US 20230104928A1

a2y Patent Application Publication o) Pub. No.: US 2023/0104928 A1

a9y United States

Gao et al.

43) Pub. Date: Apr. 6, 2023

(54) EXECUTABLE NETWORK
TROUBLESHOOTING PROCEDURE

(60) Provisional application No. 62/363,711, filed on Jul.

(71)

(72)

(73)

@

(22)

Applicant: NetBrain Technologies, Inc.,
Burlington, MA (US)

Inventors: Lingping Gao, Burlington, MA (US);
Guangdong Liao, Burlington, MA (US)

Assignee: NetBrain Technologies, Inc.,
Burlington, MA (US)

Appl. No.: 18/064,712

Filed: Dec. 12, 2022

18, 2016.
Publication Classification

(51) Inmt. Cl

HO4L 41722 (2006.01)

HO4L 41/02 (2006.01)

HO04L 41/00 (2006.01)

HO4L 41/069 (2006.01)

HO04L 41/0654 (2006.01)

HO4L 41/0853 (2006.01)

HO4L 41/0677 (2006.01)
(52) US. CL

CPC ..o HO4L 41/22 (2013.01); HO4L 41/02

(2013.01); HO4L 41/20 (2013.01); HO4L

Related U.S. Application Data

(63) Continuation of application No. 16/374,374, filed on
Apr. 3, 2019, now Pat. No. 11,528,195, which is a
continuation-in-part of application No. 14/619,957,
filed on Feb. 11, 2015, now Pat. No. 10,454,782,
which is a continuation-in-part of application No.
13/841,735, filed on Mar. 15, 2013, now Pat. No.
9,374,278, said application No. 16/374,374 is a con-
tinuation-in-part of application No. 15/652,797, filed
on Jul. 18, 2017, now abandoned.

41/069 (2013.01); HO4L 41/0654 (2013.01);
HO4L 41/0853 (2013.01); HO4L 41/0677
(2013.01); HO4L 43/045 (2013.01)

(57) ABSTRACT

A system for constructing and storing procedures for
troubleshooting computer networks. A user can design and
add troubleshooting steps, via a GUI, to define the procedure
including annotations. Each step is configured to take an
action on the network. The order of the steps can be
re-arranged via the GUI. The procedure can be stored and
re-executed by another user.

NETWORK MANAGEMENT SYSTEM e -
100 | GUITO DEFINE WARNING/ERROR
| PROCEDURE MESSAGES
. ! 105 3
B.E 5 L . -
= o v = ﬂ?? i
n® ,
EXECUTIVE CUSTOMIZED
PROCEDURE . REPORT
107 115
INPUT VARIABLES T
103) 4
| LIVE ACCESS
| MECHANISM
i 109
~ ¥

o
- R

et ™,
4 M
b ONETWORK 4
(N LF J

N

Apr. 6,2023 Sheet 1 of 39 US 2023/0104928 A1l

Patent Application Publication

T
(Lid V
;OMOMIEN
L \
e
k-4
oL |
WSINVHOIA |
§S300V AT |
¥ £0L
! STIAVIIVA LNdN
G4} 104
LH0d3Y « RNCIO0U [
QEZINOLSNO INLNOIXF T
3 S T
& : .
! 5] =
Eil 501 | o
S3OVSSIN RNAIO0Ud | -
HOUUF/ONINGYM o0

INHI0 OL I v

NALSAS INJWZOYNYIN MHOMLEN

Apr. 6,2023 Sheet 2 of 39 US 2023/0104928 A1l

Patent Application Publication

e SHNIT TYNSIA
HLIM NOLLTIOS F181SS0d IHL ITAQU
60¢ $S300Md

AHC SLNSTY ONILOOHSTENCHL QX003
0L SINTFWNOOA MG JYN WMIOMIEN ¥ 3LVIHD

1

£0¢ SONINMYM
YO SHOWHT TIFISSOd AYIdSIO TYNSIA

1
)

mmmwmmwzﬁ&ommﬁ{zqg.mmmoom&
:mm

YIS - YIVQ 354Yd OL COHLINW

10¢
SADVAZA HEOMLAN WOUH VAVE 1037100

Apr. 6,2023 Sheet 3 of 39 US 2023/0104928 A1l

Patent Application Publication

TIAYINYA 176 Lie
L0 QRANVATY NEIRY SANOYIOTHL
| 8L 508
i 14
ezt ,
. y STIEYIIVA ¢ —
I0IATY 118 508 (40
Le3dX3 FVANCO T1avL NOLLYHNSIENGD
{n} Gig A
SovRaI TOHSIMHL o 508 ONYIIOD 110
NIHL 4 E1E yHSHvYd 08 380ud
are 1z
676 HIADDML £og
£ 3804d ¢ 380xd L 3804
I

i

L0¢ 3CON 85300

b8 MIAMEAC

4

B g

00 INGE0OM IALNDIE

v "Old

TERIEN 05T BEan

UDISISA MRS ﬁ
yonewsiy xaidng peads sorusiy) ﬁ*
(2hwreed B - sor

{7) ainpaooid (2007 E, t=1

US 2023/0104928 A1l

kY

& {0} 8aNpanvld PRIRYS =i Job
3 (0} ainpootid Yied ﬁ:mu
- {p) uogeygep ﬂmm L
g {11} Buoumg ’E GOy
> {e) i ﬂfmm
& (61) 4450
m (51) si-si
M (24} duoia
2 oL dog B
B (65} But ?m &1
{v) go0 B
{6} Buseoningy &
(&) 0t ﬁwﬂ
(1) woyp jena sveprai) B~
(o) dey meg Eh-m
() woausy jone oomag Bl
(1) souepdwiepy B _cov
{3)1) ainpsooid wng B0

ke 0

W % W SIS 8inpson)
Go% 2 4 d

Patent Application Publication

Apr. 6,2023 Sheet S of 39 US 2023/0104928 A1l

Patent Application Publication

km‘_/

£LGE-0081)
GTLVELL
Z33U440-158-C8N
Sy
&
,/nw WX L2008
@S9V
ZINITIiE
dew Juskino Ul %
o | SFEP 0} sainpencid uny BS | 1) @
PIA w
SBINPADTIE UNY
P L 52-005)
B LVEY
W sanpaooiguny |l S
CMIGAON MERLLIUSY i
. i T
spusimieg 110 ok | m&. L) R
podky eeqdeyy siedwen owuop [unyl wbwby |4
/mam

WX1292-09810
VgLV

WXL ZRE-0081D
CHULVEEY
ALS-FLOWIY-CBN

s

GERE-008I0
ZOVEVTLL
HOLYHLIGHY AN-LEN

™

)

/mHu
L
N
<3

Lo

WX1292-00310
CEiVELL
d0d-AN-C8N

US 2023/0104928 A1l

Apr. 6,2023 Sheet 6 of 39

L dew J teoweg J{ MO
uoIsIBA MOYS £F) ..s
yuewsyy xajdng peads sospaly £F] [3}-4
e EE .:mu
APt 18207 ‘@,mm
i
osyo uoneinbyuoe EENFg -4
QNDBItI PoiBY w":mu

sied ndi SoBLBIL ¥OBYD
dy Buio) 10p] 200N (0%
goneoyuss 3
s
mczﬁéw
Bugnoy
SO0
m%momaz
JCUBAL
WIeu eas aoepsry B
deyy sery EE
¥yay) jere aoneg B

goueduinn m\“m mﬁ

o | |
| 8841 BINDIO0L SSM0IG CELID JUBLNG Ut SINDSI0IY SSMOIG] Jo1n’) QInDa00ld S8MaIg
5% $8INPIN0I 108G

Patent Application Publication

LG

yafied o jpdewny/zoNse | aunpanoly

064

-
< Y
S S g L1
) e, Y Ay
< oo, k. / — et vrurh ot 5
m m...w.mw.:mww.m.w.i xmmmrzm:m.w.z_ y WG ofad inding mau y @ m SRUNPIV0LY UMY w
e)
«
& PN i el JU s T 4 / T TP wbw,m.roﬁmmwmz &
72 204] 1ndpo iewoed guoRar’ L ycinb sievoed o dOdANTEN &
- % ‘cinue PdulT 3 'si0k0 iy CANAHOANEEN
SIUR00 JOLE | | R0IG Y7001 DARBOSY | PE0IG 072501 pareoay POTANTEN =
WUl PEIRIBUNLE J0 LUNS 3L UM SoUERg ndursiesoed 7yei 27 ‘nddu spewosd #7577 HOLYHLRIANTEN e
N 0 At UM S} ‘'eioleisul oue suo | 1B ¢ g eibd inding Ui 2 gp e ndno g g ~ PN EEN £y
e} e wous aney Aew mgﬁmﬁmw HU0% pUR Qoo du alnue g 4 000G 1R NG enuRL § =t BOYIEEN e
= DOBEAIO D¢ 0 N0 BICLE INdUray) $8ney UIDWDURY SQRIeRY HIDIMPURG SigeIBRY h8 7RO TOEAN o
~ OSIE U2 SIONS PRERMdU IR0 HUngD %ﬁ&micm [BAIDSEY UONESIOALNY) [OASSSEY %m@?mm%mz
- peeoubl pUE UNUSAD BRI 0 sy mﬁua SUGHERISAUCT) ST SUDIRZIBNI0T MO ot »mm,mmz &
@ = ou eyl sy sapniou) SI0EZ Idu Y kel YOBo0LD BreRk g ol PRONGLIG Bnenbnding 204 mm‘wmm‘m o m
= 3 3 adys " -
Z B4 _eShuj i sonpy Lodxg s NVALIN- SO EEN €3
- e S BB 07§ —07 uonnoaxd feion] Bea | | OISHEAN £
« -
I~) TR ZVTOEI0E] TR0 MOug) OO CEN 500G 51 DBUNCI D) PRI ZEnOr O eE] uonenfiunsy auspcaa 5
N T LU R MOUS TTT Tl A5RA0U DRIRIRD (AALT [3REan DN ZI0MAC ANFEENT J0UE SRR SxRua) SO0
© | { T R SRR OS] T Bl Emn& ¥l @SgaiL aRy) Lorues [aseay; aweld] FERAACAN] 0T B 20BUBRY $900
s e SEnsiet et ot BTN ' o @ SSEARU BB DR LIRS B 0] LGOI U 9he SOBLIOIE 50T
< T 27007 oRHoM MOUS m%%%wu._:g%% LIRSS foSE0U 00 10 PR o AeeL 0Rua SR00
= OIS O K80 SOAJSUON, PN LUBD) Unugadh)
o, BN PO | of DDA INIRIONSOAAIVEIL) ey
m ...%ﬁ@mﬁ%z@ﬁﬁmg,?,;aﬂ.ﬁo;@%?d sl \
o= el BRONAP TORT MU L d =L {d S0PE00id efioLal b e e soe g
5 e AL RO oSSR A | B0 omgt IS o
R {a0map aum ¢ SR A DR
= SRR .‘.%%é%%ﬁ%%f\a&o@w@%@, %w / o e S s i I e
= RPRAL Gy A {35 B0 1LE0RH JSOUL) MUCIR0BIE mw.m:“%..w.mmz PRI SRS eou il S el 1 MO0 0 OB U R
A~ WSV AR Rl Y SODDEIRC] OV L B PUBUBLIOD SI0J0Y PRI DU SE0(LTSRN patUByD SNIEKS S0RUaI St | miloldis] I el eomiops SO0
5 TETETIE RERLGE LOPYS-CEN GUIAA0 Bl DRUIDD O paged WrvSy-EN SINORIOT SORUERE 11 | B BLUISIN |1 SUBIOW 8] (A
.m - @y | opuBdagon UOIEGET 20100 SEIEN INDAT0Id] | UORESSY GUIER
>
.“lml wolsAR I uoneuscan) Bunues IR o A _ 803581 10 BUBLSOY 10 piomdey nduyl a4
=)
«
~N
=
&
]
-

-
< N
o 08 858 A%
m \\ L ! .
& " _‘
m mum ¢ fdisp] [aleug] |esoin | \\ ampeq) pdwes jsuely £ (Sinpantid uny Y
w TE S| OB o] L &5&%@%@%&@ Joepion | uoddng uigiany] JOUINY
&
72 Pies: % N8
=) _ .) | euRepETTGR
HOBS UG DIKIRUS G 01 (17 S5Hnbad ainpaoiud Sity) 'BI0N
- sospa oguliay
A 0 xondnp/pacds Lim s0Rpa i8I0} uo xeldngypasds seduwing
s g doig
® CarpaadSl <> [0 SIEN0GL 01 BN SN 601 0n -~ p-peeos] <> ey siano iz BOBLIGNS MOYS PUBLIRKIOY) PAIZIGY
m YNBSS XBi0ngT pUE peed YIRS Xeidng pue peady xeydng pue paads soeyelul [eao| MMMNM
.) M A n Vi m\ ap-sioqufiel dpn AOUS DUBRELOO paiREY
a Pu-pesdg £y-pesdy SE0RpBY
K m\v},:/, tHE \X.kf. wanelpe Auagl o anap o0 uo spmap togubivu &mu%m@
& <7 TGS b da
o S o — .
Ml f oo 7c m\ oiboy anpesnig
i h AN
O N deus oy v ponbiby
e BJE SPI0uEdBINSI) SROBLGIUL PRISBLMUD SSDINT JUNISISUOD
£ L 8% SONEA xRN pUB PRads JeUIPUM SOSYD ainbanaid Sy
=
E 5 A 7 @=L auE By
k) dewyy aydwes uopducseq
= 4 Py
=
£ - 868 9c8 7 t N -
" " ; 5 (08
.m B0BpRLY " eng pue Gty S100UBIBY O 190 S
= \ 3 woaufiau yam amduic) paads uRMGIUL OO 40RO e P
2 0 / & {ed] L4 268
A 4
Z / o7 iardas] o] iatiy| aigeneA Inding suigeq | ajgeusa ndu) sujeq
= \ ® | £ j= \\ payewsEy xadng mm\%w SOCLBIE ALy 8 — mwmmmuoi
= £
I 008 0e8 028 018

Apr. 6,2023 Sheet 9 of 39 US 2023/0104928 A1l

Patent Application Publication

IR

‘agoid sj0ienesy & %@g

“aind Buig B vm«@

o uorenbyuon © ppy E
ocd
&
06— 300l PUBLILOD 11D E PPV I | m
0
SAD(Y SHUEBLAL <<
HGRUBA A8 3jgRLEA Ag 1007 oo

Sl

PO «Fn/qa

ot {[a]

ety | sigaue nding auger | eieuen nduy aueg

US 2023/0104928 A1l

Apr. 6,2023 Sheet 10 of 39

680t

il

Patent Application Publication

owmw o@aw
\\ | \\
“ B i»
N Y ool ey | / DESUEATY
/ ijeuieys HOEERE e gEOL0VDE B B O
M QUPLIYESEY | (OIBUsRsEY L0105 DL G - \ :
. p— pr— ﬂw 1 1800ig ((uod m%m%ow_ HEch DIELEA, DIOMAOY gzl O
ﬁw B .\mopgﬁg_ e BigEuen prowdey | udesbend @
L 19D '51 1 | (ondpoglydesbereq) ko ///
w g ssoupy &_ Hed BigEMen pimhay ooy O &yel
4 . i Tv X
. | s TW-SZHTXO06ZD) SIEMIO8 TX006ZD) w OSI || 21 R — sopsny udmy | 04 P
2UEMOS WiRsAG Bunessd womeumRy 0381 111 A ; T
Luoisisp [0t RN
S
6
RECIAM RS S U \ a4 EO0R
{uod BujoBine) G wod 'O ANYEHLELSY) Bospa | £ S L 70U
YIS SeINARTEs TX-72620-GA 008D iopRld || § G0 ¥¥0) drses U]
D LOLOL0L0L -5SedpRe g
v ’ (sejscaippe Ajug |l ¥ funsag BUBI0 g hnsay B Eu@
\\\ Jding puBtUuoS 119 {1ipB 01 Ajue U 400 SIgNoD} 881) Jesied
7] Lerwes | 3
¢ &
pESUERpy |edAL eaeq| aidues anauey | | peiap sioqybiau too Moys i
5 N
\ \ [+ un i«
\ \
\ \ A BupuRy) coo
kY A
741} 0Ll

Patent Application Publication Apr. 6,2023 Sheet 11 of 39 US 2023/0104928 A1l

1100
3
\

S

Prigper Desorolion: Bxpeet the U ey

&deE

Bt Vel 5

%
Lo

“

£

3

US 2023/0104928 A1l

HORBE0OWOIBISHOAMUIBIIBNI(99X) ol welBosdyn] epio) o yodxy [

SiNSOY sigeles E&SQ {84015 ﬁOme 7

R

Apr. 6,2023 Sheet 12 of 39

e

yviede spuooss Ol LY BOIM) BICD DAl OABHIO! 'BHOP S12IN0IE0 O
JeBBu] epac 101 BASIL Bnejeg
“DIO SN Z | Uey) SS8|sil i RIRD SA% DAYYRD AN [F]
m A aupaseyg Egzwnw ‘BIED BUlosey
|» aueseg weuny: O aN| U0 SASLISY @ CBIEP WBAn)

QUG BB 18RS

e

-

sBuleg LONNIEX SINPRoDIY

7z

017

Patent Application Publication

ETAS

US 2023/0104928 A1l

Apr. 6,2023 Sheet 13 of 39

Patent Application Publication

&L "OI4

| 124} cenea ma “ 5
L oesoy ||
& TOERaR . : .
8O pOYS Somep sy usyL SR L . .
ol uBy sop0 3 umisien 5 oiaep ay) ji] UHHHHOSE ‘ainpeonid uri aingeq anfea ndul o) nod ydwoud m wayshs “Adwe snysa
BU SABS: i 2unas0id Unl Y asn i Lsishs ‘ares auy oburyd s jndup di]
|4 aignop| adh)
| vosian“speifidngg] awey

SiQRUEA INCU] QOIS PRY @)

yepdunse

sy

adhy

FURN SIGRUEA

©

“UORILAD 8GO Ul i PUSLILICOS! [UR ‘BIGRUEA jBx0lB suya(]

ojgeniEA AUl [BGOIOUIR] @ |

M@ afT oV in 7ulls] offa

H
4

ey] sigeue dInG sugeg

gLed

174!

US 2023/0104928 A1l

Apr. 6,2023 Sheet 14 of 39

Patent Application Publication

ey Cwo | -
(20]
wonduaseq
uonduoseg
2 fuus| wdhy
_ swelsoupy] oweN
BOBURA INGU [EGHD) DY @
uonduser]| adiy Sigeues ;wwn] WERED
ca@m}mww LR 2IGE L -
BiqeURA 8GR} Inding OIS oY @
| 8)g2 | DhY uogthssag sdiy sigeUEs SN

o

@

‘eonap ainw Buiueds eest ool 10 AOWeAU OMBY J0f sejgeyeA Inding oo aueg

X

SiRLEA JOAING 1RABIS) LUSCIE)

0oyl

@A oV 0 7 afa] ol

11 sigenea ndyy augeq

US 2023/0104928 A1l

Apr. 6,2023 Sheet 15 of 39

Patent Application Publication

» 20t Peeds] aomag

Qi TIgUuMops (ippeTdlenaees anies T uIBLGS "aoirep poss g Bre
QjgeLeA ndi 10 108195 UBD SDIAB(] 0] SNl
w?, | ooepopy) s | eorpsy] P 916
o 3 " . LU
7 | aweq0 la (aABD ™ BI0ISEEI0MOCES)] aoag @ j
m & Bugies s01aq] W Jeaes payinads] eneg spaey Ot
: 1enos T HIBUWRS! soH Gl @ ~ {185
/VQ itiey A.“z\f MRS | e Nwmw
g}~ EIERg | smw
ozsr”” [+ T feduieg | buyes Buigh & 10161
{8|dweg sreuloN] &
[+ [1Buigl] «

Boun) unyl .doon

)

wwomwgmwo%&mmmwmmsmmx,aéngoamm&
© .

¢y

i

US 2023/0104928 A1l

Ol IGUTUMODRS DR TAGe0maIos) UeAIRS UGS SoMmap pees g e
BiCRLRA FICU] JO 109195 UEC SMABY] O LALIOH

| enape s | aospewy [

Apr. 6,2023 Sheet 16 of 39

wus0 @

m gona

& Bumeg aoimaq w saeg peioadg) enes womeN O

sBras uRWgS| oH A @

T 180010
oy wedd
U+ 1 (oidwes | Bupeg ainoy &l m
SUGHA0 | oduss sreinay | 2
%

_ + _ £ Lef80RL]

{a 90iA8(] pIadg-amAag (o S0UD) tnydoe

Patent Application Publication

US 2023/0104928 A1l

Apr. 6,2023 Sheet 17 of 39

Patent Application Publication

o0

il

1Ry

o (se difiegiudeibereg B

remmmenng

il S

f= (P01
GET'GRT 0T OO02 0 omau €61
G07 uciBis 5o 211204
i= {104
Pyooot
0o uome 86
1T dibio sopnas 51 1 es
P18
(SR

EOUBRDY
[w4 G
W JapundTseug o6 Jeino) ,m.m_ LR e A piosAay spyel O
w wnu~sag dbie hmwmg_ sayuep; udeibeiey | UoribeRs @
m s G ifie | DiLeN puctian O
13518, 18194
we dibsdiBonnsey pubug o) ydesbeled poy

winy"seg G-

{d:bragepeny ubBaQ mwmu
fynsar pubuo Shunsey mmcﬁ.mcomu

SRTING DUBSGUDD {10

Qipe 01 ARUS ue Y0I0 SIBNGP) 8811 Bsied

F Ladueg

m Sdieg PAsRY m

US 2023/0104928 A1l

Apr. 6,2023 Sheet 18 of 39

Patent Application Publication

= e pleiguin
ALUIUNS-OINE DU

DHEI9S WID 7371831 Xt Isgrainauisip
{081 | G52 G001 921 sleuw-nelop

FO L2 haney

{OGDE oM

[RIODULND SINGLISIa)

proe sifie asivni

WX120Z-008(0
5117
dOd-158-68N

ASBURMAS-OINE DU

{061 1 650001 821 HsrERD
018817261 Hiomad

SR ANARR i

ERIRERS B HV AT

DOJORULDD AINQINAINGI

o107 difie winos

4 08¢-00817)
481891 761 o

sofuny-soqubeu-boy difis ou

Apunung-opre ou

(3081 1 452 0001 821 dujBi-Hnefel

DOLITLL ke

JUoL womesu

Li0iRLa% BoBiap-ansERT

GioLuss soriuraassed

OV 1 JHNEZIDE deuraino oo dby snguispes

WX L ZG7-008IT PEIGBLCS LIS
CELVALVELL Oioe dibe mpnos
ol 3 v 7
OTYTEAN 11X} 292-0050
CCLV Vi
FHOAN-CEN
e,

NYIRLIN-LSE-E8N o \ﬂ.ﬂm@\\\ i

s
&7

,é_f@;

~e,

&

sabusutrioqubiou-foy difie ou

Aipununs-one oy

00GE L SST 000} $73 SAWnEep

GLLEEL omppy

FOO0E woms

LIOIREAS RaBLa-onpsed

SOELOS soBLRuranssed

OY1-HDHZINY Ceuranos o) A epmquspas
POVLIIDT SINGLARILDI

a0z dibie Jemns

US 2023/0104928 A1l

96}
S1HYHO
F1aVIIYA

Apr. 6,2023 Sheet 19 of 39

0561
¥ GO LINOW

o)

oo

Patent Application Publication

o rwzwwmam
SISATYNY

bt
ONYIAINOD
NOLLYHNDIINOD

8l61
H3SHvYd

yi60
QNYWIANOO JAINS

A
ONVIWNIOO 1O

0081

US 2023/0104928 A1l

Apr. 6,2023 Sheet 20 of 39

UL N < 1¥ON SIS PR n o HORN9sXy suyag 3
saup 3 X SINPIN0L] Boun suys oLd
3 I i I
ALO0C %00 %00 7 AR 2N Ligy 91 bt
) Q0% %000 %O0e ¢ { i Gi B
{Busizndsg ., Q07 %000 %OD0 9962 £ g 7t i
yg | 0] e Sr wel g ¢] oo
aNfEA SiEeA mmzmm(wimww‘mmtq $linaey b M o\\w M cﬁ, m b ! 13 m,.w
K ,,M.. {1ps O As B YOU-iQnop) Bai Y 18Bied mom m\,o.mm.m U“M,m\mc, mm» m«w@mm ELLGHY mw ww
ag0c * - 000 %000 %000 © 3 0 g il
Qe %000 %00 0 L G £ {1
000 %000 %000 0 & { g8
O 00 %000 %00Q 8 3667 8 ¢ B
v £ FEG %0 %000 veRiZ 2400888 perisessl v i
i AL Q Loon %000 %000 oy QOvRRISE BARCSS £ 19
(Addy] weterg O ||| | BT B000 4000 0 G ¢
Rt Q00 w000 %00G ¢ ¢ ¥
, ” WE Gl 08 pANORLY {51) SUUNY Qld i€
, 2ndag seynui asy L ndag oI mco_ wayeg | oA @) %D/ % Y (SPUDRDSS BAY S0 UORBIAN NGl @
e s gz | 11 E . n4s 558500 MOUSL FLRINN-8GT i
wnssy [Bnbin 10} JesIBd DIOMATY DY 18IS O89S / Uy T iadueg
T 3
/ SROT] msieg sujery (&) Dungeg aiop M duing oAy ,_ [\ nidbsseonid mous|puewiIDg |
4 X X A
/ / / L+ 101
(o capuwill,z |lmagoepoexy fay \ | ddery Apyowe
) 1

A

\ \ / DINPEIG] ~

X L}
N7 SoASE JORIOHK _/ uopdussagy
)

3 \
Vo odepaghy] owen dden
LR

3

Patent Application Publication

4 _
%] \ AT ddegy man
% % kY i)
* 0008 0307 0102 080T

US 2023/0104928 A1l

Apr. 6,2023 Sheet 21 of 39

Patent Application Publication

Piouen] | wo | [oegs | ST TOUETY 40j0) puE SISAlRUY suysg 17 10 7 daig
®
@
A ©
Semmmmmd. @
T o [#]
o 3 o) MM
o © ol [*
hinpaould | adf [aoinog sjag {Aessg © $oL7 57 O SN
mm N 3 @ ORHE
/
@ ©® v
N0 2411
WMM & o & © e
v © 0 0O O oA
e § 8 8§ TaE
4RI L3 U0 0N AAOUS [IM BIED BU) SUBLM UCHEOGE Y 11T SI8GUING 811 beie
Y T pualen &
H H 1 i N
L F T ©| =] endd(5h-
\&M@w! 0Gi8 @ into Eed
mr...i | nDa0nid BUMS zZndonining o7 andsl O E 53@ Koy
ainpenoidi adhy] 8%inog geg| Ausses| sbessap| vl SN sz ;rx 7
N “SISAENY (BB +a0Ha0 077 b 8npeotld @m
mw“ (7 ’ mf,\w azhiguy O) SgeREA 1DUIES
. . ! e domap Joyuc] uonduossq | ddery mahiy euwmy ddeg
X ddeny mon
2
BOLZ

| jpouen |

[W0] [Teegs |

US 2023/0104928 A1l

COORLOBL®@

Apr. 6,2023 Sheet 22 of 39

wmmm/
ampacoig] edfy] ewmesd| | by & aBesn 0 somag BUEN
T. mcw&mgﬂwww RIASS prpe obessew Lo epan ueyy | {TO0GHRM
— . om_ 51 ploysey inelap Tpousang] #»R MOy} anieh JuelnG §
.,
A
9672 W) {» N poss] wee o ediy
Zeee
=N \ “gigeep, oBa) 10 pay auigaq | N
X &
H DEEL ©
...... {4080 E] 7 I0g Zndo @
E LT Bmpaoaly w Lo g . pedo} (D)
anpaonsd] sdAr] somog el @.&»wm.m/ 5 vopuo | SUEN
0t 027 SIGABUY [ART-80MAA0
100 | Sishpuy
aoie dde Fidn) B0aD 10Dy uolduesag _

I

Patent Application Publication

Y

bpoued L L MO | | woegs | “EBARIY PEOUBADY J0J00 PUR S1SAJRUY Suyae) 57 o 2 dmg

US 2023/0104928 A1l

dojs SisApuR, Ul peuyep Asnoisaid BaigBUEs U0 WSJE IBNSIA PPE A0 UBD RUA 910N

Apr. 6,2023 Sheet 23 of 39

aieg
4 // PLe7 mnwm@zm
o yido] "enpestid . 06 = pdags & [
L ndy ampesly L @ ;.
- 06 < n0gg & &
.m uandsioss(pugbey] UORIOT . m\\ w005 m soeug Tv r P [
FlEe Loonsoepsi bogn eome) | == | Lagalrs.

: o |) S
S [eseg) 1 ‘ £
= BHNBE I0EY Bapg
A OO0 DEUED SUGHDUDS S 0F BuIpeaos dRl BYF UG MU DUB S01MAD B 10 10100 2 Bibusin AUeoiueudp A Ll JBnsiA SlRIBUaS b AInpacoid ﬁ.m
m LD, | SIsAiBuy SZAIEUY 0} AiURIEA 1OMES
8
.m { 115 S0IhEn Jojuop | uondusag / | delery Jafy] OWEN ddery
lw o?
« R \ sspadold ddep
= 3
) }
= (0ee
A

US 2023/0104928 A1l

Apr. 6,2023 Sheet 24 of 39

ion

icat

Patent Application Publ

ve -

RPN N o RN S Al (N ol PN { sbassapy | wamy | aeg wun | eieq sovpei | ereg somag
i P il Ty

[T DY T ATV el ot

3 Of AL-NYMC-AR

< 21Ny

8t B} AN sSog

biis10] (ada BUHAS(

474 ERON - L2} Y)-p0-vL07) ddet sy

Jieea £y le ¢ e 8l

Znds 5
m ”wn% Q,..m
SIMYACAN

&0

| oizag gepocuBiay pusps wgere), ywER no[ame L anons Biues @14)

L2
(¥

7 znds
Ll an zoznds
P s S THYM-AS
aprenmns .1 S (e
M VTS
\
Pive

GEOOTL UL pasdarg

Pmep (] dog 1 Buueny £
® 3 dden siA —~ 0au0) 9den

)

{
\
OoveE

US 2023/0104928 A1l

Apr. 6,2023 Sheet 25 of 39

Patent Application Publication

0 nds g ndd
JLPNEARR s SUNVAAN
@afﬁfﬁffw%ww PR N
w / g ,_*..m\
| AT
J 2
{ \mw, i
1 7
pongdo
Lusiisi-4g
\.@wd
“ D
! \\f |
ﬂwu/; \\ 2 dls
R 7 iy ANV
U mvmw.ﬁm%mw :
O 8D G RS

é. o~ S
Oy

()

¥ nda
- f:mw&m.wamm%z
/ ndo
ijakensog
an sEs X\ﬁ
T
A T
284 424NN
§ndo
1irERinn-80g

B

\

Patent Application Publication Apr. 6,2023 Sheet 26 of 39 US 2023/0104928 A1l

2600
PROVIDE GU!
2810
RECEIVE NETWORK COMMAND
2620
OBTAIN RESULT
2630
RECEIVE PARSER
2640
 RECEIVE ANALYSIS ROUTINE
2650
GENERATE GAPP
2660
EXECUTE QAPP
2670
DISPLAY RESULT
2680

Patent Application Publication Apr. 6,2023 Sheet 27 of 39 US 2023/0104928 A1l

2870

RECURSIVELY EXECUTE NETWORK COMMAND

' 2674

RETRIEVE INFORMATION
2674
STORE RETRIEVED INFORMATION
2878
ANALYSIS
2078

G. 27

US 2023/0104928 A1l

Apr. 6,2023 Sheet 28 of 39

Patent Application Publication

8¢ 'Ol

vajon - HNS3Y CATIION
V608 m@mi LEBE N
108[q0 Ynsay
COION jomeemmr € Q@Hm = £2I0U j=f PO £ dBls ceQ7
V08¢ m@mm\“, ‘Y44 Y414 N,
CRI0U =t pinpopy 7 91
I910N~ 7 d33§ —y| TELEC ££8¢ PINPON T 421
VC097 o7 19I0U bed BINPON T d0I5 €e8¢ N
- ﬂ' 7 V1Z8e T¢8¢ anpow 1eis
o10N - T dOIS 31015 usodag 1697
veEO8Z €08
Ocge N5 BUIUDBIA 435y
108z | uSisaqQdisel ! o

NS auyoen usisag

018¢

008¢

0€8¢

6¢ Dl

US 2023/0104928 A1l

XEuSy-eR)
§ 35T R0

HOMRLNAG A

8 AL HA00-250%

et LERELL BB L

@iforhigoy . QMN@N

Apr. 6,2023 Sheet 29 of 39

086¢

1967

567

Patent Application Publication

0567 TL67¢

US 2023/0104928 A1l

Apr. 6,2023 Sheet 30 of 39

Patent Application Publication

0t B

BUIBU PUE UDNIEDT]
1¢0E uBIsSE PUR NOOLUNY BARS

&10¢ BiGELBA HSUEL) BUYA(

ddep

|

GEL

Ji4ioads 03 puig

_ 2N0BIRIY, M SaU pue dejy Sunsixg asn _

_ a34n0s giep udissy Asuanbausg udissy
_ UOI3RIOULE PPV _ Yied 8-y _

_ dutg W paieduicd P31238110D 3G 0}
30 0} SWSY Pajag DUBLHLOD LBISSY _ ddep £ 109138 _ Y3IERG _

NMQMI.I:_ X3} 9944 M sisAjeuy adueys SPUBLLIOD 11D ddep dep 218300
$10t £10t TT0¢L 600¢
JeYIMOL 31AIS B3I Wi sdals ppy
\A/ .. R
CO0¢ HOOGURY MSU B 383D
L00¢ /

CO0E _ 1apIo) MBU B 33030 _

000t N

TO0E safeurip Jooguny 03 08

1€ 'Ol

US 2023/0104928 A1l

Apr. 6,2023 Sheet 31 of 39

001t 101¢€ €01¢

Patent Application Publication

Patent Application Publication Apr. 6,2023 Sheet 32 of 39 US 2023/0104928 A1l

3213

i i Lty Sockhed 20180

3212

FIG. 32

3210

Patent Application Publication Apr. 6,2023 Sheet 33 of 39 US 2023/0104928 A1l

3215
3216

.
e

SRR

FiG. 33

US 2023/0104928 A1l

2023 Sheet 34 of 39

6,

Apr

ication

Patent Application Publ

¥t ‘Dl

WHOGmERIRgLs pug 0K % M@mmwaﬁwﬁﬁmmm WAOP URDG SeY A3A30 YIRS LN

SOBNRKIINAGLE pUr ugN = (WA DaImEEIRAL S RGP UG SPY 3OS0 TR S

[4%]

U TGN
WAL

Patent Application Publication Apr. 6,2023 Sheet 35 of 39 US 2023/0104928 A1l

FIG. 35

9¢ "Ol4

ﬁ e jessAyd Yosuyn

ST9E oy

US 2023/0104928 A1l

HEL ol aUohIg
Q3B SYT UO

EZ20C1 payddesaypy-1oped ¥y YoM 8y
2 ISLIIUM NIBUD Uo Mg
T8N HO5e
§ 01 Apmaled P LT19¢
Ui04) 33N0I938LL Fuanos yosyd on
1¢9¢ 619t o

Apr. 6,2023 Sheet 36 of 39

SET) SUTIN ¢Bqel
5 Apmaied i b
\ U AJJUD 23N04 :
) 59 . hnus
INsH » A UGRLIISSD - - . am%
Supnoiyasyy | ON TIORue =y

519t

ON ON

v Jud
Aemayed
5,7 wodg

SANOS

A
EMBIED se vy} g Sud

O3 ¥ RYD

609¢ LO9E gy wou 509¢

Apmaled
S Wi

€08t

109¢ BGRYSEII WU G O
QQ@M\ ey wugoly

Patent Application Publication

L€ DI

US 2023/0104928 A1l

VA
114

60LE

[0LE — ABNIBG 0L v RN
SoLg —— WampeRl "
COLE SOmeR ok
10/g — HaREs

wodutG WOBIIREL 10N By B e o) sdim) e g

Apr. 6,2023 Sheet 37 of 39

00L¢

Patent Application Publication

US 2023/0104928 A1l

Apr. 6,2023 Sheet 38 of 39

Patent Application Publication

... LEBE

.
s03 depy sjdwes

8€ Ol

Supeys 193uad

LE8E

g SE 3ARS

68T

dein 03 dey puss

BSEDIB1IY
01 ydd puas

EE8E

_.|T|)|J

vay pue dews sagg

235, 5785

YaY uni-ay

10§ UOREIOUUR PPY

SIS Oogmaey

sjgeires usuRlj

USURIY BjgeLIRA
Y3im uns jeauanbag

sdais e uny e

e umy

dois uni-ay

dois mau e ppy

sedas wny

SORIN U

Jdeing Bu3six

I

deiay 81824

HOOGUIY uny

08¢

\x £0RE

008t
108¢

3

dei ajdues matp

)

HooquUNyY MaIA

%

oonuny puls

X

HOODGUNY B5MOIG

6t 'Ol

US 2023/0104928 A1l

Apr. 6,2023 Sheet 39 of 39

006t

Patent Application Publication

US 2023/0104928 Al

EXECUTABLE NETWORK
TROUBLESHOOTING PROCEDURE

PRIORITY

[0001] This application claims priority as a continuation to
U.S. Pat. No. 11,528,195, issued on Dec. 13, 2022, entitled
“SYSTEM FOR CREATING NETWORK TROUBLE-
SHOOTING PROCEDURE,” filed on Apr. 3, 2019, which
claims priority as a continuation-in-part to U.S. Pat. No.
10,454,782, issued on Oct. 22, 2019, entitled “SYSTEM
AND METHOD FOR AUTOMATING NETWORK MAN-
AGEMENT TASKS,” filed on Feb. 11, 2015, which claims
priority as a continuation-in-part to U.S. patent application
Ser. No. 13/841,735, entitled “GRAPHIC USER INTER-
FACE BASED NETWORK MANAGEMENT SYSTEM
TO DEFINE AND EXECUTE TROUBLESHOOTING
PROCEDURE,” filed on Mar. 15, 2013 and issued as U.S.
Pat. No. 9,374,278; wherein the entirety of each of the
aforementioned applications is hereby incorporated by ref-
erence. This application further claims priority as a continu-
ation-in-part to U.S. patent application Ser. No. 15/652,797,
entitled “SYSTEM FOR CREATING A NETWORK
TROUBLESHOOTING PROCEDURE,” filed on Jul. 18,
2017, which claims priority to U.S. Provisional Patent
Application No. 62/363,711, entitled “A GUI System For
Automated Computer Network Troubleshooting Task
Steps,” filed on Jul. 18, 2016; wherein the entirety of each
of'the aforementioned applications is hereby incorporated by
reference.

BACKGROUND

[0002] This disclosure relates generally to network man-
agement and graphic user interface based automated proce-
dures in network management. More specifically, it relates
to system and method for automating network management
tasks using graphical user interface and network manage-
ment applications to retrieve and display dynamic network
operating information.

[0003] Note that the points discussed below may reflect
the hindsight gained from the disclosed inventions, and are
not necessarily admitted to be prior art.

[0004] No doubt we are living in a time that almost every
one of us and every single entity is connected by devices and
computers via the Internet, proprietary intra-electronic net-
works through cable or wireless. Data and communications
are being inter-exchanged constantly through the vast and
complex network connections. A single interruption in net-
work communication could mean hundreds of thousands of
dollars in losses and damages. According to some current
conservative estimates, network outages could cost $1,400
per minute on average. Reducing the down time is critical to
the success of business.

[0005] Like the transportation highways in the real world,
the communication highways in the virtual world are
becoming ever more tangled and more complicated each
single minute. Management of these networks is becoming
more challenging at the most basic levels. Identifying a
problematic device from the vast sea of network devices is
literally like finding a needle in a hay stack.

[0006] The conventional way for network troubleshooting
requires a network professional to manually run a set of
standard commands and processes for each of the devices.
However, to become familiar with those commands, along

Apr. 6, 2023

with each of its parameters takes years of practice. Also
complicated troubleshooting methodology is often hard to
share and transfer. Therefore even though a similar network
problem happens again and again, each instance of trouble-
shooting may still have to start from scratch. However,
networks are getting more and more complex and it is
increasingly difficult to manage it efficiently with traditional
methods and tools. The following are the key challenges
using conventional ways to troubleshoot network problems:

[0007] Firstly, with text-based Command-Line Interface
(CLI) as the primary method for troubleshooting a network
problem, a network professional usually needs to repeti-
tively execute the same CLI commands and decode key data
from the command output many times for many network
devices. This process is error-prone, strenuous and time
consuming.

[0008] Secondly, currently there is no efficient mechanism
or method to record a troubleshooting process for future
reference. Consequently network professionals cannot share
their troubleshooting knowledge with other network profes-
sionals. Within the same enterprise the same network pro-
fessional may need to spend the same amount of time and
effort to troubleshoot the same problem which had occurred
before.

[0009] A generic network troubleshooting process consists
of the following tasks: Define the problem, Gather the data,
Analyze the data, Eliminate the possible problem causes,
Find the root cause of the problem.

[0010] Many books and papers have been written to
analyze the typical actions and decisions that are taken
during each of these processes and how these could be
planned and implemented via the standard procedures. How-
ever these procedures are static, and the process to gather
and analyze data (usually via CLI commands) is still a very
manual and meticulous process.

[0011] The invention of a computer-aided network engi-
neering system, NETBRAIN™. Workstation (as described
in U.S. Pat. No. 8,386,593 by the inventors of this applica-
tion) provides a graphic user interface (GUI) that renders
network troubleshooting automation possible. In a GUI-
based system, a network structure may be represented with
graphic features (icons, lines and menus) that represent
corresponding features in a physical network. Such visual
representation liberates a network engineer from memoriz-
ing the standard or proprietary protocols and the tedious
manual tasks of typing.

[0012] The inventions provide GUIs for users to write
Executable Procedures without having any programming
background. After a Procedure is created, it can be run in
NETBRAIN™. Workstation in connection with any network
system. From start to finish, troubleshooting with a proposed
solution may just take a few minutes instead of hours or days
traditionally.

[0013] Computer network management and troubleshoot-
ing is complex. There are thousands of shell scripts and
applications for different network problems. The available,
but poorly documented solutions, can be overwhelming for
junior network engineers. Most network engineers learn
troubleshooting through reading the manufacture’s manual
or internal documentation from the company’s documenta-
tion department. But the effectiveness varies. For instance,
the troubleshooting knowledge captured in a document can
only be helpful if the information is accurate and if the user

US 2023/0104928 Al

correctly identifies the problem. Many companies have to
conduct extensive training for junior engineers.

[0014] However, many computer network problems are
common. It is most efficient by starting to try out a common
troubleshooting procedure. For managed service providers
(MSP), improving the efficiency of their troubleshooting
processes means reduced training cost and increased reli-
ability in providing services to their customers.

[0015] For repeatable diagnostic steps for most commonly
reported problems, especially level one support cases, due to
the sheer number of such “commonly reported problems,”
companies are strongly motivated to reduce human labor in
resolving such issues, or collect accurate and complete
diagnostics dataset in time for further analysis in order to
reduce overall support cost.

[0016] In addition, high turnover rate and low skillset of
level one support engineers suggests a need for enterprises
and MSPs to automate such repeatable action as much as
possible in order to reduce training cost and labor cost for
most simple tasks.

[0017] Many companies currently use documentation,
e.g., troubleshooting procedures, to maintain their knowl-
edge base, but still rely on level one engineers to efficiently
and reliably execute these recorded steps in order to make
the procedures useful.

[0018] For highly repeatable complex multi-step trouble-
shooting processes, there is a need for specific technology
knowledge for problem isolation. Such troubleshooting
“knowledge” may not help a user resolve the entire case, but
can come in handy to help guide the user to diagnose certain
aspects of a problem. Today, this kind of knowledge is
captured only in a company’s internal knowledge base or in
books covering network troubleshooting practices. How-
ever, effective usage of them relies on training and manual
execution of such flows by each individual support engineer.
[0019] But even for those senior network engineers that
may be versed at manually issuing individual CLI com-
mands for network management, they may not have suffi-
cient training and experience for writing executable scripts
for automatic execution and repeated execution.

BRIEF SUMMARY OF THE INVENTION

[0020] The present application discloses new approaches
to troubleshooting a network problem and a GUI system for
standardizing computer network troubleshooting steps for
re-use and knowledge transfer. A system is invented to
define a Procedure which can be automatically executed.
This type of Procedures is called an Executable Procedure.
An Executable Procedure utilizes a visual programming
method to enable a CLI-based troubleshooting processes
executable and re-useable. It emulates the thinking process
of human troubleshooters when they use CLI commands. A
network professional without any programming background
can also effectively program his know-how and the end
result of this programming can be applied to any other type
of network by anyone to troubleshoot a similar type of
network problems.

[0021] Inone embodiment, GUIs are provided to define an
Executable Procedure. The definitions of an Executable
Procedure are divided into a set of visual blocks and each
block can be defined with a visual interface.

[0022] In one embodiment, by using a GUI, a user defines
how to collect data from network devices, how to parse the
key information from the data, and the methods to analyze

Apr. 6, 2023

the data and messages to be output when a certain condition
occurs. After a Procedure is defined, the system automati-
cally creates an executable application.

[0023] In one embodiment, the executable application is
enabled to run from within a network map, on one or
multiple network devices or through any other input from a
user. A Procedure can be re-used to troubleshoot another
network problem, create a map, verify the network health
and create a report.

[0024] In one embodiment, functions that group together
a set of processes for gathering data from execution results
of network devices and connections are made accessible
through a set of corresponding GUISs represented as a Parser.
[0025] In one embodiment, functions that group together
a set of processes for analyzing data collected from network
devices and connections are made accessible through a set of
corresponding GUIs represented as a Trigger.

[0026] In one embodiment, a set of GUIs are provided to
visually display an execution of a set of processes and
commands in real time.

[0027] In one embodiment, a set of GUIs are provided to
visually display identified possible errors and warning mes-
sages.

[0028] In one embodiment, a set of GUIs are provided to
visually display a possible solution to a network problem.

[0029] In one embodiment, a set of troubleshooting pro-
cesses and strategies are saved as a Procedure and are made
accessible through a set of user interfaces.

[0030] Inone aspect of the present disclosure, a system for
creating a network management procedure with respect to a
network of devices comprises a computer processor and a
non-transient memory comprising instructions that, when
executed by the computer processor, cause the computer
processor to implement a method comprising: presenting a
graphical user interface (GUI) on a display; presenting a
representation of the network of devices on the display,
wherein the representation include real-time information for
each represented device; accepting from a user, via the GUI,
one or more steps of the network management procedure,
wherein each step is a single independently executable
action with respect to the network; presenting, on the
display, a graphic element corresponding to each accepted
step; and storing the accepted steps as the network manage-
ment procedure for later retrieval, wherein the graphic
element for each step on the display is operable by a GUI
operation applied to the graphic element.

[0031] In another aspect, a system for troubleshooting a
network of devices comprises a computer processor and a
non-transient memory comprising instructions that, when
executed by the computer processor, cause the computer
processor to implement a method comprising: presenting a
graphical user interface (GUI) on a display; presenting a
representation of the network of devices on the display,
wherein the representation include real-time information for
each represented device; presenting, on the display, a list of
one or more stored network management procedures;
accepting from a user, via the GUI, an indication of a listed
network management procedure; retrieving the indicated
network management procedure; presenting, on the display,
one or more steps of the indicated network management
procedure, wherein each step is a single independently
executable action with respect to the network; and present-
ing, on the display, a graphic element corresponding to each

US 2023/0104928 Al

step, wherein the graphic element for each step on the
display is operable by a GUI operation applied to the graphic
element.

[0032] The disclosed innovations, in various embodi-
ments, provide one or more of at least the following advan-
tages. However, not all of these advantages result from every
one of the innovations disclosed, and this list of advantages
does not limit the various claimed features.

[0033] The advantages of a system with a GUI for pro-
viding user control and access are obvious—dramatically
shortening the learning curves and maximizing efficiency,
and therefore enabling a junior network professional to
consistently perform complicated network management
tasks.

[0034] Further any time saved in troubleshooting may
mean real money for an enterprise that relies on network
stability and network performance. With a visual system
running in real time, any network trouble may be identified
instantly and therefore be fixed in a shorter period of time.
[0035] A well-built Procedure can automatically gather
data, analyze data and eliminate possible causes. Besides
troubleshooting the network problems, the Executable Pro-
cedure can also be used to: Create a map, for example,
mapping an application’s path Procedure. Provide network
compliance or health checks. Create a customized report.
[0036] Additional objects and advantages of the present
disclosure will be set forth in part in the following detailed
description, and in part will be obvious from the description,
or may be learned by practice of the present disclosure. The
objects and advantages of the present disclosure will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the appended claims.
[0037] It is to be understood that the foregoing general
description and the following detailed description are exem-
plary and explanatory only, and are not restrictive of the
invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0038] The accompanying drawings, which constitute a
part of this specification, illustrate several embodiments and,
together with the description, serve to explain the disclosed
principles.

[0039] FIG. 1 shows an example functional interaction
flow of an Executable Procedure of a GUI based network
management system, according to some embodiments of the
present disclosure.

[0040] FIG. 2 shows a flow chart of an example execution
flow of an Executable Procedure of a GUI based network
management system, according to some embodiments of the
present disclosure.

[0041] FIG. 3 illustrates an example process for construct-
ing an Executable Procedure, according to some embodi-
ments of the present disclosure.

[0042] FIG. 4 shows an example GUI for managing vari-
ous Executable Procedures, according to some embodiments
of the present disclosure.

[0043] FIG. 5 shows an example method to run an Execut-
able Procedure within a network device map, according to
some embodiments of the present disclosure.

[0044] FIG. 6 shows an example GUI for selecting Pro-
cedures, according to some embodiments of the present
disclosure.

Apr. 6, 2023

[0045] FIG. 7 shows an example GUI for displaying
execution results of a Procedure, according to some embodi-
ments of the present disclosure.

[0046] FIG. 8 shows an example Procedure having three
Process Nodes, according to some embodiments of the
present disclosure.

[0047] FIG. 9 shows an example GUI for defining a
Process Node, according to some embodiments of the pres-
ent disclosure.

[0048] FIG. 10 shows an example GUI for defining a CLI
command Probe, according to some embodiments of the
present disclosure.

[0049] FIG. 11 shows an example GUI for defining a
Trigger, according to some embodiments of the present
disclosure.

[0050] FIG. 12 shows an example GUI for defining
parameters to execute a Procedure, according to some
embodiments of the present disclosure.

[0051] FIG. 13 shows an example GUI for defining input
variables to execute a Procedure, according to some embodi-
ments of the present disclosure.

[0052] FIG. 14 shows an example GUI for defining output
variables to execute a Procedure, according to some embodi-
ments of the present disclosure.

[0053] FIG. 15 shows an example GUI for defining a Ping
Probe, according to some embodiments of the present dis-
closure.

[0054] FIG. 16 shows an example GUI for defining a
Traceroute Probe, according to some embodiments of the
present disclosure.

[0055] FIG. 17 shows an example GUI for configuring a
Probe Parser, according to some embodiments of the present
disclosure.

[0056] FIG. 18 shows an example network map created by
using a Procedure, according to some embodiments of the
present disclosure.

[0057] FIG. 19 is a block diagram illustrating example
components of a network management application (Qapp),
according to some embodiments of the present disclosure.
[0058] FIG. 20 shows an exemplary GUI to define an
example procedure of a Qapp, according to some embodi-
ments of the present disclosure.

[0059] FIG. 21 shows an exemplary GUI to define an
example analysis routine of a Qapp, according to some
embodiments of the present disclosure.

[0060] FIG. 22 shows an example GUI to define a textual
alert, according to some embodiments of the present disclo-
sure.

[0061] FIG. 23 shows an example GUI to define a graphi-
cal alert, according to some embodiments of the present
disclosure.

[0062] FIG. 24 shows an example GUI to display a Qapp
execution result for device level data, according to some
embodiments of the present disclosure.

[0063] FIG. 25 shows an example network map to display
a Qapp execution result for interface level data, according to
some embodiments of the present disclosure.

[0064] FIG. 26 is a flow chart of an example method for
creating and executing a Qapp, according to some embodi-
ments of the present disclosure.

[0065] FIG. 27 is a flow chart of an example implemen-
tation of executing a Qapp.

[0066] FIG. 28 schematically shows an example func-
tional structure of an automated and standardized task-

US 2023/0104928 Al

oriented computer network management system for reuse in
accordance with this application.

[0067] FIG. 29 shows an example GUI of the system of
FIG. 28.
[0068] FIG. 30 schematically shows a flowchart of an

example process for designing a re-useable computer net-
work management task for automatic modularization of the
individual task steps in accordance with this application.
[0069] FIGS. 31-35 show an example GUI for the design
process described in FIG. 30 in accordance with this appli-
cation.

[0070] FIG. 36 shows an example client flowchart GUI for
re-using the modularized steps of a standardized computer
network management task as designed in FIGS. 31-35.
[0071] FIG. 37 shows an example client natural language
GUI for re-using the modularized steps of a standardized
computer network management task as designed in FIGS.
31-35.

[0072] FIG. 38 schematically shows an example client
process for re-using the modularized steps of a standardized
computer network management task in accordance with this
application.

[0073] FIG. 39 shows another example client re-using
modularized steps of a designed computer network manage-
ment task in accordance with this application.

DETAILED DESCRIPTION

[0074] Reference will now be made in detail to exemplary
embodiments of the invention, examples of which are illus-
trated in the accompanying drawings. When appropriate, the
same reference numbers are used throughout the drawings to
refer to the same or like parts.

[0075] The numerous innovative teachings of the present
application will be described with particular reference to
presently preferred embodiments (by way of example, and
not of limitation). The present application describes several
inventions, and none of the statements below should be
taken as limiting the claims generally.

[0076] For simplicity and clarity of illustration, the draw-
ing figures illustrate the general manner of construction, and
description and details of well-known features and tech-
niques may be omitted to avoid unnecessarily obscuring the
invention. Additionally, elements in the drawing figures are
not necessarily drawn to scale, some areas or elements may
be expanded to help improve understanding of embodiments
of the invention.

[0077] The word ‘couple’ and similar terms do not nec-
essarily denote direct and immediate connections, but also
include connections through intermediate elements or
devices. For purposes of convenience and clarity only,
directional (up/down, etc.) or motional (forward/back, etc.)
terms may be used with respect to the drawings. These and
similar directional terms should not be construed to limit the
scope in any manner. It will also be understood that other
embodiments may be utilized without departing from the
scope of the present disclosure, and that the detailed descrip-
tion is not to be taken in a limiting sense, and that elements
may be differently positioned, or otherwise noted as in the
appended claims without requirements of the written
description being required thereto.

[0078] The terms “first,” “second,” “third,” “fourth,” and
the like in the description and the claims, if any, may be used
for distinguishing between similar elements and not neces-
sarily for describing a particular sequential or chronological

Apr. 6, 2023

order. It is to be understood that the terms so used are
interchangeable. Furthermore, the terms “comprise,”
“include,” “have,” and any variations thereof, are intended
to cover non-exclusive inclusions, such that a process,
method, article, apparatus, or composition that comprises a
list of elements is not necessarily limited to those elements,
but may include other elements not expressly listed or
inherent to such process, method, article, apparatus, or
composition.

[0079] The aspects of the present disclosure may be
described herein in terms of functional block components
and various processing steps. It should be appreciated that
such functional blocks may be realized by any number of
hardware and/or software components configured to per-
form the specified functions. For example, these aspects may
employ various integrated circuit components, €.g., memory
elements, processing elements, logic elements, look-up
tables, and the like, which may carry out a variety of
functions under the control of one or more microprocessors
or other control devices.

[0080] Similarly, the software elements of the present
disclosure may be implemented with any programming or
scripting languages such as C, C++, Java, COBOL, assem-
bler, PERL, Python, or the like, with the various algorithms
being implemented with any combination of data structures,
objects, processes, routines, or other programming elements.
Further, it should be noted that the present disclosure may
employ any number of conventional techniques for data
transmission, signaling, data processing, network control,
and the like.

[0081] It should be appreciated that the particular imple-
mentations shown and described herein are for explanatory
purposes and are not intended to otherwise be limiting in any
way. Furthermore, the connecting lines shown in the various
figures contained herein are intended to represent exemplary
functional relationships and/or physical couplings between
the various elements. It should be noted that many alterna-
tive or additional functional relationships or physical con-
nections may be present in a practical incentive system
implemented in accordance with the disclosure.

[0082] As will be appreciated by one of ordinary skill in
the art, aspects of the present disclosure may be embodied
as a method or a system. Furthermore, these aspects of the
present disclosure may take the form of a computer program
product on a tangible computer-readable storage medium
having computer-readable program-code embodied in the
storage medium. Any suitable computer-readable storage
medium may be utilized, including hard disks, CD-ROM,
optical storage devices, magnetic storage devices, and/or the
like. These computer program instructions may be loaded
onto a general purpose computer, special purpose computer,
or other programmable data processing apparatus to produce
a machine, such that the instructions which execute on the
computer or other programmable data processing apparatus
create means for implementing the functions specified in the
flowchart block or blocks. These computer program instruc-
tions may also be stored in a computer-readable memory that
can direct a computer or other programmable data process-
ing apparatus to function in a particular manner, such that
the instructions stored in the computer-readable memory
produce an article of manufacture including instruction
means which implement the function specified in the flow-
chart block or blocks. The computer program instructions
may also be loaded onto a computer or other programmable

US 2023/0104928 Al

data processing apparatus to cause a series of operational
steps to be performed on the computer or other program-
mable apparatus to produce a computer-implemented pro-
cess such that the instructions which execute on the com-
puter or other programmable apparatus provide steps for
implementing the functions specified in the flowchart block
or blocks.

[0083] As used herein, the terms “user,” “network engi-
neer,” “network manager,” “network developer” and “par-
ticipant” shall interchangeably refer to any person, entity,
organization, machine, hardware, software, or business that
accesses and uses the system of the disclosure. Participants
in the system may interact with one another either online or
off-line.

[0084] Communication between participants in the system
of the present disclosure is accomplished through any suit-
able communication means, such as, for example, a tele-
phone network, intranet, Internet, extranet, WAN, LAN,
personal digital assistant, cellular phone, online communi-
cations, off-line communications, wireless network commu-
nications, satellite communications, and/or the like. One
skilled in the art will also appreciate that, for security
reasons, any databases, systems, or components of the
present disclosure may consist of any combination of data-
bases or components at a single location or at multiple
locations, wherein each database or system includes any of
various suitable security features, such as firewalls, access
codes, encryption, de-encryption, compression, decompres-
sion, and/or the like.

[0085] The terms “graphic” or “visual” or “graphic ele-
ment” are used interchangeably and refer to the computer
element that contains at least one interactive element. The
terms refer to those computer elements that can be displayed
on a computer screen with an effect of image or drawing
associated with an interactive computer executable function;
not simply as an input prompt. A graphic computer element
is generally the available element in any current or future
Graphical user Interface computer software design, such as
a button, a hyperlink, a frame, a browser window, a scrolling
bar, a text editor window, etc. In computer technology,
graphical user interface is distinguished from CLI interface,
any ordinary person in the art knows that CLI per se is a text
based interface for operating computer programs.

[0086] A particularly powerful tool for understanding net-
work behavior is through graphic visualization where the
oftentimes complicated interactions between network
devices are vividly represented through drawing and graphs.
A computer-aided network engineering system, NET-
BRAIN™, Workstation, enables automation in network
troubleshooting. A user such as a network professional can
follow a few steps to troubleshoot a network problem
including mapping the problem area, probing from a net-
work map, and comparing the current network state with
baseline data. Using a network management application
known as an Executable Procedure (or Executive Procedure
or simply Procedure), the user can select and execute one or
more suitable Procedures relevant to the network problem
from the network map. The output of the Procedure(s) may
help to identify the cause of the problem.

[0087] According to one embodiment, a graphical repre-
sentation of the network using a map may be output to a
display screen, printer, plotter, or the like. Background
technologies and terminologies for computer network Map
and Path building, particularly Qmap and Qapp technology

2

Apr. 6, 2023

from NetBrain Technologies, Inc. of Burlington, Mass., are
further described in U.S. Pat. Nos. 8,386,593, 8,386,937 and
9,374,278, the contents of each of which is incorporated by
reference herein for all purposes.

[0088] In network troubleshooting, a network engineer
may use a set of commonly used commands, methods, and
tools, either standard or proprietary. For example, these
commands, methods, and tools include the following items:
[0089] The Command Line Interface (CLI): network
devices often provide CLI commands to check the network
status or statistics. For example, in a Cisco 10S switch, the
command “show interface” can be used to show the inter-
face status such as input errors.

[0090] Ping: a simple tool used to check whether a device
is reachable from another device. For example, after a
network reconfiguration, it is normally a best practice to
ping the main servers from the core network devices to
ensure no major outage of key applications.

[0091] Traceroute: a tool to check the route from a device
to a destination device. This tool is useful to troubleshoot a
connectivity problem.

[0092] Configuration management: a tool used to find
differences of configurations of network devices in a certain
period. This is important since about half of the network
problems are caused by configuration changes.

[0093] The term “Object” refers to the term used in
computer technology, in the same meaning of “object ori-
ented” programming languages (such as Java, Common
Lisp, Python, C++, Objective-C, Smalltalk, Delphi, Java,
Swift, C#, Perl, Ruby, and PHP). It is an abstracting com-
puter logic entity that envelopes or mimics an entity in the
real physical world, usually possessing an interface, data
properties and/or methods.

[0094] The term “Device” refers to a data object repre-
senting a physical computer machine (e.g. printer, router)
connected in a network or an object (e.g. computer instances
or database instances on a server) created by computer logic
functioning in a computer network.

[0095] The term “Interface” refers to the set of logic
objects or methods of a Device that are used to communicate
with another Device or data object.

[0096] The term “Topology” refers to the relationships and
connections between Interfaces. For example, L3 topology
refers to logic connections between two Interfaces and 1.2
topology refers to physical connections between two Inter-
faces. There are other types of logical relationship in math-
ematic modeling, such as L1 or other overlay technologies.
In Q-map system, a user can use plug-in scripts to add other
types of logic connections.

[0097] The terms “Q-map” or “Qmap” refers to a map of
network devices created by the computer technology of
NetBrain Technologies, Inc. that uses visual images and
graphic drawings to represent topology of a computer net-
work with interface property and device property displays
through a graphical user interface (GUI). Typically, a com-
puter network is created with a map-like structure where a
device is represented with a device image and is linked with
other devices through straight lines, pointed lines, dashed
lines and/or curved lines, depending on their interfaces and
connection relationship. Along the lines, also displayed are
the various data properties of the device or connection.
[0098] The term “Qapp” refers to a built-in or user defined
independently executable script or procedure generated

US 2023/0104928 Al

through a graphical user interface as per technology avail-
able from of NetBrain Technologies, Inc.

[0099] The term “GUI” refers to graphical user interface,
programs makes use of a visual paradigm that offers users a
plethora of choices. GUI paradigm or operation relies on
windows, icons, mouse, pointers and scrollbars to display
graphically the set of available files and applications.
[0100] The term “Step” refers to a single independently
executable computer action represented by a GUI element,
that obtains, or causes, a network result from, or in, a
computer network; a Step can take a form of a Qapp, a
system function, or a block of plain text describing an
external action to be executed manually by a user, such as a
suggestion of action, “go check the cable.” Each Step is thus
operable and re-usable by a GUI operation, such as mouse
curser drag-and-drop or a mouse clicking.

[0101] The term “modularized task-oriented standard pro-
cedure” refers to a set of Steps with in-between logic control
to perform a computer network task. The task may be those
operations commonly identified in the computer network
management field. This term is also used interchangeably
with the term “Runbook.” A Runbook (RB) is a modularized
task-oriented standard procedure saved to the present inven-
tive system to be shared with other users.

[0102] The term “Execution Instance” refers to an Object
created to encapsulate the running results from executing a
Step.

[0103] The term “action block™ refers to a set of Steps, that
are grouped together to form a block, to be executed together
and viewed on a monitor at a particular time of operation.
There is an “ordered block” wherein the steps in the block
must be executed following a predefined order, with the
option of logical control, e.g. If-Else, to connect the indi-
vidual steps. There is an “unordered block™ wherein the
steps in the block can be executed in any order or in parallel,
with no pre-defined order or logical relationships between
the individual steps in the same block.

[0104] In the computer network management field, an
automated tool for the convenience in knowledge transfer
and project cooperation is of paramount interest to network
engineers. Generally a network task, for example, a trouble-
shooting task may involve many running steps, and a
network engineer with software-writing skills can write a
scripted procedure to automatically execute these individual
steps. After accomplishing the task and solving the particu-
lar problem, the procedure may no longer be useful to this
engineer. But this procedure and its individual steps can be
very useful for other engineers to solve similar problems in
their network systems. Automation and convenience in
transfer knowledge can be tremendously useful for an enter-
prise in reducing cost and reliability.

[0105] In some aspects of the present disclosure, the term
“users” may refer to network engineers who have a basic
understanding of networking technologies, and are skilled in
operating a network via a device command line interface and
able to interpret a CLI output. Among them there can be two
types of users, one type being those who design and create
the task-oriented standard procedures (Creator, level two
user) and the other type being those who make use of the
created task-oriented standard procedures (User, level one
user).

[0106] The two important actions taken by users are 1) to
execute a standardized procedure and 2) to view the execu-
tion results stored in the Execution Instance. In a typical

Apr. 6, 2023

workflow for both Troubleshooting and Routing Task execu-
tion, it is quite common that the person who runs an
execution of a procedure is different from the person who
views the result for further analysis.

[0107] For example, in Troubleshooting Escalation, User
A, a level one engineer, takes a ticket and after finding a
particular standard troubleshooting procedure and follows
the instructions to conduct an initial screening and data
collection. User A creates Qmap with an Execution Instance.
Then the ticket is picked up by a level two engineer. The
level two engineer sees the initial screening result and data
collected and stored for review in the Qmap Execution
Instance record by the level one engineer User A, and
continues to try to solve the problem.

[0108] In an enterprise or MSP organization, a standard
procedure is typically created by a senior network engineer
based on his rich experience of networking technologies and
deep understanding on the enterprise or organization’s own
network architecture and device configuration. The created
standard procedure is then expected to be created once and
used many times as an effective vehicle for knowledge
transfer.

[0109] But even those senior network engineers, who may
be adept at manually issuing individual CLI commands for
network management, may not have sufficient training and
experience for writing executable scripts for automatic
execution and repeated execution. A GUI that helps senior
network engineers to convert their deep understanding of
their network architecture into standardized task-oriented
procedure will be tremendously beneficial for a company.
[0110] Troubleshooting procedures, usually provided by
hardware vendors or experts in the field, may comprise the
following sequence of actions: Execute the CLI, ping,
traceroute, or other commands from one or more network
devices; Find one or more key values from the command
output; Compare the key value(s) with one or more standard
values; Conduct actions depending on the key value(s)
and/or the comparison.

[0111] For example, the actions may include executing
other commands to further troubleshoot the network prob-
lem, determining the cause, and isolating the issue.

[0112] In traditional methods, each of these steps is gen-
erally performed manually on one network device at a time,
which are tedious and error prone.

[0113] Some embodiments of the present disclosure utilize
GUIs to provide a visual presentation of network com-
mands, network executable processes, and/or network stra-
tegic procedures. These commands and processes can be
visually represented, defined, and made accessible through
GUIs and visual symbols.

[0114] Some embodiments may include a GUI to define an
Executable Procedure. This user interface provides an easy
way to define Procedures to allow a user to create a
Procedure without special training in network programming.
After a Procedure is saved, a standalone application con-
taining executable codes may be created. In one example,
creating the standalone application from the Procedure may
be implemented using Python Script. Other suitable types of
programming languages can also be used to convert a
Procedure defined through the GUI to an executable stand-
alone application.

[0115] In some embodiments, the GUI may include a
Probe, a Trigger, and/or a Process Node.

US 2023/0104928 Al

[0116] A Probe includes a set of functions that retrieve and
parse data from a network device.

[0117] A Trigger includes a set of functions that define the
logic to analyze data.

[0118] A Process Node is a visual representation of a block
of executable codes that generally include zero to multiple
Probes and/or Triggers.

[0119] Some embodiments may include four types of
Probes: a CLI command Probe runs CLI commands, and
parses and analyzes the result; a Configuration Probe ana-
lyzes the configurations; a Ping Probe checks the connec-
tivity between devices; a Traceroute Probe runs the tracer-
oute command between two devices.

[0120] Some embodiments may include an Executable
Procedure (or referred to as a Procedure for simplicity). A
Procedure includes a set of processes and strategies to
achieve a result that can be presented visually through the
GUI. A Procedure may contain multiple Process Nodes and
logic workflows from one Process Node to another.

[0121] Some embodiments may include a Parser. A Parser
includes a set of functions that define how to retrieve data
from the output of an execution of a CLI, ping, traceroute or
any other types of commands. Depending on the format of
the output, four types of Parsers may be provided: Keyword,
Paragraph, Table, and Filter Parsers.

[0122] The configured and saved Executable Procedures
may automate conventional troubleshooting processes. For
example, an Executable Procedure can perform the follow-
ing tasks automatically: Issue a command (CLI command/
ping/traceroute/SNMP) to one or more network devices and
collect the output via a Probe; Parse the command output to
retrieve key data via a Parser; Analyze the key data using a
Trigger; Output possible errors or warnings and advices via
a GUI; and/or Create a network map and/or a document for
an underlying network system or the troubleshooting pro-
cess.

[0123] FIG. 1 shows a GUI-based Procedure system 100
for network management. System 100 includes a GUI 105.
GUI 105 may be used to define an Executable Procedure
107. Executable Procedure 107 may be defined by a set of
visual block-based programming interfaces to allow a user
to effectively program or create network management appli-
cations. After a Procedure is saved, system 100 can create a
standalone application containing executable codes, for
example, using Python Script or any other type of program-
ming language to convert Procedure 107 defined through
GUI 105 to executable codes.

[0124] Executable Procedure 107 can be executed within
a network map 101. For example, in a common scenario, a
user creates network map 101 to include network devices
and/or network interfaces relevant to a network task, and
then selects the relevant Procedures to run within network
map 101. Executable Procedure 107 can also receive user
input, such as input variables 103 through a user input
interface. When Procedure 107 is executed, Procedure 107
can collect data from various types of network devices in a
live network 111 via a live access mechanism 109. The
output of Executable Procedure 107 may include warning or
error messages 113, customized report 115, and a network
map 117 with the problem area being highlighted or noted.
[0125] FIG. 2 shows a flow chart of an exemplary trouble-
shooting process using an Executable Procedure. At step
201, a group of built-in functions may be called and
executed on a network or a network device to collect data.

Apr. 6, 2023

The data can be parsed at step 203 to extract key informa-
tion. A Trigger may be used to analyze the extracted key
information at step 205. The analysis result such as error
messages or warnings can be displayed at step 207. A
network map or document may be created to record the
troubleshooting result or process at step 209. Possible solu-
tions may be provided with visual links at step 211. The
knowledge or logic to troubleshoot a network problem may
be included and saved in the Procedure. Therefore, a net-
work professional does not need to memorize manuals or
steps for troubleshooting a common network problem.

[0126] FIG. 3 shows an exemplary Executable Procedure
300 including a Process Node 301, which further includes
one or more Probes (Probel 303, Probe2 302, etc.). Probel
303 may include one or more commands, standard func-
tions, and/or proprietary functions, such as CLLI Command
305, Configuration (DR) 307, Ping 309, and/or Traceroute
311. Process Node 301 may also include one or more Parsers
313, which may include Keyword Parser 315, Table Parser
317, Paragraph Parser 319 and/or Filter Parser 321. Process
Node 301 may also include one or more Triggers 325 that
define various sets of “If” and “Then” analysis logic loops
327 and 329. Trigger 325 may include a plurality of settings.
For example, Trigger 325 may include settings of Threshold,
Compare, Delta, and/or Advanced. Variable output 323 from
Parser 313 may be analyzed automatically with preset
conditions of normality or abnormalities.

[0127] Executable Procedure 300 may include an Over-
view Node 331 that includes the description of Procedure
300 such as what the Procedure does, the author, a sample
map, etc.

[0128] In some embodiments, a Process Node may be a
programming unit of an Executable Procedure. The Process
Node may be configured to finish a task. Each Node may be
executed on a device at a time. In some embodiments, a
built-in logic loop may allow the same logic to be executed
across a dynamic set of devices. A Process Node may
contain zero to multiple Probes and Triggers. A Probe may
retrieve and parse data from a device. A Trigger may define
logic to analyze the data. In some embodiments, four built-in
Probes corresponding to common tools for network man-
agement may be provided.

[0129] CLI command Probe may be configured to run CLI
command and to parse and analyze the result. Configuration
Probe may be configured to analyze configurations. Ping
Probe may be configured to check the connectivity between
devices. Traceroute Probe may be configured to run a
traceroute between two devices.

[0130] Besides the Probes described above, system 100
may also include other Probes such as SNMP Probes. A
SNMP Probe may be configured to retrieve data via SNMP
and to analyze the data.

[0131] A Parser may define how to parse the data from an
output. Depending on the format of the output, the data may
be parsed using a Keyword Parser, a Paragraph Parser, a
Table Parser, or a Filter Parser.

[0132] Keyword Parser may be configured to retrieve an
instance of the data. For example, Keyword Parser may
retrieve the 10S version from the output of a “show version”
command.

[0133] A Paragraph Parser may be configured to parse data
if the original data (e.g., configurations or CLI command
output) include multiple repeating instances. For example,

US 2023/0104928 Al

Paragraph Parser may retrieve the CDP neighbor entries
from the output of a “show cdp neighbors” command.
[0134] A Table Parser may be configured to parse data if
the CLI command output is formatted as a table. For
example, Table Parser may retrieve EIGRP neighbor details
from a “show ip eigrp neighbor” command.

[0135] A Filter Parser may be configured to filter a partial
data from the original data.

[0136] Data retrieved by a Parser may be stored in one or
more output variables.

[0137] A Trigger may define the control flow to analyze
the output variables retrieved by a Parser. For example, a
Threshold Trigger can run a Parser once and compare a
variable with a threshold value. For example, a Threshold
Trigger can compare the CPU usage of a network device
with a threshold value, such as 90%. If the CPU usage is
higher than this threshold value, a warning message may be
created.

[0138] A Compare Trigger can run a Parser against two
data sources (e.g., live data and baseline data) and check
whether a variable changes. For example, Compare Trigger
can compare configurations retrieved from a live network
with benchmark configurations and output any difference.
[0139] A Delta Trigger can run a Parser twice within a
certain time interval and check whether a variable changes.
For example, a Delta Trigger can retrieve CRC errors of a
network interface within a certain time interval such as 5
seconds. If the CRC errors increase, an error message may
be created indicating that the cable connected to this net-
work interface does not work properly.

[0140] Ifone or more Triggers described above do not find
the problem, an Advanced Trigger with advanced options
may be used.

[0141] An exemplary logic used in a Trigger is as follows:

if (condition 1)
action block 1
else if (condition 2)
action block 2

else
action block 3

[0142] System 100 may conduct an action block under a
corresponding condition. Each action block can include
multiple messages, an expert advice block, a statement
block, an export variable block, and/or a control action
probe.

[0143] A message can be shown in the Message field of a
Procedure Task (e.g., a GUI to show results after a Procedure
is executed). There may be three types of messages: the error
message indicating an error requiring an immediate action,
the warning message indicating something abnormal
occurred, which requires attention, and the information
message.

[0144] The Expert Advice field may be in text format for
the Procedure user to give advice if a specified condition
occurs. It can be displayed in the Procedure Task window
when a user views the detail of a message.

[0145] The Statement field can be any executable code
such as making function calls to draw a map or creating
customized fields for device properties.

[0146] Executable Procedures can be organized by cat-
egory. In one exemplary implementation, in reference to
FIG. 4, a Procedure Center 400 is provided to manage the

Apr. 6, 2023

Procedures. Built-in Procedures for common use cases are
provided under the built-in category 403, but a user-created
Procedure can also be placed and managed here and shared
through a common server. By sharing Executable Proce-
dures inside an enterprise or across network professionals
around the world, some common types of network problems
can be quickly solved by running shared Executable Proce-
dures. There may be provided other categories of Proce-
dures, such as Path Procedure 405, Shared Procedure 407,
and Local Procedure 409.

[0147] At the top of the Procedure Center, there may be
provided a search box 401, where a keyword (for example,
“eigrp”) can be entered and the Procedures matching the
keyword can be found.

[0148] For built-in Procedures, they may be categorized
by the following usage cases: Compliance, Device Level
Check, Draw Map, Interface Level Check, Inventory, Mul-
ticasting, QoS, Routing, Switching, and Verification. A
category can also have subcategories. For example, the
Routing category may have five subcategories: BGP,
EIGRP, ISIS, OSPF, and RIP.

[0149] A Path Procedure may be a special type of Proce-
dure used to discover the path between two end points. There
may be provided with built-in Path Procedures and custom-
ized Path Procedures.

[0150] A Shared Procedure may be saved in a common
database of the network management system and can be
accessed by a client.

[0151] A Local Procedure may only be saved on a local
disk and not shared with others.

[0152] Procedures may often be executed from within a
network topology map. An exemplary common use case is
as follows: a user creates a map for the network devices
relevant to a network (e.g., the problem area of a trouble-
shooting task). The user may then execute one or more
Procedures from within the map to gather data, analyze data,
and identify possible causes.

[0153] FIG. 5 shows an exemplary method to run a
Procedure within a map 500. A run procedure menu 501 may
be added in a float menu 503 of the map. After a user clicks
Run Procedure in menu 501, a window shown in FIG. 6 may
be displayed for the user to select Procedures from the
Procedure Center. The user can click the + sign in front of
any category and select one or more Procedures in the
Procedure Center to run the selected Procedure(s).

[0154] FIG. 7 shows a Procedure Task window 700 to
display Procedure results. The Procedures are listed in Pane
701 and messages relevant to the Procedures are displayed
in Pane 703. If a Procedure is selected in Pane 701, then only
the messages relevant to the selected Procedure are dis-
played in Pane 703. A user can also select the type of
messages to be displayed. For example, the user may check
the Error checkbox and uncheck other checkboxes to only
display error messages. Details of a selected message are
displayed in Pane 705. The command output related to this
message is also shown in Pane 705. Expert advice is shown
in Pane 707 and a trigger to print out this message is shown
in Pane 709. The execution log for the whole Procedure Task
can also be displayed in Pane 705 when the tab Execution
Log 720 is selected. The execution log displays the details
of how the Procedures are executed.

[0155] The network devices on which the Procedures are
executed are listed in Pane 713. A user can use the Select
Seed Devices link to add more devices. Or, the user can

US 2023/0104928 Al

remove one or more devices by right clicking on a device
and selecting “Remove” from the menu.

[0156] A Procedure Task can be saved as a file by clicking
a Save button 715. The saved Procedure Task can be opened
for future examination or be sent to a peer for review. A Run
Procedure button 717 allows a user to rerun the Procedure
Task.

[0157] FIG. 8 shows a window 800 displaying an exem-
plary Executable Procedure. This example Procedure is used
to check whether the speed or duplex of the neighbor
interfaces are mismatched. Buttons 810 and 820 are used to
define the global input and output variables of the Procedure,
which will be described in greater detail later. The flow chart
shown in the upper pane 830 describes the overall flow of
the Procedure. The Procedure has a summary Node 832 and
one or more Process Nodes. In this example, there are three
Process Nodes 834, 836, and 838. The lower pane 850 shows
the details of the current Node 832 (the Node with the arrow
860 under it). Clicking on another node may set that node as
the current node.

[0158] In summary Node 832, a user can enter a descrip-
tion 852 to describe what the Procedure is for, author
information 854, and contact information 856. An Import
Sample Qmap link 858 can be used to import a map to
illustrate the problems this Procedure is configured to solve.
[0159] In this example, description 852 provides the sum-
mary of the Procedure and steps to solve the problems:

This procedure checks whether speed and duplex values are consistent
across connected interfaces. Discrepancies are highlighted in the map.

Step 1

Get CDP neighbor details on local device to identify adjacent
interfaces

Related command: show cdp neighbors detail

Step 2

Check local interface speed and duplex

Related command: show interface

Step 3

Compare speed/duplex on local interface with speed/duplex on neighbor
interface

Note:
This procedure requires CDP to be enabled on each device.

[0160] Without automation, it may take a few days to
perform these steps. With the Executable Procedure Inter-
face, three process nodes 834, 836 and 838 are created to
execute corresponding steps 1, 2, and 3 in minutes.

[0161] After the Procedure is defined, the user may click
a save button (not labeled) to save the Procedure and a close
button 870 to close. The Procedure may be saved as a file
with the specific file name extension, for example, .qapp
(meaning “quick application”).

[0162] FIG. 9 shows an exemplary method to define a
Process Node. In some embodiments, two options may
control how a Process Node is executed: Loop 920 and
Devices 930. The Loop option defines the loop for the block
of codes corresponding to the Process Node. The Devices
option defines on which network device(s) the Node should
be executed.

[0163] There may be two options for Loop 920: Run Once,
indicating that the Node will only run once for each seed
device, and Loop by Variable, indicating that the Node will
run for each element of the variable.

[0164] There may be three options for Devices Option
930: Seed Device, By Variable, and Dynamic Device.
Default option Seed Device indicates that the Node will run

Apr. 6, 2023

on one or more seed devices. The seed device(s) may be
selected by the user while running the Procedure. Option By
Variable indicates that the node will run on the devices
defined by the variable. Option Dynamic Device is used to
run the Procedure recursively until a certain condition is
satisfied. The Dynamic Device option can be used to map
out the topology from a seed device.

[0165] The user can select one of the four types of Probes.
For example, by clicking “add a CLI command Probe” 940
to define the CLI command probe, a window 1000 is shown
(FIG. 10).

[0166] Referring to FIG. 10, a user may first enter the CLI
command in field 1010. In this example, the CLI command,
“show cdp neighbors detail,” is used to retrieve the neighbor
device and connected interfaces. The user may then retrieve
a sample output to define a Parser. The user can click the
Retrieve Sample button 1020 and select a device. The
sample output may be shown in field 1030. The following is
an exemplary sample output:

lablosSwitch3>show cdp neighbors detail
Device ID: 2900XL-1
Entry address(es):

IP address: 192.168.1.210
Platform: cisco WS-C2924C-XL, Capabilities: Trans-Bridge Switch
Interface: FastEthernet0/3, Port ID (outgoing port): FastEthernet0/5
Holdtime : 150 sec
Version :
Cisco Internetwork Operating System Software
108 (tm) C2900x! Software (C2900x1-C3H2S-M), Version 12.0(5)WC5,
RELEASE SOFTWARE (fcl)
Copyright (¢) 1986-2002 by cisco Systems, Inc.
Compiled Tue 28-May-02 11:11 by devgoyal
advertisement version: 2
Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27,
value=
00000000FFFFFFFF010121FF000000000000005080703CCOFF0001
VTP Management Domain:
Native VLAN: 1
Duplex: full
Management address(es):
Device ID: NY_POP
Entry address(es):

IP address: 172.22.20.2
Platform: cisco 2500, Capabilities: Router
Interface: FastEthernet0/7, Port ID (outgoing port): EthernetO
Holdtime : 160 sec
Version :
Cisco Internetwork Operating System Software
108 (tm) 3000 Software (IGS-IN-L), Version 11.1(10), RELEASE
SOFTWARE
(fel)
Copyright (¢) 1986-1997 by cisco Systems, Inc.
Compiled Mon 10-Mar-97 15:53 by dschwart
advertisement version: 1
Management address(es):

[0167] Using the provided sample output, the user can
define a set of Parsers in window 1040 for the Procedure to
retrieve data from a running output. Depending on the
format of the output, the user can select four types of
Parsers: Keyword, Paragraph, Table, and Filter Parsers, as
described above.

[0168] The sample output may include multiple neighbors.
The output of each neighbor may have identical formatting.
For this type of output, the Paragraph Parser 1042 may be
selected to parse the data. The Paragraph Identifier 1044 is
the keyword to identify the start of a new paragraph, in this

US 2023/0104928 Al

sample the keyword is "-------------- ". For each paragraph
the user can define the keyword/variable pair 1046 (Key-
word Parser). The keyword is the string that stays the same
and the variable is a value that can change. In this example,
three keyword variable pairs may be defined:

IP Address: $nbr_ip
Interface: $nbr_intf,
(outgoing port): $local_intf

[0169] The matched values may be highlighted in the
sample output and may also be shown in pane 1050.

[0170] FIG. 11 shows a window 1100 to define an exem-
plary Trigger. The exemplary Trigger 1110 is a Threshold
Trigger that checks whether one of the variables defined in
a Parser is “Not None.” If so, the Threshold Trigger executes
the statements shown in the Statement pane to assign
variables and then exports these variables so that down-
stream process nodes can use the variables.

[0171] FIG. 12 shows an exemplary GUI 1200 with set-
tings to run a Procedure. Three types of settings are shown.
The first type of setting is Data Source 1210. By default, a
standard Procedure can retrieve data from a live network.
However, a user can set the option to use cached data stored
in a data folder. In a Trigger, the current data is compared
with baseline data. By default, the current baseline serves as
the baseline data. The user can also select another data folder
for the baseline data. The second type of setting is Default
Interval for Delta Trigger 1220. For a Delta Trigger, data
will be retrieved twice, with the time interval value defined
here. The third type of setting is Export Global Output
Variable Results 1230. Checking the checkbox of this option
allows exporting global output variables to a selected file
directory.

[0172] A Procedure can have input variables and output
variables, similar to an application. The input variables
allow a Procedure to be executed in different environments
without any modification.

[0173] FIG. 13 shows an exemplary method to define
input variables for an Executable Procedure. To define a
global input variable, a user may click the Define Input
Variable button 1310 at the top of the Procedure window. In
the Define Global Input Variable window 1320, the user may
click the Add button 1330 to add the input variables. In the
Add Global Input Variable window, the user may enter the
variable name and select the type. In this example, the global
variables start with $$ to differentiate from local variables of
a process node. Other symbols may also be used. The
Description is optional, but a meaningful description can
make the Procedure easy to read and use. The Initial Value
is also optional and can be set to the most frequently used
values if possible. The user can click the Multiple Value link
1340 to set more than one value and system 100 may run the
Procedure with each value. This can be convenient in some
cases, for example, if the user creates a Procedure to map a
multicasting source tree. The user can run this Procedure
with the input variable set to multiple sources.

[0174] FIG. 14 shows an exemplary method to define
output variables. One purpose of using the global output
variables is to create a report. For example, a user may want
to create a report to include all devices and neighbor
interfaces having duplex or speed mismatched.

Apr. 6, 2023

[0175] To define output variables, the user may click the
Define Output Variables button 1410 at the top of the
Procedure window 1400. In the Define Global Output Vari-
able window 1420, the user may click the Add Table button
1430 to add a variable table or the Add Single button 1440
to add a basic variable. Similar to the global input variable,
the global output variable may start with $$. A table can have
many columns and each column can have different types of
variables.

[0176] Besides the CLI command probe, system 100 may
also support Ping, Traceroute, and/or Configuration Probes.
[0177] FIG. 15 shows an exemplary method to define a
Ping Probe. To define a Ping Probe, a user needs to define
a source 1510 (the device to ping from) and a destination
1520 (the IP to ping to). For source 1510, the user may have
three options: local PC 1512; network server 1514, which is
a specified server used to work as a proxy to the live
network; or selected devices 1516, where the user can define
a list of core devices as the input variables and let system
100 to ping from these devices.

[0178] For destination 1520, the user can either enter the
IP address 1522 to ping from or select a device 1524 and
then an interface on the device. In the example shown here,
the IP Host option is checked and the input variable is
entered, which defines the IP address to ping to.

[0179] FIG. 16 shows an exemplary method to define a
Traceroute Probe. The process of defining a Traceroute
Probe is similar to that of a Ping Probe. Ping and Traceroute
Probes can be defined to run from a list of core network
devices to a list of main servers after a network change. This
automation can be much quicker and more reliable com-
pared to a manual process.

[0180] A Configuration Probe is configured to parse and
highlight configurations. For example, the Configuration
Probes can be used in the following cases: 1) Create a report
for devices containing a particular configuration line. For
example, find devices with “no service password-encryp-
tion” configuration, which violates basic security policies. 2)
Highlight or draw a particular configuration in a Q-map. 3)
Conduct a preliminary check before applying an additional
Procedure. This can improve the performance of the Proce-
dure since the Configuration Probe uses baseline configu-
rations without retrieving data from devices. For example, a
user can check whether OSPF is configured to run on a
router before applying any Procedure to troubleshoot OSPF
routing issues.

[0181] FIG. 17 shows an exemplary method to define a
Configuration Probe. In FIG. 17, the Parser and Trigger of
a Configuration Probe are the same as those of the CLI
command Probe. The differences may be that the Configu-
ration Probe works on configurations and therefore there is
no need to define a CLI command to retrieve data.

[0182] FIG. 18 shows an exemplary network map created
using a Procedure.

[0183] Embodiments consistent with the present disclo-
sure involve system and method for automating network
management tasks. Network management tasks may include
network performance monitoring, network troubleshooting,
network architecture mapping, or other tasks. Automating
network management tasks may be accomplished using one
or more network management applications. For convenience
of description, a network management application is also
referred to as a Qapp, although such an application can have
any name.

US 2023/0104928 Al

[0184] In some embodiments, a Qapp may include one or
more procedures. The one or more procedures may be used
to retrieve information from a network (e.g., a live computer
network). The Qapp may also include an analysis routine to
define, for example, how to display the information retrieved
using the procedures. The analysis routine may also analyze
the retrieved information and create one or more alerts based
on the analysis. The alerts may include textual alert mes-
sages and graphical alerts. The graphical alerts may include
visual effects made to a map of the network. For example,
one or more portions of the map relevant to the retrieved
information may be highlighted and/or displayed in different
colors.

[0185] In some embodiments, a Qapp may be created
using a GUI. Creating a Qapp may include two steps: the
first step involves defining one or more procedures to
retrieve data from the network; the second step involves
defining an analysis routine for analyzing the retrieved data
and displaying the data.

[0186] A Qapp may be saved and shared among network
professionals. Executing a Qapp may automate network
management tasks such as troubleshooting and performance
monitoring. For example, executing an Qapp can perform
the followings tasks automatically: Describe a network
problem or best practice; Recursively execute one or more
network commands, obtain data from a network based on the
execution of the network command(s), and display the data
on a map of the network; Analyze the data obtained from the
network; Create an alert (e.g., an alert message and/or a
graphical alert) when a certain condition is satisfied, such as
when a threshold value is crossed; and Create and save a
historical chart based on the analysis of the data for playback
and/or future analysis.

[0187] FIG. 19 is a block diagram illustrating exemplary
components of a Qapp 1900. Qapp 1900 may include an
executable procedure 1910 and an analysis routine 1930.
Procedure 1910 can be created via a GUI, such as GUI 105,
to receive from a user a network command to be executed on
a computer network. The network command may include
one or more CLI commands 1912, one or more simple
network management protocol (SNMP) commands 1914,
and/or one or more configuration commands 1916. The
results of the execution of the network command may be
parsed by a parser 1918 to retrieve useful information. For
example, when the results include a network parameter
indicating network operating status, the network parameter
may be identified and stored in a variable 1920. Variable
1920 may be used to transfer information retrieved from the
computer network to an analysis routine 1930 for further
analysis. Analysis routine 1930 may include analytical log-
ics operating on variable 1920 to generate analysis results,
such as an alert 1940, a monitored map 1950, and/or a
variable chart 1960.

[0188] FIG. 20 shows an exemplary GUI 2000 for defin-
ing an exemplary procedure of a Qapp. GUI 2000 includes
an input box 2010 for receiving a network command, such
as a CLI command, to be executed on a computer network.
A user can input a network command, such as “show process
cpu” shown in FIG. 20, to obtain a result from the computer
network (e.g., from a network device) by, for example,
clicking a button 2020 to execute the network command.
Pane 2030 shows the result, which includes information
about CPU utilization. Based on the result, a user may define
a parser, such as a keyword parser shown in FIG. 20, to

Apr. 6, 2023

retrieve information associated with a network parameter
based on the result. For example, in the example shown in
FIG. 20, the parser is defined by a pattern in input box 2040,
which includes a first variable $cpul to store information
associated with a first network parameter (e.g., CPU utili-
zation information for one minute) and a second variable
$cpu? to store information associated with a second network
parameter (e.g., CPU utilization information for five min-
utes). Once the parser is defined, the values of these vari-
ables can be viewed in pane 2050.

[0189] Defining a Qapp parser is similar to defining a
procedure parser. However, one difference between these
two types of parsers is that the network command used in a
Qapp can be executed recursively. Accordingly, the Qapp
parser may retrieve information from the recursively
obtained result (e.g., obtained in response to the recursive
execution of the network command) and recursively update
the variable storing the retrieved information. In some
embodiments, the frequency for recursively updating the
variable (also the frequency to recursively execute the
network command) may be defined in an input field 2060
through GUI 2000. For example, FIG. 20 shows an exem-
plary frequency of 2 minutes.

[0190] The value of a network parameter, such as CPU
utilization, may be retrieved by the parser (shown in input
box 2040) and saved in variable $cpul or $cpu2 each time
the network command (shown in input box 2010) is
executed. The settings and configurations of a Qapp, such as
the network command to be executed, the parser used to
retrieve information, and an analysis routine (to be described
in greater detail later), can be packaged together and saved
as an executable network management application (Qapp)
for future use or for sharing with others. When the saved
Qapp is executed, the network instruction (e.g., the CLI
command shown in input box 2010) can be executed recur-
sively (e.g., at a frequency defined in input box 2060). Each
time the network instruction is executed, a result can be
obtained, similar to the result shown in pane 2030 of FIG.
20, except that the value of the CPU utilization may be
changed. The parser defined using the pattern shown in input
box 2040 can retrieve the relevant information (e.g., the
values of CPU utilization) based on the result and store the
retrieved information in variables $cpul and $cpu2. In this
way, the values of these variables can be updated/stored
periodically. A historical chart of the CPU utilization (e.g.,
CPU utilization as a function of time) can be generated using
the data stored in variable $cpul/$cpu2 and displayed to the
user. Because the values of these variables indicate network
parameters of the computer network being managed, the
historical chart can be of a great help to network perfor-
mance monitoring or troubleshooting.

[0191] FIG. 21 shows an exemplary GUI 2100 for defin-
ing an exemplary analysis routine of a Qapp. As shown in
FIG. 21, variables defined using GUI 2000 (e.g., cpul and
cpu2) can be displayed in pane 2110 of GUI 2100. The user
can select any variable such as cpul and click an arrow icon
2120 to add the variable to an analysis tab 2140. Variables
added to analysis tab 2140 may be displayed in a network
map and/or subject to further analysis. Variables may
include device-level variables (or device variables) and
interface-level variables (or interface variables). Device
variables refer to information relating to network devices,
such as CPU utilization shown in FIGS. 20 and 21. Interface
variables refer to information relating to network connec-

US 2023/0104928 Al

tions, such as cable interfaces, wireless interfaces, etc. As
shown in FIG. 21, analysis tab 2140 includes separate areas
for device variables and interface variables. A Legend link
2130 can show location information for displaying one or
more variables and/or alerts on a network map. For example,
in a pop-up window 2150, device variables 2152 are to be
displayed under their corresponding devices (e.g., Router0O
or Routerl), while interface variables 2154 are to be dis-
played along the connection path between the devices.

[0192] In addition to displaying a variable value on a
network map, the analysis routine also allows a user to
define one or more alerts based on the variable. FIG. 22
shows an exemplary GUI 2200 to define an alert. As shown
in FIG. 22, the analysis routine includes a condition 2210,
which can be defined in a pop-up window 2230 by clicking
a button 2220. In the example of FIG. 22, the alert is a
threshold type alert, as shown in selection list 2232. The
condition to be evaluated is defined by a logic sign 2234 and
a threshold value shown in input box 2236. Here, the current
CPU utilization value (variable cpul) is compared against a
threshold value such as 90%. If the value is equal to or larger
than the threshold, a textual alert, such as alert message 2238
(“Device CPU usage is high!”) is generated and displayed to
the user. In some embodiments, the condition may include
whether a variable (e.g., variable cpul) increases, decreases,
or flaps with time. For example, the condition may be
satisfied when cpul increases. In another example, the
condition may be stratified when cpul fluctuates with time.

[0193] An analysis routine may also include graphical
alerts (also referred to as visual alerts). FIG. 23 shows an
exemplary GUI 2300 to define a graphical alert. In this
example, a device can be represented on a network map as
a graphical indicator and the graphical indicator may be
displayed in three possible colors: red (2312), yellow
(2314), and green (2316). The colors and/or conditions
associated with each color can be defined using tab 2310. In
this example, the device is displayed in red color if cpul
utilization is higher than 90% and in green color otherwise
(note that yellow color is not enabled in this example).

[0194] A Qapp may be executed within a map of the
network. The data retrieved from the live network and
parsed in the Qapp recursively according to the configured
frequency may be displayed and updated in the map. FIG. 24
shows an exemplary GUI 2400 to display a Qapp execution
result for device level data. GUI 2400 may be displayed
when the Qapp defined in FIGS. 20-23 is running to recur-
sively retrieve information from the computer network and
update variables $cpul and $cpu2. GUI 2400 may include a
pane 2410 displaying a network map (e.g., a topology
network map) including a plurality of graphical indicators
depicting network components of the computer network
being managed. For example, the network map may include
a graphical indicator 2412 indicating a WAN in Boston and
a graphical indicator 2414 indicating a WAN in Los Angeles.
The current values of CPU utilization of a network compo-
nent are displayed under the graphical indicator of that
network component, as defined in window 2150 of FIG. 21.
The Qapp may compare the current value of a variable with
a threshold according to the analysis routine defined in GUI
2200 of FIG. 22. For example, the threshold for cpul of the
Boston WAN 2412 may be set to 15. When the value of cpul
is above 15, an alert may be generated. In FIG. 24, the alert
is displayed as a change of color (e.g., from green to red) of
the graphical indicator and a highlighting of the CPU

Apr. 6, 2023

utilization value. In some embodiments, the alert may be
generated when the value of a network parameter is beyond
or out of a threshold (for example, above or below the
threshold depending on configurations).

[0195] Inone embodiment, the alert may be removed once
the value of a variable is no longer beyond the threshold. For
example, in FIG. 24, when the value of cpul of Boston WAN
2412 falls back to 10, which is below the threshold of 15, the
color of Boston WAN 2412 may be changed back to green
and the highlighting of cpul may be removed. In another
embodiment, the alert may be removed after a predeter-
mined time period has past following the event that the value
of a variable is no longer above/below the threshold. For
example, in FIG. 24, when the value of cpul of Boston WAN
2412 falls back to 10, which is below the threshold of 15, the
color of Boston WAN 2412 or the highlighting of cpul may
not be changed immediately, but may stay for a predeter-
mined time period. If after the predetermined time period,
the value of cpul is still below the threshold, the color of
Boston WAN 2412 may be changed to green and the
highlighting of cpul may be removed. In yet another
embodiment, the alert may not be removed automatically,
but may stay until further actions.

[0196] In some embodiments, the alert may include a
change of display of at least one of the plurality of graphical
indicators on the network map. The change of display may
include a change of color, a change of size, a change of
shape, a change of highlighting, a change of description, or
a combination thereof.

[0197] In addition to the network map, GUI 2400 may
include a pane 2420 that displays the variables in a table
format. GUI 2400 may also include a pane 2430 to display
a historical chart of a variable in addition to its current value.
For example, pane 2430 displays the values of cpul as a
function of time. Displaying the historical chart may provide
valuable information of the network operation status
because certain network activities may occur in a relatively
short time window and therefore difficult to capture without
historical data. In the example shown in FIG. 24, the peak
CPU utilization of cpul is about 22 and occurs briefly prior
to the current time point. With historical data such as the
chart shown in pane 2430, a user may obtain valuable
information about the network operating status.

[0198] FIG. 25 shows an exemplary network map 2500
having multiple types of alerts. Network map 2500 includes
graphical indicators of network components such as core
network 2512, WAN 2510, and connections 2522, 2520, and
2524. Using a Qapp such as that shown in FIG. 19, a
plurality of network parameters may be monitored by recur-
sively executing network command(s), parsing result(s), and
analyzing the parsed information. The monitored network
parameters (e.g., through their corresponding variables) may
be displayed on network map 2500 in various forms. For
example, CPU utilization values of a network device may be
displayed near the corresponding device. Input/output errors
and status of network interfaces corresponding to a connec-
tion may be displayed near the corresponding connection,
such as connection 2522. When there is no error, the
connection may be displayed in green color (e.g., connection
2522). When one or more errors occur, the error message
may be highlighted (e.g., error message 2530) and the
connection may be displayed in yellow color (e.g., connec-
tion 2520). When the status of a connection is down, the
connection may be displayed in red color (e.g., connection

US 2023/0104928 Al

2524). As described above, the types of information and
alerts that can be displayed on network map 2500 are not
limited to the color, highlighting, and text, other forms of
display, such as size, shape, font, description, etc., may also
be used to display dynamic network information.

[0199] FIG. 26 is a flow chart of an exemplary method
2600 for creating and executing a Qapp. Method 2600 may
be implemented by system 100. System 100 may include a
processor device and a memory device. The memory device
may store computer codes for automating network manage-
ment tasks associated with a computer network. The pro-
cessor device may be operatively coupled to the memory
device. When the computer codes stored on the memory
device are executed by the processor device, the computer
codes may cause the processor device to perform operations
to implement method 2600.

[0200] At step 2610, a GUI (e.g., GUI 2000, 2100, 2200,
or 2300) may be provided. At step 2620, a network com-
mand (e.g., a CLI command, a SNMP command, a Con-
figuration command, or other command) to be executed on
the computer network may be received through the GUI
(e.g., through input box 2010). At step 2630, system 100
may obtain a result (e.g., result shown in pane 2030) from
the computer network based on an execution of the network
command on the computer network (e.g., upon a click of
button 2020). At step 2640, system 100 may receive a parser
(e.g., parser 2040) for retrieving information associated with
a network parameter (e.g., CPU utilization) based on the
result. The parser may include a variable (e.g., cpul or cpu2
shown in parser 2040) for storing the retrieved information.
At step 2650, system 100 may receive an analysis routine
(e.g., analysis routine defined in tab 2140) for analyzing the
computer network based on variables cpul and cpu2. At step
2660, system 100 may generate a network management
application (a Qapp) based on the parser and the analysis
routine. At step 2670, system 100 may execute the Qapp to
retrieve and parser information from the computer network
recursively and to analyze the information. At step 2680,
system 100 may display analysis result in a GUI (e.g., on
network map 2400 or 2500).

[0201] FIG. 27 is a flow chart of an exemplary implemen-
tation of step 2670 for executing the Qapp. As shown in FIG.
27, at step 2672, the Qapp may recursively execute a
network command (e.g., the network command as defined in
input box 2010) to obtain result information (e.g., result
information similar to those shown in pane 2030) from the
computer network. At step 2674, the Qapp may use a parser
(e.g., parser as defined in input box 2040) to retrieve
information associated with a network parameter (e.g., CPU
utilization) based on the result information. At step 2676, the
Qapp may store the retrieved information in a variable (e.g.,
cpul or cpu2 as defined in parser 2040). At step 2678, the
Qapp may analyze the computer network based on the
variable using an analysis routine (e.g., the analysis routine
defined in FIGS. 21-23).

[0202] The specification has described network manage-
ment systems and methods. The illustrated steps are set out
to explain the exemplary embodiments shown, and it should
be anticipated that ongoing technological development will
change the manner in which particular functions are per-
formed. Thus, these examples are presented herein for
purposes of illustration, and not limitation. For example,
steps or processes disclosed herein are not limited to being
performed in the order described, but may be performed in

Apr. 6, 2023

any order, and some steps may be omitted, consistent with
disclosed embodiments. Further, the boundaries of the func-
tional building blocks have been arbitrarily defined herein
for the convenience of the description. Alternative bound-
aries can be defined so long as the specified functions and
relationships thereof are appropriately performed. Alterna-
tives (including equivalents, extensions, variations, devia-
tions, etc., of those described herein) will be apparent to
persons skilled in the relevant art(s) based on the teachings
contained herein. Such alternatives fall within the scope and
spirit of the disclosed embodiments.

[0203] While examples and features of disclosed prin-
ciples are described herein, modifications, adaptations, and
other implementations are possible without departing from
the spirit and scope of the disclosed embodiments. Also, the
words “comprising,” “having,” “containing,” and “includ-
ing,” and other similar forms are intended to be equivalent
in meaning and be open ended in that an item or items
following any one of these words is not meant to be an
exhaustive listing of such item or items, or meant to be
limited to only the listed item or items. It must also be noted
that as used herein and in the appended claims, the singular
forms “a,” “an,” and “the” include plural references unless
the context clearly dictates otherwise.

[0204] Furthermore, one or more computer-readable stor-
age media may be utilized in implementing embodiments
consistent with the present disclosure. A computer-readable
storage medium refers to any type of physical memory on
which information or data readable by a processor may be
stored. Thus, a computer-readable storage medium may
store computer code instructions for execution by one or
more processors, including computer code instructions for
causing the processor(s) to perform steps or stages consis-
tent with the embodiments described herein. The term
“computer-readable medium” should be understood to
include tangible items and exclude carrier waves and tran-
sient signals, i.e., be non-transitory. Examples include RAM,
ROM, volatile memory, nonvolatile memory, hard drives,
CD ROMs, DVDs, flash drives, disks, and any other known
physical storage media.

[0205] In reference to FIG. 28, an automated modulariza-
tion system 2800 for task steps is shown to include a design
module 2810 and a user module 2830. The design module
2810 includes GUI based components to allow a senior
engineer to design and test a full set of procedure for a
particular task. Task design module 2801 guides a senior
engineer to design his/her procedure into multiple sequential
steps, for example, steps 1, 2, 3 at corresponding choices of
graphic elements. Included are underlying functional mod-
ules 2803, 2805, 2807 and for each step, the designer can
place a note at their respective note module 2803 A, 2805 A,
2807 A to explain design logic and purpose. The design GUI
2810 also executes the designed procedure and displays the
running result at a display module 2809, where the designer
can also place a comment at its associated note module
2809A. If the designed procedure runs successfully, design
module 2810 then modularizes each of the steps into an
independent module and deposits them into a deposit store
2820 for other people to use and retrieve. For example, Step
1 of the task procedure becomes step 1 module at store
position 2821 of deposit database (storage) 2820, with an
associated note at position 2821A. Step 2 of the task
procedure becomes step 2 module at store position 2823 of
deposit database (storage) 2820, with an associated note at

US 2023/0104928 Al

position 2823A. Step 3 of the task procedure becomes step
3 module at store position 2825 of deposit database (storage)
2820, with an associated note at position 2825A.

[0206] The automatic modularization can be realized by
providing a universal starting module 2801 and universal
ending module 2809 in the design GUI 2810, which allows
for taking in the inputting variables and outputting the
running result as variables in a variable holder for next
function block.

[0207] A user GUI 2830 is provided to select any of the
step modules and run the selected step according to his/her
own needs. For example, user GUI 2830 provides a start
module 2831 to allow step 1 module plug-in to form a
module 2833, and executes module 2833 to generate a result
object 2835. Then user GUI 2830 also provides a comment-
ing function 2837 to allow the user input any note for this
run. Result object 2835 and notel-v2 are then saved into
deposit database 2820 for future reference and retrieval for
step 1 module.

[0208] The starting module and result displaying module
in one embodiment are a set of Qmap windows that not only
provide a graphical user interface for a user to select a
computer network environment to run a task-oriented pro-
cedure, but also present a live observation of the execution
of each of the steps of the procedure. Qmap window will
automatically draw out the topologies around a chosen
network device and its surrounding, neighboring network
devices.

[0209] In the present system, many network management
procedures; and troubleshooting protocols are then standard-
ized over a set of network devices, modularized into steps,
and grouped into action blocks. Steps and action blocks are
then tagged with keywords and tasks for keyword searching
and browsing by GUI elements. In one embodiment, the
steps are in the form of Qapps, and the execution results are
recorded with a Qmap.

[0210] In reference to FIG. 29, the runbook 2950 system
includes a GUI 2971 for a level one user to choose and
execute a standard troubleshooting procedure. In GUI 2971,
the upper left panel 2951 allows a user to search for a
standard task-oriented procedure by keywords. For example,
if keyword “traffic slow” is entered, all related modularized
and standardized network procedures will be displayed for
the user to choose in left window panel 2972. Other options
of choices include by source where a user can choose a
source of network, by destination or by a function/task for
a Qapp.

[0211] For example when the user chooses the standard
“traffic slow troubleshooting” procedure at dropdown list
2972, traffic slow troubleshooting procedure 2973 is shown
that includes a set of multiple Steps 2973 and their respec-
tive associated notes 2973 A. Between each of the respective
steps 2973, are the logic controls 2975 which show whether
the prior step has reached successfully to the next step for a
full execution of the procedure. On the right window panel
2960, a network device map 2961 is created or a prior
execution instance is displayed to show the execution result
of each step. A user can click on each of the steps 2973 to
start that step and to see the execution result on the devices
in map 2961. The user can then enter his or her comments
at the step’s note area. Step 2973B provides a health monitor
to see if each of the steps is executed within the set
satisfactory scope.

Apr. 6, 2023

[0212] In a real world application, for example, a NOC
engineer receives a complaint of VoIP quality issue, logs in
to this system 2950, searches and finds a standardized VoIP
troubleshooting protocol in the system, and launches the
troubleshooting analysis as follows:

[0213] he prompts the user to enter source IP of the phone
and the destination number. A Qmap is automatically created
for VoIP data flow across data network by the system;
[0214] he follows and clicks the step to create an L2 map
of that data flow;

[0215] he clicks the next step on the screen that automati-
cally executes Qappl to annotate QoS configure;

[0216] he clicks the next step on screen which automati-
cally executes an overall health monitoring Qapp2;

[0217] he clicks the next step on screen that automatically
executes Qapp3 that checks the VoIP quality; and

[0218] he observes the execution results with the Qmap on
the screen to see where the problem has occurred in the user
phone’s network.

[0219] In another example, a NOC engineer receives a
report that a server in a remote site is unresponsive. He then
starts system 2950 to launch a diagnosis as follows:
[0220] he first searches the IP of the server and opens the
site map where the server belongs to on screen;

[0221] using the site map as a reference map, the engineer
finds other execution instances executed at this site recently,
including the associated notes; and

[0222] the engineer then executes the next step that auto-
matically runs the Qapp on the map, and finds that the link
duplex is misconfigured. He then creates a note on this
diagnosis, to remind the other people about this misconfigu-
ration.

[0223] he can also delete a few old and non-useful execu-
tion instances inside that site map.

[0224] In another example, company A has several mul-
ticasting groups deployed across 100 routers. Engineers
need to monitor real-time and diagnose a particular group.
Using system 2950, an engineer can do the following:
[0225] he enters a source address and destination group
(S,G) and the system automatically uses Qapp and creates a
Qmap of the (S,G) multicast flow;

[0226] he executes the next step that automatically runs a
Qapp to annotate the multicast design; and

[0227] he executes the next step that automatically runs
another Qapp to monitor the active multicasting flow in the
Qmap.

[0228] System 2950 includes many built-in task-oriented
standardized action blocks and Steps and procedures for
common problems and troubleshooting. System 2950 also
allows a creator user to create and modularize a task-
oriented standard procedure themselves. In reference to FIG.
30, flow chart 3000 shows the process for a Creator user to
design a modularized task-oriented standard procedure. In
this system, a Creator solves a particular network problem
by going through the process of Create Map—Understand
Network Design—=Monitor Current Status—Historical
Change Analysis. FIGS. 31 to 35 show an example GUI for
this process.

[0229] A creator user at step 3001 logs onto the manager
interface 3100 and creates a new folder at step 3003 in
window panel 3101 and 3103 (FIG. 31). At step 3005 in new
window 3210, he initiates a new task-oriented standard
procedure instance 3211 and is automatically led to next step
by popup window 3212 for creating a map (FIG. 32). He

US 2023/0104928 Al

also inputs some annotation at window panel 3213. He starts
the standardization 3007 by creating a Qmap at step 3009 via
choices provided in option panel 3215. He can use the built
in functions of Search, A-B path, Open an existing Map, or
use a Qapp to create a Map. Panel 3216 allows him to input
some comments. Creating a map enables a standard running
environment for users to minimizing errors. After this he can
add Steps by selecting stored Qapps in the system at step
3011, or obtain a Qapp by executing a network CLI com-
mand at step 3013. He can further add more logic statements
through GUIs in FIGS. 34 and 35. The system provides
modularized system feature steps, such as Change Analysis
(e.g., step 3015), Execute CLLI Command (e.g. step 3017),
Ping, Traceroute, Telnet, Netflow, IPSLA, etc. for defining a
transit variable 3019 and saving runbook and assigning a
location and name 3021.

[0230] A creator can organize the executable steps into
action blocks in a flowchart 3600 as shown in FIG. 36.
Between each block are logic controls. 3601 represents
troubleshooting procedure for “A to B not reachable” symp-
tom. It automatically goes to action block 3603 that does
“from A’s gateway pings A,” if yes it automatically goes to
action block 3605 “From A’s gateway pings B,” but if action
block 3603 cannot be done, it automatically goes to action
block 3611 to find “If there is an ARP entry in ARP table.”
Steps proceed so on through action block 3617 to action
block 3623 or 3625. The “yes” line of 3603 proceeds from
action block 3605 through action block 3607 either to action
block 3609 or to action block 3615, or proceeds from action
block 3605 through action block 3613 either to action block
3621 or to action block 3619.

[0231] The flowchart “A to B not reachable” troubleshoot-
ing procedure can alternatively be presented in natural
language logic statements as shown in FIG. 37, where the
action blocks are marked with hyperlink color. The flow-
chart blocks 3603 to 3605 etc. are converted into natural
language logic in hyperlink 3701-3715.

[0232] In reference to FIG. 38, a flowchart process 3800
illustrates a user re-using or repeating a troubleshooting
procedure created and shared by another creator. At steps
3801 and 3803, in the system 2950, a user can browse or find
with keyword searching a procedure shared by another user
or the creator that is relevant to his problem at hand. Once
identified, he clicks the procedure and views the details of
the procedure at step 3805. He can further view the stored
execution instance map that is associated with the procedure
by clicking on a graphic element on the screen at step 3807.
There may be many execution versions stored, and each
prior and new execution instance can be associated with a
map, and the execution instance can be stored as map data
within the host’s map. At step 3811 the user can create a new
map and execute the procedure on devices in the new map;
or alternatively, open an existing map and execute the
procedure on the existing map and save the running result as
an instance (Step 3813). At the map level, the user is also
provided with a note to annotate his/her experience with this
procedure. From step 3815 to step 3827, the user can further
choose to execute a single Step or a few Steps in parallel or
in sequence to compare and identify any problems. The user
can also add a Step to the procedure and provide an
annotation for his reasoning and purpose in so doing (Step
3829). User note is provided in free text format 3017 and can
be edited in a rich text editor, for example. The annotation
at Step level is beneficial in that it helps another engineer in

Apr. 6, 2023

reviewing the execution data, and saves other users from
providing input again in doing a re-run. The input for
creating a Map includes map name and path, record search
input, A to B Path includes record A, B, Protocol, Path type.
Input for Run Qapp step includes device input, Table input;
Input for Change Analysis includes Data Folder used, Attri-
butes compared, input for CLI Commands executed; input
for Ping/Traceroute includes Destination IP, Source IP or
Device Interface, Segment Size, Packets counts.

[0233] The different categories of output of running an
action Step is displayed in the left corner pane of the GUI at
the alternative choices of 3831, 3833, 3835, 3837 and 3839.
The output includes: Alert information from Qapp Add
Message() method and Alert from system level message.

[0234] The system can also monitor results on Map and
chart, the Result on the map including Device and Interface
Label, Device and Interface Note, Alert number on the
badge, and Chart result. Qapp Result at Map Level can still
display Device data Interface data, Device and interface
note, and Highlight and Exported report. The System func-
tion output will save the results from Change Analysis, Ping,
Traceroute functions. The system also allows for Executing
CLI Command at real time to collect raw data.

[0235] Users can also organize their experience into Brief-
cases for quickly locating solutions for problems solved
before, and simply re-run a previously created procedure. In
the organized Briefcase, a user should be able to know which
procedure is most reliable and capable of executing correctly
in his/her responsible network. Briefcase provides an easy
way to find a Map, RB, RBA and Qapp that has tested in the
user’s own network. Briefcase includes “Current running
session,” (built-in) that is all of those procedures currently
running on the user’s terminal side, and the Individual
Qapp’s link. With simple mouse clicking, the user can view
the execution result on the related Map. Briefcase includes
“Recent used” where user can review the executed Qapp in
the recent past. Briefcase includes “Current Map” (built-in)
where all QMaps that are currently open are located. Users
can set up a folder to include running results, QMaps and
Qapp. Briefcase keeps records of the frequently used run-
ning results from procedures, including Alias that is auto-
matically designated for a running result to be sent to a
Briefcase. Briefcase can simply keep a record of a Reference
to a Map, or URL of a Map location.

[0236] In reference to FIG. 39, the flexibility of organi-
zation of the action blocks of steps are illustrated. In block
3910, steps 3901 to 3909 are organized in a sequential order
top down from 3901 to 3906 with 3907 and 3909 at the side.
In block 3920, these steps are organized into three indepen-
dent monitor action blocks 3921, 3922 and 3923. Then, in
block 3930, steps 3901 to 3909 run in a sequential order
from 3901 to 3907, with 3909 and 3904 as the side steps.
Each execution scenario has its own execution instance
displayed in the Qmap at the right side pane.

[0237] The modularized task-oriented standard procedure
is alternatively called a Runbook (RB) operation. A Run-
book GUI includes several elements:

[0238] Target Qmap (P1): user can create Runbook that is
bound to a specific Qmap describing a section of the network
under management. In such a Runbook, each Operation Step
can be pre-configured to act on a selected device on the map.
This association is established and validated at Runbook
Design Time in order to eliminate the uncertainty at runtime.

US 2023/0104928 Al

[0239] Hidden Page (P1): each procedure instance by
default would be associated with a target Qmap containing
the target devices of this execution. In order to preserve and
present the complete result for each Operation Step in the
Runbook, system automatically builds a hidden map page
for all steps generating a map-based output, such as map-
based monitoring actions. In some interactive troubleshoot-
ing situations, Qmap is used as the working space for the
troubleshooting actions. For Routine Tasks involving large
number of devices, a map may not be feasible or necessary.

[0240] Procedure Annotation (P1): allows user to annotate
the result from the running procedure to put in user’s
comments, such as key finding from the result. This is an
important capability to facilitate the user collaboration
across the case escalation path.

[0241] Interactive Runbook Execution (P1): in the initial
phase, Runbooks will be used solely for interactive scenario
where a user opens a Runbook and manually executes each
Operation Step->interpret the execution outcome->follow
instruction in Runbook to decide which operation step to
take as the next step.

[0242] Auto Execution (P2): the auto execution of the
non-sequential blocks and auto execution for sequential
blocks.

[0243] Scheduled Runbook Execution (P2): allow user to
schedule the execution of a Runbook on a periodic basis.
(Typically this would rely on moving the Qapp execution
onto server. A client based scheduling functionality can be
done, but won’t provide smooth experience.

[0244] Runbook Annotation (RBA) Browse by RB (P1):
RBA can not only be browsed within its host Qmap, but can
also be browsed under its originating Runbook in the
Runbook browser. This will give user the ability to easily
find all past instances when the runbook was executed. This
capability can be useful for scenarios like: programming the
routing configuration screening task in a Runbook, execut-
ing it every morning, and going back to check the result from
yesterday in order to compare it with today’s result. It can
also be used to see the past execution instance for new user
to understand how to use the runbook.

[0245] Runbook statistics (e.g. identify the most fre-
quently used RB) can also be derived from such aggregation.
Rerun RB Steps in an existing RBA (P1): allow user to rerun
any step in a Runbook. This functionality can be very useful
in both troubleshooting and routine task scenarios: During
troubleshooting, user takes over a ticket with a map asso-
ciated. User opens the map and reviews the RBA for past
action and result. User reruns one of the steps to check the
current status and compares with what was collected yes-
terday to see if there is anything different.

[0246] For a configuration screening task runbook con-
taining 4 steps and scheduled to be run at 6 AM every
morning: admin comes at 8 AM to check on the status of
today’s execution and noticed that one of the steps failed
during execution. He immediately triggers a rerun of that
step to catch up on the missed step.

[0247] New RBA Instance from Existing RBA (P2): this
would give user a convenient way to create a new instance
of the same RB in the same host Qmap, without going
through the RB browse and map selection. E.g. I ran a
monitoring task yesterday on this map. Today, I want to run
it again on the same map, 1 will just create a new instance
of the RB from the previous RBA. Note: here if there is any

Apr. 6, 2023

modification on the originating RB, user should be prompted
to choose to use the old or new version of the RB.

[0248] It is intended that the disclosure and examples be
considered as exemplary only, with a true scope and spirit of
disclosed embodiments being indicated by the following
claims. As will be recognized by those skilled in the art, the
innovative concepts described in the present disclosure can
be modified and varied over a tremendous range of appli-
cations, and accordingly the scope of patented subject matter
is not limited by any of the specific exemplary teachings
given. It is intended to embrace all such alternatives, modi-
fications and variations that fall within the spirit and broad
scope of the appended claims.

[0249] None of the description in the present disclosure
should be read as implying that any particular element, step,
or function is an essential element which must be included
in the claim scope: the scope of patented subject matter is
defined only by the allowed claims. Moreover, none of these
claims are intended to invoke paragraph six of 35 USC
section 112 unless the exact words “means for” are followed
by a participle. The claims as filed are intended to be as
comprehensive as possible, and no subject matter is inten-
tionally relinquished, dedicated, or abandoned.

1. A method of automating troubleshooting for a network
problem, the method comprising:

calling a group of functions;

executing the called group of functions over a network;

collecting troubleshooting data over the network;

parsing the collected troubleshooting data to extract rel-
evant information;

analyzing the extracted relevant information to identify a

root cause of the network problem; and

providing solutions based on the identified root cause.

2. The method of claim 1, wherein the providing solutions
further comprises:

creating an executable procedure to automate trouble-

shooting the network problem.

3. The method of claim 2, further comprising:

identifying the root cause of the network problem; and

executing the executable procedure to address the net-
work problem.

4. The method of claim 2, wherein a user executes the
executable procedure to address the network problem.

5. The method of claim 1, further comprising:

displaying the extracted relevant information.

6. The method of claim 1, further comprising:

displaying the identified root cause of the network prob-

lem.

7. The method of claim 1, wherein the group of functions
are built-in.

8. The method of claim 1, further comprising:

executing the called group of functions on a device; and

collecting data based on the executing over the device.

9. The method of claim 1, wherein the analyzing is
performed by a threshold trigger, a compare trigger, or a
delta trigger.

10. The method of claim 1, wherein the parsing is
performed on the collected data using a keyword parser, a
paragraph parser, a table parser, or a filter parser.

11. A system for troubleshooting a network of devices, the
system comprising a computer processor and a non-transient
memory comprising instructions that, when executed by the
computer processor, cause the computer processor to imple-
ment a method comprising:

US 2023/0104928 Al
17

executing a called group of functions over the devices;
collecting troubleshooting data over the devices;

parsing the collected troubleshooting data to extract rel-
evant troubleshooting information about a network
problem;

analyzing the extracted relevant information to identify a
cause of the network problem; and

providing an executable procedure based on the identified
cause, wherein the executable procedure provides one
or more solutions for the network problem.

12. The system of claim 11, wherein the executable
procedure automatically solves the network problem upon
execution.

13. The system of claim 11, further comprising:
identifying the cause of the network problem; and

receiving instruction for executing the executable proce-
dure to address the network problem.

Apr. 6, 2023

14. The system of claim 11, further comprising:

receiving instruction for troubleshooting the network

problem based on the executable procedure.

15. The system of claim 11, wherein a user executes the
executable procedure to address the network problem.

16. The system of claim 11, further comprising:

displaying the extracted relevant troubleshooting infor-

mation; and

displaying the identified troubleshooting results.

17. The system of claim 11, further comprising:

executing the called group of functions on the network;

and

collecting data over the network.

18. The system of claim 11, wherein the analyzing is
performed by a threshold trigger, a compare trigger, or a
delta trigger.

19. The system of claim 11, wherein the parsing is
performed on the collected data using a keyword parser, a
paragraph parser, a table parser, or a filter parser.

#* #* #* #* #*

