This is a vessel with a funnel-like shape that threads into place to stop the vessel from falling over. This vessel may be any size or shape so that it can be gripped by the hand and threaded into place. It has a tapered shape from the top at its widest opening. At this widest opening it has a ribbed area around the top where you can grip it. This is a non-slip area so you can thread it into place with your hand. As it tapers smaller to the bottom of the vessel there are threads around the spout area. These threads on the outside edge are used to thread the vessel into the head cover of an automobile or any other apparatus. The threads on the inside around the spout area are there to thread onto a container so it will not tip over when pouring liquids into the container. This is good for pouring liquids into an engine and the waste into a container. The threads make the vessel steady; this will stop the waste of material. This vessel is held up out of the engine by its threads so liquids flow faster because the spout is not hitting or resting on the inside of the engine.
ARTICLE OF MANUFACTURE FOR A VESSEL FOR POURING LIQUIDS

BACKGROUND

[0001] 1. Field of Invention

[0002] This invention relates to funnel shape vessel, specifically vessels used in pouring liquids.

[0003] 2. Description of Prior Art

[0004] The existing funnels now for pouring liquids like oil and gas for example have different shapes and sizes. The problem they still have is that their spouts are too long so they hit parts of the engine when placed into the oil cap hole of the head cover of an engine. These parts that are in the way stop the liquids from flowing quickly. Existing funnels now do not stand on their own when liquids are being poured in and they fall over if not held up by hand. In small engines like a lawn mower for example funnels do not fit into the oil hole or stand on their own without holding them in place. Another reason they don’t flow well is the spouts are not wide enough to let liquids flow easily.

[0005] (a) Funnels do not stand on their own when liquids are poured in and need to be held in place with your hand.

[0006] (b) Funnels do not drain fast because their spouts hit parts of an engine under the head cover.

[0007] (c) Funnels do not drain fast because their spouts are too small for an automobile engine and too big for small engines.

SUMMARY

[0008] In accordance with the present invention is a funnel that will stand on it’s own by threading into place.

OBJECTS AND ADVANTAGES

[0009] From the description above, a number of advantages of my threaded funnel become evident: Accordingly, besides the objects and advantages of a funnel that will hold itself upright with threads when liquids are being poured.

[0010] (a) to provide a vessel that can be threaded into place to pour liquids.

[0011] (b) to provide a vessel that will stop waste of liquids by not falling over.

[0012] (c) to provide a vessel that will let liquids flow faster because the spout is held up out of the engine or apparatus.

[0013] (d) to provide a vessel that will leave both hands free so other work can be done saving time.

[0014] (e) to provide a vessel that will prevent engine fires by keeping flammable liquids off the engine.

[0015] (f) to provide a vessel that can be threaded into any engine or other apparatus.

[0016] (g) to provide easy and fast clean up because it prevents spills.

[0017] Further objects and advantages are to provide a vessel that can be used over and over for pouring liquids that can be threaded into place. Still further objects and advantages will become apparent from a consideration of the ensuing description and drawings.

DRAWING FIGURES

[0019] Looking at page 2. Shows a cut away view of the funnel.

[0021] Looking at page 4. Shows a cut away of three different funnels.

REFERENCE LETTERS IN DRAWINGS

[0022] A. vertical recessed and raised ribs

[0023] B. outside threads

[0024] C. inside threads

[0025] D. spout

[0026] E. threaded cylinder

[0027] F. body of the funnel

[0028] G. solid body around spout

Preferred Embodiment—FIGS. 1 and 2

[0029] A preferred embodiment of the funnel shown in FIG. 1 (front view) and FIG. 2 (front cut away view). The funnel is made of a durable material. At the top at it’s widest opening the funnel has a ribbed area made up of vertical lines that are recessed and raised (A) where your fingers can grip the funnel. As the body (E) tapers down to the bottom it forms a spout (D). As the body (F) tapers down to the bottom it forms a spout (D). Also as the outside walls taper down it forms (E) a circular wall that is equal distant around the spout that is also part of the body of the funnel. This area (E) has threads on the outside (B) and on the inside (C).

Additional Embodiments—FIG. 3

[0030] Here is an additional embodiment FIG. 3. In this case the funnel (F) has extra material added to the outside (G) of the spout (D). This will let the spout keep it’s shape on the inside and the extra material will let the outside expand to the desired size and then threads (B) can be placed on the spout area so it will fit the threads of an apparatus like the head cover of an automobile where the oil cap is located. The spout can be made wider also and have the threads could be added to the outside of it.

Alternative Embodiments—FIGS. 4, 5 and 6

[0031] There are various possibilities with regard to how and where threads can be placed on or around the funnel’s spout as seen in FIGS. (4), (5) and (6).

[0032] In FIG. (4) these threads can be placed on the inside (C) and outside (B) of the spout (D) it’s self.

[0033] In FIG. (5) these threads could be placed only on the outside (B) of the funnel’s spout (D) it’s self. This can be done by changing the size of the spout and then having threads added to the outside.
In FIG. (6) threads could be placed only on the inside (C) of the funnel’s spout (D) itself.

This can also be done by changing the size of the spout to get the correct size needed.

There are a number of ways to add threads to a funnel; these are just a few.

Operation

The manner of using the funnel to pour liquids. When you pick up this funnel you grip it around (A); this area has a non-slip area. Then you put it in place of your oil cap on your automobile or other apparatus and turn it clockwise to thread it into place with (B). After its in place you pour your liquids. To remove it you turn it counter clockwise. To thread it onto a container use threads (C) and turn the funnel clockwise. To remove it thread it counter clockwise.

CONCLUSION, RAMIFICATIONS, AND SCOPE

Accordingly, the reader will see that the threaded funnel can be used on a number of apparatus.

(a) it permits production with a two piece mold.

(b) it can be made of any number of materials.

(c) it's a superior funnel that threads into place and will not fall over.

(d) it provides a hands free funnel not having to hold it up with hands.

(e) it has a nonslip area that will let wet hands thread it into place.

Although the description above contains many specificities, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. For example, the funnel can have other shapes and sizes and have threads anywhere around the spout.

Thus the scope of the invention should be determined by the appended claims and their equivalents, rather than by the examples given.

What is claimed is:

1. This funnel has threads around the spout. These threads hold the funnel in place when pouring liquids.
2. The body is made of a durable material.
3. A vessel shaped like a funnel that stands on its own.
4. This funnel has vertical lines that are raised and recessed at the top of the funnel where it can be gripped by hand and threaded into place.
5. The inside of this funnel has a smooth surface from the top of the funnel to the spout.
6. This funnel holds its self up out of an engine and stays in place.
7. This funnel is all one piece, but could have separate parts that thread into place to fit all kinds of threads.
8. This funnel has threads so it can thread on to a container.
9. This funnel has threads so it can thread into an engine or any other apparatus.

* * * * *