(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau) I 0 00 O

(10) International Publication Number

WO 2008/027768 A2

(51) International Patent Classification: (74) Agents: DICHIARA, Peter, M. et al.; Wilmer Cutler
GOGF 15/16 (2006.01) Pickering Hale And Dorr LLP, 60 State Street, Boston,
MA 02109 (US).

(43) International Publication Date
6 March 2008 (06.03.2008)

(21) International Application Number: (81)

PCTIUS2007/076502 Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

(22) International Filing Date: 22 August 2007 (22.08.2007) CN. CO. CR. CU. CZ. DE. DK. DM. DO. DZ. EC. EE. EG

. _ ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,

(25) Filing Language: English IN, 1S, JP, KE, KG, KM, KN, KP, KR, KZ, LA, L.C, LK,

_ LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,

(26) Publication Language: English MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,

PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,

(30) Priority Data: TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
11/513,877 31 August 2006 (31.08.2006) US 7M., ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

(71) Applicant (for all designated States except US): EGEN-
ERA, INC. [US/US]; 165 Forest Street, Marlborough, MA
01752 (US).

(72) Inventors; and

(75) Inventors/ApPhcants (for US only): GREENSPAN, PT. RO, SE, SL SK, TR), OAPI (BE, B, CF, CG, CT, CM,
Alan [US/US]; 37 Washburn Street, Northborough, MA GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
01532 (US). O’ROURKE, Patrick, J. [US/US]; 107 P e P YT ’
Canterbury Drive, Lunenberg, MA 01462 (US). AULD, Published:
Philip, R. [US/US]; 8 Wood Street, Hudson, MA 01749 — without international search report and to be republished
(US). upon receipt of that report

(54) Title: PROVIDING VIRTUAL MACHINE TECHNOLOGY AS AN EMBEDDED LAYER WITHIN A PROCESSING
PLATFORM

7:768 A2 I 10 OO O R

& (57) Abstract: A platform, method, and computer program product, provides virtual machine technology within a processing plat-
& form. A computing platform automatically deploys one or more servers in response to receiving corresponding server specifications.
Each server specification identifies a server application that a corresponding server should execute and defines communication net-
& work and storage network connectivity for the server. The platform includes a plurality of processor nodes and virtual machine
& hypervisor. The virtual machine hypervisor logic has logic for instantiating and controlling the execution of one or more guest
virtual machines on a computer processor. In response to interpreting the server specification, control software deploys computer
processors or guest virtual machines to execute the identified server application and automatically configures the defined commu-
nication network and storage network connectivity to the selected computer processors or guest virtual machines to thereby deploy
a the server defined in the server specification.

WO 2008/027768 PCT/US2007/076502

PROVIDING VIRTUAL MACHINE TECHNOLOGY AS AN EMBEDDED
LAYER WITHIN A PROCESSING PLATFORM

TECHNICAL FIELD

[0001] This invention relates generally to computing systems for enterprises and
application service providers and, more specifically, to systems and methods for
allocating physical processing resources via software commands using Processing Arca
Networking technology and to systems and methods for partitioning individual processors

using Virtual Machine technology.

BACKGROUND OF THE INVENTION

[0002] Existing platforms for deploying virtual Processing Area Networks typically
include a plurality of computer processors connected to an internal communication
network. One or more control nodes are in communication with an external
communication network, and an external storage network that has an external storage
address space. The control node or nodes are connected to the internal network and are in
communication with the plurality of computer processors. Driven by users’
specifications of desired server systems, configuration logic defines and establishes a
virtual Processing Area Network that has a corresponding set of computer processors
from the plurality of processors, a virtual local area communication network providing
communication among the set of computer processors, and a virtual storage space with a
defined correspondence to the address space of the storage network. See, for example,
U.S. Patent Publication US 2004/0236987, U.S. Patent Publication US 2004/0221150,
U.S. Patent Publication US 2004/0220795, and U.S. Patent Application 10/999118.
[0003] Such platforms provide a processing platform from which virtual systems may
be deployed rapidly and easily through logical configuration commands, rather than
physically assembling hardware components. Users specify the requirements of their
desired virtual systems by entering definitions of them into the platform using
configuration logic provided on the one or more control nodes. When a user desires to

instantiate (boot) such virtual systems, deployment logic on the one or more control

WO 2008/027768 PCT/US2007/076502

nodes automatically selects and configures suitable resources from the platform’s large
pool of processors to form a virtualized network of computers (“Processing Arca
Network” or “processor clusters”), without requiring hardware to be physically
assembled or moved. Such virtualized networks of computers are as functional and as
powerful as conventional stand-alone computers assembled manually from physical
hardware, and may be deployed to serve any given set of applications or customers, such
as web-based server applications for one example. The virtualization in these clusters
may include virtualization of local area networks (LANSs) and the virtualization of disk
storage. Such platforms obviate the arduous and lengthy effort of physically installing
servers, cabling power and network and storage and console connections to them,
providing redundant copies of everything, and so forth.

[0004] Each processor of the pool of processors has significant processing power.
This power may be underutilized. Typically such platforms group processors within
discrete processing nodes, and define computing boundaries around the processing nodes.
Thus, a particular function (e.g., a server) occupies a full processing node, and any
surplus processing power is wasted. Thus, an additional function (e.g., a second server)
is often implemented in another processing node, and cannot utilize the surplus from the
first processing node.

[0005] Virtual Machine technology may be used to partition physical processors and
provide finer processing granularity. Such Virtual Machine technology has existed for
some time. However, in order to use this technology, the technology administrator must
reconfigure the system to instantiate multiple Virtual Machines and then install operating
systems and application software on each one, which is tedious, error-prone, and
inflexible.

[0006] Consequently, there is a need for a system and method to automatically
provision the correct amount of processing resource to any given application, whether a
fraction of one physical processor, using Virtual Machine technology, or a plurality of
entire processors, while obviating the inconvenience and risk of Virtual Machine

installation and administration.

WO 2008/027768 PCT/US2007/076502

SUMMARY OF THE INVENTION

[0007] The invention provides virtual machine technology within a processing
platform. The invention relates to a unique method of combining Processing Arca
Networking technology and Virtual Machine technology.

[0008] Under one aspect of the invention, a computing platform automatically
deploys one or more servers in response to receiving corresponding server specifications.
Each server specification identifies a server application that a corresponding server
should execute and defines communication network and storage network connectivity for
the server. The platform includes a plurality of processor nodes each including at least
one computer processor and physical memory, and virtual machine hypervisor logic
installable and executable on a set of the processor nodes. The virtual machine
hypervisor logic has logic for instantiating and controlling the execution of one or more
guest virtual machines on a computer processor. Each guest virtual machine has an
allocation of physical memory and of processing resources. The platform also includes
control software executing on a processor for interpreting a server specification. In
response to interpreting the server specification, the control software deploys computer
processors or guest virtual machines to execute the identified server application and
automatically configures the defined communication network and storage network
connectivity to the selected computer processors or guest virtual machines to thereby
deploy the server defined in the server specification.

[0009] Under another aspect of the invention, the control software includes software
to automatically install and cause the execution of virtual machine hypervisor logic on a
processor node in response to interpreting a server specification and selecting a guest
virtual machine to satisfy requirements of the server specification.

[0010] Under another aspect of the invention, a server specification specifies a pool
corresponding to designated processing nodes or guest virtual machines, and the control
software includes logic to select processing nodes or guest virtual machines from the

specified pool to satisfy requirements of the server specification.

WO 2008/027768 PCT/US2007/076502

[0011] Under another aspect of the invention, the server specification is independent
of the virtual machine hypervisor logic.

[0012] Under another aspect of the invention, the platform includes multiple versions
of virtual machine hypervisor logic, and the control software can cause the installation
and simultaneous execution of a plurality of different versions of the virtual machine
hypervisor logic to satisfy a plurality of server specifications.

[0013] Under another aspect of the invention, the control software includes logic to
migrate the deployment of a server from a first set of computer processors or guest virtual
machines to a second set of computer processors or guest virtual machines.

[0014] Under another aspect of the invention, the servers deployed on the platform
are suspendable, and the control software includes logic to retain execution states of
suspended servers on persisted storage separate from any instance of virtual machine
hypervisor logic, so that such suspended states may be resumed by other instances of

virtual machine hypervisor logic.

BRIEF DESCRIPTION OF DRAWINGS

[0015] In the drawing,
FIG. 1 is a system diagram illustrating one embodiment of the invention;
FIGs. 2A-C arc diagrams illustrating the communication links established
according to one embodiment of the invention; and
FIG. 3 shows one embodiment of Virtual Machines implemented on a physical

processing node 105 according to the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0016] Preferred embodiments of the invention deploy virtual Processing Arca
Networks, in which the virtual Processing Arca Networks can have cither or both
physical (entire processors) and Virtual Machine (fractions of processors) processing
resources. The underlying Processing Arca Networking architecture for this embodiment

is described, for example, in U.S. Patent Publication US 2003/0130833, which is hereby

WO 2008/027768 PCT/US2007/076502

incorporated herein by reference in its entirety. Specific uses of this architecture are
disclosed in, for example, U.S. Patent Publication US 2004/0236987, U.S. Patent
Publication US 2004/0221150, U.S. Patent Publication US 2004/0220795, and U.S.
Patent Application 10/999118, all of which are hereby incorporated herein by reference in
their entirety.

[0017] Embodiments of the invention provide a system and method that
automatically establish Virtual Machines on one or more of the physical processing nodes
within a Processing Arca Network platform, when needed to correctly size the virtual
processing system to run an application, without requiring the skill or attention of a

human administrator.

Overview of an Exemplary Configurable Platform for Deploying Processing Area

Networks

[0018] Certain embodiments utilize configurable platforms for deploying Processing
Area Networks. Preferably these platforms are like those described in the incorporated
U.S. patent applications and/or like Egenera's “BladeFrame” platform.

[0019] In short, the platforms provide a collection of resources that may be allocated
and configured to emulate independent Processing Arca Networks in response to software
commands. The commands, for example, may or may not describe the number of
processing nodes that should be allocated to execute the server application. The
commands typically describe the network connectivity, the storage personality, and the
like for the Processing Area Network. The various networking, cabling, power, and so on
are cffectively emulated, and thus permit rapid instantiation of the processing network (as
opposed to the complicated and slow physical deployment in conventional approaches).
[0020] FIG. 1 depicts an exemplary platform for the described embodiments of the
invention. As outlined below and described in more detail in the incorporated patent
applications, preferred platforms provide a system, method and logic through which
virtual systems may be deployed through configuration commands. The platform

provides a large pool of processors from which a subset may be sclected and configured

WO 2008/027768 PCT/US2007/076502

through software commands to form a virtualized network of computers (“Processing
Area Network” or “processor clusters™) that may be deployed to serve a given set of
applications or customer. The virtualized Processing Arca Network may then be used to
execute arbitrary customer applications, just as conventionally assembled hardware
could, such as web-based server applications for example. FIGs. 2A-C show an
exemplary Processing Area Network. This Processing Arca Network could be used to
execute a tiered web-based application, for example. The virtualization may include
virtualization of local area networks (LANs) or the virtualization of disk storage. By
providing such a platform, processing resources may be deployed rapidly and casily
through software via configuration commands, ¢.g., from an administrator, rather than
through physically assembling servers, cabling network and storage connections,
providing power to each server, and so forth.

[0021] As shown in FIG. 1, a preferred hardware platform 100 includes a set of
processing nodes 105a-n connected to a switch fabrics 115a,b via high-speed,
interconnect 110a,b. The switch fabric 115a,b is also connected to at least one control
node 120a,b that is in communication with an external IP (Internet Protocol) network 125
(or other data communication network) providing communication outside the platform,
and with a storage arca network (SAN) 130 providing disk storage for the platform to use.
A management application 135, for example, executing remotely, may access one or
more of the control nodes via the IP network 125 to assist in configuring the platform 100
and deploying virtualized Processing Area Networks.

[0022] Under certain embodiments, about 24 processing nodes 105a-n, two control
nodes 120, and two switch fabrics 115a,b are contained in a single chassis and
interconnected with a fixed, pre-wired mesh of point-to-point links. Each processing
node 105 is a board that includes one or more (¢.g., 4) processors 106j-1, one or more
network interface cards (NICs) 107, and local memory (c.g., greater than 4 Gbytes) that,
among other things, includes some BIOS (basic input/output system) firmware for

booting and initialization,. There are no local disks for the processing nodes 106; instead,

WO 2008/027768 PCT/US2007/076502

SAN storage devices 130 handle all disk storage, including that needed for paging, for the
processing nodes.

[0023] Each control node 120 is a single board that includes one or more (e.g., 4)
processors, local memory, local disk storage for holding a bootable copy of the software
that runs on said control node, said software implementing the logic to control and
manage the entire platform 100, and removable media optical readers (not shown, such as
compact disk (CD) readers or digital versatile disk (DVD) readers) from which new
software can be installed into the platform. Each control node communicates with SAN
130 via 100-megabyte/second fibre-channel adapter cards 128 connected to fibre-channel
links 122, 124 and communicates with the Internet (or any other external network) 125
via an external network interface 129 having one or more Gigabit Ethernet NICs
connected to Gigabit Ethernet links 121,123. Many other techniques and hardware may
be used for SAN and external network connectivity. Each control node includes a low
speed Ethernet port (not shown) as a dedicated management port, which may be used
instead of or in addition to remote, web-based management via management application
135.

[0024] The switch fabric is composed of one or more 30-port Giganet switches 115,
such as the NIC-CLAN 1000 and CLAN 5300 switches, and the various processing and
control nodes use corresponding NICs for communication with such a fabric module.
Giganet switch fabrics have the semantics of a Non-Broadcast Multiple Access (NBMA)
network. All inter-node communication is via a switch fabric. Each link is formed as a
serial connection between a NIC 107 and a port in the switch fabric 115. Each link
operates at 112 megabytes/second. In other embodiments, other switching technology
may be utilized, for example, conventional Ethernet switching.

[0025] In some embodiments, multiple cabinets or chassis may be connected together
to form larger platforms. And in other embodiments the configuration may differ; for
example, redundant connections, switches and control nodes may be eliminated.

[0026] Under software control, the platform supports multiple, simultaneous and

independent Processing Arca Networks. Each Processing Arca Network, through

WO 2008/027768 PCT/US2007/076502

software commands, is configured to have a corresponding subset of processors 106 that
may communicate via a virtual local areca network that is emulated over the switch fabric
115. Each Processing Arca Network is also configured to have a corresponding virtual
disk subsystem that is emulated over the point-to-point mesh, through the control nodes
120, and out to the SAN storage fabric 130. No physical deployment or cabling is needed
to establish a Processing Area Network. When a specific processing node 105 is chosen
by control logic to deploy a virtual server, control logic programs the specific
communication paths through the switch fabric 115 that permit that deployment of the
virtual server to have the network connectivity to other servers executing on other
processing nodes 105 or to the external IP network 125 that its virtual definition specifies,
and to have the connectivity through the one or more control nodes 120 to the specific
disks of the external disk storage 130 that its virtual definition specifies. Under certain
preferred embodiments, software logic executing on the processor nodes and/or the
control nodes emulates switched Ethernet semantics.

[0027] Certain embodiments allow an administrator to build virtual, emulated LANs
using virtual components, interfaces, and connections. Each of the virtual LANs can be
internal and private to the platform 100, or the virtual LAN may be connected to the
external IP network 125, through the control nodes 120 and external links 121,123, Also
multiple processors may be formed into a processor cluster externally visible as a single
IP address.

[0028] Under certain embodiments, the virtual networks so created emulate a
switched Ethernet network, though the physical, underlying network may be a point-to-
point mesh. The virtual network utilizes Media Access Control (MAC) addresses as
specified by the Institute of Electrical and Electronic Engineers (IEEE), and the
processing nodes support Address Resolution Protocol (ARP) processing as specified by
the Internet Engineering Task Force (IETF) to identify and associate IP (Internet
Protocol) addresses with MAC addresses. Consequently, a given processor node replies
to an ARP request consistently whether the ARP request came from a node internal or

external to the platform.

WO 2008/027768 PCT/US2007/076502

[0029] The software commands from which Processing Area Networks are
configured take the form of definitions for the virtual servers within it, such definitions
being created by users or administrators of the platform and then stored on the local disks
of the one or more control nodes 120. A virtual server is defined with various attributes
that allow it operate in the same manner as an equivalent physical server once instantiated
by the control software. Virtual server attributes may define the server’s processor and
memory requirements. These may be expressed as the identifications of specific
processing nodes that meet the server’s requirements; they may be expressed as
identifications of pools populated by various suitable specific processing nodes; or they
may be expressed parametrically as minimum and maximum limits for the number of
processors, processor clock speeds, or memory size needed by the virtual server.
Virtualized firmware attributes for servers may define boot parameters such as boot
device ordering, network booting addresses, and authentication data or they may contain
settings that affect application performance such as hyperthreading enablement, memory
interleaving, or hardware prefetch. Server device connectivity attributes may be defined
for virtual NIC devices and may include MAC addresses, networking rate limits, and
optional connectivity to virtual network switches. Storage attributes may include
definitions of virtual disk devices and the mapping of such devices to reachable SAN
disks, storage locally attached to the one or more control nodes 120, or files that act as
disk devices if provided by the control software. Other attributes may include virtual
CD-ROM definitions that map virtual server CD-ROM devices to real CD-ROM devices
or to ISO CD-ROM image files managed by the control software.

[0030] FIG. 2A shows an exemplary network arrangement that may be modeled or
emulated. Processing nodes PN.sub.1, PN.sub.2, and PN.sub .k form a first subnet 202
that may communicate with one another via emulated switch 206. Processing nodes
PN.sub.k and PN.sub.m form a second subnet 204 that may communicate with one
another via emulated switch 208. Under switched Ethernet semantics, one node on a
subnet may communicate directly with another node on the subnet; for example, PN.sub.1

may send a message to PN.sub.2. The semantics also allow one node to communicate

WO 2008/027768 PCT/US2007/076502

with a set of the other nodes; for example PN.sub.1 may send a broadcast message to
other nodes. The processing nodes PN.sub.1 and PN.sub.2 cannot directly communicate
with PN.sub.m because PN.sub.m is on a different subnet. For PN.sub.1 and PN.sub.2 to
communicate with PN.sub.m higher layer networking software would need to be utilized,
which software would have a fuller understanding of both subnets. Though not shown in
the figure, a given switch may communicate via an uplink to another switch or an
external IP network. As will be appreciated given the description below, the need for
such uplinks is different than their need when the switches are physical. Specifically,
since the switches are virtual and modeled in software, they may scale horizontally to
interconnect as many processing nodes as needed. (In contrast, physical switches have a
fixed number of physical ports, and sometimes uplinks to further switches with additional
ports are needed to provide horizontal scalability.)

[0031] FIG. 2B shows exemplary software communication paths and logic used under
certain embodiments to model the subnets 202 and 204 of FIG. 2A. The point-to-point
communication paths 212 connect processing nodes PN.sub.1, PN.sub.2, PN.sub.k, and
PN.sub.m, specifically their corresponding processor-side network communication logic
210, and they also connect processing nodes to control nodes. (Though drawn as a single
instance of logic for the purpose of clarity, PN.sub.k may have multiple instances of the
corresponding processor logic, one per subnet, for example.) Under preferred
embodiments, management logic and the control node logic are responsible for
establishing, managing and destroying the communication paths, which are programmed
into the switching fabric. For reasons of security, the individual processing nodes are not
permitted to establish such paths, just as conventional physical computers are unable to
reach outside themselves, unplug their network cables, and plug them in somewhere clse.
[0032] As will be explained in detail below, the processor logic and the control node
logic together emulate switched Ethernet semantics over such communication paths. For
example, the control nodes have control node-side virtual switch logic 214 to emulate

some (but not necessarily all) of the semantics of an Ethernet switch, and the processor

10

WO 2008/027768 PCT/US2007/076502

logic includes logic to emulate some (but not necessarily all) of the semantics of an
Ethernet driver.

[0033] Within a subnet, one processor node may communicate directly with another
via a corresponding point-to-point communication path 212. Likewise, a processor node
may communicate with the control node logic via another point-to-point communication
path 212. Under certain embodiments, the underlying switch fabric and associated
control logic executing on control nodes provide the ability to establish and manage such
communication paths over the point-to-point switch fabric. Moreover, these
communication paths may be established in pairs or multiples, for increased bandwidth
and reliability.

[0034] Referring conjointly to FIGS. 2A-B, if node PN.sub.1 is to communicate with
node PN.sub.2 it does so ordinarily by communication path 212.sub.1-2. However,
preferred embodiments allow communication between PN.sub.land PN.sub.2 to occur via
switch emulation logic as well. If PN.sub.I is to broadcast or multicast a message to
other nodes in the subnet 202, it may do so by cloning or replicating the message and
sending it to each other node in the subnet individually. Alternately, it may do so by
sending a single message to control node-side logic 214. Control node-side logic 214
then emulates the broadcast or multicast functionality by cloning and sending the
message to the other relevant nodes using the relevant communication paths. The same
or analogous communication paths may be used to convey other messages requiring
control node-side logic. For example, as will be described below, control node-side logic
includes logic to support the Address Resolution Protocol (ARP), and communication
paths are used to communicate ARP replies and requests to the control node. Though the
above description suggests just one communication path between processor logic and
control logic, many embodiments employ several such connections for increased
bandwidth and availability. Morcover, though the figures suggest symmetry in the
software communication paths, the architecture actually allows asymmetric

communication. For example, as will be discussed below, for communication to

11

WO 2008/027768 PCT/US2007/076502

clustered services the packets would be routed via the control node. However, return
communication may be direct between nodes.

[0035] Notice that like the network of FIG. 2A, there is no mechanism for
communication between node PN.sub.2, and PN.sub.m. Moreover, by having
communication paths managed and created centrally (instead of via the processing nodes)
such a path is not creatable by the processing nodes, and a processor cannot violate the
defined subnet connectivity.

[0036] FIG. 2C shows the exemplary physical connections of certain embodiments to
realize the subnets of FIGS. 2A and B. Specifically, cach instance of processing network
logic 210 communicates with the switch fabric 115 via a point-to-point link 216 of
interconnect 110. Likewise, the control node has multiple instances of switch logic 214
and each communicates over a point-to-point connection 216 to the switch fabric. The
communication paths of FIG. 2B include the logic to convey information over these
physical links, as will be described further below.

[0037] To create and configure such networks, an administrator defines the network
topology of a Processing Arca Network and specifies (e.g., via a utility within the
management software 135) MAC address assignments of the various nodes. The MAC
address is virtual, identifying a communication path to a specified virtual server, and is
not tied to any of the various physical nodes on which that server may from time to time
be deployed. Under certain embodiments, MAC addresses follow the IEEE 48-bit
address format, but in which the contents include a “locally administered” bit set to 1, the
serial number of the control node 120 on which the communication path was originally
defined (more below), and a count value from a persistent sequence counter on the
control node that is kept in non-volatile memory in the control node to ensure that all
such addresses are unique and do not duplicate each other. These MACs will be used to
identify the nodes (as is conventional) at a networking layer 2 level. For example, in
replying to ARP requests (whether from a node internal to the Processing Arca Network
or on an external network) these MACs will be included in the ARP reply.

12

WO 2008/027768 PCT/US2007/076502

[0038] The control node-side networking logic maintains data structures that contain
information reflecting the connectivity of the LAN (e.g., which nodes may communicate
to which other nodes). The control node logic also allocates and assigns communication
paths mapping to the defined MAC addresses and allocates and assigns communication
paths between the control nodes and between the control nodes and the processing nodes.
In the example of FIG. 2A, the logic would allocate and assign communication paths 212
of FIG. 2B. (The naming of the communication paths in some embodiments is a
consequence of the switching fabric and the switch fabric manager logic employed.)
[0039] As cach processor boots, BIOS-based boot logic initializes each processor 106
of the node 105 and, among other things, discovers the communication path 212 to the
control node logic. The processor node then obtains from the control node relevant data
link information, such as the processor node's MAC address, and the MAC identities of
other devices within the same data link configuration. Each processor then registers its IP
address with the control node, which then binds the IP address to the node and a
communication path (¢.g., the communication path on which the registration arrived). In
this fashion, the control node will be able to bind IP addresses for each virtual MAC for
cach node on a subnet. In addition to the above, the processor node also obtains the
communication path-related information for its connections to other nodes or to control
node networking logic. Thus, after BIOS-based boot logic, the various processor nodes
understand their networking layer 2, or data link, connectivity. As will be explained
below, layer 3 (IP) connectivity and specifically layer 3 to layer 2 associations are
determined during normal processing of the processors as a consequence of the IETF
Address Resolution Protocol (ARP) which is a normal part of any operating system
running on the nodes..

[0040] After BIOS-based boot logic has established layer 2 network connectivity with
the platform’s one or more control nodes, the processor node proceeds with its operating
system boot. As on conventional processors, this can be a network boot or a disk boot.
The user who creates the definition of the virtual server to run on this node makes the

choice; that is, the way in which the virtual server boots is a property of the virtual server,

13

WO 2008/027768 PCT/US2007/076502

stored in its definition on the one or more control nodes, not a property of the processor
node chosen to run it. Just as the BIOS-based boot logic learns its network connectivity
from the one or more control nodes, it learns the choice of boot method from the one or
more control nodes. If the network boot method has been chosen in this virtual server’s
definition, then the BIOS-based boot logic performs a network boot in the normal way by
broadcasting a message on its virtualized network connections to locate a boot image
server. Logic on the one or more control nodes responds to this message, and supplies
the correct boot image for this virtual server, according to the server’s definition as stored
on the one of more control nodes. Boot images for virtual servers that choose the
network boot method are stored on the local disks of the one or more control nodes,
alongside the definitions of the servers themselves. Alternately, if the disk boot method
has been chosen in this virtual server’s definition, then several embodiments are possible.
In one embodiment, the BIOS logic built into the processing nodes is aware that such
processing nodes have no actual disks, and that disk operations are executed remotely, by
being placed in messages sent through the platform’s high-speed internal communication
network, through the one or more control nodes, and thence out onto the external SAN
fabric where those disk operations are ultimately executed on physical disks. In this case,
the BIOS boot logic performs a normal disk boot, though from a virtualized disk, and the
actual disk operations will be executed remotely on the SAN disk volume which has been
specified in this virtual server’s definition as the boot disk volume for this virtual server.
In another embodiment, the BIOS logic has no built-in awareness of how to virtualize
disk operations by sending them in messages to remote disks. In this case, the BIOS boot
logic, when instructed to do a disk boot, first performs a network boot anyway. In this
embodiment, the boot image that is sent by the one or more control nodes in response to
the network boot request is not the ultimate operating system boot image sought by the
boot operation, but that of intermediate booting logic that is aware of how to virtualize
disk operations by sending them in messages to remote disks. The image of this
intermediate booting logic is stored on the local disks of the one or more control nodes,

alongside other network boot images, so that it is available for this purpose. When this

14

WO 2008/027768 PCT/US2007/076502

intermediate booting logic has been loaded into the processing node and given control by
the BIOS boot logic, the intermediate booting logic performs the disk boot over the
virtualized disks, in the same manner as if such logic had been present in the BIOS logic
itself.

[0041] The operating system image loaded by the BIOS or intermediate booting logic
can be any of a number of operating systems of the user’s choice at the time he makes his
virtual server definition. Typical operating systems are open-source Linux, Microsoft
Windows, and Sun Microsystems Solaris Unix, though others are possible. The operating
system image that is part of a virtual server must have been installed with device driver
software that permits it to run on processing node hardware. Unlike conventional
computer hardware, processing nodes have no local networking, disk, or console
hardware. Consequently, networking, disk, and console devices must be virtualized for
the operating system. This virtualization is done by the device driver software installed
into the operating system boot image at the time that image is created (more on this
creation below). The device driver software presents the illusion to the operating system
that the hardware has physical networking, disk, and console functions. When the
operating system initiates a networking, disk, or console operation, the device driver
software places the operation into a message and sends it across the high-speed internal
communication fabric to the remote point at which the operation is actually executed.
Typically, loading device driver software that permits the operating system to run on
processing node hardware is the only requirement on the virtual server’s operating
system. The operating system itself, aside from the device driver software, is identical to
that which runs on any conventional computer. The operating system as well as all the
applications that run on it are unaware that their processing node lacks actual networking,
disk, and console hardware, because those functions are effectively simulated for it.
[0042] The next stage in the booting operation is for the operating system to initialize
itself, which consists of surveying the hardware it is running on (it will see the virtualized
network devices, virtualized disk devices, and virtualized console device simulated for it

by the device driver software), locating its file system (which it will see on one or more

15

WO 2008/027768 PCT/US2007/076502

of its virtualized disks), and finally launching user applications (which have been
installed into its file system). Aside from occurring on virtualized devices, these steps are
completely as on conventional computers. From this point on, the virtual server is up and
running the user’s applications in a completely normal fashion.

[0043] It should now be clear that operating systems, file systems, and application
programs are installed into virtual servers, not into the processing nodes on which those
virtual servers may from time to time run. Installation proceeds one way for virtual
servers which are to be booted from disk, and another way for those which are to be
booted from network. If a virtual server is to be booted from disk, then when such a
server is created (that is, its definition is created on the one or more control nodes), any
disks out in the SAN storage fabric assigned to it are blank and it has no operating system
or file systems or applications. The boot device marked in its definition is one of the
removable media optical readers provided on the one or more control nodes. When the
virtual server is booted for the first time, the user must insert the operating system
vendor’s installation media into the optical reader. The virtual server will perform its
disk boot from that media and execute the vendor’s installation program. The vendor’s
installation program will create file systems on one or more of the blank SAN disks
assigned to this virtual server and copy the operating system image from the optical
media into the virtual server’s file systems. The next time the virtual server is booted, it
can do a disk boot from its own SAN disks. Alternately, if the virtual server is to be
booted from network, its definition is made to point to an operating system image already
residing on the one or more control nodes, such image being simply a copy of an
operating system image that was once created by doing an installation from optical media
as just described, such images normally coming preloaded on the one or more control
nodes of the platform as they are shipped by the platform vendor. Then, control logic
executing on the one or more control nodes copies a file system onto one or more of the
SAN disks assigned to the virtual server, this file system being a copy of the file system
constructed during an operating system installation from optical media as just described.

Subsequent to the installation of the operating system and the attendant creation of a file

16

WO 2008/027768 PCT/US2007/076502

system for the virtual server by cither method above, the server is operable, and any
application programs the user wishes to install on it (i.c., into its file system) can be done
during normal operation of the server. That is, the server is booted, then an installation of
the application software is performed, just as it would on conventional hardware. The
application can be installed from optical media placed in the optical readers on the one or
more control nodes, or the installation software can be downloaded from the network, as
the virtual server has emulated network connectivity.

[0044] It should be appreciated that platforms other than that outlined above may be
used. That is, other arrangements of configurable platforms may also be utilized though
the internal architectures and capabilities may differ. For example, the preferred platform
includes particular types of emulation logic in connection with its supported Processing
Area Network networking functionality. Though this logic is believed to offer certain

advantages, it is not necessary for the present invention.

Implementing Virtual Machines

[0045] As described above, control nodes 120 boot operating system and application
software to the processing nodes 105 for use in implementing the Processing Arca
Networks. In the described embodiments, the processing nodes 105 also receive and
instantiate an additional software component referred to herein as a Virtual Machine (VM
) hypervisor, automatically when needed from the one or more control nodes 120. The
Virtual Machine hypervisor implements the logic which divides a physical processing
node into fractions, called Virtual Machines, within which “guest” operating systems and
applications can run as if they had an entire processing node to themselves. The Virtual
Machine hypervisor creates, manages, controls, and destroys Virtual Machine instances
on a given processing node. In preferred embodiments, the Virtual Machine hypervisor is
arranged as a thin software layer that is embedded between the processing node 105
hardware and the operating system software. The Virtual Machine hypervisor provides

an abstraction layer that allows each physical processor 107 on the processing node 105

17

WO 2008/027768 PCT/US2007/076502

to run one or more Virtual Machines, thereby decoupling the operating system and any
associated applications from the physical processor 107.

[0046] At least one of the preferred embodiments uses the Xen Virtual Machine
hypervisor, provided by XenSource of Palo Alto, California. Xen is an open-source,
feature-rich and efficient Virtual Machine hypervisor. Through its technique of
“paravirtualization” (guest OS source modifications), it can support Virtual Machines
with close to native performance. Xen 3.0 supports both uniprocessor and multiprocessor
Virtual Machines and a live migration capability that allows guest operating systems and
applications to move between hosts with minimal downtime (measured in milliseconds).
But the invention is not restricted to Xen. There are many Virtual Machine hypervisors
on the market, and the invention is capable of utilizing any of them. In fact, it is a benefit
of the invention that the details of the employed hypervisor are embedded internally to
the invention and hidden from users.

[0047] FIG. 3 shows Virtual Machines implemented on a physical processing node
105 according to one embodiment of the invention. This example shows four Virtual
Machines 302, 304, 306 and 308 supported by a Virtual Machine hypervisor 310, and
running on a physical processing node 105. The virtual machine instances are also
referred to as “guests”. In this embodiment, the Virtual Machine hypervisor 310 is a Xen
version 3.0 Virtual Machine hypervisor.

[0048] The first of the four Virtual Machines in this exemplary embodiment is the
“Privileged Guest” (PG) 302. The Privileged Guest is the first Virtual Machine to be
started, and provides management functions for the other guests 304, 306 and 308. The
Privileged Guest 302 hosts Virtual Machine management tools 316, an operating system
user space 318, an operating system kernel 320, and drivers 322 for communicating with
the physical hardware 105. The Privileged Guest runs no user applications, but is
dedicated to supporting the guests 304-306 that do. These components 316-322 are
standard parts of Virtual Machine technology.

[0049] The Processing Area Network agent 314 is an application that runs in the
Privileged Guest Virtual Machine 302 on top of the Privileged Guest operating system

18

WO 2008/027768 PCT/US2007/076502

318-320. The agent 314 is in communication with control logic on the one or more
control nodes of the platform through the high-speed internal communication network
shown in carlier figures. When control logic on the one or more control nodes determines
that Virtual Machine technology needs to be configured, managed, or controlled, said
logic sends messages containing Virtual Machine commands through the high-speed
internal communication network to the Processing Arca Network agent 314, which in turn
relays them to the Virtual Machine hypervisor 310. It is in this manner that control logic
running on the one or more control nodes is able to configure and administer the Virtual
Machine technology on each processing node 105. Said configuration and administration
can occur automatically, without the involvement of a human administrator. Also, as will
be seen later, even deployment of the Virtual Machine technology to processing node 105
can be performed automatically by the platform’s control logic, again without the
involvement of a human administrator.

[0050] The Privileged Guest operating system kernel 320 requires software drivers
322 to interface it to the hardware 105 on which it runs. In certain embodiments, the
drivers emulate Ethernet functionality over a point-to-point fabric; these drivers were
described in the patents and patent applications incorporated by reference. The drivers
322 permit the operating system kernel 320 to correctly operate on the hardware 105 and
to send and receive information over the high-speed internal communication network to
which the processing node hardware 105 is connected. The drivers 322 also provide
virtual disk, network, and console functions for the operating system kernel 320,
functions which are not present physically in hardware 105. Disk, network, and console
operations instantiated by the operating system kernel 320 are encapsulated in messages
by the drivers 322 and sent over the high-speed internal communication network to the
remote location where the actual physical disk, network, and console functions take
place. The operating system kernel 320 thus behaves as if it were provided with local
disk, network, and console functions, through the illusion provided by the drivers 322.

This virtualization is a standard part of Processing Area Networking technology.

19

WO 2008/027768 PCT/US2007/076502

[0051] Similarly, the Virtual Machine hypervisor 310 intercepts the disk, network,
and console functions of the guest Virtual Machines 304-308 which lack physical disk,
network, and console functions, and instead executes these functions in the context of the
Privileged Guest Virtual Machine 302, which it believes to have these functions. This is
standard Virtual Machine technology. In the current invention, the Privileged Guest
Virtual Machine 302 as well lacks actual physical disk, network, and console functions,
but these functions are provided virtually by drivers 322. Thus, disk, network, and
console operations which are instantiated in the guests 304-308 are first virtualized by the
Virtual Machine hypervisor 310 and sent to the Privileged Guest 302 for execution, and
then they are again virtualized by the drivers 322, after which they are sent over the high-
speed internal communication network to the remote points where they are ultimately
physically executed.

[0052] Each guest Virtual Machine 304-308 runs an instance of an operating system
(OS), such as a server operating system, together with its application workload, each
Virtual Machine running atop the Virtual Machine hypervisor. The operating system
instance does not access the physical processor 105 directly, but instead accesses the
physical processor 105 hardware through the Virtual Machine hypervisor. Through the
Virtual Machine hypervisor, the operating system instance can share the physical
processor hardware resources with other virtualized operating system instances and
applications.

[0053] Each Virtual Machine running on the Virtual Machine hypervisor can be
thought of as a partition of processing node 105, analogous in some ways to a partition of
a disk. While a disk partition splits a physical disk drive into smaller independent logical
disk units, a virtual machine splits a physical processing node 105 into independent
logical compute units.

[0054] The platform or Processing Area Network administrator specifies the
conceptual creation of Virtual Machines by entering configuration specifications for them
to the platform control logic running on the one or more control nodes, and each specified

Virtual Machine is associated with a particular processing node of the hardware platform.

20

WO 2008/027768 PCT/US2007/076502

The configuration specification defines how many processors and how much memory the
Virtual Machine emulates for the software that will run within it. While ordinarily with
Virtual Machine technology a Virtual Machine specification would need to describe
much more, in particular the network, disk, and console devices to be emulated by the
Virtual Machine, these details are unnecessary in the current embodiments. Instead,
those details are determined automatically from the virtual server definition at the time a
virtual server is assigned to run on the Virtual Machine, as will be described below. That
is to say, the network, disk, and console device configurations are considered to be
properties of the virtual server definition, not of the hardware the server runs on, whether
a physical processing node or a Virtual Machine. The configuration specifications of the
various Virtual Machines are persisted as part of the Processing Arca Network
configuration, alongside the various virtual server definitions, for example, on the local
disks of the one or more control nodes. (In certain embodiments, a Virtual Machine is
not actually created on a processing node at the time an administrator creates a definition
for it. The actual creation of the Virtual Machine is deferred, as will be described below.)
[0055] In the context of Figure 1, once one or more of the plurality of processing
nodes 105 have been specified to be divided up into guest Virtual Machines, the one of
more control nodes 120 can regard both undivided (physical) processing nodes as well as
the guest Virtual Machines on nodes fractioned by Virtual Machine technology equally as
the plurality of resources on which to deploy virtual servers. That is, according to
Processing Arca Networking technology, just as a virtual server is a definition, abstracted
away from any particular physical processor and capable of running on a variety of
physical processors, the virtual server is equally capable of running as a guest on a
fraction of a physical server allocated for it by a Virtual Machine hypervisor. Thus, with
the benefit of this invention, virtual server definitions can, without any change or
alteration to them, be instantiated on exactly the correct amount of processing resource,
be it one or more physical processors or a small virtual fraction of a single processor.
[0056] The actual choice of on what resource to launch a virtual server definition can

be made in a variety of ways, and the virtual server definition specifies how the choice

21

WO 2008/027768 PCT/US2007/076502

will be made. The user can choose a specific resource. The user can specify a collection
of resources that he has populated with resources of some given power or other preferred
attribute. The user can specify desired attributes for his virtual server, so that control
logic will sclect a resource of matching attributes, the attributes being such as the number
of processors required, the amount of memory required, and the like. The choice could
be made by control logic executing on the one or more control nodes that inspects the
load or performance metrics observed on running virtual servers and uses that knowledge
to launch future servers.

[0057] With this invention, it is casy to experiment with varying amounts of
processing resource for any given virtual server, by successively launching the virtual
server on alternative resources and seeing how it performs on each. Such experiments
take only minutes to perform with this invention, but they might take weeks without it.
[0058] A Virtual Machine instance is not created on a physical processing node at the
time the Virtual Machine’s definition is created. Instead, the creation of the actual
Virtual Machine is deferred until it is needed to run a virtual server or until an
administrator chooses to manually boot it.

[0059] At the time a virtual server is booted, a choice is made as to what processing
resource it will run on. This choice can be made in a variety of ways, as described above,
some manual and some automatic. Regardless of how the choice is made, if a Virtual
Machine is the chosen resource, control logic running on the one or more control nodes of
the platform is aware of whether or not Virtual Machine hypervisor and Virtual Machine
Privileged Guest are already running on the chosen physical processing node. If the
Virtual Machine technology is already running, the control logic automatically and
without human intervention instructs the Virtual Machine technology to create a guest
Virtual Machine to run the virtual server, including instructing it to emulate the network,
disk, and console devices of the virtual server definition, and then instructs the Virtual
Machine to perform an operating system boot operation. Referring to Figure 3, these
instructions are done in the form of command messages sent from the control logic

through the high-speed internal communication fabric to the Processing Area Networking

22

WO 2008/027768 PCT/US2007/076502

agent 314 residing on the physical processing node 105 hosting the chosen Virtual
Machine. The agent 314 relays those commands to its associated Privileged Guest
operating system 318-320 and Virtual Machine hypervisor 310, which in turn causes the
chosen Virtual Machine, say guest 306 for example, to configure the requested emulated
devices and then to perform an operating system boot operation. Said operating system
boot operation in guest 306 occurs in exactly the same manner as an operating system
boot operation on a physical processing node, as has been previously described, with the
one change that all the networking, disk, and console operations performed by the guest
Virtual Machine 306 as it boots are virtualized twice instead of only once, first by the
Virtual Machine technology embodied in the Virtual Machine hypervisor 310 and the
Virtual Machine Privileged Guest operating system 318-320, and then second by the
Processing Area Networking technology embodied in device drivers 322 in the Privileged
Guest, again as has been previously described.

[0060] On the other hand, at the time a virtual server is to be booted onto a Virtual
Machine, control logic may discover that no Virtual Machine technology is running on
the chosen physical processing node. In this case, control logic must boot the Virtual
Machine technology onto the processing node first before it can create a guest Virtual
Machine to boot the virtual server as above. Control logic boots the Virtual Machine
technology onto the processing node automatically and without human intervention by
instructing the processing node to perform a network boot (as if it were network booting a
normal virtual server) and supplying as the boot image a bootable image of the Virtual
Machine technology. This boot image is stored on the local disks of the one or more
control nodes, alongside other network boot images, so that it is available for this
purpose. Referring again to Figure 3, such an image would contain bootable copics of the
Virtual Machine hypervisor logic 310 and all components of the Privileged Guest
processing partition 302. When such an image is booted onto a processing node, the
Virtual Machine hypervisor 310 is installed, the Privileged Guest operating system 318-
320 is installed and initializes itself, including discovering how to use its device drivers

322 to exchange messages with control logic on the platform’s one or more control nodes.

23

WO 2008/027768 PCT/US2007/076502

Then the Processing Area Networking agent begins executing, and begins awaiting
messages containing commands sent from the platform’s control logic instructing the
Virtual Machine technology what to do. At this point, the control logic can proceed to
create a Virtual Machine and boot a virtual server onto it, as previously described.

[0061] The Privileged Guest operating system 318-320 normally incorporates a file
system (not shown in Figure 3) to store the configurations of the various guest Virtual
Machines 304-308 it may run from time to time. When Virtual Machine technology is
used on stand-alone computers, often this file system is hosted on local disks of those
computers. As the preferred embodiments deploy Virtual Machine technology upon
demand whenever needed, and no state is retained on a processing node in between
executions, any file system required by the Privileged Guest operating system 316-318 is
hosted in the memory of processing node 105, and it contents are discarded whenever the
last guest Virtual Machine 304-308 concludes execution. Thus, no disk storage need be
provided to processing node 105 for use of the Virtual Machine technology.

[0062] If Virtual Machine technology is found to be already running on the chosen
processing node when a virtual server is to be booted, the server boots more quickly, as it
does not have to wait for the Virtual Machine technology itself to boot first. Thus, in
some embodiments, the platform allows the administrator, if he so chooses, to ask that the
control logic boot a defined Virtual Machine immediately upon his request, rather than
waiting for a virtual server boot to trigger it.

[0063] It should be noted that the mechanics of deploying, configuring, and operating
the Virtual Machine technology are completely embedded within the platform, and that
no user or administrator involvement is necessary to launch or administer the Virtual
Machine technology. The platform automatically deploys, configures, and operates the
Virtual Machine technology as needed. In fact, users may deploy virtual servers on
various processor resources provided by the platform without any awareness as to
whether those resources are physical or virtual, or without being aware even that Virtual

Machine technology was being used inside the platform.

24

WO 2008/027768 PCT/US2007/076502

[0064] Some embodiments of Processing Area Networking technology provide
failover service to their virtual servers. This normally works by allowing virtual server
definitions to specify both a normal processing resource and a failover processing
resource. Such resource specifications may take a variety of forms, as described above,
such as a specific hardware node, a collection of resources, attributes of resources to be
matched, or the like. The virtual server is first booted on its normal processing resource.
Control logic located on the one or more control nodes constantly monitors the correct
operation of the server, such as by exchanging messages with it. If the server crashes or
becomes hung, the control logic will attempt to reboot it, first with the same processing
resource. If the problem was some transient software error, this will get the server
operational again. If the server again fails, perhaps there is a hardware error on the
normal processing resource, and the control logic moves the virtual server to the failover
processing resource. When Virtual Machine technology is added to a platform supporting
failover, the virtual server definitions still allow both the normal and the failover
processing resource to be specified. The only difference is that either or both of these
resources can be Virtual Machines as well as physical processing nodes, or pools or
attributes that include Virtual Machines as well as physical nodes. A virtual server
running on any resource, be it an entire physical node or a Virtual Machine, is first
rebooted on that same resource when it fails. If it fails again, it is rebooted on the failover
resource, be it a physical node or a Virtual Machine.

[0065] Some embodiments may fail over Virtual Machines to a different physical
processing node if the underlying physical processing node fails. Others may not. On an
embodiment which does not, best practice is to avoid specifying two Virtual Machines
hosted on the same physical processing node as the normal and failover processing
resources for a given virtual server. This is because a failure of that one physical
processing node would take down both of those Virtual Machines, and the virtual server
would fail. Instead, Virtual Machines on two different processing nodes should be
specified as the normal and the failover resources. That way, no single failure can

prevent the execution of the virtual server.

25

WO 2008/027768 PCT/US2007/076502

[0066] Virtual Machine technology may offer functions that arc unavailable on
physical processing hardware. Three such functions typically provided are suspend and
resume, migration of a suspended guest to another Virtual Machine, and migration of a
running guest to another Virtual Machine, though there may be others. Preferred
embodiments of the invention will allow these functions to be applied to a virtual server
when it is running as a Virtual Machine guest. (Unfortunately, these functions cannot be
supported for a virtual server when it is running alone on a physical processing node.)
[0067] To suspend means to stop the operation of a virtual server in the middle of its
execution, but in such a way that the entire state of its execution is saved, so that its
execution may be later resumed as if it had never been interrupted. When a virtual server
is running as a Virtual Machine guest, control logic running on the one or more control
nodes allows the user or administrator to ask that the server be suspended. Control logic
sends messages containing suspend commands to the Processing Area Networking agent
running on the server’s processing node, which in turn relays them to its Privileged Guest
operating system and Virtual Machine hypervisor. The Privileged Guest operating
system and Virtual Machine hypervisor together implement the suspend function as is
standard for Virtual Machine technology. The state of a suspended server includes the
contents of its processor registers and the contents of its memory at the instant of its
suspension. Typically, the register and memory state of a suspended server is written into
a file on the file system of the Privileged Guest operating system kernel. But retaining
such state there would associate such state with the processing node the server was
running on rather than with the virtual server definition, which must be independent of
any specific deployment. In the preferred embodiments, the suspended state data is
instead read out of the Privileged Guest’s file system by the Processing Area Networking
agent on the processing node and sent in messages to control logic on the one or more
control nodes, where it is written into a file on the persistent storage (e.g., local disks) of
the one or more control nodes, alongside and associated with the respective virtual server

definition.

26

WO 2008/027768 PCT/US2007/076502

[0068] At any subsequent time, a virtual server which had been suspended can be
resumed. The resumed virtual server can be deployed on the same processing node from
which it was suspended, or any other, because its saved state data has been retained
persistently on the one or more control nodes. When a suspended virtual server is to be
resumed, control logic on the one or more control blades instantiates a Virtual Machine
on which to deploy it, in the same way Virtual Machines are created when necessary to
boot any server. But instead of being told to boot the virtual server, the Virtual Machine
is instructed to resume the previously saved state. This instruction is done by commands
sent in messages from control logic on the one or more control nodes to the Processing
Area Networking agent on the resuming processing node. The data of the saved state is
also sent in such messages from where it was saved on the one or more control nodes to
the said Processing Area Networking agent, which in turn relays it to the Virtual Machine
technology performing the resume operation.

[0069] Some Virtual Machine technologies permit a running guest to be moved from
one Virtual Machine to another. Conceptually this can be thought of as suspending the
guest, moving its state, then resuming it. But in practice, the time it takes to move the
state is perceptible, and the delay during the suspension may be detrimental to the
functioning of the guest. Thus, moving a running guest is generally performed in a more
complex fashion that minimizes the delay. The memory state is copied while the guest is
running and still making changes to its memory. But the Virtual Machine technology has
the ability to intercept and monitor all accesses to memory, so it keeps track of what
portions of memory the guest changes during the copy. When the first copy completes,
the guest can be suspended for a short amount of time while just the portions of its
memory that changed during the first copy are transferred to the receiving Virtual
Machine. Preferred embodiments of the current invention permit users or administrators
to request migration of running virtual servers from one Virtual Machine to another. The
control logic for moving a running virtual server is actually identical to that for moving a

suspended one, as described above. All the complications of minimizing the delay while

27

WO 2008/027768 PCT/US2007/076502

the state is copied are handled by the embedded Virtual Machine technology, just as if it
were running on conventional computer hardware.

[0070] Another feature that Virtual Machine technology may offer is the ability to
map a guest’s virtualized disk onto a partition of a physical disk or onto a file in the
Privileged Guest’s file system. Thus, a small number of physical disks may support a
large number of guests, provided the guests do not consume much space on their virtual
disks. In the current invention this ability of Virtual Machine technology to map
virtualized disks onto other than full physical disks is not used, so that the disks a virtual
server is configured to access can follow it as it is launched from time to time on various
processing nodes or various Virtual Machines.

[0071] A number of different Virtual Machine technologies are available in the
industry, some popular ones being open-source Xen, EMC’s VMware, and Microsoft’s
Virtual Server. Different Virtual Machine technologies, while providing a large set of
features in common with each other, may offer unique features or other benefits, causing
users to sometimes prefer one over another. Some embodiments of the invention support
multiple Virtual Machine technologies simultaneously or multiple versions of the same
Virtual Machine technology. In such embodiments, the Virtual Server definition stored
on the one or more control nodes also specifies the chosen Virtual Machine technology
and version. Network boot images for all possible Virtual Machine technologics are
stored on the local disks of the one or more control blades, so that the correct image can
be deployed to a processing node when launching a particular Virtual Machine. Control
logic on the one or more control nodes and Processing Area Networking agents have the
ability to formulate and process the detailed commands needed to manage cach Virtual
Machine technology version, should those commands differ.

[0072] In some embodiments, some of the Virtual Machine technology may be
provided as hardware or firmware persistently resident on the platform’s processing
nodes, lessening the amount of such technology that need be downloaded to the
processing nodes from the one or more control nodes. Such technology is nonetheless

used as above to instantiate as needed the Virtual Machines on which to boot virtual

28

WO 2008/027768 PCT/US2007/076502

servers, and it is nonctheless configured and managed by commands sent from control
logic on the one or more control nodes to Processing Arca Networking agents located on
the respective processing nodes.

[0073] The invention may be embodied in other specific forms without departing
from the spirit or essential characteristics thereof. The present embodiments are therefore
to be considered in respects as illustrative and not restrictive, the scope of the invention
being indicated by the appended claims rather than by the foregoing description, and all
changes which come within the meaning and range of the equivalency of the claims are
therefore intended to be embraced therein.

What is claimed is:

29

WO 2008/027768 PCT/US2007/076502

1.

A computing platform for automatically deploying one or more servers in

response to receiving corresponding server specifications, each server specification

identifying a server application that a corresponding server should execute and defining

communication network and storage network connectivity for the server, the platform

comprising:

2.

a plurality of processor nodes cach including at least one computer processor and
physical memory;
virtual machine hypervisor logic installable and executable on a sct of the
processor nodes, the virtual machine hypervisor logic having logic for
instantiating and controlling the execution of one or more guest virtual
machines on a computer processor, cach guest virtual machine having an
allocation of physical memory and of processing resources;
control software executing on a processor for interpreting a server specification
and for, in response to interpreting the server specification,
deploying computer processors or guest virtual machines to execute the
identified server application and
automatically configuring the defined communication network and storage
network connectivity to the selected computer processors or guest
virtual machines to thereby deploy the server defined in the server

specification.

The platform of claim 1 wherein the control software includes software to

automatically install and cause the execution of virtual machine hypervisor logic on a

processor node in response to interpreting a server specification and selecting a guest

virtual machine to satisfy requirements of the server specification.

3.

The platform of claim 1 wherein a server specification specifies a pool

corresponding to designated processing nodes or guest virtual machines, and wherein

30

WO 2008/027768 PCT/US2007/076502

said control software includes logic to select processing nodes or guest virtual machines

from the specified pool to satisfy requirements of the server specification.

4, The platform of claim 1 wherein the virtual machine hypervisor logic is Xen

hypervisor software.

5. The platform of claim 1 wherein the server specification is independent of the

virtual machine hypervisor logic.

6. The platform of claim 1 wherein the platform includes multiple versions of virtual
machine hypervisor logic, and wherein the control software can cause the installation and
simultancous execution of a plurality of different versions of the virtual machine

hypervisor logic to satisfy a plurality of server specifications.

7. The platform of claim 1 wherein the control software includes logic to migrate the
deployment of a server from a first set of computer processors or guest virtual machines

to a second set of computer processors or guest virtual machines.

8. The platform of claim 1 wherein the processor nodes are connected to an internal
communication fabric, and wherein automatically configuring the defined communication
network includes configuring the internal communication fabric to emulate a defined
Ethernet connectivity, and wherein the processor nodes are provisioned to include
communication network drivers to emulate Ethernet functionality on the internal

communication fabric.

9. The platform of claim 1 wherein servers deployed on the platform are
suspendable, and wherein the control software includes logic to retain execution states of
suspended servers on persisted storage separate from any instance of virtual machine
hypervisor logic, so that such suspended states may be resumed by other instances of

virtual machine hypervisor logic.

31

WO 2008/027768 PCT/US2007/076502

10. The platform of claim 9 wherein the persisted storage is a local disk associated

with the control software.

1. The platform of claim 1 wherein the server specification is a computer-readable

document of pre-defined syntax.

12. A method for automatically deploying one or more servers in response to
receiving corresponding server specifications, each server specification identifying a
server application that a corresponding server should execute and defining
communication network and storage network connectivity for the server, the method
comprising:
providing a plurality of processor nodes each including at least one computer
processor and physical memory;
providing virtual machine hypervisor logic installable and executable on a set of
the processor nodes, the virtual machine hypervisor logic having logic for
instantiating and controlling the execution of one or more guest virtual
machines on a computer processor, cach guest virtual machine having an
allocation of physical memory and of processing resources;
control software, executing on a processor, interpreting a server specification and,
in response to interpreting the server specification,
deploying computer processors or guest virtual machines to execute the
identified server application and
automatically configuring the defined communication network and storage
network connectivity to the selected computer processors or guest
virtual machines to thereby deploy the server defined in the server

specification.

13. The method of claim 12 wherein the control software automatically installs and

causes the execution of virtual machine hypervisor logic on a processor node in response

32

WO 2008/027768 PCT/US2007/076502

to interpreting a server specification and selects a guest virtual machine to satisfy

requirements of the server specification.

14. The method of claim 12 wherein a server specification specifies a pool
corresponding to designated processing nodes or guest virtual machines, and wherein
said control software selects processing nodes or guest virtual machines from the

specified pool to satisfy requirements of the server specification.

15. The method of claim 12 wherein the platform includes multiple versions of virtual
machine hypervisor logic, and wherein the control software causes the installation and
simultancous execution of a plurality of different versions of the virtual machine

hypervisor logic to satisfy a plurality of server specifications.

16. The method of claim 12 wherein the control software migrates the deployment of
a server from a first set of computer processors or guest virtual machines to a second set

of computer processors or guest virtual machines.

17. The method of claim 12 wherein the processor nodes are connected to an internal
communication fabric, and wherein automatically configuring the defined communication
network includes configuring the internal communication fabric to emulate a defined
Ethernet connectivity, and wherein the processor nodes are provisioned to include
communication network drivers to emulate Ethernet functionality on the internal

communication fabric.

18. The method of claim 12 wherein servers deployed on the platform are
suspendable, and wherein the control software retains execution states of suspended
servers on persisted storage separate from any instance of virtual machine hypervisor
logic, so that such suspended states may be resumed by other instances of virtual machine

hypervisor logic.

19. The method of claim 18 wherein the persisted storage is a local disk associated

with the control software.

33

WO 2008/027768 PCT/US2007/076502

20. A computer program product for automatically deploying one or more servers on
a computing platform in response to receiving corresponding server specifications, each
server specification identifying a server application that a corresponding server should
execute and defining communication network and storage network connectivity for the
server, the platform having a plurality of processor nodes each including at least one
computer processor and physical memory, the computer program product including
computer executable instructions encoded on a computer readable medium including:
computer executable instructions for providing virtual machine hypervisor logic,
said virtual machine hypervisor logic having logic for instantiating and
controlling the execution of one or more guest virtual machines on a
computer processor, each guest virtual machine having an allocation of
physical memory and of processing resources;
computer executable control instructions for interpreting a server specification
and for, in response to interpreting the server specification,
deploying computer processors or guest virtual machines to execute the
identified server application and
automatically configuring the defined communication network and storage
network connectivity to the selected computer processors or guest
virtual machines to thereby deploy the server defined in the server

specification.

21. The computer program product of claim 20 wherein the computer executable
control instructions includes computer executable instructions to automatically install and
cause the execution of virtual machine hypervisor logic on a processor node in response
to interpreting a server specification and selecting a guest virtual machine to satisfy

requirements of the server specification.

22. The computer program product of claim 20 wherein a server specification
specifies a pool corresponding to designated processing nodes or guest virtual machines,

and wherein said computer executable control instructions includes logic to select

34

WO 2008/027768 PCT/US2007/076502

processing nodes or guest virtual machines from the specified pool to satisfy

requirements of the server specification.

23. The computer program product of claim 20 wherein the computer executable
instructions for providing virtual machine hypervisor logic provides multiple versions of
virtual machine hypervisor logic, and wherein the computer executable control
instructions can cause the installation and simultaneous execution of a plurality of
different versions of the virtual machine hypervisor logic to satisfy a plurality of server

specifications.

24. The computer program product of claim 20 wherein the computer executable
control instructions includes instructions to migrate the deployment of a server from a
first set of computer processors or guest virtual machines to a second set of computer

processors or guest virtual machines.

25. The computer program product of claim 20 wherein servers deployed on the
platform are suspendable, and wherein the computer executable control instructions
includes instructions to retain execution states of suspended servers on persisted storage
separate from any instance of virtual machine hypervisor logic, so that such suspended

states may be resumed by other instances of virtual machine hypervisor logic.

35

PCT/US2007/076502

WO 2008/027768

1/5

b Old

w 001

Y

v

qoLL eQ0L}

UgQ | spon
Buisseooid

A |

Aiowow |WGO1 8poN

4 4
4 ! §
Y

e] oo

a0zt
OpON 0uo)

61

- qsil
olqed Yopms

rJ
[
1 ===
8pON QU0 BgLl
Y =1 T olqed Youmg
tot
ger X
dl
afeugys
[B00]
qet
2160]
jusabrusw

Vrr Buisseooiy
Ar v %] [B)
/N .
a4
7 ®
V] °
o
OV 5oL
T SPON
| " 70T Buissaooiy
T —al
-, | BGOL 6pON

Bujssaooid

PCT/US2007/076502

WO 2008/027768

2/5

902 Yyoums

- s
. -
- -
R TP -
N o o

[AV4

e -
e e e

PCT/US2007/076502

WO 2008/027768

3/5

3

802

vie
o160

YOUMS [BNUIA

3

cle

T T gz "ol
o1boy 10sseooud
2ie
g oe [21z~
“|o1Bo} Jossaooud |
/i
AN
I 502
‘otg |, N s
o1boj 1osseooid . To0eEImS,)] o150
UOUMS [ENUIA
[Ad 3 \
2ie -
o L 2z
o160} Jossaooid|
e
NS 5

PCT/US2007/076502

WO 2008/027768

4/5

Yotz
oiBoj Josseooud

012
0|60} Josseooid

012
0160} 10ss800.d

013
oiBo} s0ss800.1d

Oc¢ 'Ol

0cL

Py
o150

UOUMS [BNUIA

0y 2

01607
YOUMG JenUIA

PCT/US2007/076502

WO 2008/027768

5/5

141013

€ 9Old

8poN Buissevoid [eoisAyd

JosinadAH WA

SIBALID |BNUIA

(SO g1s0n9
uo peseq)

jpula)y| 1seno

aoedg 1asn
g1seng

uopped
Buissaso.d
¢ 189Nn9

SIBALIP [BNUIA

(SO z1s9ND
uo paseq)

|pula}] 1889N5)

aoedg Jos
¢ seng

uopped
Buissaoolid
Z 1seng

SIDALIP [ENUIA

o S - o o - G D s 090w e O S @9 e W G - W - s T - - o " - W o - o]

(SO | 1s9nD
uo paseq)

[oulay| 1s8N9

soedg Jasn
L 1seno

uoped
Buisseso.d
Liseng

SJOAL(C

T 2 WD O 2) O " WS G ST S W SO U T S o T S 50 h W o S S . w — — — —— . o o T o B A . S o s

. e o o o o s oot - W 2o o e

uopied
Buissaoold

(9d)188n9
pabajialgd

80€ \»

90¢ \

yoe \

Z0€ \»

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings

