several shortcomings of micro-batching based stream processing by
adding complex event processing. Also, by using incremental computation of CEP technology,

some of the analysis can be performed more efficiently.

[0081] FIG. 1is a graphical representation of an Event Processing Network (EPN), that may
incorporate an embodiment of the present disclosure. As illustrated in FIG. 1, the EPN 100 may
be made up of several stages that each serve a distinct role in the processing of events in an event
stream. Events are by definition time-based, so a stream is that sense the natural condition of
events. It is how event data arrives at an Oracle Event Processing application. To process events

with Oracle Event Processing, an application is built whose core is an EPN such as EPN 100.

23

WO 2018/053343 PCT/US2017/051897

The EPN 100 is made up of stages that each serve a distinct role in processing events, from
receiving event data to querying the data to executing logic based on what is discovered about
the events. The application receives raw event data, binds the data to event types, then routes the
events from stage to stage for processing. Connected stages in an EPN provide a way to execute
different kinds of code against events passing through the EPN. Kinds of stages can include an
adapter, a processor, and a bean. More specifically, in various embodiments, the EPN 100
includes event sources 105 that receive events, channels 110 that connect stages, processors 115
such as a CQL processor that contain query code in Continuous Query Language (CQL), and
beans 120, code 125, and/or sinks 130 that perform general processing logic. As described

herein, a stream of events is in sequential order by time -- one after the other.

[0082] In some embodiments, event sources 105 include, without limitation, an adapter (e.g.,
JMS, HTTP, and file), a channel, a processor, a table, a cache, and the like. For example the
event source 105 may include one or more adapters. The one or more adapters may interface
directly to an input and output stream and relation sources and sinks. The one or more adapters
may be configured to understand the input and output stream protocol, and are responsible for
converting the event data into a normalized form that can be queried by an application processor.
For example, an adapter could receive event data and bind it to an event type instance, then pass
the event along to a processor 115. The one or more adapters may be defined for a variety of data
sources and sinks. The channels 110 act as event processing endpoints. Among other things, the
channels 110 are responsible for queuing event data until an event processing agent can act upon
the event data. The processors 115 may be event processing agents configured to perform action
upon the event data such as the execution of queries on the event data. In certain embodiments,
the processors 115 comprise a CQL processor that may be associated with one or more CQL
queries that operate on the events offered by an input channel (e.g., a channel 110). For example,
the processor's CQL code can query the events (as SQL code queries database rows), looking for
particular patterns in the data as it flows through the EPN 100. The CQL processor may be
connected to an output channel (e.g., a channel 110) to which query results are written. For
example, events that meet the pattern criteria could be passed along to a bean 120 (e.g., written
in Java) or code 125, where the data could be used in a calculation with data retrieved from an

external source. A further downstream bean 120 or code 125 could use the calculation result to

24

WO 2018/053343 PCT/US2017/051897

execute a process using an external component. The beans 120 or code 125 may be registered to
listen to the output channel, and are triggered by the insertion of a new event into the output
channel. In some embodiments, the processing logic for the beans 120 may be written in a
programing language such as Java or a plain-old-Java-object (POJO). In some embodiments, the
processing logic may use the Oracle CEP event bean API so that the bean can be managed by
Oracle CEP. Any component designed to receive or send events in the EPN 100 (such as EPN
stages) may be been implemented specifically to do so. Components that are able to receive
events are known as event sinks 130, while components that send events are known as event
sources 105. A single component could be both an event source and a sink. The described stage
components included in Oracle Event Processing, such as adapters and the components on which
CQL processors are based, already support required functionality. Developers can add event sink
and source support to beans, new adapters, and other code they write by implementing interfaces

from the OEP APL

[0083] FIG. 2 depicts a simplified high level diagram of an event processing system 200 that
may incorporate an embodiment of the present disclosure. Event processing system 200 may
comprise one or more event sources (204, 206, 208), an event processing service (EPS) 202 (also
referred to as CQ Service 202) that is configured to provide an environment for processing event
streams, and one or more event sinks (210, 212). The event sources generate event streams that
are received by EPS 202. EPS 202 may receive one or more event streams from one or more
event sources. For example, as shown in FIG. 2, EPS 202 receives a first input event stream 214
from event source 204, a second input event stream 216 from event source 206, and a third event
stream 218 from event source 208. One or more event processing applications (220, 222, and
224) may be deployed on and be executed by EPS 202. An event processing application executed
by EPS 202 may be configured to listen to one or more input event streams, process the events
received via the one or more event streams based upon processing logic that selects one or more
events from the input event streams as notable events. The notable events may then be sent to
one or more event sinks (210, 212) in the form of one or more output event streams. For
example, in FIG. 2, EPS 202 outputs a first output event stream 226 to event sink 210, and a

second output event stream 228 to event sink 212. In certain embodiments, event sources, event

25

WO 2018/053343 PCT/US2017/051897

processing applications, and event sinks are decoupled from each other such that one can add or

remove any of these components without causing changes to the other components.

[0084] In one embodiment, EPS 202 may be implemented as a Java server comprising a
lightweight Java application container, such as one based upon Equinox OSGi, with shared
services. In some embodiments, EPS 202 may support ultra-high throughput and microsecond
latency for processing events, for example, by using JRockit Real Time. EPS 202 may also
provide a development platform (e.g., a complete real time end-to-end Java Event-Driven
Architecture (EDA) development platform) including tools (e.g., Oracle CEP Visualizer and
Oracle CEP IDE) for developing event processing applications.

[0085] An event processing application is configured to listen to one or more input event
streams, execute logic (e.g., a query) for selecting one or more notable events from the one or
more input event streams, and output the selected notable events to one or more event sources
via one or more output event streams. FIG. 2 provides a drilldown for one such event processing
application 220. As shown in FIG 2, event processing application 220 is configured to listen to
input event stream 218, execute a continuous query 230 comprising logic for selecting one or
more notable events from input event stream 218, and output the selected notable events via
output event stream 228 to event sink 212. Examples of event sources include, without
limitation, an adapter (e.g., JIMS, HTTP, and file), a channel, a processor, a table, a cache, and
the like. Examples of event sinks include, without limitation, an adapter (e.g., JIMS, HTTP, and

file), a channel, a processor, a cache, and the like.

[0086] Although event processing application 220 in FIG. 2 is shown as listening to one input
stream and outputting selected events via one output stream, this is not intended to be limiting. In
alternative embodiments, an event processing application may be configured to listen to multiple
input streams received from one or more event sources, select events from the monitored
streams, and output the selected events via one or more output event streams to one or more
event sinks. The same query can be associated with more than one event sink and with different

types of event sinks.

[0087] Due to its unbounded nature, the amount of data that is received via an event stream is

generally very large. Consequently, it is generally impractical and undesirable to store or archive

26

WO 2018/053343 PCT/US2017/051897

all the data for querying purposes. The processing of event streams requires processing of the
events in real time as the events are received by EPS 202 without having to store all the received
events data. Accordingly, EPS 202 provides a special querying mechanism that enables
processing of events to be performed as the events are received by EPS 202 without having to

store all the received events.

[0088] Event-driven applications are rule-driven and these rules may be expressed in the form
of continuous queries that are used to process input streams. A continuous query may comprise
instructions (e.g., business logic) that identify the processing to be performed for received events
including what events are to be selected as notable events and output as results of the query
processing. Continuous queries may be persisted to a data store and used for processing input
streams of events and generating output streams of events. Continuous queries typically perform
filtering and aggregation functions to discover and extract notable events from the input event
streams. As a result, the number of outbound events in an output event stream is generally much

lower than the number of events in the input event stream from which the events are selected.

[0089] Unlike a SQL query that is run once on a finite data set, a continuous query that has
been registered by an application with EPS 202 for a particular event stream may be executed
each time that an event is received in that event stream. As part of the continuous query
execution, EPS 202 evaluates the received event based upon instructions specified by the
continuous query to determine whether one or more events are to be selected as notable events,

and output as a result of the continuous query execution.

[0090] The continuous query may be programmed using different languages. In certain
embodiments, continuous queries may be configured using the CQL provided by Oracle
Corporation and used by Oracle's Complex Events Processing (CEP) product offerings. Oracle's
CQL is a declarative language that can be used to program queries (referred to as CQL queries)
that can be executed against event streams. In certain embodiments, CQL is based upon SQL

with added constructs that support processing of streaming events data.

[0091] In one embodiment, an event processing application may be composed of the following

component types:

27

WO 2018/053343 PCT/US2017/051897

(1) One or more adapters that interface directly to the input and output stream and relation
sources and sinks. Adapters are configured to understand the input and output stream protocol,
and are responsible for converting the event data into a normalized form that can be queried by
an application processor. Adapters may forward the normalized event data into channels or
output streams and relation sinks. Event adapters may be defined for a variety of data sources

and sinks.

(2) One or more channels that act as event processing endpoints. Among other things, channels

are responsible for queuing event data until the event processing agent can act upon it.

(2) One or more application processors (or event processing agents) are configured to consume
normalized event data from a channel, process it using queries to select notable events, and

forward (or copy) the selected notable events to an output channel.

(4) One or more beans are configured to listen to the output channel, and are triggered by the
insertion of a new event into the output channel. In some embodiments, this user code is a plain-
old-Java-object (POJO). The user application can make use of a set of external services, such as

JMS, Web services, and file writers, to forward the generated events to external event sinks.

(5) Event beans may be registered to listen to the output channel, and are triggered by the
insertion of a new event into the output channel. In some embodiments, this user code may use

the Oracle CEP event bean API so that the bean can be managed by Oracle CEP.

[0092] In one embodiment, an event adapter provides event data to an input channel. The input
channel is connected to a CQL processor associated with one or more CQL queries that operate
on the events offered by the input channel. The CQL processor is connected to an output channel

to which query results are written.

[0093] In some embodiments, an assembly file may be provided for an event processing
application describing the various components of the event processing application, how the
components are connected together, event types processed by the application. Separate files may

be provided for specifying the continuous query or business logic for selection of events.

[0094] It should be appreciated that system 200 depicted in FIG. 2 may have other components
than those depicted in FIG. 2. Further, the embodiment shown in FIG. 2 is only one example of a

28

WO 2018/053343 PCT/US2017/051897

system that may incorporate an embodiment of the present disclosure. In some other
embodiments, system 200 may have more or fewer components than shown in FIG. 2, may
combine two or more components, or may have a different configuration or arrangement of
components. System 200 can be of various types including a service provider computer 106
described in FIG. 1, a personal computer, a portable device (e.g., a mobile telephone or device),
a workstation, a network computer, a mainframe, a kiosk, a server, or any other data processing
system. In some other embodiments, system 200 may be configured as a distributed system
where one or more components of system 200 are distributed across one or more networks in the

cloud.

[0095] The one or more of the components depicted in FIG. 2 may be implemented in
software, in hardware, or combinations thereof. In some embodiments, the software may be
stored in memory (e.g., a non-transitory computer-readable medium), on a memory device, or
some other physical memory and may be executed by one or more processing units (e.g., one or

more processors, one or more processor Cores, one or more GPUS, etc.).

[0096] FIG. 3 is an example system or architecture in which a stream processing application
300 configured for stateful processing with micro-batching stream processing can be
implemented. In various embodiments, stream processing application 300 includes one or more
data streams 305. The data streams 305 represent data that is changing constantly, often
exclusively through insertions of new elements. Many types of applications generate data
streams 305 as opposed to data sets, including sensor data applications, financial tickers, network
performance measuring tools, network monitoring and traffic management applications, and
clickstream analysis tools. In some embodiments, Spark Streaming is the incremental micro-
batching stream processing framework 310 for Spark, and Spark Streaming offers the data
abstraction called Discretized Stream (Dstream) 315 that hides the complexity of dealing with a
continuous data stream and makes it as easy for programmers as using one single RDD at a time.
DStream is basically a stream of Resilient Distributed Datasets (RDDs) with elements being the
data received from input streams for batch (possibly extended in scope by windowed or stateful
operators). RDDs are a fundamental data structure of Spark. It is an immutable distributed

collection of objects. Each dataset in RDD is divided into logical partitions, which may be

29

WO 2018/053343 PCT/US2017/051897

computed on different nodes of the cluster. RDDs can contain any type of Python, Java, or Scala
objects, including user-defined classes. In the micro-batching performed by the stream
processing framework 310 a batch is essentially one RDD at a time. Accordingly, instead of
processing the data streams 305 one record at a time, Spark Streaming’s Receivers accept data in
parallel and buffer it in the memory of Spark’s workers nodes. Then the latency-optimized Spark
engine runs short tasks (tens of milliseconds) to process the batches and output the results to

other systems.

[0097] The stream processing application 300 further includes a CQL Engine 320. The stateful
processing necessary to detect patterns from an unbound stream of events such as within the
Discretized Stream 315 is processed by the CQL Engine 320, which is a continuous query
processing engine written in CQL. In order to support fully stateful query processing, in one
embodiment, the CQL Engine 320 is added into the micro-batching stream processing for the
events or data within the Discretized Stream 315. The CQL Engine 320 optimizes the execution
of stateful query processing within a processor such as a CQL processor using a CQL
transformation algorithm that can be added to a DAG transformation. The transformation
algorithm takes the Discretized Stream 315 as input and in combination with the CQL processor
helps generate a result 325. As should be understood, there are two types of operations that can
be done on an RDD to obtain a result: (1) transformations like, map, filter that results in another
RDD 325, and (i1) actions like count that result in an output. A spark job typically comprises of a
DAG of tasks executing transformations and actions on RDD. The CQL processor code can
query the events within the Discretized Stream 315, looking for particular patterns in the data as
it flows through an EPN (e.g., EPN 100 as described with respect to FIG. 1). Events that meet
the pattern criteria could be passed along as the result 325 to a bean, code, or sink, where
eventually the result 325 could be used passed along as input 330 for in a calculation with data

retrieved from an external source.

[0098] FIGS. 4, 7, and 8 illustrate techniques for processing a micro-batching stream to
support fully stateful query processing according to some embodiments. Individual embodiments
may be described as a process which is depicted as a flowchart, a flow diagram, a data flow

diagram, a structure diagram, or a block diagram. Although a flowchart may describe the

30

WO 2018/053343 PCT/US2017/051897

operations as a sequential process, many of the operations may be performed in parallel or
concurrently. In addition, the order of the operations may be re-arranged. A process is terminated
when its operations are completed, but could have additional steps not included in a figure. A
process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc.
When a process corresponds to a function, its termination may correspond to a return of the

function to the calling function or the main function.

[0099] The processes and/or operations depicted by in FIGS. 4, 7, and 8 may be implemented
in software (e.g., code, instructions, program) executed by one or more processing units (e.g.,
processors cores), hardware, or combinations thereof. The software may be stored in a memory
(e.g., on a memory device, on a non-transitory computer-readable storage medium). The
particular series of processing steps in FIGS. 4, 7, and 8 is not intended to be limiting. Other
sequences of steps may also be performed according to alternative embodiments. For example, in
alternative embodiments the steps outlined above may be performed in a different order.
Moreover, the individual steps illustrated in FIGS. 4, 7, and 8 may include multiple sub-steps
that may be performed in various sequences as appropriate to the individual step. Furthermore,
additional steps may be added or removed depending on the particular applications. One of

ordinary skill in the art would recognize many variations, modifications, and alternatives.

[0100] FIG. 4 shows a flowchart 400 that illustrates processing of a micro-batching stream to
support fully stateful query processing implemented by embodiments of the present disclosure.
In some embodiments, the processes depicted in flowchart 400 may be implemented by the event
processing systems of FIGS. 1, 2, and 3. At step 405, a continuous query processing engine
written in Continuous Query Language is launched. In some embodiments, a driver from a
stream processing application launches the CQLEngine to one or more of Executors as long
running tasks which never return. The CQLEngine keeps running and maintains the query state
for a micro-batch stream. At step 410, a continuous query is received. In some embodiments, the
query includes patter recognition. For example, a MATCH RECOGNIZE clause and its sub-
clauses in CQL can be invoked to perform pattern recognition in CQL queries. At step 415, an
operation is applied to the continuous query to generate a query plan for the continuous query.

The query plan (or query execution plan) is an ordered set of steps used to access data, for

31

WO 2018/053343 PCT/US2017/051897

example, in a SQL relational database management system, for processing of the query or
continuous query. In some embodiments, the operation is a DAG transformation and the query
plan is a DAG query plan. A DAG transformation is a set of vertices and edges,

where vertices represent the RDDs and the edges represent the operation to be applied on the
RDD. At step 420, the query plan is transformed using a transformation algorithm to generate a
transformed query plan. In various embodiments, the transformation algorithm is a CQL
transformation. For example, in each instance that a micro-batch or RDD is operated upon to
generate the query plan, a CQL transformation is executed. In some embodiments, the CQL
transformation is added to the DAG transformation to generate the transformed query plan. At
step 425, a micro-batch stream of input events related to an application is received. In some
embodiments, Spark Streaming may discretize a continuous stream of data into tiny, sub-second
micro-batches or a micro-batch stream. At step 430, the input events are processed based at least
in part on the transformed query plan to generate a set of output events related to the application.
In some embodiments, the processing is performed using a continuous query processing engine,
and the processing comprises processing each of the input events incrementally to generate the
output events. For example, when the transformation algorithm such as a CQL Transformation
gets executed, the input events of a micro-batch are sent to a CQLEngine. The CQLEngine
handles each input event in the micro-batch event-by-event, performs incremental computation
on each input event in the micro-batch for the queries based at least in part on the transformed
query plan, and creates output events for each input event in the micro-batch. As such, the
stateful processing is performed by the CQL Engine. At step 435, the set of output events related
to the application are stored in an output queue. In some embodiments, the output events are
captured in the output queue while remaining events in the micro-batch are processed by the
CQLEngine. At step 440, after each event in the micro-batch is processed, the output events in

the output queue are returned and/or transmitted as the result of the continuous query.

Managing Snapshots and Application State in Micro-batch based Event Processing

Systems

[0101] In recent years, data stream management systems (DSMs) have been developed that

can execute queries in a continuous manner over potentially unbounded, real-time data streams.

32

WO 2018/053343 PCT/US2017/051897

Among the new DSMs, these systems generally employ micro-batching based stream processing
in order to provide a combination of batch processing and stream processing from a single
framework. An example of such a system is a Spark Streaming application running on the
Spark® platform. Micro-batching stream processing has some shortcomings due to the nature of
the design of the system where stateful processing can be complex. One such shortcoming is not
being able to perform a ‘pattern matching’ operation. Pattern matching is an important feature
that is desirable that Stream Processing system should support and Pattern Matching requires
highly stateful processing in order to run state machines to detect patterns from an unbound

stream of events.

[0102] In order to support fully stateful query processing, in one embodiment, the CQL Query
Engine is added into the micro-batching stream processing, as described herein. The solution
essentially combines Complex Event Processing (CEP) and Micro-batching stream processing.
The stateful processing is processed by the CQL Engine which is a continuous query processing

engine written in Continuous Query Language(CQL).

[0103] In certain situations, there may be more than one CQL engine in a cluster and each
engine will need to create state snapshots for checkpointing individually. As such, there is a need
for coordinating snapshot generation and managing snapshots such as retention of snapshots after

micro-batch processing is completed.

[0104] FIG. 5is an example system or architecture 500 in which a CQL Engine Tracker 605
can be implemented for coordinating snapshot generation and managing snapshots in accordance
with an embodiment of the present disclosure. In various embodiments, the system or
architecture 500 includes a CQL Engine Tracker 505 in communication with a listener 510. The
CQL Engine Tracker 505 and listener 510 may be disposed in a driver 515. The CQL Engine
Tracker 505 is configured to manage snapshots created from CQL Engines 520, which may be
on one or more executors 525 in a cluster. In certain embodiments, the CQL Engine Tracker 505
may use two directory structures, the Snapshot Map and the Map to manage snapshots. The
Snapshot Map directory structure can be used to directly access snapshot information from a
given queryid, partition and time and a map. Snapshots Map may be used to find snapshots to

recover or clean up. An exemplary data structure of the Snapshot Map directory structure is

33

WO 2018/053343 PCT/US2017/051897

shown FIG. 6A. The Map directory structure: (queryld, partitionld, time) -> mark. Map :
(queryld, partitionld) -> List of Snapshot(time,mark, fullFlag) in reverse order. An exemplary
data structure of the Map directory structure is shown in FIG. 6B. The snapshots from the CQL
Engines 520 and the metadata from the CQL Engine Tracker 505 may be written into the snap
shot storage 530.

[0105] In an embodiment, the CQL Engine Tracker in conjunction with the CQL Engines may
implement a snapshot management algorithm. In some embodiments, the snapshot management
algorithm may include a process to add snapshots, a process to get snapshots, and a process to
clean snapshots. In some embodiments, the AddSnapshot Process includes the following
operations: (i) for managing snapshots, the primary structure uses a map of
PartitionKey(queryld, partitionld) to the list of Snapshot(time, mark, full flag) in reverse order;
(i1) a CQLEngine invokes addSnapshot RPC to CQLEngineTracker after finishing the
computation and creates a snapshot with queryld, partitionld, time, and snapshot mark
information, and full flag; (ii1) AddSnapshot is invoked; (iv) a PartitionKey object is created
with queryld and partitionld; (v) if there is no list for the partitionKey in the map, a new list is
created, otherwise use the existing list; and (vi) a Snapshot object is created with time, mark, and

full flag.

[0106] In some embodiments, the GetSnapshots Process includes the following operations: (1)
a CQL RDD (Resilient Distributed Dataset) invokes a getSnapshot RPC (Remote Procedure
Call) with queryld, partitionld, and time to the CQLEngineTracker before starting the
computation to get the list of snapshots to restore the state; (ii) GetSnapshots PartitionKey is
created with queryld and partitionld; (iii1) Snapshots is looked up from snapshots map with the
partitionKey; (iv) if there is no stored snapshots map, return empty[Snapshot]; (v)
Stack[Snapshot] is created, for each snapshot in the reverse ordered list; and (vi) if snapshot time

is smaller than (time — batchDuration) add it to the stack, and convert the stack to list and return.

[0107] In some embodiments, the CleanSnapshots Process: includes the following operations:
(1) once the batch is completed, it may be safe to remove snapshots; (i1) when the batch is
completed, onEndBatch is invoked from the job scheduler, it invokes EndOfBatch RPC call with

batch time; (iii) the algorithm is to remove all snapshots before the given batch time except the

34

WO 2018/053343 PCT/US2017/051897

full snapshot; (iv) CleanSnapshots for each entry in snapshots map and for each snapshot in
snapshot list; and (v) if (snapshot time is less than batch time) remove it from the map and also

remove from the snapshot storage.

[0108] FIG. 7 shows a flowchart 700 that illustrates processing of a micro-batching stream to
support fully stateful query processing implemented by embodiments of the present disclosure.
In some embodiments, the processes depicted in flowchart 700 may be implemented by the event
processing systems of FIGS. 1, 2, 3, and 5. At step 705, a micro-batch stream of input events
related to an application is received. In some embodiments, Spark Streaming may discretize a
continuous stream of data into tiny, sub-second micro-batches or a micro-batch stream. At step
710, the input events are processed using a continuous query processing engine to generate a set
of output events related to the application. In some embodiments, processing comprises
processing each of the input events incrementally to generate the output events. For example,
when the transformation algorithm such as a CQL Transformation gets executed, the input events
of a micro-batch are sent to a CQLEngine. The CQLEngine handles each input event in the
micro-batch event-by-event, performs incremental computation on each input event in the micro-
batch for the queries based at least in part on the transformed query plan, and creates output
events for each input event in the micro-batch. As such, the stateful processing is performed by
the CQL Engine. At step 715, a snapshot of a current state of a system is generated based at least
in part on the output set of events related to the application. In some embodiments, the snapshot
is generated using a snapshot management algorithm implemented by the CQL engine. In certain
embodiments, the snapshot management algorithm may include a process to add snapshots, a
process to get snapshots, and a process to clean snapshots. At step 720, a first directory structure
is generated to access snapshot information associated with the snapshot of the current state of
the system. In some embodiments, the first directory structure is a Snapshot Map directory
structure. At step 725, a second directory structure is generated to generate a list of snapshots
associated with the current state of the system. In some embodiments, the second directory
structure is a Map directory structure. At step 730, a process is determined based at least in part
on the snapshot management algorithm to generate, add, or clean a list of snapshots pertaining to
the current state of the system. In some embodiments, when the snapshot management algorithm

includes a process to add snapshots, the process is determined to add a list of snapshots

35

WO 2018/053343 PCT/US2017/051897

pertaining to the current state of the system. In some embodiments, when the snapshot
management algorithm includes a process to get snapshots, the process is determined to get a list
of snapshots pertaining to the current state of the system. In some embodiments, when the
snapshot management algorithm includes a process to clean snapshots, the process is determined
to clean a list of snapshots pertaining to the current state of the system. As should be understood,
the processes may further include the steps described with respect to FIG. 4, for example,
launching a continuous query processing engine, applying an operation to a continuous query to
generate a query plan for the continuous query, transforming the query plan to generate a
transformed query plan, processing the input events based at least in part on the transformed
query plan to generate a set of output events, storing the set of output events related to the
application in an output queue, and after each event in the micro-batch is processed, the output

events in the output queue may be returned and/or transmitted as the result of the continuous
query.

[0109] Embodiments of the present disclosure provide stateful components that maintain the
running state in a Spark Streaming system, provide fully stateful CQLEngines within micro-
batching stream processing, manage snapshots created from distributed CQLEngines, and
provide a retention algorithm for handling incremental snapshots. The disclosed techniques allow
high availability even after adding event-by-event CEP processing into a micro-batching based

stream processing.

Non-intrusive Monitoring output of stages in Spark Streaming

[0110] In recent years, data stream management systems (DSMs) have been developed that
can execute queries in a continuous manner over potentially unbounded, real-time data streams.
Among the new DSMs, these systems generally employ micro-batching based stream processing
in order to provide a combination of batch processing and stream processing from a single
framework. An example of such a system is a Spark Streaming application running on the

Spark® platform.

[0111] Typical applications in DSMS are designed as a “topology” in the shape of a
DAG(Directly Acyclic Graph) of operations or transformations. The topology acts as a data

transformation pipeline. Most stream processing systems (e.g., Spark Streaming systems)

36

WO 2018/053343 PCT/US2017/051897

provide a way to quickly deploy the topology for an application to a cluster of machines and are
able to view the results immediately. The fast turn-around cycle of such deployment is important
for making changes to the application. If the turn-around cycle is fast enough, the user can see

the results without waiting for deployment delays. This is referred to as ‘Stream Exploration.’

[0112] In the Stream Exploration mode, customers generally develop a business application
incrementally by adding new components to an existing topology or data transformation
pipeline. In such an exploration mode, it is important to see the immediate output from the

changes and also intermediate outputs from each stage in the pipeline.

[0113] In current DSMS such as Spark® Streaming or Apache® Flink, the topology is written
using programming languages such as Java, Scala, or Closure. As the result, when an application
developer wants to monitor intermediate outputs from one transformation, the developer has to
change the program and add an output operation. This is not only cumbersome but also intrusive
as all output operations usually become additional jobs for some systems like Spark Streaming.
To make the situation more complex, there is currently no mechanism to turn output monitoring

after it is put into an application while the application is running.

[0114] In an embodiment, a monitoring transformation process is disclosed that has the
following features: (i) pass-through transformation which generates an output to the next pipeline
without adding any transformation while sending outputs to the specified destination, (ii)
monitoring output is configured in an application, and (iii) monitoring output can be turned oft or

changed while running an application.

[0115] In an embodiment, the above features can be implemented using the following

example:
val 81 = co.cglfinputs, "select * from stream™)

val producerConfig = KaftkaMonitorConfig{outputTopic, brokerList)

val stoutput = 81 monttor{ KatkaMonttorOutput{producerConfig)y;
val sZoutput = co.cgi{sloutput, "select * from 51"}

[0116] The flow of above example may be described as follows: (i) by invoking ‘monitor’ to

‘s1’ DStream, MonitorDStream is added to a DAG after CQLDStream of ‘s1’. MonitorDStream

37

WO 2018/053343 PCT/US2017/051897

carries information about KatkaMonitorOutput with configuration; (ii) the job generation steps
create MonitorRDD from MonitorDStream; (iii) when the job runs, MonitorRDD.compute is
invoked; and (iv) a pathThroughlterator writes output to the configured monitor output while

returning the tuple to the next pipeline.

[0117] The flow of turning off monitoring output or updating the configuration may be
implemented as follows: (i) a REST service runs from the application to get the update; (ii) the
generated MonitorDStream instance for the application and stage is stored in the application and
it can be found with appname and stagename as a key; (iii) the REST request such as PUT
operation on ‘/monitoroutput/<appname>/<stagename>/off or POST operation on
‘/monitoroutput/<appname>/<stagename>/configure with new configuration will be delegated to
‘MonitorOutputManager’ component; (iv) the MonitorOutputManager will change the settings
or configuration of MonitorDStream object instance; and (v) the next job run by job runner will

be affected by the change.

[0118] FIG. 8 shows a flowchart 800 that illustrates processing of a micro-batching stream to
support fully stateful query processing implemented by embodiments of the present disclosure.
In some embodiments, the processes depicted in flowchart 800 may be implemented by the event
processing systems of FIGS. 1, 2, and 3. At step 805, a continuous query is received. In some
embodiments, the query includes patter recognition. For example, a

MATCH_RECOGNIZE clause and its sub-clauses in CQL can be invoked to perform pattern
recognition in CQL queries. At step 810, an operation is applied to the continuous query to
generate a query plan for the continuous query. The query plan (or query execution plan) is an
ordered set of steps used to access data, for example, in a SQL relational database management
system, for processing of the query or continuous query. In some embodiments, the operation is a
DAG transformation and the query plan is a DAG query plan. A DAG transformation is a set

of vertices and edges, where vertices represent the RDDs and the edges represent the operation to
be applied on the RDD. At step 815, the continuous query is monitored using a monitoring
transformation process. For example, a monitoring transformation process may have the
following features: (i) pass-through transformation which generates an output to the next pipeline

without adding any transformation while sending outputs to the specified destination, (ii)

38

WO 2018/053343 PCT/US2017/051897

monitoring output is configured in an application, and (iii) monitoring output can be turned oft or
changed while running an application. At step 820, a micro-batch stream of input events related
to an application is received. In some embodiments, Spark Streaming may discretize a
continuous stream of data into tiny, sub-second micro-batches or a micro-batch stream. At step
825, the input events are processed based at least in part on the monitoring transformation
process to generate a set of output events related to the application. In some embodiments, the
processing is performed using a continuous query processing engine, and the processing
comprises processing each of the input events incrementally to generate the output events. For
example, when the monitoring transformation process gets executed, the input events of a micro-
batch are sent to a CQLEngine. The CQLEngine handles each input event in the micro-batch
event-by-event, performs incremental computation on each input event in the micro-batch for the
queries based at least in part on the monitoring transformation process, and creates output events
for each input event in the micro-batch. As such, the stateful processing is performed by the CQL
Engine. The set of output events related to the application are stored in an output queue. In some
embodiments, the output events are captured in the output queue while remaining events in the
micro-batch are processed by the CQLEngine. As should be understood, the processes may
further include the steps described with respect to FIG. 4, for example, launching a continuous
query processing engine, and after each event in the micro-batch is processed, the output events

in the output queue may be returned and/or transmitted as the result of the continuous query.

[0119] Embodiments of the present disclosure provide a non-intrusive output monitoring
technique with Spark Streaming and a technique to turn on/off intermediate outputs from a
running Spark Streaming application. In addition, the disclosed technique enables adding

intermediate output monitoring for Stream Exploration and changing the outputs.

Illustrative Systems

[0120] FIGS. 9-7 illustrate aspects of example environments for implementing aspects of the
present disclosure in accordance with various embodiments. FIG. 9 depicts a simplified diagram
of a distributed system 900 for implementing an embodiment of the present disclosure. In the
illustrated embodiment, the distributed system 900 includes one or more client computing

devices 902, 904, 906, and 908, which are configured to execute and operate a client application

39

WO 2018/053343 PCT/US2017/051897

such as a web browser, proprietary client (e.g., Oracle Forms), or the like over one or more
network(s) 910. The server 912 may be communicatively coupled with the remote client

computing devices 902, 904, 906, and 908 via network 910.

[0121] In various embodiments, the server 912 may be adapted to run one or more services or
software applications such as services and applications that provide identity management
services. In certain embodiments, the server 912 may also provide other services or software
applications can include non-virtual and virtual environments. In some embodiments, these
services may be offered as web-based or cloud services or under a Software as a Service (SaaS)
model to the users of the client computing devices 902, 904, 906, and/or 908. Users operating the
client computing devices 902, 904, 906, and/or 908 may in turn utilize one or more client

applications to interact with the server 912 to utilize the services provided by these components.

[0122] In the configuration depicted in FIG. 9, the software components 918, 920 and 922 of
system 900 are shown as being implemented on the server 912. In other embodiments, one or
more of the components of the system 900 and/or the services provided by these components
may also be implemented by one or more of the client computing devices 902, 904, 906, and/or
908. Users operating the client computing devices may then utilize one or more client
applications to use the services provided by these components. These components may be
implemented in hardware, firmware, software, or combinations thereof. It should be appreciated
that various different system configurations are possible, which may be different from distributed
system 900. The embodiment shown in FIG. 9 is thus one example of a distributed system for

implementing an embodiment system and is not intended to be limiting.

[0123] The client computing devices 902, 904, 906, and/or 908 may include various types of
computing systems. For example, client device may include portable handheld devices (e.g., an
iPhone®, cellular telephone, an iPad®, computing tablet, a personal digital assistant (PDA)) or
wearable devices (e.g., a Google Glass® head mounted display), running software such as
Microsoft Windows Mobile®, and/or a variety of mobile operating systems such as 10S,
Windows Phone, Android, BlackBerry 10, Palm OS, and the like. The devices may support
various applications such as various Internet-related apps, e-mail, short message service (SMS)

applications, and may use various other communication protocols. The client computing devices

40

WO 2018/053343 PCT/US2017/051897

may also include general purpose personal computers including, by way of example, personal
computers and/or laptop computers running various versions of Microsoft Windows®, Apple
Macintosh®, and/or Linux operating systems. The client computing devices can be workstation
computers running any of a variety of commercially-available UNIX® or UNIX-like operating
systems, including without limitation the variety of GNU/Linux operating systems, such as for
example, Google Chrome OS. Client computing devices may also include electronic devices
such as a thin-client computer, an Internet-enabled gaming system (e.g., a Microsoft Xbox
gaming console with or without a Kinect® gesture input device), and/or a personal messaging

device, capable of communicating over the network(s) 910.

[0124] Although distributed system 900 in FIG. 9 is shown with four client computing devices,
any number of client computing devices may be supported. Other devices, such as devices with

sensors, etc., may interact with the server 912.

[0125] The network(s) 910 in the distributed system 900 may be any type of network familiar
to those skilled in the art that can support data communications using any of a variety of
available protocols, including without limitation TCP/IP (transmission control protocol/Internet
protocol), SNA (systems network architecture), IPX (Internet packet exchange), AppleTalk, and
the like. Merely by way of example, the network(s) 910 can be a local area network (LAN),
networks based on Ethernet, Token-Ring, a wide-area network, the Internet, a virtual network, a
virtual private network (VPN), an intranet, an extranet, a public switched telephone network
(PSTN), an infra-red network, a wireless network (e.g., a network operating under any of the
Institute of Electrical and Electronics (IEEE) 1002.11 suite of protocols, Bluetooth®, and/or any

other wireless protocol), and/or any combination of these and/or other networks.

[0126] The server 912 may be composed of one or more general purpose computers,
specialized server computers (including, by way of example, PC (personal computer) servers,
UNIX® servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server
farms, server clusters, or any other appropriate arrangement and/or combination. The server 912
can include one or more virtual machines running virtual operating systems, or other computing
architectures involving virtualization. One or more flexible pools of logical storage devices can

be virtualized to maintain virtual storage devices for the server. Virtual networks can be

41

WO 2018/053343 PCT/US2017/051897

controlled by the server 912 using software defined networking. In various embodiments, the
server 912 may be adapted to run one or more services or software applications described in the
foregoing disclosure. For example, the server 912 may correspond to a server for performing

processing as described above according to an embodiment of the present disclosure.

[0127] The server 912 may run an operating system including any of those discussed above, as
well as any commercially available server operating system. Server 912 may also run any of a
variety of additional server applications and/or mid-tier applications, including HTTP (hypertext
transport protocol) servers, FTP (file transfer protocol) servers, CGI (common gateway interface)
servers, JAVA® servers, database servers, and the like. Exemplary database servers include
without limitation those commercially available from Oracle, Microsoft, Sybase, IBM

(International Business Machines), and the like.

[0128] In some implementations, the server 912 may include one or more applications to
analyze and consolidate data feeds and/or event updates received from users of the client
computing devices 902, 904, 906, and 908. As an example, data feeds and/or event updates may
include, but are not limited to, Twitter® feeds, Facebook® updates or real-time updates received
from one or more third party information sources and continuous data streams, which may
include real-time events related to sensor data applications, financial tickers, network
performance measuring tools (e.g., network monitoring and traffic management applications),
clickstream analysis tools, automobile traffic monitoring, and the like. The server 912 may also
include one or more applications to display the data feeds and/or real-time events via one or

more display devices of the client computing devices 902, 904, 906, and 908.

[0129] The distributed system 900 may also include one or more databases 914 and 916. These
databases may provide a mechanism for storing information such as user identity information,
and other information used by embodiments of the present disclosure. Databases 914 and 916
may reside in a variety of locations. By way of example, one or more of databases 914 and 916
may reside on a non-transitory storage medium local to (and/or resident in) the server 912.
Alternatively, the databases 914 and 916 may be remote from the server 912 and in
communication with the server 912 via a network-based or dedicated connection. In one set of

embodiments, the databases 914 and 916 may reside in a storage-area network (SAN). Similarly,

42

WO 2018/053343 PCT/US2017/051897

any necessary files for performing the functions attributed to the server 912 may be stored
locally on the server 912 and/or remotely, as appropriate. In one set of embodiments, the
databases 914 and 916 may include relational databases, such as databases provided by Oracle,

that are adapted to store, update, and retrieve data in response to SQL-formatted commands.

[0130] FIG. 10 illustrates an exemplary computer system 1000 that may be used to implement
an embodiment of the present disclosure. In some embodiments, computer system 1000 may be
used to implement any of the various servers and computer systems described above. As shown
in FIG. 10, computer system 1000 includes various subsystems including a processing subsystem
1004 that communicates with a number of peripheral subsystems via a bus subsystem 1002.
These peripheral subsystems may include a processing acceleration unit 1006, an I/O subsystem
1008, a storage subsystem 1018 and a communications subsystem 1024. Storage subsystem 1018

may include tangible computer-readable storage media 1022 and a system memory 1010.

[0131] Bus subsystem 1002 provides a mechanism for letting the various components and
subsystems of computer system 1000 communicate with each other as intended. Although bus
subsystem 1002 is shown schematically as a single bus, alternative embodiments of the bus
subsystem may utilize multiple buses. Bus subsystem 1002 may be any of several types of bus
structures including a memory bus or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such architectures may include an Industry
Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus, which can be implemented as a Mezzanine bus

manufactured to the IEEE P1386.1 standard, and the like.

[0132] Processing subsystem 1004 controls the operation of computer system 1000 and may
comprise one or more processing units 1032, 1034, etc. A processing unit may include be one or
more processors, including single core or multicore processors, one or more cores of processors,
or combinations thereof. In some embodiments, processing subsystem 1004 can include one or
more special purpose co-processors such as graphics processors, digital signal processors

(DSPs), or the like. In some embodiments, some or all of the processing units of processing

43

WO 2018/053343 PCT/US2017/051897

subsystem 1004 can be implemented using customized circuits, such as application specific

integrated circuits (ASICs), or field programmable gate arrays (FPGAS).

[0133] In some embodiments, the processing units in processing subsystem 1004 can execute
instructions stored in system memory 1010 or on computer readable storage media 1022. In
various embodiments, the processing units can execute a variety of programs or code instructions
and can maintain multiple concurrently executing programs or processes. At any given time,
some or all of the program code to be executed can be resident in system memory 1010 and/or on
computer-readable storage media 1010 including potentially on one or more storage devices.
Through suitable programming, processing subsystem 1004 can provide various functionalities
described above for dynamically modifying documents (e.g., webpages) responsive to usage

patterns.

[0134] In certain embodiments, a processing acceleration unit 1006 may be provided for
performing customized processing or for off-loading some of the processing performed by
processing subsystem 1004 so as to accelerate the overall processing performed by computer

system 1000.

[0135] I/O subsystem 1008 may include devices and mechanisms for inputting information to
computer system 1000 and/or for outputting information from or via computer system 1000. In
general, use of the term "input device" is intended to include all possible types of devices and
mechanisms for inputting information to computer system 1000. User interface input devices
may include, for example, a keyboard, pointing devices such as a mouse or trackball, a touchpad
or touch screen incorporated into a display, a scroll wheel, a click wheel, a dial, a button, a
switch, a keypad, audio input devices with voice command recognition systems, microphones,
and other types of input devices. User interface input devices may also include motion sensing
and/or gesture recognition devices such as the Microsoft Kinect® motion sensor that enables
users to control and interact with an input device, the Microsoft Xbox® 360 game controller,
devices that provide an interface for receiving input using gestures and spoken commands. User
interface input devices may also include eye gesture recognition devices such as the Google
Glass® blink detector that detects eye activity (e.g., "blinking" while taking pictures and/or

making a menu selection) from users and transforms the eye gestures as input into an input

44

WO 2018/053343 PCT/US2017/051897

device (e.g., Google Glass®). Additionally, user interface input devices may include voice
recognition sensing devices that enable users to interact with voice recognition systems (e.g.,

Siri® navigator), through voice commands.

[0136] Other examples of user interface input devices include, without limitation, three
dimensional (3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and
audio/visual devices such as speakers, digital cameras, digital camcorders, portable media
players, webcams, image scanners, fingerprint scanners, barcode reader 3D scanners, 3D
printers, laser rangefinders, and eye gaze tracking devices. Additionally, user interface input
devices may include, for example, medical imaging input devices such as computed tomography,
magnetic resonance imaging, position emission tomography, medical ultrasonography devices.
User interface input devices may also include, for example, audio input devices such as MIDI

keyboards, digital musical instruments and the like.

[0137] User interface output devices may include a display subsystem, indicator lights, or non-
visual displays such as audio output devices, etc. The display subsystem may be a cathode ray
tube (CRT), a flat-panel device, such as that using a liquid crystal display (LCD) or plasma
display, a projection device, a touch screen, and the like. In general, use of the term "output
device" is intended to include all possible types of devices and mechanisms for outputting
information from computer system 1000 to a user or other computer. For example, user interface
output devices may include, without limitation, a variety of display devices that visually convey
text, graphics and audio/video information such as monitors, printers, speakers, headphones,

automotive navigation systems, plotters, voice output devices, and modems.

[0138] Storage subsystem 1018 provides a repository or data store for storing information that
is used by computer system 1000. Storage subsystem 1018 provides a tangible non-transitory
computer-readable storage medium for storing the basic programming and data constructs that
provide the functionality of some embodiments. Software (programs, code modules, instructions)
that when executed by processing subsystem 1004 provide the functionality described above may
be stored in storage subsystem 1018. The software may be executed by one or more processing
units of processing subsystem 1004. Storage subsystem 1018 may also provide a repository for

storing data used in accordance with the present disclosure.

45

WO 2018/053343 PCT/US2017/051897

[0139] Storage subsystem 1018 may include one or more non-transitory memory devices,
including volatile and non-volatile memory devices. As shown in FIG. 10, storage subsystem
1018 includes a system memory 1010 and a computer-readable storage media 1022. System
memory 1010 may include a number of memories including a volatile main random access
memory (RAM) for storage of instructions and data during program execution and a non-volatile
read only memory (ROM) or flash memory in which fixed instructions are stored. In some
implementations, a basic input/output system (BIOS), containing the basic routines that help to
transfer information between elements within computer system 1000, such as during start-up,
may typically be stored in the ROM. The RAM typically contains data and/or program modules
that are presently being operated and executed by processing subsystem 1004. In some
implementations, system memory 1010 may include multiple different types of memory, such as

static random access memory (SRAM) or dynamic random access memory (DRAM).

[0140] By way of example, and not limitation, as depicted in Fig. 10, system memory 1010
may store application programs 1012, which may include client applications, Web browsers,
mid-tier applications, relational database management systems (RDBMS), etc., program data
1014, and an operating system 1016. By way of example, operating system 1016 may include
various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux operating systems, a
variety of commercially-available UNIX® or UNIX-like operating systems (including without
limitation the variety of GNU/Linux operating systems, the Google Chrome® OS, and the like)
and/or mobile operating systems such as i0S, Windows® Phone, Android® OS, BlackBerry®
10 OS, and Palm® OS operating systems.

[0141] Computer-readable storage media 1022 may store programming and data constructs
that provide the functionality of some embodiments. Software (programs, code modules,
instructions) that when executed by processing subsystem 1004 a processor provide the
functionality described above may be stored in storage subsystem 1018. By way of example,
computer-readable storage media 1022 may include non-volatile memory such as a hard disk
drive, a magnetic disk drive, an optical disk drive such as a CD ROM, DVD, a Blu-Ray® disk,
or other optical media. Computer-readable storage media 1022 may include, but is not limited to,

Zip® drives, flash memory cards, universal serial bus (USB) flash drives, secure digital (SD)

46

WO 2018/053343 PCT/US2017/051897

cards, DVD disks, digital video tape, and the like. Computer-readable storage media 1022 may
also include, solid-state drives (SSD) based on non-volatile memory such as flash-memory based
SSDs, enterprise flash drives, solid state ROM, and the like, SSDs based on volatile memory
such as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs, magnetoresistive
RAM (MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and flash memory
based SSDs. Computer-readable media 1022 may provide storage of computer-readable

instructions, data structures, program modules, and other data for computer system 1000.

[0142] In certain embodiments, storage subsystem 1000 may also include a computer-readable
storage media reader 1020 that can further be connected to computer-readable storage media
1022. Together and, optionally, in combination with system memory 1010, computer-readable
storage media 1022 may comprehensively represent remote, local, fixed, and/or removable

storage devices plus storage media for storing computer-readable information.

[0143] In certain embodiments, computer system 1000 may provide support for executing one
or more virtual machines. Computer system 1000 may execute a program such as a hypervisor
for facilitating the configuring and managing of the virtual machines. Each virtual machine may
be allocated memory, compute (e.g., processors, cores), I/O, and networking resources. Each
virtual machine typically runs its own operating system, which may be the same as or different
from the operating systems executed by other virtual machines executed by computer system
1000. Accordingly, multiple operating systems may potentially be run concurrently by computer

system 1000. Each virtual machine generally runs independently of the other virtual machines.

[0144] Communications subsystem 1024 provides an interface to other computer systems and
networks. Communications subsystem 1024 serves as an interface for receiving data from and
transmitting data to other systems from computer system 1000. For example, communications
subsystem 1024 may enable computer system 1000 to establish a communication channel to one
or more client devices via the Internet for receiving and sending information from and to the
client devices. Additionally, communication subsystem 1024 may be used to communicate
notifications of successful logins or notifications to re-enter a password from the privileged

account manager to the requesting users.

47

WO 2018/053343 PCT/US2017/051897

[0145] Communication subsystem 1024 may support both wired and/or wireless
communication protocols. For example, in certain embodiments, communications subsystem
1024 may include radio frequency (RF) transceiver components for accessing wireless voice
and/or data networks (e.g., using cellular telephone technology, advanced data network
technology, such as 3G, 4G or EDGE (enhanced data rates for global evolution), WiFi (IEEE
802.11 family standards, or other mobile communication technologies, or any combination
thereof), global positioning system (GPS) receiver components, and/or other components. In
some embodiments communications subsystem 1024 can provide wired network connectivity

(e.g., Ethernet) in addition to or instead of a wireless interface.

[0146] Communication subsystem 1024 can receive and transmit data in various forms. For
example, in some embodiments, communications subsystem 1024 may receive input
communication in the form of structured and/or unstructured data feeds 1026, event streams
1028, event updates 1030, and the like. For example, communications subsystem 1024 may be
configured to receive (or send) data feeds 1026 in real-time from users of social media networks
and/or other communication services such as Twitter® feeds, Facebook® updates, web feeds
such as Rich Site Summary (RSS) feeds, and/or real-time updates from one or more third party

information sources.

[0147] In certain embodiments, communications subsystem 1024 may be configured to receive
data in the form of continuous data streams, which may include event streams 1028 of real-time
events and/or event updates 1030, that may be continuous or unbounded in nature with no
explicit end. Examples of applications that generate continuous data may include, for example,
sensor data applications, financial tickers, network performance measuring tools (e.g. network
monitoring and traffic management applications), clickstream analysis tools, automobile traftic

monitoring, and the like.

[0148] Communications subsystem 1024 may also be configured to output the structured
and/or unstructured data feeds 1026, event streams 1028, event updates 1030, and the like to one
or more databases that may be in communication with one or more streaming data source

computers coupled to computer system 1000.

48

WO 2018/053343 PCT/US2017/051897

[0149] Computer system 1000 can be one of various types, including a handheld portable
device (e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device
(e.g., a Google Glass® head mounted display), a personal computer, a workstation, a mainframe,

a kiosk, a server rack, or any other data processing system.

[0150] Due to the ever-changing nature of computers and networks, the description of
computer system 1000 depicted in FIG. 10 is intended only as a specific example. Many other
configurations having more or fewer components than the system depicted in Fig. 10 are
possible. Based on the disclosure and teachings provided herein, a person of ordinary skill in the

art will appreciate other ways and/or methods to implement the various embodiments.

[0151] Systems depicted in some of the figures may be provided in various configurations. In
some embodiments, the systems may be configured as a distributed system where one or more
components of the system are distributed across one or more networks in one or more cloud

infrastructure systems.

[0152] A cloud infrastructure system is a collection of one or more server computing devices,
network devices, and/or storage devices. These resources may be divided by cloud services
providers and allotted to its customers in some manner. For example, a cloud services provider,
such as Oracle Corporation of Redwood Shores, California, may offer various types of cloud
services including but not limited to one or more services provided under Software as a Service
(SaaS) category, services provided under Platform as a Service (PaaS) category, services
provided under Infrastructure as a Service (IaaS) category, or other categories of services
including hybrid services. Examples of SaaS services include, without limitation, capabilities to
build and deliver a suite of on-demand applications such as Oracle Fusion applications. SaaS
services enable customers to utilize applications executing on the cloud infrastructure system
without the need for customers to purchase software for the applications. Examples of PaaS
services include without limitation services that enable organizations (such as Oracle) to
consolidate existing applications on a shared, common architecture, as well as the ability to build
new applications that leverage the shared services provided by the platform such as Oracle Java
Cloud Service (JCS), Oracle Database Cloud Service (DBCS), and others. [aaS services typically

facilitate the management and control of the underlying computing resources, such as storage,

49

WO 2018/053343 PCT/US2017/051897

networks, and other fundamental computing resources for customers utilizing services provided

by the SaaS platform and the PaaS platform.

[0153] FIG. 11 is a simplified block diagram of one or more components of a system
environment 1100 by which services provided by one or more components of an embodiment
system may be offered as cloud services, in accordance with an embodiment of the present
disclosure. In the illustrated embodiment, system environment 1100 includes one or more client
computing devices 1104, 1106, and 1108 that may be used by users to interact with a cloud
infrastructure system 1102 that provides cloud services. The client computing devices may be
configured to operate a client application such as a web browser, a proprietary client application
(e.g., Oracle Forms), or some other application, which may be used by a user of the client
computing device to interact with cloud infrastructure system 1102 to use services provided by

cloud infrastructure system 1102.

[0154] It should be appreciated that cloud infrastructure system 1102 depicted in the figure
may have other components than those depicted. Further, the embodiment shown in the figure is
only one example of a cloud infrastructure system that may incorporate an embodiment of the
disclosure. In some other embodiments, cloud infrastructure system 1102 may have more or
fewer components than shown in the figure, may combine two or more components, or may have

a different configuration or arrangement of components.

[0155] Client computing devices 1104, 1106, and 1108 may be devices similar to those
described above for 902, 904, 906, and 908.

[0156] Although exemplary system environment 1100 is shown with three client computing
devices, any number of client computing devices may be supported. Other devices such as

devices with sensors, etc. may interact with cloud infrastructure system 1102.

[0157] Network(s) 1110 may facilitate communications and exchange of data between clients
1104, 1106, and 1108 and cloud infrastructure system 1102. Each network may be any type of
network familiar to those skilled in the art that can support data communications using any of a

variety of commercially-available protocols, including those described above for network(s) 910.

50

WO 2018/053343 PCT/US2017/051897

[0158] Cloud infrastructure system 1102 may comprise one or more computers and/or servers

that may include those described above for server 912.

[0159] In certain embodiments, services provided by the cloud infrastructure system may
include a host of services that are made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions, Web-based e-mail services, hosted
office suites and document collaboration services, database processing, managed technical
support services, and the like. Services provided by the cloud infrastructure system can
dynamically scale to meet the needs of its users. A specific instantiation of a service provided by
cloud infrastructure system is referred to herein as a “service instance.” In general, any service
made available to a user via a communication network, such as the Internet, from a cloud service
provider's system is referred to as a “cloud service.” Typically, in a public cloud environment,
servers and systems that make up the cloud service provider's system are different from the
customer's own on-premises servers and systems. For example, a cloud service provider's
system may host an application, and a user may, via a communication network such as the

Internet, on demand, order and use the application.

[0160] In some examples, a service in a computer network cloud infrastructure may include
protected computer network access to storage, a hosted database, a hosted web server, a software
application, or other service provided by a cloud vendor to a user, or as otherwise known in the
art. For example, a service can include password-protected access to remote storage on the cloud
through the Internet. As another example, a service can include a web service-based hosted
relational database and a script-language middleware engine for private use by a networked
developer. As another example, a service can include access to an email software application

hosted on a cloud vendor's web site.

[0161] In certain embodiments, cloud infrastructure system 1102 may include a suite of
applications, middleware, and database service offerings that are delivered to a customer in a
self-service, subscription-based, elastically scalable, reliable, highly available, and secure
manner. An example of such a cloud infrastructure system is the Oracle Public Cloud provided

by the present assignee.

51

WO 2018/053343 PCT/US2017/051897

[0162] In various embodiments, cloud infrastructure system 1102 may be adapted to
automatically provision, manage and track a customer’s subscription to services offered by cloud
infrastructure system 1102. Cloud infrastructure system 1102 may provide the cloud services via
different deployment models. For example, services may be provided under a public cloud
model in which cloud infrastructure system 1102 is owned by an organization selling cloud
services (e.g., owned by Oracle) and the services are made available to the general public or
different industry enterprises. As another example, services may be provided under a private
cloud model in which cloud infrastructure system 1102 is operated solely for a single
organization and may provide services for one or more entities within the organization. The
cloud services may also be provided under a community cloud model in which cloud
infrastructure system 1102 and the services provided by cloud infrastructure system 1102 are
shared by several organizations in a related community. The cloud services may also be

provided under a hybrid cloud model, which is a combination of two or more different models.

[0163] In some embodiments, the services provided by cloud infrastructure system 1102 may
include one or more services provided under Software as a Service (SaaS) category, Platform as
a Service (PaaS) category, Infrastructure as a Service (IaaS) category, or other categories of
services including hybrid services. A customer, via a subscription order, may order one or more
services provided by cloud infrastructure system 1102. Cloud infrastructure system 1102 then

performs processing to provide the services in the customer’s subscription order.

[0164] In some embodiments, the services provided by cloud infrastructure system 1102 may
include, without limitation, application services, platform services and infrastructure services. In
some examples, application services may be provided by the cloud infrastructure system via a
SaaS platform. The SaaS platform may be configured to provide cloud services that fall under
the SaaS category. For example, the SaaS platform may provide capabilities to build and deliver
a suite of on-demand applications on an integrated development and deployment platform. The
SaaS platform may manage and control the underlying software and infrastructure for providing
the SaaS services. By utilizing the services provided by the SaaS platform, customers can utilize
applications executing on the cloud infrastructure system. Customers can acquire the application

services without the need for customers to purchase separate licenses and support. Various

52

WO 2018/053343 PCT/US2017/051897

different SaaS services may be provided. Examples include, without limitation, services that
provide solutions for sales performance management, enterprise integration, and business

flexibility for large organizations.

[0165] In some embodiments, platform services may be provided by the cloud infrastructure
system via a PaaS platform. The PaaS platform may be configured to provide cloud services that
fall under the PaaS category. Examples of platform services may include without limitation
services that enable organizations (such as Oracle) to consolidate existing applications on a
shared, common architecture, as well as the ability to build new applications that leverage the
shared services provided by the platform. The PaaS platform may manage and control the
underlying software and infrastructure for providing the PaaS services. Customers can acquire
the PaaS services provided by the cloud infrastructure system without the need for customers to
purchase separate licenses and support. Examples of platform services include, without

limitation, Oracle Java Cloud Service (JCS), Oracle Database Cloud Service (DBCS), and others.

[0166] By utilizing the services provided by the PaaS platform, customers can employ
programming languages and tools supported by the cloud infrastructure system and also control
the deployed services. In some embodiments, platform services provided by the cloud
infrastructure system may include database cloud services, middleware cloud services (e.g.,
Oracle Fusion Middleware services), and Java cloud services. In one embodiment, database
cloud services may support shared service deployment models that enable organizations to pool
database resources and offer customers a Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform for customers to develop and deploy various
business applications, and Java cloud services may provide a platform for customers to deploy

Java applications, in the cloud infrastructure system.

[0167] Various different infrastructure services may be provided by an IaaS platform in the
cloud infrastructure system. The infrastructure services facilitate the management and control of
the underlying computing resources, such as storage, networks, and other fundamental
computing resources for customers utilizing services provided by the SaaS platform and the PaaS

platform.

53

WO 2018/053343 PCT/US2017/051897

[0168] In certain embodiments, cloud infrastructure system 1102 may also include
infrastructure resources 1130 for providing the resources used to provide various services to
customers of the cloud infrastructure system. In one embodiment, infrastructure resources 1130
may include pre-integrated and optimized combinations of hardware, such as servers, storage,
and networking resources to execute the services provided by the PaaS platform and the SaaS

platform.

[0169] In some embodiments, resources in cloud infrastructure system 1102 may be shared by
multiple users and dynamically re-allocated per demand. Additionally, resources may be
allocated to users in different time zones. For example, cloud infrastructure system 1130 may
enable a first set of users in a first time zone to utilize resources of the cloud infrastructure
system for a specified number of hours and then enable the re-allocation of the same resources to
another set of users located in a different time zone, thereby maximizing the utilization of

resources.

[0170] In certain embodiments, a number of internal shared services 1132 may be provided
that are shared by different components or modules of cloud infrastructure system 1102 and by
the services provided by cloud infrastructure system 1102. These internal shared services may
include, without limitation, a security and identity service, an integration service, an enterprise
repository service, an enterprise manager service, a virus scanning and white list service, a high
availability, backup and recovery service, service for enabling cloud support, an email service, a

notification service, a file transfer service, and the like.

[0171] In certain embodiments, cloud infrastructure system 1102 may provide comprehensive
management of cloud services (e.g., SaaS, PaaS, and IaaS services) in the cloud infrastructure
system. In one embodiment, cloud management functionality may include capabilities for
provisioning, managing and tracking a customer’s subscription received by cloud infrastructure

system 1102, and the like.

[0172] In one embodiment, as depicted in the figure, cloud management functionality may be
provided by one or more modules, such as an order management module 1120, an order
orchestration module 1122, an order provisioning module 1124, an order management and

monitoring module 1126, and an identity management module 1128. These modules may

54

WO 2018/053343 PCT/US2017/051897

include or be provided using one or more computers and/or servers, which may be general
purpose computers, specialized server computers, server farms, server clusters, or any other

appropriate arrangement and/or combination.

[0173] In exemplary operation 1134, a customer using a client device, such as client device
1104, 1106 or 1108, may interact with cloud infrastructure system 1102 by requesting one or
more services provided by cloud infrastructure system 1102 and placing an order for a
subscription for one or more services offered by cloud infrastructure system 1102. In certain
embodiments, the customer may access a cloud User Interface (UI), cloud UI 1112, cloud Ul
1114 and/or cloud UI 1116 and place a subscription order via these Uls. The order information
received by cloud infrastructure system 1102 in response to the customer placing an order may
include information identifying the customer and one or more services offered by the cloud

infrastructure system 1102 that the customer intends to subscribe to.

[0174] After an order has been placed by the customer, the order information is received via

the cloud Uls, 1112, 1114 and/or 1116.

[0175] At operation 1136, the order is stored in order database 1118. Order database 1118 can
be one of several databases operated by cloud infrastructure system 1118 and operated in

conjunction with other system elements.

[0176] At operation 1138, the order information is forwarded to an order management module
1120. In some instances, order management module 1120 may be configured to perform billing
and accounting functions related to the order, such as verifying the order, and upon verification,

booking the order.

[0177] At operation 1140, information regarding the order is communicated to an order
orchestration module 1122. Order orchestration module 1122 may utilize the order information
to orchestrate the provisioning of services and resources for the order placed by the customer. In
some instances, order orchestration module 1122 may orchestrate the provisioning of resources

to support the subscribed services using the services of order provisioning module 1124,

[0178] In certain embodiments, order orchestration module 1122 enables the management of

business processes associated with each order and applies business logic to determine whether an

55

WO 2018/053343 PCT/US2017/051897

order should proceed to provisioning. At operation 1142, upon receiving an order for a new
subscription, order orchestration module 1122 sends a request to order provisioning module 1124
to allocate resources and configure those resources needed to fulfill the subscription order.

Order provisioning module 1124 enables the allocation of resources for the services ordered by
the customer. Order provisioning module 1124 provides a level of abstraction between the cloud
services provided by cloud infrastructure system 1100 and the physical implementation layer that
is used to provision the resources for providing the requested services. Order orchestration
module 1122 may thus be isolated from implementation details, such as whether or not services
and resources are actually provisioned on the fly or pre-provisioned and only allocated/assigned

upon request.

[0179] At operation 1144, once the services and resources are provisioned, a notification of the
provided service may be sent to customers on client devices 1104, 1106 and/or 1108 by order
provisioning module 1124 of cloud infrastructure system 302. At operation 1146, the customer’s
subscription order may be managed and tracked by an order management and monitoring module
1126. In some instances, order management and monitoring module 1126 may be configured to
collect usage statistics for the services in the subscription order, such as the amount of storage
used, the amount data transferred, the number of users, and the amount of system up time and

system down time.

[0180] In certain embodiments, cloud infrastructure system 1100 may include an identity
management module 1128. Identity management module 1128 may be configured to provide
identity services, such as access management and authorization services in cloud infrastructure
system 1100. In some embodiments, identity management module 1128 may control
information about customers who wish to utilize the services provided by cloud infrastructure
system 1102. Such information can include information that authenticates the identities of such
customers and information that describes which actions those customers are authorized to
perform relative to various system resources (e.g., files, directories, applications, communication
ports, memory segments, etc.) Identity management module 1128 may also include the
management of descriptive information about each customer and about how and by whom that

descriptive information can be accessed and modified.

56

WO 2018/053343 PCT/US2017/051897

[0181] Although specific embodiments of the disclosure have been described, various
modifications, alterations, alternative constructions, and equivalents are also encompassed within
the scope of the disclosure. Embodiments of the present disclosure are not restricted to operation
within certain specific data processing environments, but are free to operate within a plurality of
data processing environments. Additionally, although embodiments of the present disclosure
have been described using a particular series of transactions and steps, it should be apparent to
those skilled in the art that the scope of the present disclosure is not limited to the described
series of transactions and steps. Various features and aspects of the above-described

embodiments may be used individually or jointly.

[0182] Further, while embodiments of the present disclosure have been described using a
particular combination of hardware and software, it should be recognized that other
combinations of hardware and software are also within the scope of the present disclosure.
Embodiments of the present disclosure may be implemented only in hardware, or only in
software, or using combinations thereof. The various processes described herein can be
implemented on the same processor or different processors in any combination. Accordingly,
where components or modules are described as being configured to perform certain operations,
such configuration can be accomplished, e.g., by designing electronic circuits to perform the
operation, by programming programmable electronic circuits (such as microprocessors) to
perform the operation, or any combination thereof. Processes can communicate using a variety of
techniques including but not limited to conventional techniques for inter process communication,
and different pairs of processes may use different techniques, or the same pair of processes may

use different techniques at different times.

[0183] The specification and drawings are, accordingly, to be regarded in an illustrative rather
than a restrictive sense. It will, however, be evident that additions, subtractions, deletions, and
other modifications and changes may be made thereunto without departing from the broader
spirit and scope as set forth in the claims. Thus, although specific disclosure embodiments have
been described, these are not intended to be limiting. Various modifications and equivalents are

within the scope of the following claims.

57

WO 2018/053343 PCT/US2017/051897

WHAT IS CLAIMED IS:

1. A method for managing snapshots created from a Continuous Query
Language (CQL) engine, comprising:

receiving, by a computing device, a micro-batch stream of input events related to
an application;

processing, by the computing device, the input events using the CQL engine to
generate a set of output events related to the application;

generating, by the computing device and using a snapshot management algorithm
implemented by the CQL engine, a snapshot of a current state of a system based at least in part
on the set of output events related to the application;

generating, by the computing device, a first directory structure to access snapshot
information associated with the snapshot of the current state of the system;

generating, by the computing device, a second directory structure to generate a list
of snapshots associated with the current state of the system; and

determining, by the computing device, based at least in part on the snapshot
management algorithm, a process to get, add, or clean the list of snapshots associated with the

current state of the system.

2. The method of claim 1, wherein the micro-batch stream is a continuous

stream of data discretize into sub-second micro-batches.

3. The method of claim 2, wherein the processing the input events includes

processing the input events based at least in part on a transformed query plan.

4. The method of claim 3, further comprising storing, by the computing
device, the set of output events related to the application in an output queue; and transmitting, by
the computing device, the output events in the output queue when all of the input events have

been processed.

58

WO 2018/053343 PCT/US2017/051897

5. The method of claim 4, wherein the micro-batch stream comprises micro-

batches of data or Resilient Distributed Datasets (RDDs).

6. The method of claim 5, wherein the processing each of the input events
comprises performing a computation on each of the input based at least in part on the

transformed query plan.

7. The method of claim 6, further comprising receiving, by the computing
device, a continuous query, applying a transformation to the continuous query to generate a
query plan for the continuous query, and transforming the query plan using a transformation
algorithm to generate the transformed query plan, wherein the continuous query includes pattern

matching.

8. A system, comprising:

a memory configured to store computer-executable instructions; and

a processor configured to access the memory and execute the computer-
executable instructions to:

receive a micro-batch stream of input events related to an application;

process the input events using the CQL engine to generate a set of output events
related to the application;

generate, using a snapshot management algorithm implemented by the CQL
engine, a snapshot of a current state of a system based at least in part on the set of output events
related to the application;

generate a first directory structure to access snapshot information associated with
the snapshot of the current state of the system,;

generate a second directory structure to generate a list of snapshots associated
with the current state of the system; and

determine based at least in part on the snapshot management algorithm, a process

to get, add, or clean the list of snapshots associated with the current state of the system.

59

WO 2018/053343 PCT/US2017/051897

0. The system of claim 8, wherein the micro-batch stream is a continuous

stream of data discretize into sub-second micro-batches.

10. The system of claim 9, wherein the processing the input events includes

processing the input events based at least in part on a transformed query plan.

11. The system of claim 10, wherein the computer executable instructions are
further executable to store the set of output events related to the application in an output queue;
and transmit the output events in the output queue when all of the input events have been

processed.

12. The system of claim 11, wherein the micro-batch stream comprises micro-

batches of data or Resilient Distributed Datasets (RDDs).

13. The system of claim 12, wherein the processing each of the input events
comprises performing a computation on each of the input based at least in part on the

transformed query plan.

14. The system of claim 13, wherein the computer executable instructions are
further executable to receive a continuous query, apply a transformation to the continuous query
to generate a query plan for the continuous query, and transform the query plan using a
transformation algorithm to generate the transformed query plan, wherein the continuous query

includes pattern matching.

15. A computer-readable medium storing computer-executable code that,
when executed by a processor, cause the processor to perform operations comprising:

receiving a micro-batch stream of input events related to an application;

processing the input events using the CQL engine to generate a set of output

events related to the application;

60

WO 2018/053343 PCT/US2017/051897

generating, using a snapshot management algorithm implemented by the CQL
engine, a snapshot of a current state of a system based at least in part on the set of output events
related to the application;

generating a first directory structure to access snapshot information associated
with the snapshot of the current state of the system,;

generating a second directory structure to generate a list of snapshots associated
with the current state of the system; and

determining based at least in part on the snapshot management algorithm, a

process to get, add, or clean the list of snapshots associated with the current state of the system.

16. The computer-readable medium of claim 15, wherein the micro-batch

stream 1is a continuous stream of data discretize into sub-second micro-batches.

17. The computer-readable medium of claim 16, wherein the processing the
input events includes processing the input events based at least in part on a transformed query

plan.

18. The computer-readable medium of claim 17, wherein operations further
comprise storing the set of output events related to the application in an output queue; and
transmitting the output events in the output queue when all of the input events have been

processed.

19. The computer-readable medium of claim 18, wherein the micro-batch

stream comprises micro-batches of data or Resilient Distributed Datasets (RDDs).

20. The computer-readable medium of claim 19, wherein the processing each
of the input events comprises performing a computation on each of the input based at least in

part on the transformed query plan.

21. A method for processing of a micro-batching stream to support fully

stateful query processing, comprising:

61

WO 2018/053343 PCT/US2017/051897

receiving, by a computing device, a continuous query;

applying, by the computing device, a transformation to the continuous query to
generate a query plan for the continuous query;

monitoring, by the computing device, the continuous query using a monitoring
transformation process;

receiving, by the computing device, a micro-batch stream of input events related
to an application; and

processing, by the computing device, the input events of the micro-batch stream
based at least in part on the monitoring transformation process to generate a set of output events

related to the application.

22. The method of claim 21, wherein the processing is performed using a
continuous query processing engine, and the processing comprises processing each of the input

events incrementally to generate the output events.

23. The method of claim 22, wherein transformation is a Directly Acyclic

Graph (DAG) transformation.

24. The method of claim 23, further comprising storing, by the computing
device, the set of output events related to the application in an output queue; and transmitting, by
the computing device, the output events in the output queue when all of the input events have

been processed.

25. The method of claim 24, wherein the micro-batch stream comprises
micro-batches of data or Resilient Distributed Datasets (RDDs), and the DAG transformation is a
set of vertices and edges, wherein the vertices represent the RDDs and the edges represent

an operation to be applied on the RDDs.

62

WO 2018/053343 PCT/US2017/051897

26. The method of claim 25, wherein the processing each of the input events

comprises performing a computation on each of the input based at least in part on a transformed

query plan.

27. The method of claim 26, wherein the continuous query includes pattern

matching.

28. A system, comprising:

a memory configured to store computer-executable instructions; and

a processor configured to access the memory and execute the computer-
executable instructions to:

receive a continuous query;

apply a transformation to the continuous query to generate a query plan for the
continuous query;

monitor the continuous query using a monitoring transformation process;

receive a micro-batch stream of input events related to an application; and

process the input events of the micro-batch stream based at least in part on the

monitoring transformation process to generate a set of output events related to the application.

29. The system of claim 28, wherein the processing is performed using a
continuous query processing engine, and the processing comprises processing each of the input

events incrementally to generate the output events.

30. The system of claim 29, wherein transformation is a Directly Acyclic

Graph (DAG) transformation.

31. The system of claim 30, wherein the computer-executable instructions are
further executable to store the set of output events related to the application in an output queue;
and transmit the output events in the output queue when all of the input events have been

processed.

63

WO 2018/053343 PCT/US2017/051897

32. The system of claim 31, wherein the micro-batch stream comprises micro-
batches of data or Resilient Distributed Datasets (RDDs), and the DAG transformation is a set
of vertices and edges, wherein the vertices represent the RDDs and the edges represent

an operation to be applied on the RDDs.

33. The system of claim 32, wherein the processing each of the input events

comprises performing a computation on each of the input based at least in part on a transformed

query plan.

34. The system of claim 33, wherein the continuous query includes pattern

matching.

35. A computer-readable medium storing computer-executable code that,
when executed by a processor, cause the processor to perform operations comprising:

receiving a continuous query;

applying a transformation to the continuous query to generate a query plan for the
continuous query;

monitoring the continuous query using a monitoring transformation process;

receiving a micro-batch stream of input events related to an application; and

processing the input events of the micro-batch stream based at least in part on the

monitoring transformation process to generate a set of output events related to the application.
36. The computer-readable medium of claim 35, wherein the processing is
performed using a continuous query processing engine, and the processing comprises processing
each of the input events incrementally to generate the output events.
37. The computer-readable medium of claim 36, wherein transformation is a

Directly Acyclic Graph (DAG) transformation.

64

WO 2018/053343 PCT/US2017/051897

38. The computer-readable medium of claim 37, wherein the operations
further comprise storing the set of output events related to the application in an output queue; and
transmitting the output events in the output queue when all of the input events have been

processed.

39. The computer-readable medium of claim 38, wherein the micro-batch
stream comprises micro-batches of data or Resilient Distributed Datasets (RDDs), and the DAG
transformation is a set of vertices and edges, wherein the vertices represent the RDDs and

the edges represent an operation to be applied on the RDDs.

40. The computer-readable medium of claim 39, wherein the continuous query

includes pattern matching.

65

WO 2018/053343

100

105

Sheet 1 of 11

105

PCT/US2017/051897

FiG. 1

PCT/US2017/051897

WO 2018/053343

Sheet 2 of 11

L OAUG JUBA

ol

A E

The aoires DUIsssold Wead

gz uesng inding

012 wuig weag

GCE JOBS80id 100

Tee dady Buissanosd waas

Fee ddy wsas 7ee ddy usas

-

977 weens nding

AMW Lo wEehg indug

il

BET SUUN0S JUBAT

g7 wesns nduy

2

[F 90N0S JUBAT

yig wesns nduy

P07 SN0 WBAT

X~

Goc

WO 2018/053343 PCT/US2017/051897

Sheet 3 of 11

RN

320

W
ey
&
i
3
ikl
&
& o
8 =
3
IR
oy e
w
&
" 28
o & [
{\\\\\\g\\\\\\ sl ge
< N (2 es
S5 RN X Wi o Z e
03 \\\\\\% ek "5___}_{3_.2
Q 1585
S T
\\\\\iﬁ M a;}"'é’ﬁm
A et
g
h w
£
3
E
0
g
o
o
+
w
&=
g‘l‘?
o
B
o 2
=S
Recsiver
g 5‘3%
E @
m = SN
s)

FiG. 3

PCT/US2017/051897

WO 2018/053343

Sheet 4 of 11

v Ol

Opp

DESSH00ld SIUBAS
ndul e aouo
siisAa Indino sy
HLLSUB 10 UInay

GEY

ananb B Ul sjusAs
Ao Byl 94018

|

ey

WeAs nding Jo
128 B UBigo ¢ ueid
Aianb poulicisugsl

2y Buisn sjLBsAs
Ndul 843 8580044

{

TA

siaAs Indut o
LIBSAIS UDIBG-CIOIL
B SAB0HYM

!

Glh

witpuohie
LIoNBULOSUR S
e Buisn usid
Alenb sy wioisuel

i

G

uzid Asenb aeisusb
0} Adenb snonuuoS
o1 uonriado Alddy

4

gLy

Asanb
SNOMHILIOD BAIBDE Y

¢

S0

auiBUITInD USUNET

8174

PCT/US2017/051897

WO 2018/053343

Sheet 5 of 11

G old

OUSABUS SIUAA

VASIN 113 815) 4 o5 IGinosXS

ousdeugppy

RlEpRISN S A

4y
el subuIIng

e
BUBISITYNIEY

JBALIC

0%

PCT/US2017/051897

WO 2018/053343

Sheet & of 11

49 "9ld

{1ou "L-o-Lb-suriiousdeuss L)
(i "0~ 1- L b-spiewisoysdeus; ()

(g ‘o-0- Le-pewipoysdeus;) '0) <- (o' 1b,) syousdeus

Y9 Old

g-1-1bpewsoysdeusy <- (g °L 10

0-0-1 b-peuwjoysdeus; <- (0 °0 “1b)

PCT/US2017/051897

WO 2018/053343

Sheet 7 of 11

AIE

8L

s1ousdeUs 0
181 8L UBSID Jo/pUE
‘opE ‘sirisust o)
ssao0d B sUiLLSe0

GCL 7

LiBISAS 8L} Jo
SIBIS JUBLND S LM
pDEBIn0ssE syoysdeus

1081 e sesauel O
SIMoNAS ADIDSHD
DLICDSS B 3leisust)

!

8L

LIoIsAS
B} 1O BIBIS JISLND
aul jo ousdeus
UL YUM DBIBIDOSSE
UCIIBULICHU
ousdeUS S88008 O
SIMONAS AIOICalp
1844 & slRIBUSD)

3

GhL

SIISAS JO 188 INdINO
o uo ued Ul ses
1B pesey uweisAs e
10 SRS UBLINO B O

ousdeus g ajgisuen

$

OLL

SHIBAS INING
10188 B oisusb
o1 subue Buissseonud
Assnb SNoNUJoD
g Buisn siusAs
Ul BUl $880014

i

S04

SWBAS INdul o
WESIS UDIBG-0IIL
2 SAB08Y

07

PCT/US2017/051897

WO 2018/053343

Shest 8 of 11

8 oid

uoneodds sy O3
pEeled siuese Inding
10185 2 sjesaush o)
585004d UCIBULIOISURI]
BuLicluow
el uo ued U
1568 IR DOSE] SIUBAS
ndu (o wesns
SNONUILCD 84)
10 UOIBG SU] 888001

!

048

SIUBAB
ndut jo weans
LUOIBG-0UDI B BAIB0SY

4

Gig

ssaooud ucieULICISUR
Bulicuuciu g Buisn
Asnb snonunuos
2l JOHLIOW

}

018

Ajonb sNONUIIOS
Uy 4o} ued
Alanb e srisush
oy Asenb
SNONUIUGCS 8L 0}
uonelado us Aiddy

t

G083

Aienb
SNONLILCD B SAISDOH

o0g

WO 2018/053343 PCT/US2017/051897

Sheet 8 of 11

900

——

DATABASE
916

§=======’

DATABASE
914

COMPONENT | | COMPONENT
918 920

COMPONENT
922

SERVER
912

NETWORK(S)
910

906

FiG. 9

PCT/US2017/051897

WO 2018/053343

Sheet 10 of 11

0l ©Old

8¢0l
SNVIYLS
1IN3IAS

8101

NILSASENS IOVHOLS

0col
S3lvdadn
IN3AL

9col
NEEEE
viva

9101

INI1SAS ONILVH3IdO0

¢cOl
VI3 3OVHO01S
378vavad-d31NdNOD

Y

Y

1£40)%

Ad

INJLSASH

ns

SNOILVOINNNINOD

AHOWIIN INFLSAS

7101
V1Va WYH90Nd _
ZI00 0zor
SINVY90Yd NOILYOI1ddV y3av3y viaaw
oToL JOVHOLS

379vav3d 431NdNOD

2001 —
S00T 1INN
IN3LSASENS O/ | [NoILYY3 1300V — -
ONISSI00Hd re0l ce0b
1INN 1INN
ONISSIOONd || ©ONISSIDONd

INILSASENS ONISSID00dd

001

PCT/US2017/051897

WO 2018/053343

Sheat 11 of 11

AIIIE

oo b SEAOIAGES GdvHS TYNGZ LN

Oo Ll SE0UN0STY FHNLOMYLSY RN

12435
FATIAHES G3QIAOH J

S0bL

BPTT LNINIOYNYIN ALLLNIO

\

EIEe

4y’
| NOULYHLSZHOHO 430

O

\.

QQWWMWs

AN
L LNINIOYNYIN HFCE0

w

A4’

geil

w DNINCISIADHL HITH0

R

{)

G2l L DNIHOLINOW GNY
| LNFNBDYNYIN ¥ICHO

7
\.

Biil
FSVEYLVA MIAHO

//.wcm L AS3NDE 30In43S

oLl
{ShMOMLEN

1243
ACIAHTS QRGN HA //

wmvvl\)#

~ POLE LAS3IN03Y I0AMES

14435
AOHAHES 3AADH J

LMNINO

—

Q0L
F0i1A30

ANZHTO

—

S

vl

F0IAZFA

GLEL
i GNoTS

vill Chitb
inanoio i ONoTo

0L L WELSAS FUNLOMMLSVHAN ONGI0

N FOLE L8ENDEY
IOIAMIES

LN

—

0L

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/051897

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2014/095444 A1 (DESHMUKH UNMESH ANIL 1-40

[IN] ET AL) 3 April 2014 (2014-04-03)

abstract

paragraph [0003] - paragraph [0007]

paragraph [0026] - paragraph [0028]

paragraph [0036] - paragraph [0049]

paragraph [0053] - paragraph [0078]

paragraph [0076] - paragraph [0082]

paragraph [0092] - paragraph [0094]

paragraph [0127] - paragraph [0140]

paragraph [0147] - paragraph [0155]

paragraph [0164] - paragraph [0166]

paragraph [0197]

paragraph [0208] - paragraph [0222]

paragraph [0274]

paragraph [0305] - paragraph [0325]

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

8 December 2017

Date of mailing of the international search report

15/12/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Boyadzhiev, Yavor

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/051897

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Anonymous: "Spark Streaming Programming
Guide - Spark 2.0.0 Documentation",

1 September 2016 (2016-09-01),
XP055419913,

Retrieved from the Internet:
URL:https://web.archive.org/web/2016090105
5439/http://spark.apache.org:80/docs/2.0.0
/streaming-programming-guide.html
[retrieved on 2017-10-27]

page 1, line 1 - page 2, line 8

page 6, line 27 - page 9, line 8

page 15, Tine 10 - page 15, line 14

page 24, line 30 - page 25, line 5

SALMON LOIC ET AL: "Design principles of
a stream-based framework for mobility
analysis",

GEOINFORMATICA, SPRINGER US, BOSTON,

vol. 21, no. 2, 25 April 2016 (2016-04-25)
, pages 237-261, XP036159086,

ISSN: 1384-6175, DOI:
10.1007/S10707-016-0256-Z

[retrieved on 2016-04-25]

abstract

page 241, line 6 - page 242, line 35

page 245, line 15 - page 246, line 24
CHINTAPALLI SANKET ET AL: "Benchmarking
Streaming Computation Engines: Storm,
Flink and Spark Streaming",

2016 IEEE INTERNATIONAL PARALLEL AND
DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS
(IPDPSW), IEEE,

23 May 2016 (2016-05-23), pages 1789-1792,
XP032934888,

DOI: 10.1109/IPDPSW.2016.138

abstract

page 1789, left-hand column, line 18 -
page 1789, right-hand column, Tine 17

page 1791, left-hand column, line 8 - page
1791, right-hand column, line 14

page 1792, left-hand column, line 10 -
page 1792, right-hand column, Tine 15

_/__

1-40

1-40

1-40

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/051897

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

THOMAS MAGER ET AL: "DistBack: A
low-overhead distributed back-up
architecture with snapshot support",
LOCAL&METROPOLITAN AREA NETWORKS (LANMAN),
2013 19TH IEEE WORKSHOP ON, IEEE,

10 April 2013 (2013-04-10), pages 1-6,
XP032422686,

DOI: 10.1109/LANMAN.2013.6528274

ISBN: 978-1-4673-4984-0

abstract

page 2, right-hand column, line 32 - page
2, right-hand column, line 52

page 5, left-hand column, line 12 - page
5, line 32, last paragraph

1-40

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/051897
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2014095444 Al 03-04-2014 US 2014095444 Al 03-04-2014
US 2014095445 Al 03-04-2014
US 2014095446 Al 03-04-2014
US 2014095447 Al 03-04-2014
US 2014095471 Al 03-04-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - wo-search-report
	Page 80 - wo-search-report
	Page 81 - wo-search-report
	Page 82 - wo-search-report

