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(57) ABSTRACT 

Systems and methods for dynamically and intelligently esti 
mating analyte data from a continuous analyte sensor, includ 
ing receiving a data stream, selecting one of a plurality of 
algorithms, and employing the selected algorithm to estimate 
analyte values. Additional data processing includes evaluat 
ing the selected estimative algorithms, analyzing a variation 
of the estimated analyte values based on statistical, clinical, or 
physiological parameters, comparing the estimated analyte 
values with corresponding measure analyte values, and pro 
viding output to a user. Estimation can be used to compensate 
for time lag, match sensor data with corresponding reference 
data, warn of upcoming clinical risk, replace erroneous sen 
Sor data signals, and provide more timely analyte information 
encourage proactive behavior and preempt clinical risk. 
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SIGNAL PROCESSING FOR CONTINUOUS 
ANALYTE SENSOR 

RELATED APPLICATION 

0001. This application is a division of U.S. application Ser. 
No. 11/007,920, filed Dec. 8, 2004, which claims the benefit 
of U.S. Provisional Application No. 60/528,382, filed Dec. 9, 
2003, U.S. Provisional Application No. 60/587,787, filed Jul. 
13, 2004, and U.S. Provisional Application No. 60/614,683, 
filed Sep. 30, 2004. Each above-referenced application is 
hereby incorporated by reference herein in its entirety. 

FIELD OF THE INVENTION 

0002 The present invention relates generally to systems 
and methods for measuring and analyzing data obtained from 
a continuous analyte sensor. More particularly, the present 
invention relates to dynamic and intelligent estimation of 
analyte values from a continuous analyte sensor. 

BACKGROUND OF THE INVENTION 

0003 Diabetes mellitus is a disorder in which the pancreas 
cannot create Sufficient insulin (Type I or insulin dependent) 
and/or in which insulin is not effective (Type 2 or non-insulin 
dependent). In the diabetic state, the victim suffers from high 
blood Sugar, which may cause an array of physiological 
derangements (for example, kidney failure, skin ulcers, or 
bleeding into the vitreous of the eye) associated with the 
deterioration of Small blood vessels. A hypoglycemic reac 
tion (low blood Sugar) may be induced by an inadvertent 
overdose of insulin, or after a normal dose of insulin or 
glucose-lowering agent accompanied by extraordinary exer 
cise or insufficient food intake. 

0004 Conventionally, a person with diabetes carries a 
self-monitoring blood glucose (SMBG) monitor, which typi 
cally comprises uncomfortable finger pricking methods. Due 
to the lack of comfort and convenience, a person with diabetes 
will normally only measure his or her glucose levels two to 
four times per day. Unfortunately, these time intervals are so 
far apart that the person with diabetes will likely find out too 
late, sometimes incurring dangerous side effects, of a hyper 
or hypo-glycemic condition. In fact, it is not only unlikely that 
a person with diabetes will take a timely SMBG value, but the 
person with diabetes will not know if their blood glucose 
value is going up (higher) or down (lower) based on conven 
tional methods, inhibiting their ability to make educated insu 
lin therapy decisions. 
0005. Some attempts have been made to continuously 
measure the glucose concentration in a person with diabetes. 
Typically, these continuous glucose sensors have required a 
reference glucose monitor (for example, SMBG) to provide 
reference glucose values in order to calibrate and/or interpret 
data from the continuous glucose monitor. While the use of 
these reference glucose values can be helpful, they can also 
cause numerous inconsistencies and instabilities in the data 
output of the continuous glucose sensor. As one example, a 
time lag can be caused by an interstitial fluid sample mea 
Sured by an implantable glucose sensor as compared with a 
blood sample measured by an external reference glucose 
monitor, which can cause inaccurate calibration, outlier 
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detection, and data output. Additionally, the static use of 
algorithms may not adequately represent physiological trends 
in a human, for example. 

SUMMARY OF THE INVENTION 

0006. There exists a need for improvements in data pro 
cessing of continuous glucose sensors in order to better 
handle the inconsistencies and instabilities that occur in glu 
cose measurements and associated data analysis. 
0007 Accordingly, in a first embodiment, a method for 
estimating an analyte value from a continuous analyte sensor 
is provided, the method comprising receiving a data stream 
from the continuous analyte sensor for a first time period, 
thereby obtaining a measured analyte value; estimating at 
least one analyte value for a second time period based on the 
data stream; and comparing the estimated analyte value with 
the measured analyte value. 
0008. In an aspect of the first embodiment, the step of 
receiving a data stream comprises receiving a data stream that 
has been algorithmically smoothed. 
0009. In an aspect of the first embodiment, the step of 
receiving the data stream comprises receiving a raw data 
Stream. 

0010. In an aspect of the first embodiment, the step of 
estimating at least one analyte value further comprises select 
ing an algorithm from a plurality of algorithms based on an 
analysis of the data stream prior to estimating at least one 
analyte value. 
0011. In an aspect of the first embodiment, the step of 
selecting an algorithm is conditional upon at least one value 
selected from the group consisting of analyte concentration, 
rate of change, acceleration, and an individual historical pat 
tern of the data stream. 

0012. In an aspect of the first embodiment, the step of 
selecting an algorithm comprises employing the plurality of 
algorithms on the data stream and determining which of the 
plurality of algorithms best correlates with the data stream. 
0013. In an aspect of the first embodiment, the algorithm is 
selected from the group consisting of polynomial regression, 
autoregressive algorithms, Fourier transform, Wavelet trans 
form, neural network-based mapping, fuzzy logic based pat 
tern matching, and Genetic-Algorithms based pattern match 
1ng. 

0014. In an aspect of the first embodiment, the step of 
selecting an algorithm further comprises applying a physi 
ological boundary to the selected algorithm. 
0015. In an aspect of the first embodiment, the method 
further comprises evaluating the selected algorithm by apply 
ing an evaluation function prior to employing the selected 
algorithm to estimate the analyte value, wherein the evalua 
tion function is selected from the group consisting of a data 
association function, a curvature formula, and a physiological 
boundary. 
0016. In an aspect of the first embodiment, the step of 
analyzing a variation comprises analyzing a variation of the 
estimated analyte value based on a parameter selected from a 
statistical parameter, a clinical parameter, or a physiological 
parameter. 
0017. In an aspect of the first embodiment, the step of 
analyzing a variation comprises determining a physiological 
variation from the estimated analyte value. 
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0018. In an aspect of the first embodiment, the step of 
analyzing a variation comprises determining a statistical 
variation from the estimated analyte value based on a statis 
tical parameter. 
0019. In an aspect of the first embodiment, the step of 
comparing comprises determining a deviation between the 
estimated analyte value and the measured analyte value. 
0020. In an aspect of the first embodiment, the step of 
analyzing a variation comprises analyzing a variation of the 
estimated analyte value based on the deviation determined by 
the step of comparing. 
0021. In an aspect of the first embodiment, the method 
further comprises a step of recognizing a pattern by monitor 
ing a physiological parameter over time. 
0022. In an aspect of the first embodiment, the step of 
analyzing a variation comprises analyzing a variation in the 
physiological parameter to determine a variation of the esti 
mated analyte value. 
0023. In an aspect of the first embodiment, the step of 
analyzing a variation comprises determining a variation of the 
estimated analyte value based on a clinical risk of the esti 
mated analyte value to the user. 
0024. In an aspect of the first embodiment, the method 
further comprises providing output based on the estimated 
analyte data. 
0025. In an aspect of the first embodiment, the output 
displays an estimated analyte value to the user. 
0026. In an aspect of the first embodiment, the output 
displays an estimated path of analyte values for a future time 
period. 
0027. In an aspect of the first embodiment, the output 
displays an estimated analyte value at a future point in time. 
0028. In an aspect of the first embodiment, the output 
displays an estimated future time period of clinical risk. 
0029. In an aspect of the first embodiment, the time period 
of clinical risk is determined when an estimated analyte value 
falls outside of a normal analyte threshold. 
0030. In an aspect of the first embodiment, the analyte is 
blood glucose and the normal analyte threshold is from about 
100 mg/dL to about 160 mg/dL. 
0031. In an aspect of the first embodiment, the normal 
analyte threshold is from about 80 mg/dL to about 200 
mg/dL. 
0032. In an aspect of the first embodiment, the normal 
analyte threshold is from about 55 mg/dL to about 220 
mg/dL. 
0033. In an aspect of the first embodiment, the output 
displays at least one clinically acceptable target analyte value. 
0034. In an aspect of the first embodiment, the target ana 
lyte value is customizable by the user. 
0035. In an aspect of the first embodiment, the target ana 
lyte value is based on an individual physiological pattern. 
0036. In an aspect of the first embodiment, a parameter 
utilized in determining atherapy recommendation is customi 
Zable by the user. 
0037. In an aspect of the first embodiment, the output 
comprises an icon that has a shape representative of the ana 
lyzed variation of the estimated analyte value. 
0038. In an aspect of the first embodiment, the output 
comprises a dynamic visual representation of the analyzed 
variation of estimated analyte value. 
0039. In an aspect of the first embodiment, the output 
prompts the user to obtain a reference analyte value. 
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0040. In an aspect of the first embodiment, the output 
provides at least one alarm selected from the group consisting 
of a visual alarm, an audible alarm, and a tactile alarm, 
wherein the alarm is provided based on a clinical risk asso 
ciated with the estimated analyte value. 
0041. In an aspect of the first embodiment, the alarm is 
based on at least one parameter selected from the group 
consisting of an analyte value, a rate of change, acceleration 
of a rate of change, and an individual physiological pattern. 
0042. In an aspect of the first embodiment, the output 
continuously provides estimated analyte values. 
0043. In an aspect of the first embodiment, the output 
selectively provides the estimated analyte value based on an 
event trigger. 
0044. In an aspect of the first embodiment, the output 
provides a clinical risk Zone that is displayed on a screen. 
0045. In an aspect of the first embodiment, the clinical risk 
Zone comprises at least one of a shaded region, a colored 
region, and a patterned region. 
0046. In an aspect of the first embodiment, the clinical risk 
Zone is bounded by a threshold. 
0047. In an aspect of the first embodiment, the output 
provides the estimated analyte value and the variation of the 
estimated analyte value on a trend graph. 
0048. In an aspect of the first embodiment, the output 
provides the estimated analyte value and the variation of the 
estimated analyte value on a gradient bar. 
0049. In an aspect of the first embodiment, the output is 
sent to a personal computer. 
0050. In an aspect of the first embodiment, the output is 
sent to a modem. 
0051. In an aspect of the first embodiment, the output is 
sent to an insulin pen. 
0052. In an aspect of the first embodiment, the output is 
sent to an insulin pump. 
0053. In a second embodiment, a method forestimating an 
analyte value from a continuous analyte sensor is provided, 
the method comprising receiving a data stream from the con 
tinuous analyte sensor for a time period; estimating at least 
one analyte value for a future time based on the data stream; 
analyzing a variation of the estimated analyte value based on 
a parameter selected from the group consisting of a statistical 
parameter, a clinical parameter, or a physiological parameter; 
and providing an output based on the estimated analyte value 
and the variation of the estimated analyte value. 
0054. In an aspect of the second embodiment, the method 
further comprises evaluating the selected algorithm by apply 
ing an evaluation function prior to employing the selected 
algorithm to estimate the analyte value, wherein the evalua 
tion function is selected from the group consisting of a data 
association function, a curvature formula, and a physiological 
boundary. 
0055. In a third embodiment, a method for estimating an 
analyte value from a continuous analyte sensor is provided, 
the method comprising receiving a data stream from the con 
tinuous analyte sensor for a time period; selecting at least one 
algorithm from a plurality of algorithms based on an analysis 
of the data stream; evaluating the algorithm based on at least 
one parameter selected from the group consisting of a statis 
tical parameter, a physiological parameter, and a clinical 
parameter; and employing the selected algorithm based on 
the step of evaluating to estimate at least one analyte value. 
0056. In an aspect of the third embodiment, the method 
further comprises evaluating the selected algorithm by apply 
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ing an evaluation function prior to employing the selected 
algorithm to estimate the analyte value, wherein the evalua 
tion function is selected from the group consisting of a data 
association function, a curvature formula, and a physiological 
boundary. 
0057. In an aspect of the third embodiment, the method 
further comprises analyzing a variation of the estimated ana 
lyte value based on a parameter selected from a statistical 
parameter, a clinical parameter, and a physiological param 
eter. 

0058. In an aspect of the third embodiment, the output 
further comprises a therapy recommendation to help the user 
obtain a target analyte value. 
0059. In a fourth embodiment, a method for matching a 
data pair using data from a continuous analyte sensor with 
data from a reference analyte source is provided, the method 
comprising receiving a data stream from the continuousana 
lyte sensor, the data comprising at least one sensor data point; 
receiving reference data from a reference analyte monitor, the 
data comprising at least one reference data point; estimating 
at least one analyte value for a time period during which no 
data exists based on the data stream; and creating at least one 
matched data pair by matching the reference data to the ana 
lyte value. 
0060. In an aspect of the fourth embodiment, the step of 
receiving the data stream comprises receiving a data stream 
that has been algorithmically smoothed. 
0061. In an aspect of the fourth embodiment, the step of 
receiving reference data comprises downloading reference 
data via a cabled connection. 
0062. In an aspect of the fourth embodiment, the step of 
receiving reference data comprises downloading reference 
data via a wireless connection. 
0063. In an aspect of the fourth embodiment, the step of 
receiving reference data from a reference analyte monitor 
comprises receiving within a receiver an internal communi 
cation from a reference analyte monitor integral with the 
receiver. 
0064. In an aspect of the fourth embodiment, the algorithm 

is selected from the group consisting of polynomial regres 
Sion, autoregressive algorithms, Fourier transform, Wavelet 
transform, neural network-based mapping, fuzzy logic based 
pattern matching, and Genetic-Algorithm matching. 
0065. In an aspect of the fourth embodiment, the method 
further comprises evaluating the selected algorithm by apply 
ing an evaluation function prior to employing the selected 
algorithm to estimate the analyte value, wherein the evalua 
tion function is selected from the group consisting of a data 
association function, a curvature formula, and a physiological 
boundary. 
0066. In an aspect of the fourth embodiment, the method 
further comprises comparing the estimated analyte value with 
the corresponding measured analyte value to determine a time 
lag between the estimated analyte value and the correspond 
ing measured analyte value. 
0067. In a fifth embodiment, a method for compensating 
for a time lag of continuous analyte sensor data by estimating 
an analyte value for a present time from which the continuous 
analyte sensor data is delayed is provided, the method com 
prising receiving a data stream from the continuous analyte 
sensor, wherein the data stream comprises a physiological 
time lag from the present time or a computational time lag 
from the present time; continuously estimating or periodi 
cally estimating analyte values for a present time period based 
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on the data stream to compensate for the physiological time 
lag or the computational time lag in the analyte sensor data; 
and continuously providing or periodically providing an out 
put to a user based on the estimated analyte values, such that 
the output of the estimated analyte values provides present 
time analyte values to the user. 
0068. In an aspect of the fifth embodiment, the analyte 
value estimation step further comprises selecting an algo 
rithm from a plurality of algorithms based on analysis of the 
data stream prior to estimating the analyte values. 
0069. In an aspect of the fifth embodiment, the algorithm 
selection is conditional upon at least one value selected from 
the group consisting of analyte concentration, rate of change, 
acceleration, and an individual historical pattern of the data 
Stream. 

0070. In an aspect of the fifth embodiment, the method 
further comprises evaluating the selected algorithm by apply 
ing a data association function, a curvature formula, or physi 
ological boundaries prior to employing the selected algorithm 
to estimate analyte values. 
0071. In an aspect of the fifth embodiment, the method 
further comprises analyzing a variation of the estimated ana 
lyte values based on parameters selected from the group 
consisting of statistical parameters, clinical parameters, and 
physiological parameters. 
0072. In an aspect of the fifth embodiment, the step of 
analyzing a variation comprises determining a physiological 
variation from estimated analyte values. 
0073. In an aspect of the fifth embodiment, the step of 
analyzing a variation comprises determining a statistical 
variation from the estimated analyte values based on a statis 
tical parameter. 
0074. In an aspect of the fifth embodiment, the method 
further comprises comparing the estimated analyte values 
with the measured analyte values to determine a deviation 
between the estimated analyte values and the measured ana 
lyte values. 
0075. In an aspect of the fifth embodiment, the step of 
analyzing a variation comprises analyzing a variation of the 
estimated analyte values based on the deviation determined 
by the step of comparing. 
0076. In an aspect of the fifth embodiment, the output 
displays estimated analyte values to the user. 
0077. In an aspect of the fifth embodiment, the output 
further comprises a therapy recommendation to help the user 
obtain a target analyte value. 
0078. In an aspect of the fifth embodiment, the output 
comprises an icon that has a shape representative of the ana 
lyzed variation of the estimated analyte value. 
0079. In a sixth embodiment, a method for estimating 
analyte values from a continuous analyte sensor is provided, 
the method comprising receiving a data stream from the con 
tinuous analyte sensor for a time period; and estimating one or 
more analyte values for a time period based on the data 
stream, wherein analyte estimation comprises performing an 
algorithm to estimate analyte values and applying physiologi 
cal boundaries to the estimated analyte values. 
0080. In an aspect of the sixth embodiment, the analyte 
value estimation step further comprises selecting an algo 
rithm from a plurality of algorithms based on analysis of the 
data stream prior to estimating the analyte values. 
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0081. In an aspect of the sixth embodiment, the algorithm 
selection is conditional upon at least one of analyte concen 
tration, rate of change, acceleration, and individual historical 
patterns of the data stream. 
0082 In an aspect of the sixth embodiment, the algorithm 

is selected from the group consisting of polynomial regres 
Sion, autoregressive algorithms, Fourier transform, Wavelet 
transform, neural network-based mapping, fuzzy logic based 
pattern matching, and Genetic-Algorithm matching. 
0083. In an aspect of the sixth embodiment, the method 
further comprises evaluating the selected algorithm by apply 
ing a data association function, a curvature formula, or physi 
ological boundaries prior to employing the selected algorithm 
to estimate analyte values. 
0084. In an aspect of the sixth embodiment, the method 
further comprises analyzing a variation of the estimated ana 
lyte values based on statistical, clinical, or physiological 
parameters. 
0085. In an aspect of the sixth embodiment, the time 
period of clinical risk is determined when an estimated ana 
lyte value falls outside of a normal analyte threshold. 
I0086. In an aspect of the sixth embodiment, the output 
selectively provides estimated analytes value based on an 
event trigger. 
0087. In a seventh embodiment, a method for displaying 
analyte data from a continuous analyte sensor is provided, the 
method comprising receiving a data stream from the continu 
ous analyte sensor for a time period; calibrating the data 
stream using a conversion function to determine at least one 
calibrated analyte value; analyzing a variation of at least one 
calibrated analyte value based on a parameter selected from 
the group consisting of a statistical parameter, a clinical 
parameter, and a physiological parameter; and providing an 
output based on the calibrated analyte value and the variation 
of the calibrated analyte value. 
0088. In an aspect of the seventh embodiment, the output 
comprises a numerical representation of a calibrated analyte 
value and a variation of the calibrated analyte value. 
0089. In an aspect of the seventh embodiment, the output 
comprises a numerical representation of a range of possible 
analyte values. 
0090. In an aspect of the seventh embodiment, the output 
further comprises an arrow representing a rate of change of 
the calibrated analyte values. 
0091. In an eighth embodiment, a system for estimating 
analyte data from a continuous analyte sensor is provided, the 
system comprising an input module operatively connected to 
the continuous analyte sensor that receives a data stream 
comprising a plurality of time spaced sensor data points from 
the analyte sensor; and a processor module comprising pro 
gramming that estimates at least one analyte value for a time 
period based on the data stream and compares the estimated 
analyte value with a corresponding measured analyte value. 
0092. In an aspect of the eighth embodiment, the input 
module is adapted to receive a data stream that has been 
algorithmically smoothed. 
0093. In an aspect of the eighth embodiment, the input 
module is adapted to receive a raw data stream. 
0094. In an aspect of the eighth embodiment, the program 
ming to estimate an analyte value further comprises program 
ming to select an algorithm from a plurality of algorithms 
based on analysis of the data stream prior to estimating the 
analyte value. 
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0.095 Inanaspect of the eighth embodiment, the processor 
module further comprises programming to select the algo 
rithm conditional upon at least one parameter selected from 
the group consisting of an analyte concentration, a rate of 
change, acceleration of a rate of change, and an individual 
historical pattern of the data stream. 
0096. In an aspect of the eighth embodiment, the processor 
module runs the plurality of algorithms on the data stream and 
determines which of the plurality of algorithms best corre 
lates with the data stream. 
0097. In an aspect of the eighth embodiment, the processor 
module comprises programming to apply a physiological 
boundary to the selected algorithm. 
0098. In an aspect of the eighth embodiment, the processor 
module further comprises programming to evaluate the 
selected algorithm by applying a data association function, a 
curvature formula, or physiological boundaries prior to 
employing the selected algorithm to estimate analyte values. 
0099. In an aspect of the eighth embodiment, the processor 
module further comprises programming to analyze a varia 
tion of the estimated analyte value based on a parameter 
selected from the group consisting of statistical parameters, 
clinical parameters, and physiological parameters. 
0100. In an aspect of the eighth embodiment, the program 
ming to analyze a variation comprises determining a physi 
ological variation from the estimated analyte value. 
0101. In an aspect of the eighth embodiment, the program 
ming to analyze a variation comprises determining statistical 
variation from the estimated analyte value based on statistical 
parameters. 
0102. In an aspect of the eighth embodiment, the program 
ming to compare the estimated analyte value with the mea 
Sured analyte value further comprises determining a deviation 
between the estimated analyte value and the measured analyte 
value. 
0103) In an aspect of the eighth embodiment, the program 
ming to analyze a variation comprising analyzing a variation 
of the estimated analyte values based on the deviation deter 
mined by the comparison step. 
0104. In an aspect of the eighth embodiment, the processor 
module further comprises programming to recognize a pat 
tern by monitoring a physiological pattern over time. 
0105. In an aspect of the eighth embodiment, the program 
ming to analyze a variation comprises analyzing the physi 
ological pattern to determine a variation of the estimated 
analyte value. 
0106. In an aspect of the eighth embodiment, the program 
ming to analyze a variation comprises determining the varia 
tion of the estimated analyte value based on a clinical risk of 
the estimated analyte value to the user. 
0107. In an aspect of the eighth embodiment, the system 
further comprises an output module comprising program 
ming to output databased on the estimated analyte data. 
0108. In a ninth embodiment, a system forestimating ana 
lyte values from a continuous analyte sensor, the system 
comprising an input module operatively connected to the 
continuous analyte sensor that receives a data stream com 
prising a plurality of time spaced sensor data points from the 
analyte sensor, a processor module comprising programming 
that estimates at least one analyte value for a future time based 
on the data stream, and analyzes a variation of the estimated 
analyte value based on a parameter selected from the group 
consisting of a statistical parameter, a clinical parameter, and 
a physiological parameter, and an output module associated 
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with the processor module and comprising programming to 
output analyte databased on at least one estimated analyte 
value and the variation of the estimated analyte value. 
0109. In an aspect of the ninth embodiment, the input 
module is adapted to receive a data stream that has been 
algorithmically smoothed. 
0110. In an aspect of the ninth embodiment, the input 
module is adapted to receive a raw data stream. 
0111. In an aspect of the ninth embodiment, the program 
ming to estimate an analyte value further comprises program 
ming to select an algorithm from a plurality of algorithms 
based on analysis of the data stream prior to estimating the 
analyte value. 
0112. In an aspect of the ninth embodiment, the program 
ming to select an algorithm is conditional upon at least one 
parameter selected from the group consisting of an analyte 
concentration, a rate of change, an acceleration of a rate of 
change, and an individual historical pattern of the data stream. 
0113. In an aspect of the ninth embodiment, the program 
ming to select an algorithm further comprises employing the 
plurality of algorithms on the data stream and determining 
which of the plurality of algorithms best correlates with the 
data stream. 
0114. In an aspect of the ninth embodiment, the algorithms 
are selected from the group consisting of polynomial regres 
Sion, autoregressive algorithms, Fourier transform, Wavelet 
transform, neural network-based mapping, fuzzy logic based 
pattern matching, and Genetic-Algorithm matching. 
0115. In an aspect of the ninth embodiment, the processor 
module further comprises programming to apply a physi 
ological boundary to the selected algorithm. 
0116. In an aspect of the ninth embodiment, the processor 
module further comprises programming to evaluate the 
selected algorithm by applying a data association function, a 
curvature formula, or physiological boundaries prior to 
employing the selected algorithm to estimate the analyte 
value. 
0117. In an aspect of the ninth embodiment, the program 
ming to analyze a variation comprises determining a physi 
ological variation from the estimated analyte value. 
0118. In an aspect of the ninth embodiment, the program 
ming to analyze a variation comprises determining statistical 
variation from the estimated analyte value based on a statis 
tical parameter. 
0119. In an aspect of the ninth embodiment, the processor 
module compares the estimated analyte value with the mea 
sured analyte value to determine a deviation between the 
estimated analyte value and the measured analyte value. 
0120 In an aspect of the ninth embodiment, the program 
ming to analyze a variation comprises analyzing a variation of 
the estimated analyte value based on the deviation. 
0121. In an aspect of the ninth embodiment, the processor 
module further comprises programming to recognize a pat 
tern by monitoring a physiological pattern over time. 
0122. In an aspect of the ninth embodiment, the program 
ming to analyze a variation comprises analyzing the physi 
ological pattern to determine a variation of the estimated 
analyte value. 
0123. In an aspect of the ninth embodiment, the program 
ming to analyze a variation comprises determining the varia 
tion of the estimated analyte value based the clinical risk of 
the estimated analyte value to the user. 
0.124. In an aspect of the ninth embodiment, the output 
displays estimated analyte value to the user. 
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0.125. In a tenth embodiment, a system for estimating ana 
lyte values from a continuous analyte sensor is provided, the 
system comprising an input module operatively connected to 
the continuous analyte sensor that receives a data stream 
comprising a plurality of time spaced sensor data points from 
the analyte sensor; and a processor module comprising pro 
gramming that selects an algorithm from a plurality of algo 
rithms based on an analysis of the data stream, that evaluates 
the algorithm based on a parameter selected from the group 
consisting of statistical parameters, physiological param 
eters, and clinical parameters, and that employs a selected 
algorithm based on the algorithm evaluation to estimate at 
least one analyte value. 
I0126. In an eleventh embodiment, a system for matching 
data pairs from a continuous analyte sensor with data from a 
reference analyte Source, the system comprising a sensor 
input module operatively connected to the continuous analyte 
sensor that receives a data stream comprising a plurality of 
time spaced sensor data points from the analyte sensor; a 
reference input module receiving reference data from a ref 
erence analyte monitor, including at least one reference data 
point; and a processor module comprising programming that 
estimates at least one analyte value for a time period during 
which no data exists based on the data stream and creates at 
least one matched data pair by matching reference analyte 
data to the estimated analyte value. 
I0127. In a twelfth embodiment, a system for compensat 
ing for a time lag of continuous analyte sensor data by esti 
mating an analyte value for a present time from which the 
continuous analyte sensor data is delayed is provided, the 
system comprising an input module operatively connected to 
the continuous analyte sensor that receives a data stream 
comprising a plurality of time spaced sensor data points from 
the analyte sensor, a processor module comprising program 
ming that continuously estimates or periodically estimates 
analyte values for the present time period based on the data 
stream to compensate for the physiological or computational 
time lag in the analyte sensor data; and an output module 
associated with the processor module and comprising pro 
gramming to continuously provide or periodically provide an 
output to the user based on the estimated analyte values. Such 
that output of the estimated analyte values provides present 
time analyte values to the user. 
I0128. In a thirteenth embodiment, a system for estimating 
analyte values from a continuous analyte sensor is provided, 
the system comprising an input module operatively con 
nected to the continuous analyte sensor that receives a data 
stream comprising a plurality of time spaced sensor data 
points from the analyte sensor, and a processor module com 
prising programming that estimates at least one analyte value 
for a time period based on the data stream, wherein the analyte 
estimation comprises performing an algorithm to estimate an 
analyte value and applying a physiological boundary to the 
estimated analyte value. 
I0129. In a fourteenth embodiment, a system for displaying 
analyte data from a continuous analyte sensor is provided, the 
system comprising an input module operatively connected to 
the continuous analyte sensor that receives a data stream 
comprising a plurality of time spaced sensor data points from 
the analyte sensor, a processor module comprising program 
ming that calibrates the data stream using a conversion func 
tion to determine a calibrated analyte value and analyze a 
variation of the calibrated analyte value based on statistical, 
clinical, or physiological parameters; and an output module 
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associated with the processor module and comprising pro 
gramming to output databased on the calibrated analyte value 
and the variation of calibrated analyte value. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0130 FIG. 1 is a block diagram that illustrates the con 
figuration of the medical device in one embodiment, includ 
ing a continuous analyte sensor, a receiver, and an external 
device. 
0131 FIG. 2 is a flow chart that illustrates the process of 
measurement and calibration of the continuous analyte sensor 
in one embodiment. 
0132 FIG. 3 is a flow chart that illustrates the process of 
estimation of analyte values based on measured analyte val 
ues in one embodiment. 
0.133 FIG. 4 is a graph that illustrates the case where 
estimation is triggered by an event wherein a patient’s blood 
glucose concentration passes above a predetermined thresh 
old. 
0134 FIG. 5 is a graph that illustrates a raw data stream 
and corresponding reference analyte values. 
0135 FIG. 6 is a flow chart that illustrates the process of 
compensating for a time lag associated with a continuous 
analyte sensor to provide real-time estimated analyte data 
output in one embodiment. 
0.136 FIG. 7 is a graph that illustrates the data of FIG. 5, 
including reference analyte data and corresponding cali 
brated sensor analyte and estimated sensor analyte data, 
showing compensation for time lag using estimation. 
0137 FIG. 8 is a flow chart that illustrates the process of 
matching data pairs from a continuous analyte sensor and a 
reference analyte sensor in one embodiment. 
0138 FIG. 9 is a flow chart that illustrates the process of 
dynamic and intelligent estimation algorithm selection in one 
embodiment. 
0139 FIG. 10 is a graph that illustrates one case of 
dynamic and intelligent estimation applied to a data stream, 
showing first order estimation, second order estimation, and 
the measured values for a time period, wherein the second 
order estimation shows a closer correlation to the measured 
data than the first order estimation. 
0140 FIG. 11 is a flow chart that illustrates the process of 
estimating analyte values within physiological boundaries in 
one embodiment. 
0141 FIG. 12 is a graph that illustrates one case wherein 
dynamic and intelligent estimation is applied to a data stream, 
wherein the estimation performs regression and further 
applies physiological constraints to the estimated analyte 
data. 
0142 FIG. 13 is a flow chart that illustrates the process of 
dynamic and intelligent estimation and evaluation of analyte 
values in one embodiment. 

0143 FIG. 14 is a graph that illustrates a case wherein the 
selected estimative algorithm is evaluated in one embodi 
ment, wherein a correlation is measured to determine a devia 
tion of the measured analyte data with the selected estimative 
algorithm, if any. 
014.4 FIG. 15 is a flow chart that illustrates the process of 
evaluating a variation of estimated future analyte value pos 
sibilities in one embodiment. 

0145 FIG. 16 is a graph that illustrates a case wherein a 
variation of estimated analyte values is based on physiologi 
cal parameters. 

Feb. 12, 2009 

0146 FIG. 17 is a graph that illustrates a case wherein a 
variation of estimated analyte values is based on statistical 
parameters. 
0147 FIG. 18 is a flow chart that illustrates the process of 
estimating, measuring, and comparing analyte values in one 
embodiment. 
0148 FIG. 19 is a graph that illustrates a case wherein a 
comparison of estimated analyte values to time correspond 
ing measured analyte values is used to determine correlation 
of estimated to measured analyte data. 
014.9 FIG. 20 is an illustration of the receiver in one 
embodiment showing an analyte trend graph, including mea 
Sured analyte values, estimated analyte values, and a Zone of 
clinical risk. 
0150 FIG. 21 is an illustration of the receiver in one 
embodiment showing a gradient bar, including measured ana 
lyte values, estimated analyte values, and a Zone of clinical 
risk. 
0151 FIG. 22 is an illustration of the receiver in one 
embodiment showing an analyte trend graph, including mea 
Sured analyte values and one or more clinically acceptable 
target analyte values. 
0152 FIG. 23 is an illustration of the receiver of FIG. 22, 
further including estimated analyte values on the same 
SCC. 

0153 FIG. 24 is an illustration of the receiver of FIG. 23, 
further including a variation of estimated analyte values and 
therapy recommendations on the same screen to help the user 
obtain the displayed target analyte values. 
0154 FIG. 25 is an illustration of the receiver in one 
embodiment, showing measured analyte values and a 
dynamic visual representation of a range of estimated analyte 
values based on a variation analysis. 
0155 FIG. 26 is an illustration of the receiver in another 
embodiment, showing measured analyte values and a visual 
representation of range of estimated analyte values based on 
a variation analysis. 
0156 FIG. 27 is an illustration of the receiver in another 
embodiment, showing a numerical representation of the most 
recent measured analyte value, a directional arrow indicating 
rate of change, and a secondary numerical value representing 
a variation of the measured analyte value. 
0157 FIG. 28 depicts a conventional display of glucose 
data (uniform y-axis), 9-hour trend graph. 
0158 FIG. 29 depicts a utility-driven display of glucose 
data (non-uniform y-axis), 9-hour trend graph. 
0159 FIG. 30 depicts a conventional display of glucose 
data, 7-day glucose chart. 
0160 FIG. 31 depicts a utility-driven display of glucose 
data, 7-day control chart, median (interquartile range) of 
daily glucose. 
0.161 FIG.32 is an illustration of a receiver in one embodi 
ment that interfaces with a computer. 
(0162 FIG.33 is an illustration of a receiver in one embodi 
ment that interfaces with a modem. 
(0163 FIG.34 is an illustration of a receiver in one embodi 
ment that interfaces with an insulin pen. 
0.164 FIG.35 is an illustration of a receiver in one embodi 
ment that interfaces with an insulin pump. 

DETAILED DESCRIPTION OF CERTAIN 
EMBODIMENTS 

0.165. The following description and examples illustrate 
Some exemplary embodiments of the disclosed invention in 
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detail. Those of skill in the art will recognize that there are 
numerous variations and modifications of this invention that 
are encompassed by its scope. Accordingly, the description of 
a certain exemplary embodiment should not be deemed to 
limit the scope of the present invention. 

DEFINITIONS 

0166 In order to facilitate an understanding of the dis 
closed invention, a number of terms are defined below. 
0167. The term “analyte.” as used herein, is a broad term 
and is used in its ordinary sense, including, without limita 
tion, to refer to a Substance or chemical constituent in a 
biological fluid (for example, blood, interstitial fluid, cerebral 
spinal fluid, lymph fluid or urine) that can be analyzed. Ana 
lytes can include naturally occurring Substances, artificial 
Substances, metabolites, and/or reaction products. In some 
embodiments, the analyte for measurement by the sensor 
heads, devices, and methods is analyte. However, other ana 
lytes are contemplated as well, including but not limited to 
acarboxyprothrombin; acylcarnitine; adenine phosphoribo 
Syl transferase; adenosine deaminase; albumin; alpha-feto 
protein; amino acid profiles (arginine (Krebs cycle), histi 
dinefurocanic acid, homocysteine, phenylalanine?tyrosine, 
tryptophan); andrenostenedione; antipyrine; arabinitol enan 
tiomers; arginase; benzoylecgonine (cocaine); biotinidase; 
biopterin, c-reactive protein; carnitine; carnosinase; CD4; 
ceruloplasmin, chenodeoxycholic acid; chloroquine; choles 
terol, cholinesterase; conjugated 1-3 hydroxy-cholic acid; 
cortisol; creatine kinase; creatine kinase MM isoenzyme: 
cyclosporin A; d-penicillamine; de-ethylchloroquine; dehy 
droepiandrosterone sulfate; DNA (acetylator polymorphism, 
alcohol dehydrogenase, alpha 1-antitrypsin, cystic fibrosis, 
Duchenne/Becker muscular dystrophy, analyte-6-phosphate 
dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin 
C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab, 
beta-thalassemia, hepatitis B virus, HCMV, HIV-1, HTLV-1, 
Leber hereditary optic neuropathy, MCAD, RNA, PKU. Plas 
modium vivax, sexual differentiation, 21-deoxycortisol); 
desbutylhalofantrine; dihydropteridine reductase; diptheria/ 
tetanus antitoxin; erythrocyte arginase; erythrocyte protopor 
phyrin, esterase D; fatty acids/acylglycines; free B-human 
chorionic gonadotropin; free erythrocyte porphyrin; free thy 
roxine (FT4); free tri-iodothyronine (FT3); fumarylacetoac 
etase; galactose/gal-1-phosphate; galactose-1-phosphate 
uridyltransferase; gentamicin; analyte-6-phosphate dehydro 
genase; glutathione; glutathione perioxidase; glycocholic 
acid; glycosylated hemoglobin; halofantrine; hemoglobin 
variants; hexosaminidase A.; human erythrocyte carbonic 
anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine 
phosphoribosyltransferase; immunoreactive trypsin, lactate; 
lead; lipoproteins ((a), B/A-1, B); lysozyme; mefloquine; 
netilmicin; phenobarbitone; phenytoin: phytanic/pristanic 
acid; progesterone; prolactin; prolidase; purine nucleoside 
phosphorylase; quinine; reverse tri-iodothyronine (rT3); 
Selenium; serum pancreatic lipase; Sissomicin; Somatomedin 
C; specific antibodies (adenovirus, anti-nuclear antibody, 
anti-Zeta antibody, arbovirus, Aujeszky's disease virus, den 
gue virus, Dracunculus medimensis, Echinococcus granulo 
sus, Entamoeba histolytica, enterovirus, Giardia duodenal 
isa, Helicobacter pylori, hepatitis B virus, herpesvirus, HIV 
1, IgE (atopic disease), influenza virus, Leishmania 
donovani, leptospira, measles/mumps/rubella, Mycobacte 
rium leprae, Mycoplasma pneumoniae, Myoglobin, 
Onchocerca volvulus, parainfluenza virus, Plasmodium fall 
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ciparum, poliovirus, Pseudomonas aeruginosa, respiratory 
syncytial virus, rickettsia (Scrub typhus), Schistosoma man 
soni, Toxoplasma gondii, Trepenoma pallidium, Trypano 
Soma Cruzi/rangeli, Vesicular stomatis virus, Wuchereria 
bancrofti, yellow fever virus); specific antigens (hepatitis B 
virus, HIV-1); succinylacetone; sulfadoxine; theophylline; 
thyrotropin (TSH); thyroxine (T4); thyroxine-binding globu 
lin; trace elements; transferrin; UDP-galactose-4-epimerase; 
urea; uroporphyrinogen I synthase; vitamin A; white blood 
cells; and Zinc protoporphyrin. Salts, Sugar, protein, fat, Vita 
mins and hormones naturally occurring in blood or interstitial 
fluids can also constitute analytes in certain embodiments. 
The analyte can be naturally present in the biological fluid, for 
example, a metabolic product, a hormone, an antigen, an 
antibody, and the like. Alternatively, the analyte can be intro 
duced into the body, for example, a contrast agent for imag 
ing, a radioisotope, a chemical agent, a fluorocarbon-based 
synthetic blood, or a drug or pharmaceutical composition, 
including but not limited to insulin; ethanol; cannabis (mari 
juana, tetrahydrocannabinol, hashish); inhalants (nitrous 
oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydro 
carbons); cocaine (crack cocaine); stimulants (amphet 
amines, methamphetamines, Ritalin, Cylert, Preludin, 
Didrex, PreState, Voranil, Sandrex, Plegine); depressants 
(barbituates, methaqualone, tranquilizers such as Valium, 
Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens 
(phencyclidine, lysergic acid, mescaline, peyote, psilocybin); 
narcotics (heroin, codeine, morphine, opium, meperidine, 
Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, 
Lomotil); designer drugs (analogs of fentanyl, meperidine, 
amphetamines, methamphetamines, and phencyclidine, for 
example, Ecstasy); anabolic steroids; and nicotine. The meta 
bolic products of drugs and pharmaceutical compositions are 
also contemplated analytes. Analytes Such as neurochemicals 
and other chemicals generated within the body can also be 
analyzed, such as, for example, ascorbic acid, uric acid, 
dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4- 
Dihydroxyphenylacetic acid (DOPAC), Homovanillic acid 
(HVA), 5-Hydroxytryptamine (5HT), and 5-Hydroxyin 
doleacetic acid (FHIAA). 
0.168. The term “continuous analyte sensor, as used 
herein, is a broad term and is used in its ordinary sense, 
including, but not limited to, a device that continuously or 
continually measures a concentration of an analyte, for 
example, at time intervals ranging from fractions of a second 
up to, for example, 1, 2, or 5 minutes, or longer. In one 
exemplary embodiment, the continuous analyte sensor is a 
glucose sensor such as described in U.S. Pat. No. 6,001,067, 
which is incorporated herein by reference in its entirety. 
0169. The term “continuous analyte sensing, as used 
herein, is a broad term and is used in its ordinary sense, 
including, but not limited to, the period in which monitoring 
of an analyte is continuously or continually performed, for 
example, at time intervals ranging from fractions of a second 
up to, for example, 1, 2, or 5 minutes, or longer. 
(0170 The terms “reference analyte monitor,” “reference 
analyte meter, and “reference analyte sensor, as used herein, 
are broad terms and are used in their ordinary sense, includ 
ing, but not limited to, a device that measures a concentration 
ofan analyte and can be used as a reference for the continuous 
analyte sensor, for example a self-monitoring blood glucose 
meter (SMBG) can be used as a reference for a continuous 
glucose sensor for comparison, calibration, or the like. 
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0171 The term “biological sample, as used herein, is a 
broad term and is used in its ordinary sense, including, but not 
limited to, sample of a host body, for example, blood, inter 
Stitial fluid, spinal fluid, saliva, urine, tears, Sweat, or the like. 
0172. The term “host, as used herein, is a broad term and 

is used in its ordinary sense, including, but not limited to, 
mammals such as humans. 

0173 The term “processor, as used herein, is abroad term 
and is used in its ordinary sense, including, but not limited to, 
a computer system, state machine, or the like that performs 
arithmetic and logic operations using logic circuitry that 
responds to and processes the basic instructions that drive a 
computer. 
0.174. The term “ROM, as used herein, is a broad term and 

is used in its ordinary sense, including, but not limited to, 
read-only memory, which is a type of data storage device 
manufactured with fixed contents. ROM is broad enough to 
include EEPROM, for example, which is electrically erasable 
programmable read-only memory (ROM). 
(0175. The term “RAM, as used herein, is abroad term and 
is used in its ordinary sense, including, but not limited to, a 
data storage device for which the order of access to different 
locations does not affect the speed of access. RAM is broad 
enough to include SRAM, for example, which is static ran 
dom access memory that retains data bits in its memory as 
long as power is being Supplied. 
(0176 The term “A/D Converter, as used herein, is abroad 
term and is used in its ordinary sense, including, but not 
limited to, hardware and/or software that converts analog 
electrical signals into corresponding digital signals. 
0177. The term “RF transceiver, as used herein, is abroad 
term and is used in its ordinary sense, including, but not 
limited to, a radio frequency transmitter and/or receiver for 
transmitting and/or receiving signals. 
0178. The terms "raw data stream” and “data stream, as 
used herein, are broad terms and are used in their ordinary 
sense, including, but not limited to, an analog or digital signal 
directly related to the analyte concentration measured by the 
analyte sensor. In one example, the raw data stream is digital 
data in “counts’ converted by an A/D converter from an 
analog signal (for example, Voltage oramps) representative of 
an analyte concentration. The terms broadly encompass a 
plurality of time spaced data points from a Substantially con 
tinuous analyte sensor, which comprises individual measure 
ments taken at time intervals ranging from fractions of a 
second up to, for example, 1, 2, or 5 minutes or longer. 
0179 The terms “calibrated data and “calibrated data 
stream, as used herein, are broad terms, and are used in their 
ordinary sense, including, but not limited to, data that has 
been transformed from its raw state to another state using a 
function, for example a conversion function, to provide a 
meaningful value to a user. The terms “smoothed data and 
“filtered data, as used herein, are broad terms and are used in 
their ordinary sense, including, but not limited to, data that 
has been modified to make it Smoother and more continuous 
and/or to remove or diminish outlying points, for example, by 
performing a moving average of the raw data stream. 
0180. The term “counts, as used herein, is a broad term 
and is used in its ordinary sense, including, but not limited to, 
a unit of measurement of a digital signal. In one example, a 
raw data stream measured in counts is directly related to a 
voltage (for example, converted by an A/D converter), which 
is directly related to current from a working electrode. 
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0181. The term “electronic circuitry, as used herein, is a 
broad term and is used in its ordinary sense, including, but not 
limited to, the components (for example, hardware and/or 
Software) of a device configured to process data. In the case of 
an analyte sensor, the data includes biological information 
obtained by a sensor regarding the concentration of the ana 
lyte in a biological fluid. U.S. Pat. Nos. 4,757,022, 5,497,772 
and 4,787,398, which are hereby incorporated by reference in 
their entirety, describe suitable electronic circuits that can be 
utilized with devices of certain embodiments. 

0182. The term “potentiostat, as used herein, is a broad 
term and is used in its ordinary sense, including, but not 
limited to, an electrical system that controls the potential 
between the working and reference electrodes of a two-elec 
trode cell or three-electrode cell at a preset value. The poten 
tiostat forces whatever current is necessary to flow between 
the working and counter electrodes to keep the desired poten 
tial, as long as the needed cell Voltage and current do not 
exceed the compliance limits of the potentiostat. 
0183 The term “electrical potential.” as used herein, is a 
broad term and is used in its ordinary sense, including, but not 
limited to, the electrical potential difference between two 
points in a circuit, which is the cause of the flow of a current. 
0.184 The terms “operably connected' and “operably 
linked as used herein, are broad terms and are used in their 
ordinary sense, including, but not limited to, one or more 
components being linked to another component(s) in a man 
ner that allows transmission of signals between the compo 
nents. For example, one or more electrodes can be used to 
detect the amount of glucose in a sample and convert that 
information into a signal; the signal can then be transmitted to 
an electronic circuit. In this case, the electrode is "operably 
linked to the electronic circuit. These terms are broad 
enough to include wired and wireless connectivity. 
0185. The term “algorithm, as used herein, is a broad term 
and is used in its ordinary sense, including, but not limited to, 
the computational processes (for example, programs) 
involved in transforming information from one state to 
another, for example using computer processing. 
0186 The term "estimation algorithm, as used herein, is 
a broad term and is used in its ordinary sense, including, but 
not limited to, the processing involved in estimating analyte 
values from measured analyte values for a time period during 
which no data exists (e.g., for a future time period or during 
data gaps). This term is broad enough to include one or a 
plurality of algorithms and/or computations. This term is also 
broad enough to include algorithms or computations based on 
mathematical, statistical, clinical, and/or physiological infor 
mation. 

0187. The term “regression as used herein, is a broad 
term and is used in its ordinary sense, including, but not 
limited to, finding a line in which a set of data has a minimal 
measurement (for example, deviation) from that line. Regres 
sion can be linear, non-linear, first order, second order, and so 
forth. One example of regression is least squares regression. 
0188 The terms “recursive filter and “auto-regressive 
algorithm, as used herein, are broad terms and are used in 
their ordinary sense, including, but not limited to, an equation 
in which includes previous averages are part of the next 
filtered output. More particularly, the generation of a series of 
observations whereby the value of each observation is partly 
dependent on the values of those that have immediately pre 
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ceded it. One example is a regression structure in which 
lagged response values assume the role of the independent 
variables. 
0189 The terms “velocity' and “rate of change.” as used 
herein, are broad terms and are used in their ordinary sense, 
including, but not limited to, time rate of change; the amount 
of change divided by the time required for the change. In one 
embodiment, these terms refer to the rate of increase or 
decrease in an analyte for a certain time period. 
0190. The term “acceleration” as used herein, is a broad 
term and is used in its ordinary sense, including, but not 
limited to, the rate of change of velocity with respect to time. 
This term is broad enough to include deceleration. 
0191 The term “variation,” as used herein, is abroad term 
and is used in its ordinary sense, including, but not limited to, 
a divergence or amount of change from a point, line, or set of 
data. In one embodiment, estimated analyte values can have a 
variation including a range of values outside of the estimated 
analyte values that represent a range of possibilities based on 
known physiological patterns, for example. 
0192 The term “deviation,” as used herein, is abroad term 
and is used in its ordinary sense, including, but not limited to, 
a statistical measure representing the difference between dif 
ferent data sets. The term is broad enough to encompass the 
deviation represented as a correlation of data. 
0193 The terms “statistical parameters' and “statistical.” 
as used herein, are broad terms and are used in their ordinary 
sense, including, but not limited to, information computed 
from the Values of a sampling of data. For example, noise or 
variability in data can be statistically measured. 
0194 The term “statistical variation,” as used herein, is a 
broad term and is used in its ordinary sense, including, but not 
limited to, divergence or change from a point, line, or set of 
data based on statistical information. The term “statistical 
information' is broad enough to include patterns or data 
analysis resulting from experiments, published or unpub 
lished, for example. 
0195 The term “clinical risk.” as used herein, is a broad 
term and is used in its ordinary sense, including, but not 
limited to, an identified danger or potential risk to the health 
of a patient based on a measured or estimated analyte con 
centration, its rate of change, and/or its acceleration. In one 
exemplary embodiment, clinical risk is determined by a mea 
sured glucose concentration above or below a threshold (for 
example, 80-200 mg/dL) and/or its rate of change. 
0196. The term “clinically acceptable as used herein, is a 
broad term and is used in its ordinary sense, including, but not 
limited to, an analyte concentration, rate of change, and/or 
acceleration associated with that measured analyte that is 
considered to be safe for a patient. In one exemplary embodi 
ment, clinical acceptability is determined by a measured glu 
cose concentration within a threshold (for example, 80-200 
mg/dL) and/or its rate of change. 
0197) The terms “physiological parameters' and “physi 
ological boundaries, as used herein, are broad terms and are 
used in their ordinary sense, including, but not limited to, the 
parameters obtained from continuous studies of physiologi 
cal data in humans and/or animals. For example, a maximal 
Sustained rate of change of glucose in humans of about 4 to 5 
mg/dL/min and a maximum acceleration of the rate of change 
of about 0.1 to 0.2 mg/dL/min are deemed physiologically 
feasible limits; values outside of these limits would be con 
sidered non-physiological. As another example, the rate of 
change of glucose is lowest at the maxima and minima of the 
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daily glucose range, which are the areas of greatest risk in 
patient treatment, thus a physiologically feasible rate of 
change can be set at the maxima and minima based on con 
tinuous studies of glucose data. As a further example, it has 
been observed that the best solution for the shape of the curve 
at any point along glucose signal data stream over a certain 
time period (for example, about 20 to 30 minutes) is a straight 
line, which can be used to set physiological limits. These 
terms are broad enough to include physiological parameters 
for any analyte. 
0198 The terms “individual physiological patterns” and 
“individual historical patterns.” as used herein, are broad 
terms and are used in their ordinary sense, including, but not 
limited to, patterns obtained by monitoring a physiological 
characteristic, such as glucose concentration, in a mammal 
over a time period. For example, continual or continuous 
monitoring of glucose concentration inhumans can recognize 
a “normal” pattern of turnaround at the human's lowest glu 
cose levels. 
0199 The term “physiological variation, as used herein, 

is a broad term and is used in its ordinary sense, including, but 
not limited to, divergence or change from a point, line, or set 
of databased on known physiological parameters and/or pat 
terns. 

0200. The terms “data association' and “data association 
function as used herein, are broad terms and are used in their 
ordinary sense, including, but not limited to, a statistical 
analysis of data and particularly its correlation to, or deviation 
from, a particular line. A data association function is used to 
show data association. For example, a measured glucose data 
stream as described herein can be analyzed mathematically to 
determine its correlation to, or deviation from, an estimated 
data stream for a corresponding time period; this correlation 
or deviation is the data association. Examples of data asso 
ciation functions include, but are not limited to, linear regres 
Sion, non-linear mapping/regression, rank (for example, non 
parametric) correlation, least mean square fit, mean absolute 
deviation (MAD), and/or mean absolute relative difference 
(MARD). 
0201 The terms “clinical error grid.” “clinical error analy 
sis' and "error grid analysis, as used herein, are broad terms 
and are used in their ordinary sense, including, but not limited 
to, an analysis method that assigns a specific level of clinical 
risk to an error between two time corresponding analyte mea 
surements. Examples include Clarke Error Grid, Consensus 
Grid, mean absolute relative difference, rate grid, or other 
clinical cost functions. 
0202 The term “Clarke Error Grid, as used herein, is a 
broad term and is used in its ordinary sense, including, but not 
limited to, an error grid analysis, which evaluates the clinical 
significance of the difference between a reference glucose 
value and a sensor generated glucose value, taking into 
account 1) the value of the reference glucose measurement, 2) 
the value of the sensor glucose measurement, 3) the relative 
difference between the two values, and 4) the clinical signifi 
cance of this difference. See Clarke et al., “Evaluating Clini 
cal Accuracy of Systems for Self-Monitoring of Blood Glu 
cose. Diabetes Care, Volume 10, Number 5, September 
October 1987, which is incorporated by reference herein in its 
entirety. 
0203 The term “rate grid”, as used herein, is a broad term 
and is used in its ordinary sense, including, without limita 
tion, to refer to an error grid analysis, which evaluates the 
clinical significance of the difference between a reference 
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glucose value and a continuous sensor generated glucose 
value, taking into account both single-point and rate-of 
change values. One example of a rate grid is described in 
Kovatchev, B.P.: Gonder-Frederick, L.A.: Cox, D.J., Clarke, 
W. L. Evaluating the accuracy of continuous glucose-moni 
toring sensors: continuous glucose-error grid analysis illus 
trated by TheraSense Freestyle Navigator data. Diabetes 
Care 2004, 27, 1922-1928. 
0204. The term "curvature formula, as used herein, is a 
broad term and is used in its ordinary sense, including, but not 
limited to, a mathematical formula that can be used to define 
a curvature of a line. Some examples of curvature formulas 
include Euler and Rodrigues’ curvature formulas. 
0205 The term “time period, as used herein, is a broad 
term and is used in its ordinary sense, including, but not 
limited to, an amount of time including a single point in time 
and a path (for example, range of time) that extends from a 
first point in time to a second point in time. 
0206. The term “measured analyte values, as used herein, 

is a broad term and is used in its ordinary sense, including, but 
not limited to, an analyte value or set of analyte values for a 
time period for which analyte data has been measured by an 
analyte sensor. The term is broad enough to include data from 
the analyte sensor before or after data processing in the sensor 
and/or receiver (for example, data Smoothing, calibration, or 
the like). 
0207. The term “estimated analyte values, as used herein, 

is abroad term and is used in its ordinary sense, including, but 
not limited to, an analyte value or set of analyte values, which 
have been algorithmically extrapolated from measured ana 
lyte values. Typically, estimated analyte values are estimated 
for a time period during which no data exists. However, 
estimated analyte values can also be estimated during a time 
period for which measured data exists, but is to be replaced by 
algorithmically extrapolated data due to a time lag in the 
measured data, for example. 
0208. The term "alarm,” as used herein, is abroad termand 

is used in its ordinary sense, including, but not limited to, 
audible, visual, or tactile signals that are triggered in response 
to detection of clinical risk to a patient. In one embodiment, 
hyperglycemic and hypoglycemic alarms are triggered when 
present or future clinical danger is assessed based on continu 
ous analyte data. 
0209. The terms “target analyte values” and “analyte value 
goal as used herein, are broad terms and are used in their 
ordinary sense, including, but not limited to, an analyte value 
or set of analyte values that are clinically acceptable. In one 
example, a target analyte value is visually or audibly pre 
sented to a patient in order to aid in guiding the patient in 
understanding how they should avoid a clinically risky ana 
lyte concentration. 
0210. The terms “therapy' and “therapy recommenda 

tions, as used herein, are broad terms and are used in their 
ordinary sense, including, but not limited to, the treatment of 
disease or disorder by any method. In one exemplary embodi 
ment, a patient is prompted with therapy recommendations 
such as "inject insulin' or “consume carbohydrates' in order 
to avoid a clinically risky glucose concentration. 
0211. The terms “customize' and “customization,” as 
used herein, are broad terms and are used in their ordinary 
sense, including, but not limited to, to make changes or speci 
fications to a program so that it meets an individual’s needs. 

Feb. 12, 2009 

0212. The term “computer as used herein, is broad term 
and is used in its ordinary sense, including, but not limited to, 
machine that can be programmed to manipulate data. 
0213. The term “modem.” as used herein, is a broad term 
and is used in its ordinary sense, including, but not limited to, 
an electronic device for converting between serial data from a 
computer and an audio signal Suitable for transmission over a 
telecommunications connection to another modem. 

0214. The term “insulin pen, as used herein, is a broad 
term and is used in its ordinary sense, including, but not 
limited to, an insulin injection device generally the size of a 
pen that includes a needle and holds a vial of insulin. It can be 
used instead of Syringes for giving insulin injections. 
0215. The term “insulin pump, as used herein, is a broad 
term and is used in its ordinary sense, including, but not 
limited to, a device that delivers a continuous Supply of insu 
lin into the body. The insulin flows from the pump through a 
plastic tube (called a catheter) that is connected to a needle 
inserted into the skin and taped in place, for example. 

Overview 

0216 Certain embodiments provide a continuous analyte 
sensor that measures a concentration of analyte within a host 
and provides a data stream representative of the concentration 
of the analyte in the host, and a receiver that processes the data 
stream received from the analyte sensor for output as a mean 
ingful value to a user or device. In some embodiments, the 
analyte sensor is integral with the receiver, while in other 
embodiments, the analyte sensor is operatively linked to the 
receiver, for example, via a wired link or a wireless link. 
0217. Data processing associated with various embodi 
ments calculates estimated analyte values from measured 
analyte values that can be useful to 1) compensate for a time 
lag associated with the analyte concentration measured sen 
sor as compared to a reference source, for example, 2) esti 
mate approaching clinical risk and warn a patient or doctor in 
an effort to avoid the clinical risk, 3) ensure accurate calibra 
tion of sensor data with reference data by dynamically and 
intelligently matching reference data with corresponding sen 
Sor data, for example, 4) replace data during periods of high 
signal noise or inaccurate data, and/or 5) provide future esti 
mated analyte values that encourage more timely proactive 
behavior by a patient. The systems and methods calculate 
estimated analyte values based on algorithms that dynami 
cally and intelligently determine which estimative algorithm 
best fits the present data stream, for example, using first or 
second order regression, considering physiological bound 
aries, evaluating the estimative algorithm for data associa 
tion, determining possible variations around the estimated 
analyte values due to statistical, clinical, or physiological 
considerations, and/or comparing the estimated analyte val 
ues with time corresponding measured analyte values. 
0218. Some embodiments further generate data output, 
which can be in the form of real-time output to a user on 
screen or other user interface, for example, on the receiver. 
Data output can include real-time measured analyte values, 
estimated analyte values, possible variations of estimated 
analyte values, targets or goals for analyte values, or the like. 
Additionally or alternatively, data output can be sent to a 
device external from the receiver, for example, a computer, 
modem, or medical device. In some embodiments, input from 
the user or from another device. Such as insulin injections 
(time and amount), meal times, exercise, personalized 
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therapy recommendations, or the like, can be input into the 
receiver and processed to provide more customized data 
analysis and/or data output. 
0219. Accordingly, the systems and methods calculate 
estimated analyte values in a timely, accurate, and reliable 
manner based on measured analyte values, which can be 
helpful for proactively caring for a patient's condition. Esti 
mated analyte values can provide information useful in warn 
ing a patient of upcoming clinical risk. Additionally, targets 
and/or goals set for a patient's analyte values, based on 
present analyte conditions, and can be useful in proactively 
avoiding clinical risk. Furthermore, therapy recommenda 
tions can be provided that are useful in guiding a patient away 
from clinical risk. 

Continuous Analyte Sensor 

0220. The systems and methods of the preferred embodi 
ments provide an analyte sensor that measures a concentra 
tion of analyte of interest or a substance indicative of the 
concentration or presence of the analyte. The analyte sensor 
uses any known method, including invasive, minimally inva 
sive, and non-invasive sensing techniques, to provide an out 
put signal indicative of the concentration of the analyte of 
interest. In some embodiments, the analyte sensor is a con 
tinuous device, for example a Subcutaneous, transdermal, or 
intravascular device. In some embodiments, the device can 
take a plurality of intermittent measurements. The analyte 
sensor can use any method of analyte-measurement, includ 
ing enzymatic, chemical, physical, electrochemical, spectro 
photometric, polarimetric, calorimetric, radiometric, or the 
like. Generally, the analyte sensor can be any sensor capable 
of determining the level of any analyte in the body, for 
example glucose, oxygen, lactase, hormones, cholesterol, 
medicaments, viruses, or the like. It should be understood that 
the devices and methods described herein can be applied to 
any device capable of continually or continuously detecting a 
concentration of analyte and providing an output signal that 
represents the concentration of that analyte. 
0221. In one preferred embodiment, the analyte sensor is 
an implantable glucose sensor, such as described with refer 
ence to U.S. Pat. No. 6,001,067 and co-pending U.S. patent 
application Ser. No. 10/633,367 entitled, “SYSTEMAND 
METHODS FOR PROCESSING ANALYTE SENSOR 
DATA. filed Aug. 1, 2003, which are incorporated herein by 
reference in their entirety. In another preferred embodiment, 
the analyte sensor is a transcutaneous glucose sensor, such as 
described with reference to U.S. Provisional Patent Applica 
tion 60/587,787 and 60/614,683. In one alternative embodi 
ment, the continuous glucose sensor comprises a transcuta 
neous sensor such as described in U.S. Pat. No. 6,565,509 to 
Say et al., for example. In another alternative embodiment, 
the continuous glucose sensor comprises a Subcutaneous sen 
sor such as described with reference to U.S. Pat. No. 6,579, 
690 to Bonnecaze et al. or U.S. Pat. No. 6,484,046 to Say et 
al., for example. In another alternative embodiment, the con 
tinuous glucose sensor comprises a refillable Subcutaneous 
sensor such as described with reference to U.S. Pat. No. 
6.512.939 to Colvin et al., for example. In another alternative 
embodiment, the continuous glucose sensor comprises an 
intravascular sensor such as described with reference to U.S. 
Pat. No. 6,477.395 to Schulman et al., for example. In another 
alternative embodiment, the continuous glucose sensor com 
prises an intravascular sensor Such as described with refer 
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ence to U.S. Pat. No. 6,424,847 to Mastrototaro et al. All of 
the above patents are incorporated by reference herein in their 
entirety. 
0222 FIG. 1 is a block diagram that illustrates the con 
figuration of the medical device in one embodiment, includ 
ing a continuous analyte sensor, a receiver, and an external 
device. In general, the continuous analyte sensor 10 is any 
sensor configuration that provides an output signal indicative 
of a concentration of an analyte. The output signal is sent to a 
receiver 12 and received by an input module 14, which is 
described in more detail below. The output signal is typically 
a raw data stream that is used to provide a useful value of the 
measured analyte concentration to a patient or doctor, for 
example. In some embodiments, the raw data stream can be 
continuously or periodically algorithmically Smoothed or 
otherwise modified to diminish outlying points that do not 
accurately represent the analyte concentration, for example 
due to signal noise or other signal artifacts, such as described 
in co-pending U.S. patent application Ser. No. 10/632,537 
entitled, “SYSTEMS AND METHODS FOR REPLACING 
SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA 
STREAM filed Aug. 22, 2003, which is incorporated herein 
by reference in its entirety. 

Receiver 

0223 Referring again to FIG. 1, the receiver 12, which is 
operatively linked to the sensor 10, receives a data stream 
from the sensor 10 via the input module 14. In one embodi 
ment, the input module includes a quartz crystal operably 
connected to an RF transceiver (not shown) that together 
function to receive and synchronize data streams from the 
sensor 10. However, the input module 14 can be configured in 
any manner that is capable of receiving data from the sensor. 
Once received, the input module 14 sends the data stream to 
a processor 16 that processes the data stream, Such as 
described in more detail below. 
0224. The processor 16 is the central control unit that 
performs the processing, such as storing data, analyzing data 
streams, calibrating analyte sensor data, estimating analyte 
values, comparing estimated analyte values with time corre 
sponding measured analyte values, analyzing a variation of 
estimated analyte values, downloading data, and controlling 
the user interface by providing analyte values, prompts, mes 
sages, warnings, alarms, or the like. The processor includes 
hardware and Software that performs the processing 
described herein, for example read-only memory (ROM) pro 
vides permanent or semi-permanent storage of data, storing 
data Such as sensor ID, receiver ID, and programming to 
process data streams (for example, programming for per 
forming estimation and other algorithms described elsewhere 
herein) and random access memory (RAM) stores the sys 
tem's cache memory and is helpful in data processing. 
0225. An output module 18, which is integral with and/or 
operatively connected with the processor 16, includes pro 
gramming for generating output based on the data stream 
received from the sensor 10 and its processing incurred in the 
processor 16. In some embodiments, output is generated via a 
user interface 20. 
0226. The user interface 20 comprises a keyboard 22, 
speaker 24, vibrator 26, backlight 28, liquid crystal display 
(LCD) screen 30, and one or more buttons 32. The compo 
nents that comprise the user interface 20 include controls to 
allow interaction of the user with the receiver. The keyboard 
22 can allow, for example, input of user information about 
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himself/herself. Such as mealtime, exercise, insulin adminis 
tration, customized therapy recommendations, and reference 
analyte values. The speaker 24 can produce, for example, 
audible signals or alerts for conditions such as present and/or 
estimated hyper- and hypoglycemic conditions in a person 
with diabetes. The vibrator 26 can provide, for example, 
tactile signals or alerts for reasons such as described with 
reference to the speaker, above. The backlight 28 can be 
provided, for example, to aid the user in reading the LCD 30 
in low light conditions. The LCD 30 can be provided, for 
example, to provide the user with visual data output, Such as 
described in more detail below with reference to FIGS. 20 to 
26, however other screen formats are possible. In some 
embodiments, the LCD is a touch-activated screen. The but 
tons 32 can provide for toggle, menu selection, option selec 
tion, mode selection, and reset, for example. In some alterna 
tive embodiments, a microphone can be provided to allow for 
Voice-activated control. 

0227. In some embodiments, estimated analyte values, 
such as described, for example with reference to FIGS. 3 to 
14, can be displayed on the LCD30. In some embodiments, a 
variation of estimated analyte values, such as described, for 
example with reference to FIGS. 15 to 17, can be displayed on 
the LCD 30. In some embodiments, target analyte values, 
such as described, for example with reference to FIGS. 22 to 
24, can be displayed on the LCD 30. In some embodiments, 
therapy recommendations, such as described in the preferred 
embodiments, for example with reference to FIG. 24, can be 
displayed on the screen 30. 
0228. In some embodiments, prompts or messages can be 
displayed on the user interface to convey information to the 
user, Such as reference outlier values, requests for reference 
analyte values, therapy recommendations, deviation of the 
measured analyte values from the estimated analyte values, or 
the like. Additionally, prompts can be displayed to guide the 
user through calibration or trouble-shooting of the calibra 
tion. 
0229. Additionally, data output from the output module 18 
can provide wired or wireless, one- or two-way communica 
tion between the receiver 12 and an external device 34. The 
external device 34 can be any device that wherein interfaces 
or communicates with the receiver 12. In some embodiments, 
the external device 34 is a computer, and the receiver 12 is 
able to download historical data for retrospective analysis by 
the physician, for example. In some embodiments, the exter 
nal device 34 is a modem, and the receiver 12 is able to send 
alerts, warnings, emergency messages, or the like, via tele 
communication lines to another party, such as a doctor or 
family member. In some embodiments, the external device 34 
is an insulin pen, and the receiver 12 is able to communicate 
therapy recommendations, such as insulin amount and time to 
the insulin pen. In some embodiments, the external device 34 
is an insulin pump, and the receiver 12 is able to communicate 
therapy recommendations, such as insulin amount and time to 
the insulin pump. The external device 34 can include other 
technology or medical devices, for example pacemakers, 
implanted analyte sensor patches, other infusion devices, 
telemetry devices, or the like. 
0230. The user interface 20 including keyboard 22, but 
tons 32, a microphone (not shown), and the external device 34 
can be configured to allow input of data. Data input can be 
helpful in obtaining information about the patient (for 
example, meal time, exercise, or the like), receiving instruc 
tions from a physician (for example, customized therapy rec 
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ommendations, targets, or the like), and downloading soft 
ware updates, for example. Keyboard, buttons, touch-screen, 
and microphone are all examples of mechanisms by which a 
user can input data directly into the receiver. A server, per 
Sonal computer, personal digital assistant, insulin pump, and 
insulin pen are examples of external devices that can provide 
useful information to the receiver. Other devices internal or 
external to the sensor that measure other aspects of a patient's 
body (for example, temperature sensor, accelerometer, heart 
rate monitor, oxygen monitor, or the like) can be used to 
provide input helpful in data processing. In one embodiment, 
the user interface can prompt the patient to select an activity 
most closely related to their present activity, which can be 
helpful in linking to an individual's physiological patterns, or 
other data processing. In another embodiment, a temperature 
sensor and/or heart rate monitor can provide information 
helpful in linking activity, metabolism, and glucose excur 
sions of an individual. While a few examples of data input 
have been provided here, a variety of information can be 
input, which can be helpful in data processing as will be 
understood by one skilled in the art. 

Calibration 

0231 Reference is now made to FIG. 2, which is a flow 
chart that illustrates the process 38 of calibration and data 
output of measured analyte values in one embodiment. Cali 
bration of the analyte sensor 10 generally includes data pro 
cessing that converts the data stream received from the con 
tinuous analyte sensor into measured analyte values that are 
meaningful to a user. In one embodiment, the analyte sensor 
is a continuous glucose sensor and one or more reference 
glucose values are used to calibrate the data stream from the 
sensor 10. The calibration can be performed on a real-time 
basis and/or retrospectively recalibrated. However in alterna 
tive embodiments, other calibration techniques can be uti 
lized, for example using another constant analyte (for 
example, folic acid, ascorbate, urate, or the like) as a baseline, 
factory calibration, periodic clinical calibration, oxygen cali 
bration (for example, using a plurality of sensor heads), or the 
like can be used. 
0232. At a block 40, the calibration process 38 receives 
continuous sensor data (for example, a data stream), includ 
ing one or more time-spaced sensor data points, hereinafter 
referred to as “data stream.” “sensor data, or “sensor analyte 
data.” The calibration process 38 receives the sensor data 
from the continuous analyte sensor 10, which can be in com 
munication (for example, wired or wireless) with the receiver 
12. Some or all of the sensor data point(s) can be smoothed or 
replaced by estimated signal values such as described with 
reference to co-pending U.S. patent application Ser. No. 
10/632,537 entitled, “SYSTEMS AND METHODS FOR 
REPLACING SIGNAL ARTIFACTS IN AGLUCOSE SEN 
SOR DATASTREAM, filed Aug. 22, 2003, which is incor 
porated herein by reference in its entirety. During the initial 
ization of the sensor, for example, prior to initial calibration, 
the receiver 12 receives and stores the sensor data, however it 
may not display any data to the user until initial calibration 
and optionally stabilization of the sensor 10 has been deter 
mined. 
0233. At a block 42, the calibration process 38, receives 
analyte values from a reference analyte monitor, including 
one or more reference glucose data points, hereinafter 
referred as “reference data' or “reference analyte data.” In an 
example wherein the analyte sensor is a continuous glucose 
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sensor, the reference analyte monitor can be a self-monitoring 
blood glucose (SMBG) meter. However, in alternative 
embodiments, the reference analyte monitor can be any 
Source capable of providing a corresponding analyte value. 
Additionally, in some alternative embodiments, wherein the 
continuous analyte sensor is self-calibrating, a calibrating 
reference value can be provided by a source internal to the 
continuous sensor, for example oxygen, folic acid, or other 
Subcutaneous fluid constants. 

0234. In some embodiments, the calibration process 38 
monitors the continuous analyte sensor data stream to deter 
mine a preferred time for capturing reference analyte concen 
tration values for calibration of the continuous sensor data 
stream. In an example wherein the analyte sensor is a con 
tinuous glucose sensor, when data (for example, observed 
from the data stream) changes too rapidly, the reference glu 
cose value may not be sufficiently reliable for calibration due 
to unstable glucose changes in the host. In contrast, when 
sensor glucose data are relatively stable (for example, rela 
tively low rate of change), a reference glucose value can be 
taken for a reliable calibration. In one embodiment, the cali 
bration process 38 can prompt the user via the user interface 
to “calibrate now when the analyte sensor is considered 
stable. 

0235. In some embodiments, the calibration process 38 
can prompt the user via the user interface 20 to obtain a 
reference analyte value for calibration at intervals, for 
example when analyte concentrations are at high and/or low 
values. In some additional embodiments, the user interface 20 
can prompt the user to obtain a reference analyte value for 
calibration based upon certain events, such as meals, exercise, 
large excursions in analyte levels, faulty or interrupted data 
readings, or the like. In some embodiments, the estimative 
algorithms can provide information useful in determining 
when to request a reference analyte value. For example, when 
estimated analyte values indicate approaching clinical risk, 
the user interface 20 can prompt the user to obtain a reference 
analyte value. 
0236. In some embodiments, certain acceptability param 
eters can be set for reference values. In an example wherein 
the analyte sensor is a glucose sensor, the receiver may only 
accept reference glucose data between about 40 and about 
400 mg/dL. 
0237. In some embodiments, the calibration process 38 
performs outlier detection on the reference data and time 
corresponding sensor data. Outlier detection compares a ref 
erence analyte value with a time corresponding measured 
analyte value to ensure a predetermined Statistically, physi 
ologically, or clinically acceptable correlation between the 
corresponding data exists. In an example wherein the analyte 
sensor is a glucose sensor, the reference glucose data is 
matched with Substantially time corresponding calibrated 
sensor data and the matched data are plotted on a Clarke Error 
Grid to determine whether the reference analyte value is an 
outlier based on clinical acceptability, Such as described in 
more detail with reference U.S. patent application Ser. No. 
10/633,367 entitled, “SYSTEM AND METHODS FOR 
PROCESSING ANALYTE SENSOR DATA filed Aug. 1, 
2003, which is incorporated herein by reference in its entirety. 
In some embodiments, outlier detection compares a reference 
analyte value with a corresponding estimated analyte value, 
such as described in more detail with reference to FIGS. 7 and 
8, and the matched data is evaluated using statistical, clinical, 
and/or physiological parameters to determine the acceptabil 
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ity of the matched data pair. In alternative embodiments, 
outlier detection can be determined by other clinical, statis 
tical, and/or physiological boundaries. 
0238. At a block 44, the calibration process 38 matches 
reference analyte data (for example, one or more reference 
glucose data points) with Substantially time corresponding 
sensor analyte data (for example, one or more sensor glucose 
data points) to provide one or more matched data pairs. In one 
embodiment, one reference data point is matched to one time 
corresponding sensor data point to form a matched data pair. 
In another embodiment, a plurality of reference data points 
are averaged (for example, equally or non-equally weighted 
average, mean-value, median, or the like) and matched to one 
time corresponding sensor data point to form a matched data 
pair. In another embodiment, one reference data point is 
matched to a plurality of time corresponding sensor data 
points averaged to form a matched data pair. In yet another 
embodiment, a plurality of reference data points are averaged 
and matched to a plurality of time corresponding sensor data 
points averaged to form a matched data pair. 
0239. In one embodiment, a time corresponding sensor 
data comprises one or more sensor data points that occur, for 
example, 15ts min after the reference glucose data times 
tamp (for example, the time that the reference glucose data is 
obtained). In this embodiment, the 15 minute time delay has 
been chosen to account for an approximately 10 minute delay 
introduced by the filter used in data Smoothing and an 
approximately 5 minute membrane-related time lag (for 
example, the time necessary for the glucose to diffuse through 
a membrane(s) of a glucose sensor). In alternative embodi 
ments, the time corresponding sensor value can be more or 
less than in the above-described embodiment, for example 
+60 minutes. Variability in time correspondence of sensor and 
reference data can be attributed to, for example, a longer or 
shorter time delay introduced during data Smoothing, or if the 
configuration of the glucose sensor 10 incurs a greater or 
lesser physiological time lag. In some embodiments, esti 
mated sensor data can be used to provide data points that 
occur about 1 second to about 60 minutes, or more, after a 
reference analyte value is obtained, which data can be used to 
match with reference analyte data, Such as described in more 
detail below with reference to FIGS. 7 and 8. 

0240. At a block 46 the calibration process 38 forms an 
initial calibration set from a set of one or more matched data 
pairs, which are used to determine the relationship between 
the reference analyte data and the sensor analyte data, Such as 
described in more detail with reference to a block 48, below. 
0241 The matched data pairs, which make up the initial 
calibration set, can be selected according to predetermined 
criteria. In some embodiments, the number (n) of data pair(s) 
selected for the initial calibration set is one. In other embodi 
ments, in data pairs are selected for the initial calibration set 
wherein n is a function of the frequency of the received 
reference glucose data points. In one exemplary embodiment, 
six data pairs make up the initial calibration set. In another 
embodiment, the calibration set includes only one data pair. 
0242. In some embodiments, the data pairs are selected 
only within a certain glucose value threshold, for example 
wherein the reference glucose value is between about 40 and 
about 400 mg/dL. In some embodiments, the data pairs that 
form the initial calibration set are selected according to their 
time stamp. 
0243 At the block 48, the calibration process 38 calculates 
a conversion function using the calibration set. The conver 
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sion function substantially defines the relationship between 
the reference analyte data and the sensor analyte data. A 
variety of known methods can be used with the preferred 
embodiments to create the conversion function from the cali 
bration set. In one embodiment, wherein a plurality of 
matched data points form the initial calibration set, a linear 
least squares regression is performed on the initial calibration 
set. Co-pending U.S. patent application Ser. No. 10/633,367 
entitled, “SYSTEMAND METHODS FOR PROCESSING 
ANALYTE SENSOR DATA filed Aug. 1, 2003, which is 
incorporated herein by reference in its entirety describes 
methods for calibration. 
0244. In one embodiment, the conversion function can be 
used to estimate analyte values for a future time period by 
forward projection. In alternative preferred embodiments, 
such as described with reference to the flow chart of FIG. 2 
and with reference to FIGS. 3 to 19, the processor can provide 
intelligent estimation, including dynamic determination of an 
algorithm, physiological boundaries, evaluation of the esti 
mative algorithm, analysis of variations associated with the 
estimation, and comparison of measured analyte values with 
time corresponding estimated analyte values. 
0245. At a block 50, the calibration process 38 uses the 
conversion function to transform sensor data into Substan 
tially measured analyte values, also referred to as calibrated 
data, as sensor data is continuously (or intermittently) 
received from the sensor. For example, the offset value at any 
given point in time can be subtracted from the raw value (for 
example, in counts) and divided by the slope to obtain a 
measured glucose value: 

(raw value - offset) 
Glucose Concentration= --- slope 

0246. In some alternative embodiments, the sensor and/or 
reference glucose data are stored in a database for retrospec 
tive analysis. The calibrated data can be used to compare with 
the estimated analyte values, such as described in more detail 
with reference to FIG. 10 in order to determine a deviation of 
the measure value from the estimated analyte values for the 
corresponding time period. 
0247. At a block 52, the calibration process 38 generates 
output via the user interface 20 and/or the external device 34. 
In one embodiment, the output is representative of measured 
analyte values, which are determined by converting the sen 
Sor data into a meaningful analyte value Such as described in 
more detail with reference to block 50, above. User output can 
be in the form of a numeric estimated analyte value, an indi 
cation of directional trend of analyte concentration, and/or a 
graphical representation of the measured analyte data over a 
period of time, for example. Other representations of the 
measured analyte values are also possible, for example audio 
and tactile. Additionally or alternatively, the output is repre 
sentative of estimated analyte values, such as described in 
more detail with reference to FIGS. 20 to 26. 
0248. In one embodiment, the measured analyte value is 
represented by a numeric value. In other exemplary embodi 
ments, the user interface graphically represents the measured 
analyte trend values over a predetermined time period (for 
example, one, three, and nine hours, respectively). In alterna 
tive embodiments, other time periods can be represented. In 
alternative embodiments, pictures, animation, charts, graphs, 
and numeric data can be selectively displayed. 
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0249 Accordingly, after initial calibration of the sensor, 
continuous analyte values can be displayed on the user inter 
face 20 so that the user can regularly and proactively care for 
his/her diabetic condition within the bounds set by his/her 
physician. Both the reference analyte data and the sensor 
analyte data from the continuous analyte sensor can be dis 
played to the user. In an embodiment wherein the continuous 
analyte sensor functions as an adjunctive device to a reference 
analyte monitor, the user interface 20 can display numeric 
reference analyte data, while showing the sensor analyte data 
only in a graphical representation so that the user can see the 
historical and present sensor trend information as well as the 
most recent reference analyte data value. In an embodiment 
wherein the continuous analyte sensor functions as a non 
adjunctive device to the reference analyte monitor, the user 
interface can display the reference analyte data and/or the 
sensor analyte data. The user can toggle through menus and 
screens using the buttons in order to view alternate data and/or 
screen formats, for example. 
0250 In alternative embodiments, the output module dis 
plays the estimated analyte values in a manner Such as 
described in more detail with reference to FIGS. 20 to 26, for 
example. In some embodiments, the measured analyte value, 
an estimated future analyte value, a rate of change, and/or a 
directional trend of the analyte concentration is used to con 
trol the administration of a constituent to the user, including 
an appropriate amount and time, in order to control an aspect 
of the user's biological system. One Such example is a closed 
loop glucose sensor and insulin pump, wherein the glucose 
data (for example, estimated glucose value, rate of change, 
and/or directional trend) from the glucose sensor is used to 
determine the amount of insulin, and time of administration, 
that can be given to a person with diabetes to evade hyperg 
lycemic and hypoglycemic conditions. Output to external 
devices is described in more detail with reference to FIGS. 27 
to 30, for example. 

Dynamic and Intelligent Analyte Value Estimation 
0251 Estimative algorithms can be applied continuously, 
or selectively turned on/off based on conditions. Convention 
ally, a data stream received from a continuous analyte sensor 
can provide an analyte value and output the same to the host, 
which can be used to warn a patient or doctor of existing 
clinical risk. Conventionally, a data stream received from an 
analyte sensor can provide historical trend analyte values, 
which can be used to educate a patient or doctor of individual 
historical trends of the patient's analyte concentration. How 
ever, the data stream cannot, without additional processing, 
provide future analyte values, which can be useful in prevent 
ing clinically risky analyte values, compensating for time lag, 
and ensuring proper matching of sensor and reference ana 
lyte, for example such as described below. Timelier reporting 
of analyte values and prevention of clinically risky analyte 
values, for example, prevention of hyper- and hypoglycemic 
conditions in a person with diabetes, can decrease health 
complications that can result from clinically risky situations. 
(0252 FIG.3 is a flow chart that illustrates the process 54 of 
estimating analyte values and outputting estimated analyte 
values in one embodiment. In contrast to the process of FIG. 
2, estimation is used to calculate analyte data for time during 
which no data exists (for example, data gaps or future data) or 
to replace data when large inaccuracies are believed to exist 
within data (for example, signal noise due to transient 
ischemia). Estimation of analyte values can be performed 
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instead of, or in combination with, calibration of measured 
analyte values, such as described with reference to FIG. 2, 
above. 

0253) The estimating analyte values process 54 can be 
applied continuously, or selectively turned on/off based on 
conditions. The determination of when to apply estimative 
algorithms is discussed in more detail below. In some 
embodiments, estimation can be applied only during 
approaching clinical risk to warn a patient or doctor in an 
effort to avoid the clinical risk, for example when the mea 
Sured glucose concentration is outside of a clinically accept 
able threshold (for example, 100 to 200 mg/dL) and/or the 
glucose concentration is increasing or decreasing at a certain 
rate of change (for example, 3 mg/dL/min), Such as described 
in more detail with reference to FIG. 4, for example. In some 
embodiments estimation can be applied continuously, 
dynamically, or intermittently to compensate for a time lag 
associated with the analyte sensor, which time lag can be 
consistent, dynamic, and/or intermittent, such as described in 
more detail below with reference to FIGS. 5 to 6, for example. 
In some embodiments, estimation can be applied to aid in 
dynamically and intelligently matching reference data with 
corresponding sensor data to ensure accurate outlier detection 
and/or calibration of sensor data with reference data, Such as 
described in more detail with reference to FIGS. 7 and 8, for 
example. In some embodiments, estimation can be applied 
continuously (or intermittently) in order to provide analyte 
data that encourages more timely proactive behavior in pre 
empting clinical risk. 
0254. At a block 56, the estimate analyte values process 54 
obtains sensor data, which can be raw, Smoothed, and/or 
otherwise processed. In some embodiments, estimation can 
be applied to a raw data stream received from an analyte 
sensor, such as described at the block 40. In some embodi 
ments, estimation can be applied to calibrated data, Such as 
described at the block 50. 

0255. At a block58, the estimate analyte values process 54 
dynamically and intelligently estimates analyte values based 
on measured analyte values using estimative algorithms. In 
Some embodiments, dynamic and intelligent estimation 
includes selecting an algorithm from a plurality of algorithms 
to determine an estimative algorithm (for example, first or 
second order regression) that best fits the present measured 
analyte values, such as described in more detail with refer 
ence to FIGS. 9 and 10, for example. In some embodiments, 
dynamic and intelligent estimation further includes con 
straining and/or expanding estimated analyte values using 
physiological parameters, such as described in more detail 
with reference to FIGS. 11 and 12, for example. In some 
embodiments, dynamic and intelligent estimation further 
includes evaluating the selected estimative algorithms, for 
example using a data association function, such as described 
in more detail with reference to FIGS. 9, 10, 13, and 14. In 
Some embodiments, dynamic and intelligent estimation 
includes analyzing a possible variation associated with the 
estimated analyte values, for example using statistical, clini 
cal, or physiological variations, such as described in more 
detail with reference to FIGS. 15 to 17. In some embodi 
ments, dynamic and intelligent estimation includes compar 
ing previously estimated analyte values with measured ana 
lyte values for a corresponding time period, determining the 
deviation, such as described with reference to FIGS. 18 and 
19, for example. In some embodiments, the resulting devia 
tion from the comparison can be used to determine a variation 
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for future estimated analyte values. In some embodiments, 
the resulting deviation from the comparison can be used to 
determine a confidence level in the estimative algorithms. In 
Some embodiments, the resulting deviation from the compari 
son can be used to show evidence of the benefits of displaying 
estimated analyte values on patient behavior, namely how 
well the patient responds to the estimated analyte values and 
alters his/her behavior in order to better control analyte levels. 
0256. At a block 60, the output module 18 provides output 
to the user interface 20 and/or the external device 34. In some 
embodiments, output of estimated analyte values is combined 
with output of measured analyte values, such as described at 
the block 52, for example combined on an LCD screen, or by 
toggling between screens. In some embodiments, a target 
analyte value or range of analyte values is output to the user 
interface alone, or in combination with the estimated analyte 
values, in order to provide a goal towards which the user can 
aim, such as described with reference to FIGS. 22 to 24, for 
example. In some embodiments, an approaching clinical risk 
is output in the form of a visual, audible, or tactile prompt, 
such as described with reference to FIGS. 20 to 22, for 
example. In some embodiments, therapy recommendations 
are output to aid the user in determining corrective action that 
can be performed in an effort to avoid or minimize clinical 
risk such as described with reference to FIG. 24, for example. 
In some embodiments, a visual representation of possible 
variations of the estimated analyte values, which variation 
can be due to statistical, clinical, or physiological consider 
ations, such as described with reference to FIGS. 24 to 26, for 
example. In some embodiments, the output prompts a user to 
obtain a reference analyte value (not shown). In some 
embodiments, output is sent to an external device such as 
described with reference to FIGS. 27 to 30, for example. 
0257 FIG. 4 is a graph that illustrates one embodiment, 
wherein estimation is triggered by an event such as a patient's 
blood glucose concentration rising above a predetermined 
threshold (for example, 180 mg/dL). The x-axis represents 
time in minutes; the y-axis represents glucose concentration 
in mg/dL. The graph shows an analyte trend graph, particu 
larly, the graph shows measured glucose data 62 for about 90 
minutes up to time (t)=0. In this embodiment, the measured 
glucose data 62 has been smoothed and calibrated, however 
Smoothing and/or calibrating may not be required in some 
embodiments. At t=0, estimation of the preferred embodi 
ments is invoked and 15-minute estimated glucose data 64 
indicates that the glucose concentration will likely rise above 
220 mg/dL. The estimated glucose data 64 can be useful in 
providing alarms (e.g., hyper- and hypoglycemic alerts) and/ 
or displaying on the user interface of the receiver, for 
example. Alarms may not require estimative algorithms in 
Some embodiments, for example when Zero, first, and/or sec 
ond order calculations can be made to dynamically assess the 
static value, rate of change, and/or rate of acceleration of the 
analyte data in Some embodiment. 
0258. In some embodiments, estimative algorithms are 
selectively applied when the reference and/or sensor analyte 
data indicates that the analyte concentration is approaching 
clinical risk. The concentration of the analyte values, the rate 
of change of the analyte values, and/or the acceleration of the 
analyte values can provide information indicative of 
approaching clinical risk. In an example wherein the analyte 
sensor is a glucose sensor, thresholds (for example, 100 to 200 
mg/dL) can be set that selectively turn on estimative algo 
rithms that then dynamically and intelligently estimate 
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upcoming glucose values, and optionally possible variations 
of those estimated glucose values, to appropriately forewarn 
of an upcoming patient clinical risk (for example, hypo- or 
hyperglycemia). Additionally, the rate of change and/or 
acceleration can be considered to more intelligently turn on 
and calculate necessary estimation and for alarms (e.g., 
hyper- and hypoglycemic alarms). For example, if a person 
with diabetes has a glucose concentration of 100 mg/dL, but 
is trending upwardly, has slow or no rate of change, or is 
decelerating downwardly, estimation and/or alarms may not 
be necessary. 
0259 FIG. 5 is a graph that illustrates a raw data stream 
and the corresponding reference analyte values. The X-axis 
represents time in minutes, the first y-axis represents sensor 
glucose data measured in counts, and the second y-axis rep 
resents reference glucose data in mg/dL. A raw data stream 66 
was obtained for a host from a continuous glucose sensor over 
a 4-hour time period. In this example, the raw data stream 66 
has not been Smoothed, calibrated, or otherwise processed 
and is represented in counts. Reference glucose values 68 
were obtained from the host using a reference glucose moni 
tor during the same 4-hour time period. The raw data stream 
66 and reference glucose values 68 were plotted on the graph 
of FIG. 5 accordingly during the 4-hour time period. While 
not wishing to be bound by theory, the visible difference 
between the reference and sensor glucose data is believed to 
be caused at least in part by a time lag, Such as described in 
more detail below. 

0260 A data stream received from an analyte sensor can 
include a time lag within the measured analyte concentration, 
for example, as compared to corresponding reference analyte 
values. In some embodiments, a time lag can be associated 
with a difference in measurement samples (for example, an 
interstitial fluid sample measured by an implantable analyte 
sensor as compared with a blood sample measured by an 
external reference analyte monitor). In some embodiments, a 
time lag can be associated with diffusion of the analyte 
through a membrane system, for example such as has been 
observed in Some implantable electrochemically-based glu 
cose sensors. Additionally in Some embodiments, a time lag 
can be associated with processing of the data stream, for 
example, a finite impulse response filter (FIR) or infinite 
impulse response (IIR) filter can be applied intermittently or 
continuously to a raw data stream in the sensor (or in the 
receiver) in order to algorithmically smooth the data stream, 
which can produce a time lag (for example, as shown in 
measured glucose data 68 of FIG.4B). In some embodiments, 
wherein the analyte sensor is a Subcutaneously implantable 
sensor, there may be a variable time lag associated with the 
tissue ingrowth at the biointerface at the tissue-device inter 
face. Additionally, time lags can be variable upon a host's 
metabolism. In some embodiments, a time lag of the refer 
ence analyte data may be associated with an amount of time a 
user takes to testand reporta reference analyte value. Accord 
ingly, the preferred embodiments provide for estimation of 
analyte values based on measured analyte values, which can 
be used to compensate for a time lag such as described above, 
allow for output of analyte values that represent estimated 
present analyte values without a time lag. 
0261 Accordingly, some embodiments selectively apply 
estimative algorithms based on a measured, estimated, or 
predetermined time lag associated with the continuous ana 
lyte sensor. In some embodiments, estimative algorithms 
continuously run in order to continuously compensate for a 
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time lag between reference and sensor data, such as described 
in more detail below. In some embodiments, estimative algo 
rithms run during outlier detection in order to intelligently 
and dynamically match corresponding reference and sensor 
data for more accurate outlier inclusion or exclusion, such as 
described in more detail below. In some embodiments, esti 
mative algorithms run during matching of data pairs for con 
sideration in the calibration set in order to intelligently and 
dynamically match corresponding reference and sensor glu 
cose data for better calibration, such as described in more 
detail below. 

0262 FIG. 6 is a flow chart that illustrates the process 70 of 
compensating for a time lag associated with a continuous 
analyte sensor to provide real-time estimated analyte data 
output in one embodiment. For the reasons described above, 
the system includes programming that continuously or peri 
odically (e.g., when a user activates the LCD screen) com 
pensates for a time lag in the system to provide a better 
real-time estimate to the user, for example. 
0263. At block 72, the time lag compensation process 70 
obtains sensor data, which can be raw, Smoothed, and/or 
otherwise processed. In some embodiments, estimation can 
be applied to a raw data stream received from an analyte 
sensor, such as described at the block 40. In some embodi 
ments, estimation can be applied to calibrated data, Such as 
described at the block 50. 
0264. At block 74, the time lag compensation process 70 
continuously or periodically estimates analyte values for a 
present time period to compensate for a physiological or 
computational time lag in the sensor data stream. For 
example, ifa 20-minute time lag is known inherent within the 
continuous analyte sensor, the compensation can be a 
20-minute projected estimation to provide true present time 
(or “real time’) analyte values. Some embodiments can con 
tinuously run estimation to compensate for time lag, while 
other embodiments can perform time lag compensation esti 
mation only when the user interface (e.g., LCD screen) is 
activated by a user. Known estimation algorithms and/or the 
dynamic and intelligent estimation algorithms of the pre 
ferred embodiments (e.g., such as described with reference to 
block 58 and FIGS.9 to 19) can be used in estimating analyte 
values herein. 
0265 At block 76, the time lag compensation process 70 
continuously or periodically provides output of the present 
time estimated analyte values, such as described in more 
detail above. Output can be sent to the user interface 20 or to 
an external device 34. 
0266 Referring now to FIG. 7, which is a graph that illus 
trates the data of FIG. 5, including reference analyte data, 
corresponding calibrated sensor analyte data, and corre 
sponding estimated analyte data, showing compensation for 
time lag using estimation. The X-axis represents time in min 
utes and the y-axis represents glucose concentration in 
mg/dL. Reference glucose values 68 were obtained from the 
host from the reference glucose monitor during the 4-hour 
time period and correspond to FIG. 5. Measured glucose data 
80 was obtained by smoothing and calibrating the raw data 
stream 66 of FIG.5 using reference glucose values 68, such as 
described in more detail with reference to FIG. 2. Estimated 
glucose data 82 was obtained by estimating using dynamic 
and intelligent estimation of the preferred embodiments, 
which is described in more detail below. 

0267. The measured glucose data 80 has been smoothed 
and thereby includes a data processing-related time lag, 
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which may be in addition to physiological or membrane 
related time lag, for example. Therefore, the measured glu 
cose data 80 visibly lags behind the reference glucose values 
68 on the graph. The estimated glucose data 82 includes 
dynamic and intelligent estimation of the preferred embodi 
ments in order to compensate for the time lag, thereby better 
correlating with the reference glucose values 68. In this 
embodiment, the time lag compensation (estimation) is 15 
minutes, however in other embodiments the time lag com 
pensation (estimation) can be more or less. 
0268. In some embodiments, the estimation can be pro 
grammed to compensate for a predetermined time lag (for 
example, 0 to 60 minutes, or more). In some alternative 
embodiments, the estimation can be dynamically adjusted 
based on a measured time lag; for example, when estimation 
is used to dynamically match sensor analyte data with refer 
ence analyte data such as described below, the time difference 
between best corresponding sensor analyte data and reference 
analyte data can be used to determine the time lag. 
0269 FIG.8 is a flow chart that illustrates the process 84 of 
matching data pairs from a continuous analyte sensor and a 
reference analyte sensorinone embodiment. Estimative algo 
rithms of the preferred embodiments are useful when selec 
tively applied during the process of matching corresponding 
sensor and reference analyte data, for example during outlier 
detection, such as described in more detail with reference to 
FIG. 2 at block 42, and/or matching data pairs for calibration, 
such as described in more detail with reference to FIG. 2 at 
block 44. Forthereasons stated above with reference to FIGS. 
5 to 7, for example, a time lag associated with the continuous 
analyte sensor and/or the reference analyte monitor can 
hinder the ability to accurately match data from the analyte 
sensor with corresponding data from the reference analyte 
monitor using time-correspondence only. 
0270. At block 86, the data matching process 84 obtains 
sensor data, which can be raw, Smoothed, and/or otherwise 
processed. In some embodiments, data matching can use data 
from a raw data stream received from an analyte sensor. Such 
as described at the block 40. In some embodiments, data 
matching can use calibrated data, Such as described at the 
block 50. 
0271 At block 88, the data matching process 84, receives 
analyte values from a reference analyte monitor, including 
one or more reference glucose data points, hereinafter 
referred as “reference data' or “reference analyte data.” In an 
example wherein the analyte sensor is a continuous glucose 
sensor, the reference analyte monitor can be a self-monitoring 
blood glucose (SMBG) meter. Other examples are described 
with reference to block 42, above. 
0272. At block 90, the data matching process 84 estimates 
one or more analyte values for a time period during which no 
data exists (or when data is unreliable or inaccurate, for 
example) based on the data stream. For example, the esti 
mated analyte values can include values at intervals from 
about 30 seconds to about 5 minutes, and can be estimated for 
a time period of about 5 minutes to about 60 minutes in the 
future. In some embodiments, the time interval and/or time 
period can be more or less. Known estimation algorithms 
and/or the dynamic and intelligent estimation algorithms of 
the preferred embodiments (e.g., such as described with ref 
erence to block 58 and FIGS.9 to 19) can be used in estimat 
ing analyte values herein. 
0273 At block 92, the data matching process 84 creates at 
least one matched data pair by matching reference analyte 
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data to a corresponding analyte value from the one or more 
estimated analyte values. In some embodiments, the best 
matched pair can be evaluated by comparing a reference data 
point against individual sensor values over a predetermined 
time period (for example, +/-0 to 60 minutes). In one such 
embodiment, the reference data point is matched with sensor 
data points at intervals (for example, 5-minute intervals of 
measured historical analyte values and estimated future ana 
lyte values) and each matched pair is evaluated. The matched 
pair with the best correlation (for example, based on statisti 
cal deviation, clinical risk analysis, or the like) can be selected 
as the best matched pair and should be used for data process 
ing. In some alternative embodiments, matching a reference 
data point with an average of a plurality of sensor data points 
over a time period can be used to form a matched pair. 
0274 Therefore, the preferred embodiments provide for 
estimation of analyte values based on measured analyte val 
ues that can be helpful in more accurately and/or appropri 
ately matching sensor and reference analyte values that rep 
resent corresponding data. By increasing the accuracy of 
matched data pairs, true real-time estimated analyte values 
(for example, without a time lag) can be provided, calibration 
can be improved, and outlier detection can be more accurate 
and convenient, thereby improving overall patient safety and 
convenience. 

0275 While any of the above uses and applications can be 
applied using conventional algorithms that provide conven 
tional projection based on first or second order regression, for 
example, it has been found that analyte value estimation can 
be further improved by adaptively applying algorithms, for 
example using dynamic intelligence Such as described in 
more detail below. The dynamic and intelligent algorithms 
described herein can be applied to the uses and applications 
described above, or for estimating analyte values at any time 
for any use or application. 
0276 FIG.9 is a flow chart that illustrates the dynamic and 
intelligent estimation algorithm selection process 96 in one 
embodiment. 

0277. At block 98, the dynamic and intelligent estimation 
algorithm selection process 96 obtains sensor data, which can 
be raw, Smoothed, and/or otherwise processed. In some 
embodiments, data matching can use data from a raw data 
stream received from an analyte sensor, such as described at 
block 40. In some embodiments, data matching can use cali 
brated data, such as described at block 50. 
0278. At block 100, the dynamic and intelligent estima 
tion algorithm selection process 96 includes selecting one or 
more algorithms from a plurality of algorithms that best fits 
the measured analyte values. In some embodiments, the esti 
mative algorithm can be selected based on physiological 
parameters; for example, in an embodiment wherein the ana 
lyte sensor is a glucose sensor, a first order regression can be 
selected when the rate of change of the glucose concentration 
is high, indicating correlation with a straight line, while a 
second order regression can be selected when the rate of 
change of the glucose concentration is low, indicating corre 
lation with a curved line. In some embodiments, a first order 
regression can be selected when the reference glucose data is 
within a certain threshold (for example, 100 to 200 mg/dL), 
indicating correlation with a straight line, while a second 
order regression can be selected when the reference glucose 
data is outside of a certain threshold (for example, 100 to 200 
mg/dL), indicating correlation with a curved line because the 
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likelihood of the glucose concentration turning around (for 
example, having a curvature) is greatest at high and low 
values. 

0279 Generally, algorithms that estimate analyte values 
from measured analyte values include any algorithm that fits 
the measured analyte values to a pattern, and/or extrapolates 
estimated values for another time period (for example, for a 
future time period or for a time period during which data 
needs to be replaced). In some embodiments, a polynomial 
regression (for example, first order, second order, third order, 
etc.) can be used to fit measured analyte values to a pattern, 
and then extrapolated. In some embodiments, autoregressive 
algorithms (for example, IIR filter) can be used to fit mea 
Sured analyte values to a pattern, and then extrapolated. In 
Some embodiments, measured analyte values can be filtered 
by frequency before projection (for example, by converting 
the analyte values with a Fourier transform, filtering out high 
frequency noise, and converting the frequency data back to 
time values by using an inverse Fourier transform); this data 
can then be projected forward (extrapolated) along lower 
frequencies. In some embodiments, measured analyte values 
can be represented with a Wavelet transform (for example 
filtering out specific noise depending on wavelet function), 
and then extrapolate forward. In some alternative embodi 
ments, computational intelligence (for example, neural net 
work-based mapping, fuZZy logic based pattern matching, 
genetic-algorithms based pattern matching, or the like) can be 
used to fit measured analyte values to a pattern, and/or 
extrapolate forward. In yet other alternative embodiments, 
time-series forecasting, using methods such as moving aver 
age (single or double), exponential Smoothing (single, 
double, or triple), time series decomposition, growth curves, 
Box-Jenkins, or the like. The plurality of algorithms of the 
preferred embodiments can utilize any one or more of the 
above-described algorithms, or equivalents, in order to intel 
ligently select estimative algorithms and thereby estimate 
analyte values. 
0280. In some embodiments, estimative algorithms fur 
ther include parameters that consider external influences, 
Such as insulin therapy, carbohydrate consumption, or the 
like. In one such example, these additional parameters can be 
user input via the user interface 20 or transmitted from an 
external device 34, such as described in more detail with 
reference to FIG.1. By including such external influences in 
additional to historical trend data (measured analyte values), 
analyte concentration changes can be better anticipated. 
0281 At block 102, the selected one or more algorithms 
are evaluated based on Statistical, clinical, or physiological 
parameters. In some embodiments, running each algorithm 
on the data stream tests each of the one or more algorithms, 
and the algorithmic result with the best correlation to the 
measured analyte values is selected. In some embodiments, 
the pluralities of algorithms are each compared for best cor 
relation with physiological parameters (for example, within 
known or expected rates of change, acceleration, concentra 
tion, etc). In some embodiments, the pluralities of algorithms 
are each compared for best fit within a clinical error grid (for 
example, within 'A' region of Clarke Error Grid). Although 
first and second order algorithms are exemplified herein, any 
two or more algorithms such as described in more detail 
below could be programmed and selectively used based on a 
variety of conditions, including physiological, clinical, and/ 
or statistical parameters. 
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0282. At block 104, the algorithm(s) selected from the 
evaluation step is employed to estimate analyte values for a 
time period. Accordingly, analyte values are more dynami 
cally and intelligently estimated to accommodate the 
dynamic nature of physiological data. Additional processes, 
for example applying physiological boundaries (FIG. 11), 
evaluation of the estimation algorithms after employing the 
algorithms (FIG. 13), evaluating a variation of estimated ana 
lyte values (FIG. 15), measuring and comparing analyte val 
ues (FIG. 18), or the like can be applied to the dynamic and 
intelligent estimative algorithms described with reference to 
FIG. 9. 

0283 FIG. 10 is a graph that illustrates dynamic and intel 
ligent estimation algorithm selection applied to a data stream 
in one embodiment showing first order estimation, second 
order estimation, and the measured glucose values for the 
time period, wherein the second order estimation shows a 
better correlation to the measured glucose data than the first 
order estimation. The X-axis represents time in minutes. The 
y-axis represents glucose concentration in mg/dL. 
0284. In the data of FIG. 10, measured (calibrated) sensor 
glucose data 106 was obtained up to time t-0. At t=0, a first 
order regression 108 was performed on the measured data 106 
to estimate the upcoming 15-minute time period. A second 
order regression 110 was also performed on the data to esti 
mate the upcoming 15-minute time period. The intelligent 
estimation of the preferred embodiments, such as described in 
more detail below, chose the second order regression 110 as 
the preferred algorithm for estimation based on programmed 
conditions (at t=0). The graph of FIG. 10 further shows the 
measured glucose values 112 from t=0 to t-15 to illustrate 
that second order regression 110 does in fact more accurately 
correlate with the measured glucose data 112 than first order 
regression 108 from t=0 to t—15. 
0285. In the example of FIG. 10, the dynamic and intelli 
gent estimation algorithm selection determined that the sec 
ond order regression 110 was the preferred algorithm for 
estimation at t=0 based on conditions. A first condition was 
based on a set threshold that considers second order regres 
sion a better fit when measured glucose values are above 200 
mg/dL and trending upwardly. A second condition verifies 
that the curvature of the second order regression line appro 
priately shows a deceleration above 200 mg/dL. Although 
two specific examples of conditions are described herein, 
dynamic and intelligent estimation can have as many or as 
few conditions programmed therein as can be imagined or 
contrived. Some additional examples of conditions for select 
ing from a plurality of algorithms are listed above, however 
the scope of this aspect of dynamic and intelligent estimation 
includes any conditional Statements that can be programmed 
and applied to any algorithms that can be implemented for 
estimation. 

0286 FIG.11 is a flow chart that illustrates the process 114 
of estimating analyte values within physiological boundaries 
in one embodiment. The embodiment described herein is 
provided because the estimative algorithms such as described 
with reference to FIG. 9 consider mathematical equations, 
which may or may not be sufficient to accurately estimate 
analyte values based on measured analyte values. 
0287. At block 116, the analyte value estimation with 
physiological boundaries process 114 obtains sensor data, 
which can be raw, smoothed, calibrated and/or otherwise 
processed. 
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0288 At block 118, the analyte value estimation with 
physiological boundaries process 114 estimates one or more 
analyte values using one or more estimation algorithms. In 
Some embodiments, this analyte value estimation uses con 
ventional projection using first or second order regression, for 
example. In some embodiments, dynamically and intelli 
gently selecting of one or more algorithms from a plurality of 
algorithms (FIG. 9), evaluating estimation algorithms after 
employing the algorithms (FIG. 13), evaluating a variation of 
estimated analyte values (FIG. 15), measuring and comparing 
analyte values (FIG. 18), or the like can be applied to the 
dynamic and intelligent estimative algorithms described with 
reference to FIG. 9. 

0289 At block 120, the analyte value estimation with 
physiological boundaries process 114 applies physiological 
boundaries to the estimated analyte values of block 118. In 
Some circumstances, physiological changes in a host and 
associated sensor data stream follow a relatively mathemati 
cal curvature. However there are additional considerations 
that are not inherently included in the mathematical calcula 
tion of estimative algorithms, such as physiological bound 
aries. One example of a circumstance or consideration that 
can occur is signal noise or signal artifact on the data stream, 
for example due to transient ischemia, signal from an inter 
fering species, or the like. In Such circumstances, normal 
mathematical calculations can result in estimated analyte val 
ues that fall outside of physiological boundaries. For 
example, a first order regression can produce a line that 
exceeds a known physiological rate of change of glucose in 
humans (for example, about 4 to 5 mg/dL/min). As another 
example, a second order regression can produce a curvature 
that exceeds a known physiological acceleration in humans 
(for example, about 0.1 to 0.2 mg/dL/min). As yet another 
example, it has been observed that the best solution for the 
shape of the curve at any point along a glucose signal data 
stream over a certain time period (for example, about 20 to 30 
minutes) is a straight line, which can be used to set physi 
ological boundaries. As yet another example, a curvature 
defined by a second order regression at low glucose values 
(for example, below 80 mg/dL) generally decelerates as it 
goes down and accelerates as it goes up, while a curvature 
defined by a second order regression at high glucose values 
generally decelerates as it goes up and accelerates as it goes 
down. As yet another example, an individual's physiological 
patterns can be monitored over a time period (for example, 
from about one day to about one year) and individual’s physi 
ological patterns quantified using pattern recognition algo 
rithms; the individual's physiological patterns could be used 
to increase the intelligence of the estimation by applying the 
quantified patterns to the estimated analyte values. 
0290 Accordingly, physiological boundaries, includes 
those described above, or other measured or known physi 
ological analyte boundaries, can compliment an estimative 
algorithm to ensure that the estimated analyte values fall 
within known physiological parameters. However, in some 
alternative embodiments, physiological boundaries can be 
applied to raw and/or Smoothed data, thereby eliminating the 
need for the estimation step (block 118). 
0291 FIG. 12 is a graph that illustrates physiological 
boundaries applied to a data stream in one embodiment, 
wherein the dynamic and intelligent estimation includes per 
forming an estimative algorithm and further applies physi 
ological boundaries to the estimated analyte data. The X-axis 
represents time in minutes. The y-axis represents glucose 
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concentration in mg/dL. Measured glucose data 122 is shown 
for about 90 minutes up to t—0. At t=0, an estimative algo 
rithm performs estimation using a second order regression of 
the previous 40 minutes to generate a slope and acceleration, 
which are used to extrapolate the estimated glucose data 124 
beginning at the measured analyte data at t=0. At the same 
time (t=0), the system uses known physiological parameters 
to determine physiologically feasible boundaries of glucose 
concentration over the estimated 15-minute period. In this 
example, the system uses a slope and intercept defined by a 
first order regression using 25 minutes of data up to t0, from 
which the system sets physiological boundaries using a maxi 
mum acceleration of glucose of 0.2 mg/dL/min and a maxi 
mum rate of change of glucose of 4 mg/dL/min for the 
upcoming 15 minutes. Using the above-described physiologi 
cal parameters, an upper physiological boundary 126 and a 
lower physiological boundary 128 are set. Interestingly, the 
estimated glucose data 124 falls outside of the physiological 
boundaries, namely above the upper physiological boundary 
126. In this case, the second order regression estimated glu 
cose data 124 has either a rate of change greater than 4 
mg/dL/min and/or acceleration greater than 0.2 mg/dL/min. 
Such circumstances can be caused by noise on the signal, 
artifact of performing regression over a predetermined time 
period during which a change in analyte concentration is not 
best described by a regression line, or numerous other Such 
affects. 

0292. In this case, estimated glucose values 124 can be 
adjusted to be the upper limit 126 in order to better represent 
physiologically feasible estimated analyte values. In some 
embodiments, some or all of the estimated analyte values 
falling outside of the physiological parameters can trigger the 
dynamic and intelligent estimative algorithms to re-select an 
algorithm, or to adjust the parameters of the algorithm (for 
example, increase and/or decrease the number of data points 
considered by the algorithm) to better estimate during that 
time period. In some alternative embodiments, statistical and 
or clinical boundaries can be used to bound estimated analyte 
values and/or adjust the parameters that drive those algo 
rithms. 

0293 FIG. 13 is a flow chart that illustrates the process 130 
of dynamic and intelligent estimation and evaluation of ana 
lyte values in one embodiment, wherein the estimation algo 
rithms are continuously, periodically, or intermittently evalu 
ated based on statistical, clinical, or physiological parameters 
to maintain accuracy of estimation. 
0294. At block 132, the dynamic and intelligent estima 
tion and evaluation process 130 obtains sensor data, which 
can be raw, Smoothed, calibrated and/or otherwise processed. 
0295. At block 134, the dynamic and intelligent estima 
tion and evaluation process 130 estimates one or more analyte 
values using one or more estimation algorithms. In some 
embodiments, this analyte value estimation uses conven 
tional projection using first or second order regression, for 
example. In some embodiments, dynamically and intelli 
gently selecting of one or more algorithms from a plurality of 
algorithms (FIG. 9), dynamically and intelligently estimating 
analyte values within physiological boundaries (FIG. 11), 
evaluating a variation of estimated analyte values (FIG. 15), 
measuring and comparing analyte values (FIG. 18), or the like 
can be applied to the dynamic and intelligent estimation and 
evaluation process described herein with reference to FIG. 
13. 
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0296. The estimative algorithms described elsewhere 
herein consider mathematical equations (FIG.9) and option 
ally physiological parameters (FIG. 11), which may or may 
not be sufficient to accurately estimate analyte values in some 
circumstances due to the dynamic nature of mammalian 
behavior. For example, in a circumstance where a patient's 
glucose concentration is trending upwardly at a constant rate 
of change (for example, 120 mg/dL at 2 mg/dL/min), an 
expected physiological pattern would likely estimate a con 
tinued increase at Substantially the same rate of change over 
the upcoming approximately 40 minutes, which would fall 
within physiological boundaries. However, if a person with 
diabetes were to engage in heavy aerobic exercise, which may 
not be known by the estimative algorithm, a slowing of the 
upward trend, and possibly a change to a downward trend can 
possibly result, leading to inaccuracies in the estimated ana 
lyte values. Numerous Such circumstances can occur in the 
lifestyle of a person with diabetes. However, although analyte 
values can sometimes be estimated under “normal circum 
stances, other circumstances exist that are not “normal” or 
“expected” and can result in estimative algorithms that pro 
duce apparently erroneous results, for example, if they are 
based solely on mathematical calculations and/or physiologi 
cal patterns. Accordingly, evaluation of the estimative algo 
rithms can be performed to ensure the accuracy or quantify a 
measure of confidence in the estimative algorithms. 
0297. At block 136, the dynamic and intelligent estima 
tion and evaluation process 130 evaluates the estimationalgo 
rithms employed at block 134 to evaluate a “goodness” of the 
estimated analyte values. The evaluation process performs an 
evaluation of the measured analyte data with the correspond 
ing estimated analyte data (e.g., by performing the algorithm 
on the data stream and comparing the measured with the 
corresponding analyte data for a time period). In some 
embodiments, evaluation can be performed continually or 
continuously so that the dynamic and intelligent algorithms 
are continuously adapting to the changing physiological ana 
lyte data. In some embodiments, the evaluation can be per 
formed periodically so that the dynamic and intelligent algo 
rithms are periodically and systematically adapting to the 
changing physiological analyte data. In some embodiments, 
evaluation can be performed intermittently, for example when 
an estimative algorithm is initiated or other such triggers, so 
that the dynamic and intelligent algorithms can be evaluated 
when new or updated data or algorithms are being processed. 
0298. This evaluation process 130 uses any known evalu 
ation method, for example based on statistical, clinical, or 
physiological standards. One example of statistical evalua 
tion is provided below with reference to FIG. 14; however 
other methods are also possible. In some embodiments, the 
evaluation process 130 determines a correlation coefficient of 
regression. In some embodiments wherein the sensor is a 
glucose sensor, the evaluation process 130 determines if the 
selected estimative algorithm shows that analyte values fall 
with the “A” and “B” regions of the Clarke Error Grid. Other 
parameters or methods for evaluation are considered within 
the scope of the preferred embodiments. In some embodi 
ments, the evaluation process 130 includes performing a cur 
Vature formula to determine fiducial information about the 
curvature, which results in an evaluation of the amount of 
noise on the signal. 
0299. In some embodiments, the evaluation process 130 
calculates physiological boundaries to evaluate whether the 
estimated analyte values fall within known physiological 
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constraints. This evaluation is particularly helpful when 
physiological constraints, such as described with reference to 
FIG. 11 above, have not been applied to the estimative algo 
rithm. In this embodiment, the estimative algorithm(s) are 
evaluated to ensure that they do not allow estimated analyte 
values to fall outside of physiological boundaries, some 
examples of which are described in more detail with reference 
to FIG. 11 above, and in the definitions section, for example. 
In some alternative embodiments, clinical or statistical 
parameters can be used in a similar manner to bound esti 
mated analyte values. 
0300. If the result of the evaluation is satisfactory (for 
example, 10% average deviation, correlation coefficient 
above 0.79, all estimated analyte values within A or B region 
of the Clarke Error Grid, all estimated analyte values within 
physiological boundaries, or the like), the processing contin 
ues to the next step, using the selected estimative algorithm. 
However, if the result of the evaluation is unsatisfactory, the 
process can start the algorithm selection process again, 
optionally considering additional information, or the proces 
Sor can determine that estimation is not appropriate for a 
certain time period. In one alternative embodiment, a signal 
noise measurement can be evaluated, and if the signal to noise 
ratio is unacceptable, the processor can modify its estimative 
algorithm or other action that can help compensate for signal 
noise (e.g., signal artifacts, such as described in co-pending 
U.S. application Ser. No. 10/632,537 filed Aug. 22, 2003 and 
entitled, “SYSTEMS AND METHODS FOR REPLACING 
SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA 
STREAM, which is incorporated herein by reference in its 
entirety). 
0301 FIG. 14 is a graph that illustrates an evaluation of the 
selected estimative algorithm in one embodiment, wherein a 
correlation is measured to determine a deviation of the mea 
Sured glucose data with the selected estimative algorithm, if 
any. The X-axis represents time in minutes. The y-axis repre 
sents glucose concentration in mg/dL. Measured glucose val 
ues 140 are shown for about 90 minutes up to t—0. At t=0, the 
selected algorithm is performed on 40 minutes of the mea 
sured glucose values 140 up to t—0, which is represented by a 
regression line 142 in this embodiment. A data association 
function is used to determine a goodness of fit of the estima 
tive algorithm on the measured glucose data 140; namely, the 
estimative algorithm is performed retrospectively on the mea 
sured glucose data 140, and is hereinafter referred to as ret 
rospectively estimated glucose data 142 (e.g., estimation 
prior to t-0), after which a correlation (or deviation) with the 
measured glucose data is determined. In this example, the 
goodness of fit shows a mean absolute relative difference 
(MARD) of 3.3% between the measured glucose data 140 and 
the retrospectively estimated glucose data 142. While not 
wishing to be bound to theory, it is believed that this correla 
tion of the measured glucose data 140 to the retrospectively 
estimated glucose data 142 can be indicative of the correla 
tion of future estimated glucose data to the measured glucose 
data for that estimated time period. 
0302 Reference is now made to FIG. 15, which is a flow 
chart that illustrates the process 150 of analyzing a variation 
ofestimated future analyte value possibilities in one embodi 
ment. This embodiment takes into consideration that analyte 
values are subject to a variety of external influences, which 
can cause the measured analyte values to alter from the esti 
mated analyte values as the time period that was estimated 
passes. External influences include, but are not limited to, 
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exercise, sickness, consumption of food and alcohol, injec 
tions of insulin, other medications, or the like. For a person 
with diabetes, for example, even when estimation does not 
accurately predict the upcoming measured analyte values, the 
estimated analyte values can be valuable to a patient in treat 
ment and in fact can even alter the estimated path by encour 
aging proactive patient behavior that can cause the patient to 
avoid the estimated clinical risk. In other words, the deviation 
of measured analyte values from their corresponding esti 
mated analyte values may not be an "error in the estimative 
algorithm, and is in fact one of the benefits of the continuous 
analyte sensor of the preferred embodiments, namely encour 
aging patient behavior modification and thereby improving 
patient health through minimizing clinically risky analyte 
values. Proactive behavior modification (for example, thera 
pies such as insulin injections, carbohydrate consumption, 
exercise, or the like) can cause the patient's measured glucose 
to change from the estimated path, and analyzing a variation 
that can be associated with the estimated analyte values can 
encompass many of these changes. Therefore, in addition to 
estimated analyte values, a variation can be calculated or 
estimated based on statistical, clinical, and/or physiological 
parameters that provides a range of values in which the esti 
mated analyte values can fall. 
0303 At block 152, the variation of possible estimated 
analyte values analysis process 150 obtains sensor data, 
which can be raw, smoothed, calibrated and/or otherwise 
processed. 
0304 At block 154, the variation of possible estimated 
analyte values analysis process 150 estimates one or more 
analyte values using one or more estimation algorithms. In 
Some embodiments, this analyte values estimation uses con 
ventional projection using first or second order regression, for 
example. In some embodiments, dynamically and intelli 
gently selecting of one or more algorithms from a plurality of 
algorithms (FIG.9), dynamically and intelligently estimating 
analyte values within physiological boundaries (FIG. 11), 
dynamic and intelligent estimation and evaluation of esti 
mated analyte values (FIG. 13), measuring and comparing 
analyte values (FIG. 18), or the like can be applied to the 
dynamic and intelligent estimation and evaluation process 
described herein with reference to FIG. 15. 
0305 At block 156, the variation of possible estimated 
analyte values evaluation process 150 analyzes a variation of 
the estimated analyte data. Particularly, a statistical, clinical, 
and/or physiological variation of estimated analyte values can 
be calculated when applying the estimative algorithms and/or 
can be calculated at regular intervals to dynamically change 
as the measured analyte values are obtained. In general, 
analysis of trends and their variation allows the estimation of 
the preferred embodiments to dynamically and intelligently 
anticipate upcoming conditions, by considering internal and 
external influences that can affect analyte concentration. 
0306 In some embodiments, physiological boundaries for 
analytes in mammals can be used to set the boundaries of 
variation. For example, known physiological boundaries of 
glucose in humans are discussed in detail herein, with refer 
ence to FIG. 11, and in the definitions section, however any 
physiological parameters for any measured analyte could be 
implemented here to provide this variation of physiologically 
feasible analyte values. 
0307. In some embodiments, statistical variation can be 
used to determine a variation of possible analyte values. Sta 
tistical variation can be any known divergence or change from 
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a point, line, or set of databased on statistical information. 
Statistical information includes patterns or data analysis 
resulting from experiments, published or unpublished, for 
example. In some embodiments, statistical information can 
include normal patterns that have been measured statistically 
in studies of analyte concentrations in mammals, for 
example. In some embodiments, statistical information can 
include errors observed and measured Statistically in studies 
of analyte concentrations in mammals, for example. In some 
embodiments, statistical information can include predeter 
mined statistical standards, for example, deviation less than 
or equal to 5% on the analyte value. In some embodiments, 
statistical variation can be a measured or otherwise known 
signal noise level. 
0308. In some embodiments, a variation is determined 
based on the fact that the conventional blood glucose meters 
are known to have up to a +/-20% error in glucose values 
(namely, on average in the hands of a patient). For example, 
gross errors in glucose readings are known to occur due to 
patient error in self-administration of the blood glucose test. 
In one such example, if the user has traces of Sugar on his/her 
finger while obtaining a blood sample for a glucose concen 
tration test, then the measured glucose value will likely be 
much higher than the measured glucose value in the blood. 
Additionally, it is known that self-monitored blood glucose 
tests (for example, test strips) are occasionally subject to 
manufacturing error. In view of this statistical information, in 
an embodiment wherein a continuous glucose sensor relies 
upon a conventional blood glucose meter for calibration, this 
+/-20% error should be considered because of the potential 
for translated effect on the calibrated sensor analyte data. 
Accordingly, this exemplary embodiment would provide for 
a +/-20% variation of estimated glucose values based on the 
above-described statistical information. 

0309. In some embodiments, a variation of estimated ana 
lyte values can be analyzed based on individual physiological 
patterns. Physiological patterns are affected by a combination 
of at least biological mechanisms, physiological boundaries, 
and external influences such as exercise, sickness, consump 
tion of food and alcohol, injections of insulin, other medica 
tions, or the like. Advantageously, pattern recognition can be 
used with continuous analyte sensors to characterize an indi 
vidual’s physiology; for example the metabolism of a person 
with diabetes can be individually characterized, which has 
been difficult to quantify with conventional glucose sensing 
mechanisms due to the unique nature of an individual’s 
metabolism. Additionally, this information can be advanta 
geously linked with external influences (for example, patient 
behavior) to better understand the nature of individual human 
physiology, which can be helpful in controlling the basal rate 
in a person with diabetes, for example. 
0310. While not wishing to be bound to theory, it is 
believed that monitoring of individual historical physiologi 
cal analyte data can be used to recognize patterns that can be 
used to estimate analyte values, or ranges of values, in a 
mammal. For example, measured analyte data for a patient 
can show certain peaks of glucose levels during a specific 
time of day, “normal AM and PM eating behaviors (for 
example, that follow a pattern), weekday versus weekend 
glucose patterns, individual maximum rate of change, or the 
like, that can be quantified using patient-dependent pattern 
recognition algorithms, for example. Pattern recognition 
algorithms that can be used in this embodiment include, but 
are not limited to, stochastic nonlinear time-series analysis, 
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exponential (non-linear) autoregressive model, process feed 
back nonlinear autoregressive (PFNAR) model, neural net 
works, or the like. 
0311. Accordingly, statistically calculated patterns can 
provide information useful in analyzing a variation of esti 
mated analyte values for a patient that includes consideration 
of the patient's normal physiological patterns. Pattern recog 
nition enables the algorithmic analysis of analyte data to be 
customized to a user, which is useful when analyte informa 
tion is variable with each individual user, such as has been 
seen in glucose in humans, for example. 
0312. In some embodiments, a variation of estimated ana 
lyte values is on clinical risk analysis. Estimated analyte 
values can have higher clinical risk in certain ranges of ana 
lyte values, for example analyte values that are in a clinically 
risky Zone or analyte values that are changing at a clinically 
risky rate of change. When a measured analyte value or an 
estimated analyte value shows existing or approaching clini 
cal risk, it can be important to analyze the variation of esti 
mated analyte values in view of the clinical risk to the patient. 
For example, in an effort to aid a person with diabetes in 
avoiding clinically risky hyper- or hypoglycemia, a variation 
can be weighted toward the clinically risk Zone, which can be 
used to emphasize the pending danger to the patient, doctor, 
or care taker, for example. As another example, the variation 
of measured or estimated analyte values can be based on 
values that fall within the 'A' and/or “B” regions of an error 
grid Analysis Method. 
0313. In case of variation analysis based on clinical risk, 
the estimated analyte values are weighted in view of pending 
clinical risk. For example, ifestimated glucose values show a 
trend toward hypoglycemia at a certain rate of change, a 
variation of possible trends toward hypoglycemia are 
weighted to show how quickly the glucose concentration 
could reach 40 mg/dL, for example. As another example, if 
estimated glucose values show a trend toward hyperglycemia 
at a certain acceleration, a variation of possible trends toward 
hyperglycemia are weighted to show how quickly the glucose 
concentration could reach 200 mg/dL, for example. 
0314. In some embodiments, when a variation of the esti 
mated analyte values shows higher clinical risk as a possible 
path within that variation analysis as compared to the esti 
mated analyte path, the estimated analyte values can be 
adjusted to show the analyte values with the most clinical risk 
to a patient. While not wishing to be bound by theory, adjust 
ing the estimated analyte values for the highest variation of 
clinical risk exploits the belief that by showing the patient the 
“worst case scenario, the patient is more likely to address the 
clinical risk and make timely behavioral and therapeutic 
modifications and/or decisions that will slow or reverse the 
approaching clinical risk. 
0315. At block 158, the variation of possible estimated 
analyte values evaluation process 150 provides output based 
on the variation analysis. In some embodiments, the result of 
this variation analysis provides a “Zone' of possible values, 
which can be displayed to the user, considered in data analy 
sis, and/or used in evaluating of performance of the estima 
tion, for example. A few examples of variation analysis dis 
play are shown in FIGS. 24 to 26; however other methods of 
formatting or displaying variation analysis data are contem 
plated within the scope of the invention. 
0316 FIG. 16 is a graph that illustrates variation analysis 
of estimated glucose values in one embodiment, wherein a 
variation of the estimated glucose values is analyzed and 
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determined based on known physiological parameters. The 
X-axis represents time in minutes. The y-axis represents glu 
cose concentration in mg/dL. In this embodiment, the known 
maximum rate of change and acceleration of glucose in 
humans are used to provide the variation about the estimated 
glucose path. 
0317. The measured glucose values 160 are shown for 
about 90 minutes up to t—0. At t=0, intelligent and dynamic 
estimation of the preferred embodiments is performed to 
obtain estimated glucose values 162. A variation of estimated 
glucose values is then determined based on physiological 
parameters, including an upper limit 164 and a lower limit 
166 of variation defined by known physiological parameters, 
including rate of change and acceleration of glucose concen 
tration in humans. 
0318 FIG. 17 is a graph that illustrates variation of esti 
mated analyte values in another embodiment, wherein the 
variation is based on statistical parameters. The X-axis repre 
sents time in minutes and the y-axis represents glucose con 
centration in mg/dL. The measured glucose values 170 are 
shown for about 160 minutes up to t—0. At t=0, intelligent and 
dynamic estimation of the preferred embodiments is 
employed to obtain estimated glucose values 172. A variation 
is defined by upper and lower limits 174 that were determined 
using 95% confidence intervals. Bremer, T.; Gough, D. A. “Is 
blood glucose predictable from previous values? A solicita 
tion for data. Diabetes 1999, 48, 445-451, which is incorpo 
rated by reference herein in its entirety, teaches a method of 
determining a confidence interval in one embodiment. 
0319. Although some embodiments have been described 
for a glucose sensor, any measured analyte pattern, data 
analysis resulting from an experiment, or otherwise known 
statistical information, whether official or unofficial, pub 
lished or unpublished, proven oranecdotal, or the like, can be 
used to provide the statistical variation described herein. 
0320 FIG. 18 is a flow chart that illustrates the process 180 
of estimating, measuring, and comparing analyte values in 
one embodiment. 
0321. At block 182, the estimating, measuring, and com 
paring analyte values process 180 obtains sensor data, which 
can be raw, Smoothed, calibrated and/or otherwise processed. 
0322. At block 184, the estimating, measuring, and com 
paring analyte values process 180 estimates one or more 
analyte values for a time period. In some embodiments, this 
analyte values estimation uses conventional projection using 
first or second order regression, for example. In some 
embodiments, dynamically and intelligently selecting of one 
or more algorithms from a plurality of algorithms (FIG. 9), 
dynamically and intelligently estimating analyte values 
within physiological boundaries (FIG. 11), dynamic and 
intelligent estimation and evaluation of estimated analyte 
values (FIG. 13), variation analysis (FIG. 15), or the like can 
be applied to the process described herein with reference to 
FIG. 18. 
0323. At block 186, the estimating, measuring, and com 
paring analyte values process 180 obtains sensor data for the 
time period for which the estimated analyte values were cal 
culated at block 184. In some embodiments, the measured 
analyte data can be raw, Smoothed, calibrated and/or other 
wise processed. 
0324. At block 188, the estimating, measuring, and com 
paring analyte values process 180 compares the estimated 
analyte data to the measured analyte data for that estimated 
time period. In general, it can be useful to compare the esti 
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mated analyte data to the measured analyte data for that 
estimated time period after estimation of analyte values. This 
comparison can be performed continuously, namely, at regu 
lar intervals as data streams are processed into measured 
analyte values. Alternatively, this comparison can be per 
formed based on events, such as during estimation of mea 
Sured analyte values, selection of a estimative algorithm, 
evaluation of estimative algorithms, variation analysis of esti 
mated analyte values, calibration and transformation of sen 
sor analyte data, or the like. 
0325 One embodiment is shown in FIG. 19, wherein 
MARD is used to determine a correlation (or deviation), if 
any, between the estimated and measured data sets. In other 
embodiments, other methods, such as linear regression, non 
linear mapping/regression, rank (for example, non-paramet 
ric) correlation, least mean square fit, mean absolute devia 
tion (MAD), or the like, can be used to compare the estimated 
analyte data to the measured analyte data to determine a 
correlation (or deviation), if any. 
0326 In one embodiment, wherein estimation is used in 
outlier detection and/or in matching data pairs for a continu 
ous glucose sensor (see FIGS. 6 and 7), the estimated glucose 
data can be plotted against reference glucose data on a clinical 
error grid (for example, Clarke Error Grid or rate grid) and 
then compared to the measured glucose data for that esti 
mated time period plotted against the same reference analyte 
data on the same clinical error grid. In alternative embodi 
ments, other clinical error analysis methods can be used. Such 
as Consensus Error Grid, rate of change calculation, consen 
SuS grid, and standard clinical acceptance tests, for example. 
The deviation can be quantified by percent deviation, or can 
be classified as pass/fail, for example. 
0327. In some embodiments, the results of the comparison 
provide a quantitative deviation value, which can be used to 
provide a statistical variation; for example, if the '% deviation 
is calculated as 8%, then the statistical variation Such as 
described with reference to FIG. 15 can be updated with a 
+/-8% variation. In some alternative embodiments, the 
results of the comparison can be used to turn on/off the 
estimative algorithms, estimative output, or the like. In gen 
eral, the comparison produces a confidence interval (for 
example, +/-8% of estimated values) which can be used in 
data analysis, output of data to a user, or the like. 
0328. A resulting deviation from this comparison between 
estimated and corresponding measured analyte values may or 
may not imply error in the estimative algorithms. While not 
wishing to be bound by theory, it is believed that the deviation 
between estimated and corresponding measured analyte val 
ues is due, at least in part, to behavioral changes by a patient, 
who observes estimated analyte values and determines to 
change the present trend of analyte values by behavioral 
and/or therapeutic changes (for example, medication, carbo 
hydrate consumption, exercise, rest, or the like). Accordingly, 
the deviation can also be used to illustrate positive changes 
resulting from the educational aspect of providing estimated 
analyte values to the user, which is described in more detail 
with reference to FIGS. 20 to 26. 

0329 FIG. 19 is a graph that illustrates comparison of 
estimated analyte values in one embodiment, wherein previ 
ously estimated analyte values are compared to time corre 
sponding measured analyte values to determine a correlation 
(or deviation), if any. The X-axis represents time in minutes. 
The y-axis represents glucose concentration in mg/dL. The 
measured glucose values 192 are shown for about 105 min 
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utes up to t—15. The estimated analyte values 194, which were 
estimated at t=0 for 15 minutes, are shown superimposed over 
the measured analyte values 192. Using a 3-point MARD for 
t–0 to t—15, the estimated analyte values 194 can be compared 
with the measured analyte values 192 to determine a 0.55% 
average deviation. 

Input and Output 
0330. In general, the above-described estimative algo 
rithms, including estimation of measured analyte values and 
variation analysis of the estimated analyte values are useful 
when provided to a patient, doctor, family member, or the 
like. Even more, the estimative algorithms are useful when 
they are able to provide information helpful in modifying a 
patient's behavior so that they experience less clinically risky 
situations and higher quality of life than may otherwise be 
possible. Therefore, the above-described data analysis can be 
output in a variety of forms useful in caring for the health of 
a patient. 
0331 Output can be provided via a user interface, includ 
ing but not limited to, visually on a screen, audibly through a 
speaker, or tactilely through a vibrator. Additionally, output 
can be provided via wired or wireless connection to an exter 
nal device, including but not limited to, computer, laptop, 
server, personal digital assistant, modem connection, insulin 
delivery mechanism, medical device, or other device that can 
be useful in interfacing with the receiver. 
0332 Output can be continuously provided, or certain out 
put can be selectively provided based on events, analyte con 
centrations or the like. For example, an estimated analyte path 
can be continuously provided to a patient on an LCD screen, 
while audible alerts can be provided only during a time of 
existing or approaching clinical risk to a patient. As another 
example, estimation can be provided based on event triggers 
(for example, when an analyte concentration is nearing or 
entering a clinically risky Zone). As yet another example, 
analyzed deviation of estimated analyte values can be pro 
vided when a predetermined level of variation (for example, 
due to known error or clinical risk) is known. 
0333. In contrast to alarms that prompt or alert a patient 
when a measured or projected analyte value or rate of change 
simply passes a predetermined threshold, the clinical risk 
alarms of the preferred embodiments combine intelligent and 
dynamic estimative algorithms to provide greater accuracy, 
more timeliness in pending danger, avoidance of false alarms, 
and less annoyance for the patient. In general, clinical risk 
alarms of the preferred embodiments include dynamic and 
intelligent estimative algorithms based on analyte value, rate 
of change, acceleration, clinical risk, statistical probabilities, 
known physiological constraints, and/or individual physi 
ological patterns, thereby providing more appropriate, clini 
cally safe, and patient-friendly alarms. 
0334. In some embodiments, clinical risk alarms can be 
activated for a predetermined time period to allow for the user 
to attend to his/her condition. Additionally, the clinical risk 
alarms can be de-activated when leaving a clinical risk Zone 
So as not to annoy the patient by repeated clinical risk alarms, 
when the patient's condition is improving. 
0335. In some embodiments, the dynamic and intelligent 
estimation of the preferred embodiments determines a possi 
bility of the patient avoiding clinical risk, based on the analyte 
concentration, the rate of change, and other aspects of the 
dynamic and intelligent estimative algorithms of the pre 
ferred embodiments. If there is minimal or no possibility of 
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avoiding the clinical risk, a clinical risk alarm will be trig 
gered. However, if there is a possibility of avoiding the clini 
cal risk, the system can wait a predetermined amount of time 
and re-analyze the possibility of avoiding the clinical risk. In 
Some embodiments, when there is a possibility of avoiding 
the clinical risk, the system will further provide targets, 
therapy recommendations, or other information that can aid 
the patient in proactively avoiding the clinical risk. 
0336. In some embodiments, a variety of different display 
methods are used, such as described in the preferred embodi 
ments, which can be toggled through or selectively displayed 
to the user based on conditions or by selecting a button, for 
example. As one example, a simple screen can be normally 
shown that provides an overview of analyte data, for example 
present analyte value and directional trend. More complex 
screens can then be selected when a user desired more 
detailed information, for example, historical analyte data, 
alarms, clinical risk Zones, or the like. 
0337 FIG. 20 is an illustration of the receiver in one 
embodiment showing an analyte trend graph, including mea 
Sured analyte values, estimated analyte values, and a clinical 
risk Zone. The receiver 12 includes an LCD screen 30, buttons 
32, and a speaker 24 and/or microphone. The screen 30 dis 
plays a trend graph in the form of a line representing the 
historical trend of a patient's analyte concentration. Although 
axes may or may not be shown on the screen 30, it is under 
stood that a theoretical X-axis represents time and a theoreti 
cal y-axis represents analyte concentration. 
0338. In some embodiments such as shown in FIG. 20, the 
screen shows thresholds, including a high threshold 200 and 
a low threshold 202, which represent boundaries between 
clinically safe and clinically risky conditions for the patients. 
In one exemplary embodiment, a normal glucose threshold 
for a glucose sensor is set between about 100 and 160 mg/dL, 
and the clinical risk Zones 204 are illustrated outside of these 
thresholds. In alternative embodiments, the normal glucose 
threshold is between about 80 and about 200 mg/dL, between 
about 55 and about 220 mg/dL, or other threshold that can be 
set by the manufacturer, physician, patient, computer pro 
gram, or the like. Although a few examples of glucose thresh 
olds are given for a glucose sensor, the setting of any analyte 
threshold is not limited by the preferred embodiments. 
0339. In some embodiments, the screen 30 shows clinical 
risk Zones 204, also referred to as danger Zones, through 
shading, gradients, or other graphical illustrations that indi 
cate areas of increasing clinical risk. Clinical risk Zones 204 
can be set by a manufacturer, customized by a doctor, and/or 
set by a user via buttons 32, for example. In some embodi 
ments, the danger Zone 204 can be continuously shown on the 
screen 30, or the danger Zone can appear when the measured 
and/or estimated analyte values fall into the danger Zone 204. 
Additional information that can be displayed on the screen, 
Such as an estimated time to clinical risk. In some embodi 
ments, the danger Zone can be divided into levels of danger 
(for example, low, medium, and high) and/or can be color 
coded (for example, yellow, orange, and red) or otherwise 
illustrated to indicate the level of danger to the patient. Addi 
tionally, the screen or portion of the screen can dynamically 
change colors or illustrations that represent a nearness to the 
clinical risk and/or a severity of clinical risk. 
0340. In some embodiments, such as shown in FIG.20, the 
screen 30 displays a trend graph of measured analyte data 
206. Measured analyte data can be smoothed and calibrated 
such as described in more detail elsewhere herein. Measured 
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analyte data can be displayed for a certain time period (for 
example, previous 1 hour, 3 hours, 9 hours, etc.) In some 
embodiments, the user can toggle through screens using but 
tons 32 to view the measured analyte data for different time 
periods, using different formats, or to view certain analyte 
values (for example, highs and lows). 
0341. In some embodiments such as shown in FIG. 20, the 
screen 30 displays estimated analyte data 208 using dots. In 
this illustration, the size of the dots can represent the confi 
dence of the estimation, a variation of estimated values, or the 
like. For example, as the time gets farther away from the 
present (t=0) the confidence level in the accuracy of the esti 
mation can decline as is appreciated by one skilled in the art. 
In some alternative embodiments, dashed lines, symbols, 
icons, or the like can be used to represent the estimated 
analyte values. In some alternative embodiments, shaded 
regions, colors, patterns, or the like can also be used to rep 
resent the estimated analyte values, a confidence in those 
values, and/or a variation of those values, such as described in 
more detail in preferred embodiments. 
0342 Axes, including time and analyte concentration val 
ues, can be provided on the screen, however are not required. 
While not wishing to be bound by theory, it is believed that 
trend information, thresholds, and danger Zones provide Suf 
ficient information to represent analyte concentration and 
clinically educate the user. In some embodiments, time can be 
represented by symbols, such as a Sun and moon to represent 
day and night. In some embodiments, the present or most 
recent measured analyte concentration, from the continuous 
sensor and/or from the reference analyte monitor can be con 
tinually, intermittently, or selectively displayed on the screen. 
(0343. The estimated analyte values 208 of FIG.20 include 
a portion, which extends into the danger Zone 204. By pro 
viding data in a format that emphasizes the possibility of 
clinical risk to the patient, appropriate action can be taken by 
the user (for example, patient or caretaker) and clinical risk 
can be preempted. 
0344 FIG. 21 is an illustration of the receiver in another 
embodiment showing a representation of analyte concentra 
tion and directional trend using a gradient bar. In this embodi 
ment, the screen illustrates the measured analyte values and 
estimated analyte values in a simple but effective manner that 
communicates valuable analyte information to the user. 
0345. In this embodiment, a gradient bar 210 is provided 
that includes thresholds 212 set at high and lows such as 
described in more detail with reference to FIG. 20, above. 
Additionally, colors, shading, or other graphical illustration 
can be present to represent danger Zones 214 on the gradient 
bar 210 such as described in more detail with reference to 
FIG. 20, above. 
0346. The measured analyte value is represented on the 
gradient bar 210 by a marker 216, such as a darkened or 
colored bar. By representing the measured analyte value with 
a bar 216, a low-resolution analyte value is presented to the 
user (for example, within a range of values). For example, 
each segment on the gradient bar 210 can represent about 10 
mg/dL of glucose concentration. As another example, each 
segment can dynamically represent the range of values that 
fall within the “A” and “B” regions of the Clarke Error Grid. 
While not wishing to be bound by theory, it is believe that 
inaccuracies known both in reference analyte monitors and/or 
continuous analyte sensors are likely due to known variables 
such as described in more detail elsewhere herein, and can be 
de-emphasized such that a user focuses on proactive care of 
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the condition, rather than inconsequential discrepancies 
within and between reference analyte monitors and continu 
ous analyte sensors. 
0347 Additionally, the representative gradient bar com 
municates the directional trend of the analyte concentration to 
the user in a simple and effective manner, namely by a direc 
tional arrow 218. For example, in conventional diabetic blood 
glucose monitoring, a person with diabetes obtains a blood 
sample and measures the glucose concentration using a test 
strip, or the like. Unfortunately, this information does not tell 
the person with diabetes whether the blood glucose concen 
tration is rising or falling. Rising or falling directional trend 
information can be particularly important in a situation Such 
as illustrated in FIG. 21, wherein if the user does not know 
that the glucose concentration is rising, he/she may assume 
that the glucose concentration is falling and not attend to 
his/her condition. However, because rising directional trend 
information 218 is provided, the person with diabetes can 
preempt the clinical risk by attending to his/her condition (for 
example, administer insulin). Estimated analyte data can be 
incorporated into the directional trend information by char 
acteristics of the arrow, for example, size, color, flash speed, 
or the like. 
0348. In some embodiments, the gradient bar can be a 
Vertical instead of horizontal bar. In some embodiments, a 
gradient fill can be used to represent analyte concentration, 
variation, or clinical risk, for example. In some embodiments, 
the bar graph includes color, for example the center can be 
green in the safe Zone that graduates to red in the danger 
Zones; this can be in addition to or in place of the divided 
segments. In some embodiments, the segments of the bar 
graph are clearly divided by lines; however color, gradation, 
or the like can be used to represent areas of the bar graph. In 
Some embodiments, the directional arrow can be represented 
by a cascading level of arrows to a represent slow or rapid rate 
of change. In some embodiments, the directional arrow can be 
flashing to represent movement or pending danger. 
(0349 The screen 30 of FIG. 21 can further comprise a 
numerical representation of analyte concentration, date, time, 
or other information to be communicated to the patient. How 
ever, a user can advantageously extrapolate information help 
ful for his/her condition using the simple and effective repre 
sentation of this embodiment shown in FIG. 21, without 
reading a numeric representation of his/her analyte concen 
tration. 

0350. In some alternative embodiments, a trend graph or 
gradient bar, a dial, pie chart, or other visual representation 
can provide analyte data using shading, colors, patterns, 
icons, animation, or the like. 
0351 FIG.22 is an illustration of a receiver in one embodi 
ment, which includes measured analyte values and a target 
analyte value(s). FIG.23 is an illustration of the receiver of 22 
further including estimated analyte values. FIG. 24 is an 
illustration of the receiver of 23 further including variations of 
estimated analyte values and including therapy recommenda 
tions to aid a user in obtaining the target analyte value. 
0352 FIG. 22 is an illustration of the receiver 12 in one 
embodiment, wherein the screen 30 shows measured analyte 
values 220 and one (or more) clinically acceptable target 
analyte values 222. The measured analyte values 220 are 
illustrated as a trend graph, Such as described with reference 
to FIG. 20, however other representations are also possible. 
0353. Additionally, one or more clinically acceptable tar 
get analyte values 222 are provided as output, for example 
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such as shown in FIG. 22. In some embodiments, the clini 
cally acceptable target analyte values can be obtained from a 
variation analysis of clinical, physiological, or statistical 
variation, such as described in more detail elsewhere herein. 
Namely, the variation analysis provides the analyzed varia 
tion of the estimated analyte values, and the output module 18 
(or processor 16) further analyzes the variation of estimated 
analyte values for those that are clinically acceptable and 
optionally also ensures physiological feasibility. For 
example, analysis of clinical risk can visually direct a patient 
to aim for an analyte value in a safe Zone (for example, outside 
of the clinically risky Zone). 
0354. In some embodiments, the output displays a point 
representing a target analyte value. In some embodiments, the 
output displays an object representing a general target analyte 
area. In some embodiments, the output displays a path of 
target analyte values. In some embodiments, the output dis 
plays a range of target analyte values along that path. 
0355 Humans are generally particularly responsive to tar 
gets, namely, able to understand the intention of targets and 
desire to obtain them. Advantageously, the output of target 
analyte values provides a goal towards which the user will 
aim. In the example shown on FIG. 20, the measured analyte 
values 220 indicate an upward trend of analyte concentration, 
and a user can likely visualize that the trend of the measured 
analyte values 220 will not likely hit the target 222 without 
intervention or action. Therefore, a user will be prompted to 
proactively care for his/her analyte concentration in an effort 
to hit the target analyte value(s) 222 (for example, administer 
insulin). 
0356. In some embodiments, the manufacturer, physician, 
patient, computer program, or the like can set the target ana 
lyte values. In some embodiments, a physician can set static 
target analyte values based on age, time of day, meal time, 
severity of medical condition, or the like; in such embodi 
ments, the targets can be regularly or intermittently displayed 
in an effort to modify patient behavior through habitual 
reminders and training. Targets can be continually main 
tained on the screen or selectively displayed, for example 
when clinical risk is estimated, but can be avoided. In some 
embodiments, the target values can be dynamic targets, 
namely, targets that are dependent upon variable parameters 
Such as age, time of day, meal time, severity of medical 
condition, medications received (for example, insulin injec 
tions) or the like, which can be input by a user or external 
device. 
0357. In one example of targets useful for a person with 
diabetes monitoring glucose concentration, the target glucose 
levels for a person with diabetes are typically between about 
80 and about 130 mg/dL before meals and less than about 180 
mg/dL one to two hours after a meal. In another exemplary 
embodiment, the amount and timing of insulin injections can 
be considered in determining the estimation of and target 
glucose ranges for a person with diabetes. 
0358 FIG.23 is an illustration of the receiver 12 in another 
embodiment showing the measured analyte values 220 and 
clinically acceptable target analyte value(s) 222 of FIG. 22 
and further showing estimated analyte values 224 on the same 
screen. In some embodiments, the data can be separated onto 
different screens that can be selectively viewed. However, 
viewing both estimated analyte values and the target analyte 
values can be useful in educating the patient regarding control 
of his/her analyte levels, since estimated and target analyte 
values are physiologically feasible in view of known physi 
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ological parameters described elsewhere herein. Estimated 
analyte values can be calculated and displayed in any manner 
described in the preferred embodiments. 
0359 FIG. 24 is an illustration of a receiver in another 
embodiment, including measured analyte values 220, target 
analyte values 222, estimated analyte values 224. Such as 
described in more detail above with reference to FIGS. 22 and 
23, and further including variations of estimated analyte val 
ues 226 and therapy recommendations 228 on the screen to 
help the user obtain the displayed target analyte values 222. 
The variations of estimated analyte values are calculated Such 
as described in more detail with reference to FIG. 15. 
0360. The target analyte values presented should be physi 
ologically feasible; therefore, type and/or amount of therapy 
can be determined (or estimated) to aid the patient in obtain 
ing those therapy goals. In some embodiments, the therapy 
recommendations are representative icons, such as the injec 
tion icon 228 shown in FIG. 24. In alternative embodiments, 
icons can include an apple, orange juice, candy bar, or any 
icon representative of eating, drinking, or medicating, for 
example. In some embodiments, the therapy recommenda 
tions are preset alphanumeric messages (for example, "con 
sume carbohydrates”, “inject insulin', or “no therapy 
required). In some embodiments therapy recommendations 
can be customized (for example, by a manufacturer, physi 
cian, patient, computer program, and/or the like) in order to 
provide more reliable, accurate, clinically safe, and/or indi 
vidualized goals. For example, a physician can input infor 
mation helpful in determining therapy recommendations 
using individual physiological considerations. As another 
example, data can be input via the user interface or via a wired 
or wireless connection to the receiver. Such as age, time of 
day, meal time, severity of medical condition, medications 
received (for example, insulin injections) or the like, which 
can be used to determine the appropriate therapy recommen 
dations. 

0361. In some embodiments, the therapy recommenda 
tions include a variety of scenarios, which the viewer can 
view and/or select. In these embodiments, the patient is given 
more control and able to make decisions based that fits best 
with their lifestyle or present circumstance, or considering 
external influences of which the system was unaware. 
0362. In some embodiments, therapy recommendations 
are sent to an external device (for example, insulin delivery 
mechanism), which is described in more detail with reference 
to FIGS. 27 to 30. 

0363 FIGS. 25 and 26 are views of the receiver showing 
an analyte trend graph, including measured analyte values 
and dynamic visual representation of range of estimated ana 
lyte values based on a variation analysis, such as described in 
more detail with reference to FIG. 15. 

0364 FIG.25 is an illustration of a receiver 12 in another 
embodiment, including a screen 30 that shows the measured 
analyte values 230 and a variation of estimated analyte values 
232 in one exemplary embodiment. In this embodiment, the 
visual representation of the variation of estimated analyte 
values 232 includes exemplary paths representative of the 
analyzed variation of estimated analyte values that illustrates 
a range of possible future analyte values. In some embodi 
ments, the variation of estimated analyte values 232 is repre 
sented by a shape that begins at the most recently measured 
analyte value 234 and includes boundaries 236 that represent 
the range of possible variations of estimated analyte values 
for a future time period. The shape can be static or dynamic 
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depending on the type of variation analyzed by the estimative 
algorithm, for example a fan, teardrop, or other shaped object. 
0365 FIG. 26 is an illustration of a receiver 12 in another 
embodiment, including a screen 30 that shows the measured 
analyte values 238 and a variation of estimated analyte values 
240 in another exemplary embodiment. In this embodiment, 
the variation can include an estimated path and boundaries, 
for example, which can be obtained from a variation analysis 
and/or from physiological parameters, for example. In some 
alternative embodiments, color or other illustrative represen 
tation of levels of safety or danger can be provided on the 
SCC. 

0366 FIG. 27 is an illustration of a receiver 12 in another 
embodiment, including a screen 30 that shows a numerical 
representation of the most recent measured analyte value 242. 
This numerical value 242 is preferably a calibrated analyte 
value, such as described in more detail with reference to FIG. 
2. Additionally, this embodiment preferably provides an 
arrow 244 on the screen 30, which represents the rate of 
change of the host's analyte concentration. A bold'up' arrow 
is shown on the drawing, which preferably represents a rela 
tively quickly increasing rate of change. The arrows shown 
with dotted lines illustrate examples of other directional 
arrows (for example, rotated by 45 degrees), which can be 
useful on the screen to represent various other positive and 
negative rates of change. Although the directional arrows 
shown have a relative low resolution (45 degrees of accuracy), 
other arrows can be rotated with a high resolution of accuracy 
(for example one degree of accuracy) to more accurately 
represent the rate of change of the host's analyte concentra 
tion. In some alternative embodiments, the Screen provides an 
indication of the acceleration of the hosts analyte concentra 
tion. 
0367 A second numerical value 246 is shown, which is 
representative of a variation of the measured analyte value 
242. The second numerical value is preferable determined 
from a variation analysis based on statistical, clinical, or 
physiological parameters, such as described in more detail 
elsewhere herein. In one embodiment, the second numerical 
value 246 is determined based on clinical risk (for example, 
weighted for the greatest possible clinical risk to a patient). In 
another embodiment, the second numerical representation 
246 is an estimated analyte value extrapolated to compensate 
for a time lag, such as described in more detail elsewhere 
herein. In some alternative embodiments, the receiver dis 
plays a range of numerical analyte values that best represents 
the host's estimated analyte value (for example, +/-10%). In 
Some embodiments, the range is weighted based on clinical 
risk to the patient. In some embodiments, the range is repre 
sentative of a confidence in the estimated analyte value and/or 
a variation of those values. In some embodiments, the range is 
adjustable. 

Patient Display 
0368. The potential of continuous glucose monitoring as 
an aid to both diabetic patients and their caregivers is well 
recognized. For the patient, continuous monitoring provides 
hour-to-hour glucose information that enables intensive 
therapy: it can be used to reduce the extent of hyperglycemic 
excursions without increasing the risk of hypoglycemic 
events. For caregivers of patients with diabetes, continuous 
monitoring provides day-to-day glucose information that can 
be used to optimize therapy. Despite these differences in 
purpose/perspective (hour-to-hour data for the patient, day 



US 2009/0043182 A1 

to-day information for the caregiver), the conventional dis 
play of continuous glucose data has heretofore not been 
adapted to the intended usefuser. Accordingly, continuous 
glucose display methods that are utility-driven, and that allow 
the data to be easily perceived and interpreted is desirable. 
0369 Glucose data are typically displayed on a graph with 
y-axis that spans a physiologic range of glucose (e.g. 40-400 
mg/dl) and is uniform, i.e. the distance on the graph between 
60 and 80 mg/dl is the same as the distance between 160 and 
180 mg/dl., even though the clinical meanings of these two 
differences are significantly different. An alternative display 
uses a non-uniform y-axis that makes differences at low glu 
cose levels easier to perceive. The difference inappearance of 
these two graphs is depicted in FIG. 28, which illustrates the 
conventional display of a 9-hour trend graph; FIG. 29 illus 
trates a display with a y-axis that has been equally divided 
into three Zones (low, medium, and high glucose) though the 
glucose range (max-min) of each Zone is different (40-90 
mg/dl., 90-180 mg/dl., 180-400 mg/dl). The non-uniform 
y-axis in FIG. 29 appears to cause distortion to the glucose 
trend but does not appear to be misleading. More importantly, 
the dynamics at low glucose are more easily perceived in FIG. 
29 than in FIG. 28. 

0370 Physicians use continuous glucose monitoring pri 
marily for therapy optimization. Though the hour-to-hour 
dynamics of glucose can contain information related to 
therapy adjustment, a longer-term/summary perspective is 
perhaps easier perceive and interpret, and more reflective of 
changes in a patient's glycemic control. In this way, physician 
monitoring of a patient’s glycemic control is similar to pro 
cess monitoring used in quality control of manufactured 
products: the aim of both is to rapidly detect when the system/ 
process is in or out of control, or to detect trends that can 
indicate changes in control. Control charts, which plot aver 
ages and ranges of process parameters over time, are a well 
established and powerful illustration of process control and 
can be applicable to continuous glucose monitoring. FIGS. 30 
and 31 illustrate the difference in how well the data reflect 
changes in glycemic control. FIG.30 is a conventional plot of 
glucose over one week; FIG. 31 is a plot of the 24-hour (12 
AM-12 AM) median (+/-interquartile range) glucose. 
0371. The display provides improved utility of continuous 
glucose data, enabling improved clinical outcomes, and 
offers advantages over prior art displays wherein the display 
of continuous glucose data is not tailored to the intended use. 
0372 FIG.32 is an illustration of a receiver that interfaces 
with a computer. A receiver 12 is provided that is capable of 
communication with a computer 280. The communication 
can include one-way or two-way wired or wireless transmis 
sions 282. The computer 280 can be any system that processes 
information, Such as a PC, server, personal digital assistant 
(PDA), or the like. 
0373. In some embodiments, the receiver sends informa 
tion to the computer, for example, measured analyte data, 
estimated analyte data, target analyte data, therapy recom 
mendations, or the like. The computer can include Software 
that processes the data in any manner known in the art. 
0374. In some embodiments, the computer sends informa 
tion to the receiver, for example, updating Software, custom 
izing the receiver programming (for example, setting indi 
vidualized parameters), providing real time information (for 
example, mealtime and exercise that has been entered into a 
PDA), or the like. 
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0375 FIG.33 is an illustration of a receiver 12 that inter 
faces with a modem 290, wherein data is transmitted via 
wireless transmissions 292 between the receiver and a 
modem in order to interface with a telecommunications line 
(for example, phone, pager, internet, network, etc). By pro 
viding an interface with a telecommunications line, the 
receiver can send and receive information from parties remote 
from the receiver, Such as at a hospital, doctors office, care 
taker's computer, nationally-based server, or the like. 
0376. In some embodiments, the modem allows the 
receiver to send emergency messages to an emergency con 
tact, such as a family member, hospital, Public Safety 
Answering Point (PSAP), or the like when analyte concen 
tration are in a Zone of extreme clinical risk. In some embodi 
ments, a patient's doctor monitors his/her analyte concentra 
tion remotely and is able to request an appointment when 
certain conditions are not being met with the patient's analyte 
concentration. Numerous other uses can be contrived for 
communicating information via a modem 290 between the 
receiver 12 and another party, all of which are encompassed in 
the preferred embodiments. 
0377 FIG. 34 is an illustration of a receiver 12 that inter 
faces with an insulin pen 300, wherein data is transmitted via 
wireless transmission 302 between the receiver and the insu 
lin pen300. In some embodiments, the receiver sends therapy 
recommendations to the insulin pen, such as amount and time 
of insulin injection. In some embodiments, the insulin pen 
sends amount of therapy administered by a patient, such as 
type, amount, and time of administration. Such information 
can be used in data analysis, including estimation of analyte 
values, output of therapy recommendations, and trend analy 
sis, for example. 
0378 FIG. 35 is an illustration of a receiver 12 that inter 
faces with an insulin pump 310, wherein data is transmitted 
via wireless transmission 312 between the receiver 12 and the 
insulin pump 310. In some embodiments, the receiver sends 
therapy recommendations to the insulin pump 310. Such as 
amount and time of insulin administration. In some embodi 
ments, the insulin pump 310 sends information regarding 
therapy to be administered such as type, amount, and time of 
administration. Such information can be used in data analy 
sis, including estimation of analyte values, output of therapy 
recommendations, and trend analysis, for example. 
0379. In general, any of the above methods of data input 
and output can be combined, modified, selectively viewed, 
selectively applied, or otherwise altered without departing 
from the scope of the present invention. 
0380 Methods and devices that can be suitable for use in 
conjunction with aspects of the preferred embodiments are 
disclosed in copending applications including U.S. applica 
tion Ser. No. 10/695,636 filed Oct. 28, 2003 and entitled, 
SILICONE COMPOSITION FOR BIOCOMPATIBLE 
MEMBRANE”; U.S. application Ser. No. 10/632,537 filed 
Aug. 22, 2003 and entitled, “SYSTEMS AND METHODS 
FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE 
SENSOR DATA STREAM: U.S. application Ser. No. 
10/646,333 filed Aug. 22, 2003 entitled, “OPTIMIZED SEN 
SOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE 
SENSOR: U.S. application Ser. No. 10/647,065 filed Aug. 
22, 2003 entitled, “POROUS MEMBRANES FOR USE 
WITH IMPLANTABLE DEVICES; U.S. application Ser. 
No. 10/633,367 filed Aug. 1, 2003 entitled, “SYSTEMAND 
METHODS FOR PROCESSING ANALYTE SENSOR 
DATA'; U.S. application Ser. No. 09/916,386 filed Jul. 27, 
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2001 and entitled “MEMBRANE FOR USE WITH 
IMPLANTABLE DEVICES; U.S. application Ser. No. 
09/916,711 filed Jul 27, 2001 and entitled “SENSOR HEAD 
FOR USE WITH IMPLANTABLE DEVICE: U.S. applica 
tion Ser. No. 09/447,227 filed Nov. 22, 1999 and entitled 
DEVICE AND METHOD FOR DETERMINING ANA 
LYTE LEVELS”; U.S. application Ser. No. 10/153.356 filed 
May 22, 2002 and entitled “TECHNIQUESTO IMPROVE 
POLYURETHANE MEMBRANES FOR IMPLANTABLE 
GLUCOSE SENSORS”; U.S. application Ser. No. 09/489, 
588 filed Jan. 21, 2000 and entitled “DEVICE AND 
METHOD FOR DETERMINING ANALYTE LEVELS: 
U.S. application Ser. No. 09/636,369 filed Aug. 11, 2000 and 
entitled SYSTEMS AND METHODS FOR REMOTE 
MONITORING AND MODULATION OF MEDICAL 
DEVICES; and U.S. application Ser. No. 09/916,858 filed 
Jul. 27, 2001 and entitled “DEVICE AND METHOD FOR 
DETERMINING ANALYTE LEVELS, as well as issued 
patents including U.S. Pat. No. 6,001,067 issued Dec. 14, 
1999 and entitled DEVICE AND METHOD FOR DETER 
MINING ANALYTE LEVELS”; U.S. Pat. No. 4,994,167 
issued Feb. 19, 1991 and entitled “BIOLOGICAL FLUID 
MEASURING DEVICE; and U.S. Pat. No. 4,757,022 filed 
Jul. 12, 1988 and entitled “BIOLOGICAL FLUID MEA 
SURING DEVICE.” All of the above patents and patent 
applications are incorporated in their entirety herein by ref 
CCC. 

0381. The above description provides several methods and 
materials of the invention. This invention is susceptible to 
modifications in the methods and materials, as well as alter 
ations in the fabrication methods and equipment. Such modi 
fications will become apparent to those skilled in the art from 
a consideration of this application or practice of the invention 
provided herein. Consequently, it is not intended that this 
invention be limited to the specific embodiments provided 
herein, but that it cover all modifications and alternatives 
coming within the true scope and spirit of the invention as 
embodied in the attached claims. All patents, applications, 
and other references cited herein are hereby incorporated by 
reference in their entirety. 
0382 All numbers expressing quantities of ingredients, 
reaction conditions, and so forth used in the specification and 
claims are to be understood as being modified in all instances 
by the term “about.” Accordingly, unless indicated to the 
contrary, the numerical parameters set forth in the specifica 
tion and attached claims are approximations that may vary 
depending upon the desired properties sought to be obtained 
by the present invention. At the very least, and not as an 
attempt to limit the application of the doctrine of equivalents 
to the scope of the claims, each numerical parameter should 
be construed in light of the number of significant digits and 
ordinary rounding approaches. 

What is claimed is: 
1. A method for estimating analyte values from a continu 

ous analyte sensor, the method comprising: 
receiving a data stream from a continuous analyte sensor 

for a time period; and 
predicting one or more analyte values for a future time 

period based on the data stream, wherein step of predic 
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tion comprises applying physiological boundaries to the 
predicted one or more analyte values. 

2. The method of claim 1, wherein the physiological 
boundaries are based at least in part on a predetermined rate of 
change. 

3. The method of claim 2, wherein the predetermined rate 
of change is at least 4 mg/dL/min. 

4. The method of claim 1, wherein the physiological 
boundaries are based at least in part on a predetermined 
acceleration. 

5. The method of claim 4, wherein the predetermined 
acceleration is at least 0.1 mg/dL/min. 

6. The method of claim 1, further comprising a step of 
providing output based on the predicted one or more analyte 
values. 

7. The method of claim 6, wherein the step of providing 
output comprises continuously providing the output. 

8. The method of claim 6, wherein the step of providing 
output comprises alarming responsive to the predicted one or 
more analyte values meeting one or more criteria. 

9. The method of claim 1, wherein the step of predicting is 
responsive to an event trigger. 

10. The method of claim 9, wherein the event trigger com 
prises one or more criteria associated with the data stream. 

11. A system for estimating analyte values from a continu 
ous analyte sensor, the system comprising: 

an input module operably connected to a continuous ana 
lyte sensor and configured to receive a data stream from 
the continuous analyte sensor for a time period; and 

a processor module comprising programming configured 
to predict one or more analyte values for a future time 
period based on the data stream, wherein the program 
ming configured to predict is configured to apply physi 
ological boundaries to the predicted one or more analyte 
values. 

12. The system of claim 11, wherein the physiological 
boundaries are based at least in part on a predetermined rate of 
change. 

13. The system of claim 12, wherein the predetermined rate 
of change is at least 4 mg/dL/min. 

14. The system of claim 11, wherein the physiological 
boundaries are based at least in part on a predetermined 
acceleration. 

15. The system of claim 14, wherein the predetermined 
acceleration is at least 0.1 mg/dL/min. 

16. The system of claim 11, wherein the processor module 
further comprises programming configured to provide output 
based on the predicted one or more analyte values. 

17. The system of claim 16, wherein the programming 
configured to provide output is configured to continuously 
provide the output. 

18. The system of claim 16, wherein the programming 
configured to provide output is configured provide an alarm 
responsive to the predicted one or more analyte values meet 
ing one or more criteria. 

19. The system of claim 11, wherein the programming 
configured to predict is responsive to an event trigger. 

20. The system of claim 9, wherein the event trigger com 
prises one or more criteria associated with the data stream. 
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