发明名称
图像校正设备、图像校正方法以及生物认证设备

摘要
本发明涉及图像校正设备、图像校正方法以及生物认证设备，该图像校正设备包括：校正因子计算单元，校正因子计算单元计算校正因子，使得通过使用校正因子对图像上的第一像素的亮度值进行校正所获得的校正值与图像上的第二像素的亮度值之距离变得小于第一像素的亮度值与第二像素的亮度值之距离，第一像素对应于图像传感器中的具有第一滤光器的传感器元件，图像传感器包括在生成图像的图像捕获单元中，第一滤光器具有第一透射率特性，以及第二像素对应于图像传感器中的具有第二滤光器的传感器元件，第二滤光器具有第二透射率特性；以及校正单元，校正单元通过使用校正因子对第一像素的亮度值进行校正来生成校正图像。
1. 一种图像校正设备，包括：
校正因子计算单元，所述校正因子计算单元计算校正因子，使得通过使用所述校正因子对图像上的第一像素的亮度值进行校正所获得的校正值与所述图像上的第二像素的亮度值之间的距离变小于所述第三像素的所述亮度值与所述第二像素的所述亮度值之间的距离，所述第三像素对应于图像传感器中的具有第一滤光器的传感器元件，所述图像传感器包括在生成所述图像的图像捕获单元中，所述第一滤光器具有第一透射率特性，以及所述第二像素对应于所述图像传感器中的具有第二滤光器的传感器元件，所述第二滤光器具有与所述第一透射率特性不同的第二透射率特性，以及
校正单元，所述校正单元通过使用所述校正因子对所述第一像素的所述亮度值进行校正来生成校正图像。

2. 根据权利要求1所述的图像校正设备，其中，所述校正因子计算单元提取所述图像上的目标被摄取的目标区，以基于所述图像中的多个第一像素和多个第二像素中的包括在所述目标区中的所述第三像素和所述第二像素来计算所述校正因子。

3. 根据权利要求1或2所述的图像校正设备，其中，所述图像传感器的所述传感器元件中的每个传感器元件包括第一滤光器、第二滤光器和第三滤光器中的任一个，至少红光和近红外光传输通过所述第一滤光器，至少绿光和近红外光传输通过所述第二滤光器，以及至少蓝光和近红外光传输通过所述第三滤光器。

所述校正因子计算单元计算第二校正因子，使得通过使用所述第二校正因子对所述图像上的第三像素的亮度值进行校正所获得的校正值与所述第二像素的所述亮度值之间的距离变小于所述第三像素的所述亮度值与所述第二像素的所述亮度值之间的距离，所述第三像素对应于所述图像传感器中的检测到传输通过所述第三滤光器的近红外光的传感器元件，以及所述第二像素对应于检测到传输通过所述第二滤光器的近红外光的所述传感器元件，以及
所述校正单元通过使用所述校正因子对所述第一像素的所述亮度值进行校正以及通过使用所述第二校正因子对所述第三像素的所述亮度值进行校正来生成所述校正图像。

4. 根据权利要求3所述的图像校正设备，其中，所述校正因子计算单元使用所述第一像素的所述亮度值和所述第二像素的所述亮度值来计算所述校正因子，所述第一像素与所述第二像素彼此相邻。

5. 一种生物认证设备，包括：
存储单元，所述存储单元存储表示注册用户的生物信息的特征的注册匹配数据；
生物信息图像捕获设备，所述生物信息图像捕获设备包括图像传感器，并且生成生物图像，所述图像传感器具有带有第一滤光器的传感器元件和带有第二滤光器的传感器元件，第一滤光器具有第一透射率特性，以及第二滤光器具有与所述第一透射率特性不同的第二透射率特性，在所述生物图像上通过所述图像传感器来捕获包括用户生物信息的图像部分；
校正因子计算单元，所述校正因子计算单元计算校正因子，使得通过使用所述校正因子对所述生物图像上的第一像素的亮度值进行校正所获得的校正值与所述生物图像上的第二像素的亮度值之间的距离小于所述第一像素的所述亮度值与所述第二像素的所述亮度值之间的距离，所述第一像素对应于具有所述第一滤光器的所述传感器元件，以及
所述第二像素对应于具有所述第二滤光器的所述传感器元件；校正单元，所述校正单元通过使用所述校正因子对所述第一像素的所述亮度值进行校正来对所述生物图像进行校正；以及
匹配单元，所述匹配单元根据所述校正的生物图像来生成表示所述用户的所述生物信息的特征的匹配数据，并且通过将所述匹配数据与所述注册匹配数据进行匹配来判定是否将所述用户认证为所述注册用户。
6. 一种图像校正方法，包括：
计算校正因子，使得通过使用所述校正因子对图像上的第一像素的亮度值进行校正所获得的校正值与所述图像上的第二像素的亮度值之间的距离变得小于所述第一像素的所述亮度值与所述第二像素的所述亮度值之间的距离，所述第一像素对应于图像传感器中的具有第一滤光器的传感器元件，所述图像传感器包括在生成所述图像的图像捕获单元中，所述第一滤光器具有第一透射率特性，以及所述第二像素对应于所述图像传感器中的具有第二滤光器的传感器元件，所述第二滤光器具有不同于所述第一透射率特性的第二透射率特性；以及
通过使用所述校正因子对所述第一像素的所述亮度值进行校正来生成校正图像。
图像校正设备、图像校正方法以及生物认证设备

技术领域

0001 本文所讨论的实施方式涉及对图像中的每个像素的值进行校正的图像校正设备和图像校正方法，以及利用这样的图像校正设备或图像校正方法的生物认证设备。

背景技术

0002 近几年，已经开发了基于表示生物信息的生物图像如手或手指的静脉图案、指纹或掌纹对设备或系统的用户进行认证的生物认证技术。在利用这样的生物认证技术的生物认证设备中，例如，生物信息捕获设备通过捕获包括想要使用生物认证设备的用户的生物信息的身体部分来获取表示生物信息的生物图像。生物认证设备将输入生物信息与注册生物信息进行匹配，输入生物信息是生物图像中所表示的用户的生物信息，而注册生物信息是预先注册的注册用户的生物图像中所表示的生物信息。当基于匹配处理的结果判定输入生物信息与注册生物信息一致时，生物认证设备将用户认证为具有有效授权的注册用户。生物认证设备使得认证用户能够使用其中包括了生物认证设备的设备或连接至生物认证设备的其他设备。

0003 当生物信息是手掌或手指的静脉图案时，使用发射近红外外光的发光元件如红外LED作为照明光源用于允许照明光进入手或手指的内部。为了生成在其中通过检测由作为要捕获的目标的手或手指所反射或散射或穿过要捕获的目标所发送的照明光来捕获静脉图案的图像，生物信息图像捕获设备使用沿着两个维度布置的对近红外外光具有敏感性的传感器元件的图像传感器。例如，利用固态图像捕获元件如电荷耦合器件（CCD）或互补金属氧化物半导体（CMOS）作为传感器元件。

0004 然而，由于近红外外光图像传感器用于特殊应用并且没有被大量生产，所述近红外外光图像传感器通常比可见光图像传感器更昂贵。虽然CCD和CMOS是可见光图像传感器，但是CCD和CMOS也具有对近红外外光的敏度性。从而，如果可见光图像传感器可以用于捕获静脉图案，则可以降低生物信息图像捕获设备的成本。然而，由于CCD和CMOS不具有用于识别颜色的功能，则可见光图像传感器，尤其颜色图像传感器，对于每个传感器元件通常包括特定波长的光通过的颜色滤光器。例如，两列两行的传感器元件形成为一组，并且在沿着对角线中的一个对角线的两个传感器元件处布置通过与绿色相对应的波长的光的滤光器。在其他两个传感器处分别布置通过与红色相对应的波长的光的滤光器和通过与蓝色相对应的波长的光的滤光器。这样的滤光器阵列称为拜耳（Bayer）阵列。

0005 提出了一种使用近红外外光滤光器代替这样的四个传感器元件在其中被集成一组的滤光器中的一个绿色滤光器并且人体的内部是要捕获的目标的图像捕获设备，使用近红外外光来照亮人体（例如，日本特许公开专利公报No.2005-191748）。

发明内容

0006 然而，在日本特许公开专利公报No.2005-191748中所描述的技术中，当人体的内部例如血管是要捕获的目标时，使用从具有近红外外光滤光器的传感器元件获得的信号来生
成图像。没有使用从具有可见光滤光器的传感器元件获得的信号。因此，捕获人体的内部的图像的分辨率最终变得低于图像传感器本身的分辨率。

[0007] 颜色滤光器也从其通过近红外光。然而，近红外光的透射率依赖于滤光器而变化。因此，当从具有颜色滤光器的传感器元件相对应的像素所获得的信号用于生成由近红外光照射的反射目标的图像，滤光器图案最终出现在图像上。当滤光器图案和要捕获的目标在图像上叠加时，在通过生物认证设备从图像中提取要捕获的目标的特征点中，由于滤光器图案而引起的照明变化的点可能会被误检测为特征点。从而，滤光器图案出现在图像上不是优选的。另外，由于滤光器通常合并在图像传感器主体中，所以难以从图像传感器中移除颜色滤光器。

[0008] 根据一个方面，本发明的一个目的是提供一种使得能够针对使用具有多个滤光器（多个滤光器对于照明光具有不同的透射率）的图像传感器所捕获的图像对由于透射率的差异而引起的各个像素之间的亮度差进行校正的图像校正设备。

[0009] 根据一种实施方式，提供了一种图像校正设备。图像校正设备包括：校正因子计算单元，该校正因子计算单元计算校正因子，使得通过使用校正因子对图像上的第一像素的亮度值进行校正所获得的校正值与该图像上的第二像素的亮度值之间的距离变得小于第一像素的亮度值与第二像素的亮度值之间的距离，第一像素对应于图像传感器中的具有第一滤光器的传感器元件，该图像传感器包括在生成所述图像的图像捕获单元中，第一滤光器具有第一透射率特性，以及第二像素对应于该图像传感器中的具有第二滤光器的传感器元件，第二滤光器具有与第一透射率特性不同的第二透射率特性，以及校正单元，该校正单元通过使用校正因子对第一像素的亮度值进行校正来生成校正图像。

附图说明

[0010] 图 1 是根据一种实施方式的包括图像校正设备的生物认证设备的示意性配置图；
[0011] 图 2 是包括在生物认证设备中的生物信息图像捕获设备的示意性平面图；
[0012] 图 3 是处理单元的功能框图；
[0013] 图 4 是描绘拜耳阵列的图；
[0014] 图 5 是通过使用近红外光对均匀目标进行照明并且回收生物信息图像捕获设备的图像捕获单元捕获目标所获得的示例性图，以及
[0015] 图 6 是包括图像校正处理的生物认证处理的操作流程图。

具体实施方式

[0016] 在下文中，参照附图来说明根据一种实施方式的图像校正设备以及包括这样的图像校正设备的生物认证设备。图像校正设备对生物图像进行校正以便除去出现在表示生物信息的生物图像上的滤光器图案，生物图像通过对包括生物信息的身体部分进行近红外光照明并且由具有颜色滤光器的图像传感器捕获身体部分来生成。为此，基于与具有滤光器（滤光器具有彼此不同的透射率特性）的传感器元件相对应的相邻像素的亮度值之间的差异，图像校正设备获得将差异最小化的新校正因子。然后，图像校正设备使用校正因子对具有滤光器的传感器元件相对应的像素的亮度值进行校正。滤光器具有透射率特性中的任一个。
在本实施方式中，生物信息是手掌的血管图案。然而，生物信息可以是除了手掌的血管图案之外的生物信息，例如能够通过使用近红外光照明捕获的手指的血管图案。

图 1 是根据一种实施方式的包括图像校正设备的生物认证设备的示意图。生物认证设备包括显示单元 2、输入单元 3、生物信息图像捕获设备 4、通信单元 5，存储单元 6 和处理单元 7。显示单元 2、输入单元 3 和生物信息图像捕获设备 4 可以与容纳通信单元 5，存储单元 6 和处理单元 7 的壳体分离地布置。可替代地，显示单元 2、输入单元 3、生物信息图像捕获设备 4、通信单元 5，存储单元 6 和处理单元 7 可以容纳在类似所谓的笔记本式个人计算机或平板式终端的单个壳体中。

生物认证设备 1 对由生物信息图像捕获设备 4 生成的、表示用户的手掌的血管图案的生物图像执行图像校正处理。图像校正处理对由于包括在生物信息图像捕获设备 4 中的图像传感器的颜色滤光器而引起的亮度不均衡进行校正。生物认证设备 1 使用已经执行对其执行图像校正处理的生物图像来执行生物认证处理。当用户被认证为注册用户中的任何一个作为生物认证处理的结果时，生物认证设备 1 允许用户使用生物认证设备 1 包括在其中的计算机。可替代地，通过经由通信单元 5 将用户已经被认证的信号发送至其他设备（未示出），生物认证设备 1 允许用户使用其他设备。

生物认证设备 1 还可以包括用于访问存储介质 9 如磁盘、半导体存储卡或光学存储介质的存储介质访问设备 8。生物认证设备 1 由存储介质访问设备 8 读取例如包括图像校正处理的生物认证的计算机程序，计算机程序存储在存储介质 9 并且在处理单元 7 上执行。根据计算机程序，处理单元 7 可以对由生物信息图像捕获设备 4 生成的生物图像进行校正，并且基于校正的生物图像来执行生物认证处理。

显示单元 2 包括显示设备诸如像液晶显示器。显示单元 2 为用户显示例如表示用于匹配的身体部分（右手或左手）的指示或指示引导至生物信息图像捕获设备 4 可以在其处获得适当的生物图像的位置的指示消息。此外，显示单元 2 显示各种信息以及与处理单元 7 执行的应用相关的信息等。

输入单元 3 包括例如键盘和指示装置如鼠标。由用户经由输入单元 3 输入的命令、数据以及用户的用户名或用户识别号被传递至处理单元 7。

生物信息图像捕获设备 4 生成表示用户的手掌的血管图案的生物图像。图 2 是生物信息图像捕获设备 4 的示意平面图。生物信息图像捕获设备 4 包括图像捕获单元 11 以及用于发射近红外光的多个光源 12。图像捕获单元 11 以及光源 12 中的每个光源容纳在具有上端开口的立方体形的壳体 13 中。壳体 13 的侧壁可以是用于放置手的引导部。可替代地，用于放置手的引导部可以与壳体 13 分离地设置在壳体 13 的开口附近。另外，用于保护图像捕获单元 11 以及光源 12 中的每个光源的片状透明玻璃或透明塑料可以设置在壳体 13 的上端处。

生物信息图像捕获设备 4 使用来自光源 12 中的每个光源的光来照亮该手，该手放置在生物信息图像捕获设备 4 上方的壳体 13 的开口附近，以便面向图像捕获单元 11 和光源 12。图像捕获单元 11 通过捕获被照亮的手来生成表示手掌的血管图案的生物图像。

图像捕获单元 11 放置在壳体 13 的底部，使得其传感器表面朝上。图像捕获单元 11 包括沿着两个维度来布置的近红外光的传感器元件的图像传感器（未示出），以及在图像传感器上的图像捕获范围内形成图像的成像光学系统（未示出）。壳体 13 的上端的整
个开口被设计成为图像捕获范围。注意，每个传感器元件是每个 CCD 或 CMOS。当手放置在壳体 13 的上端的开口附近时从处理单元 7 接收命令捕获图像的控制信号时，图像捕获单元 11 生成表示手掌的血管图的生物图像，并且将该生物图像输出至处理单元 7。

[0026] 多个光源 12 中的每个光源布置在图像捕获单元 11 周围，使光束表面朝上，以便照亮图像捕获单元 11 的图像捕获范围。在本实施方式中，光源 12 中的每个光源可以是发射红外光的光源元件和红外发光二极管，使得来自光源 12 的每个光源的光进入手的内部。

[0027] 在本实施方式中，当捕获手掌的血管的图像时，光源 12 中的每个光源一直亮着。

[0028] 通信单元 5 包括用于将生物认证设备 1 连接至通信网络 (未示出) 的通信接口电路。通信单元 5 将从处理单元 7 接收的用户数据使用许可或认证结果经由通信网络发送至其他设备。

[0029] 存储单元 6 包括例如非易失性半导体存储器和易失性半导体存储器。存储单元 6 存储生物认证设备 1 中使用的应用程序、用户名、至少一个注册用户的用户识别号和个体设置信息、各种类型的数据等。存储单元 6 存储用于执行图像校正处理和生物认证处理的程序。此外，存储单元 6 为每个注册用户来存储表示左手或右手的手掌的血管图的特征的匹配数据，匹配数据是注册用户的生物信息。匹配数据包括例如表示特征结构的例如从在注册用户进行注册或更新匹配数据时生成的认证图像中提取的图像的末端或分叉的特征点的位置或类型。可替代地，匹配数据可以是在对注册用户进行注册或更新匹配数据时生成的生物图的本身或生物图像的一部分。

[0030] 处理单元 7 是图像校正设备的一个示例，并且包括一个或多个处理器以及处理器的外围电路。处理单元 7 对由生物信息图像捕获设备 4 获得的并且表示该设备的用户的生物信息的生物图像执行图像校正处理，并且还使用校正生物图像执行生物认证处理。

[0031] 图 3 是处理单元 7 的功能框图。处理单元 7 包括校正因子计算单元 21、校正单元 22 和匹配单元 23。校正因子计算单元 21、校正单元 22 和匹配单元 23 是例如通过在包括在处理单元 7 中的处理器上操作的计算机程序来实现的功能模块。

[0032] 每当获得生物图的时，校正因子计算单元 21 和校正单元 22 每个均作为对生物图的图像校正处理的一部分来执行。同时，匹配单元 23 在生物认证处理中执行。

[0033] 校正因子计算单元 21 基于第一像素的亮度值以及与具有其他颜色的滤光器的传感器元件相对应的第二像素的亮度值来计算用于校正生物图像上的与具有特殊颜色的滤光器的传感器元件相对应的第一像素的亮度值的校正因子。具体地，校正因子计算单元 21 计算校正因子，使得通过使用校正因子来校正第一像素的亮度值所获得的校正值与第二像素的亮度值之间的距离变为小于第一像素的亮度值与第二像素的亮度值之间的距离。注意，在本实施方式中，校正因子计算单元 21 使用两个亮度值的差的绝对值来计算两个亮度值之间的距离，然而，其不限于此，可以使用距离的另一指数如两个亮度值的欧式 (Euclidean) 距离的来计算两个亮度值之间的距离。

[0034] 在本实施方式中，包括在生物信息图像捕获设备 4 的图像捕获单元 11 中的图像传感器包括颜色滤光器。图 4 是描绘了根据拜耳阵列所布置的颜色滤光器 400 的图。在图 4 中，每个框表示图像传感器的一个传感器元件。由“G1”和“G2”表示的每个传感器元件如传感器元件 401 和传感器元件 402 包括通过与绿色相对应的波长的光的滤光器，由“R”表示的每个传感器如传感器 403 包括通过与红色相对应的波长的光的滤光器。另外，由“B”
表示的每个传感器元件如传感器元件 404 包括通过与蓝色相对应的波长的光的滤光器。如上面所提到的，通过与绿色相对应的波长的光的滤光器的近红外光的透射率、通过与红色相对应的波长的光的滤光器的近红外光的透射率以及通过与蓝色相对应的波长的光的滤光器的近红外光的透射率彼此不同。换言之，各个滤光器的透射率特性彼此不同。在下文中，为了方便说明，通过与红色相对应的波长的光的滤光器称为 R 滤光器。类似地，通过与绿色相对应的波长的光的滤光器称为 G 滤光器，以及通过与蓝色相对应的波长的光的滤光器称为 B 滤光器。

[0035] 图 5 是通过使用近红外光照亮相同目标和通过图像捕获单元 11 捕获目标所获得的图像的示例性图。由于各个滤光器对于近红外光的透射率彼此不同，当条目阵列的颜色滤光器设置在图像捕获单元 11 的图像传感器上时，如图像 500 中示出的，与条目阵列相对应的格状图案出现在图像上。

[0036] 由于为了图像捕获单元 11 的整个图像传感器的每个颜色使用相同滤光器，所以由于滤光器的差异所引起的近红外光的透射率的差异在由生物信息图像捕获设备 4 生成的整个图像各处被认为是恒定的。因此，在捕获对近红外光一致的目标的图像中，通过将与具有任何颜色的滤光器的传感器元件相对应的像素的亮度值乘以常数所获得的像可以等于与具有其他颜色的滤光器的传感器元件相对应的像素的亮度值。

[0037] 在整个生物图像各处，具有包括生物信息的身体部分的结构在相邻像素之间显著变化的几处地方。因此，校正因子计算单元 21 确定与具有任何滤光器的传感器元件相对应的像素的亮度值与其相乘的校正因子，使得在整个图像各处与具有不同的滤光器的传感器元件相对应的相邻像素之间的亮度差最小化。通过使用校正因子来校正相邻像素中的一个像素的亮度值，相邻像素之间的亮度差的绝对值变得比由于滤光器的透射率的差异所引起的相邻像素之间的亮度差的绝对值更小。

[0038] 在本实施方式中，校正因子计算单元 21 根据最小二乘法计算 R 滤光器和 B 滤光器中的每个滤光器的校正因子，使得根据下式所获得的估算值变得最小：

$$E(\alpha) = \sum_{i=1}^{N} (\alpha \cdot x_{1,i} - x_{2,i})^2$$

（其中 $a = a_R$ 或 a_B） （1）

[0039] 其中，a_R 是施加到与具有 R 滤光器的传感器元件相对应的像素的校正因子，以及 a_B 是施加到与具有 B 滤光器的传感器元件相对应的像素的校正因子。在计算校正因子 a_R 中，公式（1）中的 $x_{1,i}$ 是按照例如光栅扫描的顺序的与具有 R 滤光器的传感器元件相对应的像素的亮度值。值 $x_{1,i}$ 是与具有 R 滤光器的传感器元件相对应的像素相邻的，与具有 G 滤光器的传感器元件相对应的像素的亮度值。注意，公式（1）中的像素的顺序可以是除了光栅顺序之外的次序。由于图 4 中示出的滤光器“G1”和“G2”通常具有相同的波长透射率特性，与对应于具有 R 滤光器的传感器元件的像素相邻的像素可以是与“G1”相对应的像素或与“G2”相对应的像素。类似地，在计算校正因子 a_B 中，$x_{1,i}$ 是与具有 B 滤光器的传感器元件相对应的像素的亮度值，以及 $x_{2,i}$ 是与具有 B 滤光器的传感器元件的像素相邻的，与具有 G 滤光器的传感器元件相对应的像素的亮度值。注意，N 是包括在整个图像传感器中的具有 R 滤光器的传感器元件的总数或具有 B 滤光器的传感器元件的总数。

[0041] 按照 R 滤光器和 B 滤光器中的每个滤光器的校正因子 α 将公式（1）偏微分，校正因子计算单元 21 可以根据下式来计算最小化估算值 $E(\alpha)$ 的校正因子 α。
\[\alpha = \frac{\sum_{i=1}^{N} x_{1,i} \cdot x_{2,i}}{\sqrt{\sum_{i=1}^{N} x_{1,i}^2}} \] \quad (其中 \ a = a_\gamma \ 或 \ a_\beta) \quad (2)

【0043】注意，校正因子计算单元21可以计算与具有G滤光器的传感器元件所对应的像素的校正因子，而不是计算与具有R滤光器的传感器元件所对应的像素的校正因子。校正因子计算单元21计算与具有G滤光器的传感器元件所对应的像素的校正因子。然而，在生物中，具有R滤光器的传感器元件的数量和具有B滤光器的传感器元件的数量是具有G滤光器的传感器元件数量的一半。从而，校正因子计算单元21计算与具有R滤光器或B滤光器的传感器元件所对应的像素的校正因子。通过使用校正单元22对这些像素的亮度值进行校正，相比于对具有G滤光器的传感器元件所对应的像素的亮度值进行校正的情形，可以减少操作量。

【0044】校正因子计算单元21将R滤光器的校正因子a_\gamma以及B滤光器的校正因子a_\beta传递至校正单元22。

【0045】校正单元22使用校正因子a_\gamma和a_\beta对生物图像进行校正。对于这样的校正，对于与具有R滤光器的传感器元件所对应的每个像素，校正单元22将像素的亮度值乘以校正因子a_\gamma。类似地，对于与具有B滤光器的传感器元件所对应的每个像素，校正单元22将像素的亮度值乘以校正因子a_\beta。从而，生成校正生物图像，在该校正生物图像中补偿了滤光器之间的对于近红外光的透射率差。

【0046】校正单元22将校正生物图像存储在存储单元6中。

【0047】匹配单元23从存储单元6中读取校正生物图像，并且基于校正生物图像来判定是否认证用户。

【0048】匹配单元23根据校正生物图像来生成匹配数据，匹配数据表示在校正生物图像上所捕获的生物信息的特征。例如，当生物认证设备1使用细节（minutiae）匹配执行匹配处理时，匹配单元23从校正生物图像中提取在细节匹配中使用的特征点。匹配单元23将特征点的位置或特征点的类型设置为匹配数据。

【0049】为此，匹配单元23在目标区与背景区之间进行区分，在目标区内在校正生物图像上捕获到包括生物信息的身体部分，在背景区内没有捕获到身体部分。在本实施方式中，捕获到包括生物信息的身体部分的像素的亮度值得大于没有捕获到包括生物信息的身体部分的像素的亮度值得。因此，匹配单元23将校正生物图像二值化，使得例如将具有大于或等于目标判定阈值的亮度值的一组像素设置为目标区，以及将具有小于目标判定阈值的亮度值得一组像素设置为背景区。目标判定阈值被设置为例如预定固定值（例如，150）或校正生物图像中的各个像素的亮度值得的平均值。

【0050】另外，在目标区内，匹配单元23在静脉区与非静脉区之间进行区分，静脉区是在其中捕获到静脉的一组像素，以及非静脉区是在其中没有捕获到静脉的一组像素。在本实施方式中，在其中捕获到静脉的像素的亮度值得小于在其中没有捕获到静脉的亮度值得。因此，匹配单元23将目标区二值化，使得例如将具有小于或等于静脉判定阈值的亮度值得一组像素设置成静脉区，以及将具有大于静脉判定阈值的亮度值得一组像素设置成非静脉区。静脉判定阈值被设置成预定固定值（例如，200）或目标区中的各个像素的亮度值得的平均值。

【0051】然后，匹配单元23例如对具有与二值化目标区中的静脉相对应的亮度值得一组
像素执行细化处理，以生成在其中将静脉细化的二值化的细化图像。然后，通过使用与任何静脉分叉或末端相对应的多个模板来扫描二值化的细化图像，匹配单元 23 检测二值化的细化图像中的位置，其中，模板中的任何一个模板匹配二值化的细化图像。匹配单元 23 将通过所检测到的位置的中心像素作为特征点。

[0052] 注意，匹配单元 23 可以使用获得静脉的末端和分叉作为特征点的其他已知方法来从校正生物图像中提取特征点。此外，匹配单元 23 可以获得表示校正生物图像中的静脉图像的特征的其他特征量作为匹配数据。例如，匹配单元 23 可以将目标区域划分成多个块以获得每个块的静脉的数量作为匹配数据。

[0053] 当生物认证设备 1 使用图案匹配来执行匹配处理时，匹配单元 23 可以将校正生物图像本身设置为匹配数据，或将从校正生物图像中修整的目标区域的外切矩形区或内接矩形区设置为匹配数据。

[0054] 匹配单元 23 接收来自输入单元 3 的用户名或用户识别号。匹配单元 23 从存储单元 6 中读取与用户名或用户识别号相对应的注册用户的匹配数据。然后，匹配单元 23 将用户的信息与注册用户的匹配数据进行匹配。匹配单元 23 计算用户的生物信息与注册用户的信息的相似度作为匹配处理的结果。

[0055] 当使用细节匹配时，匹配单元 23 获得关于在包括在注册用户中的匹配数据的特征点与包括在用户的匹配数据中的特征点之间进行匹配的静脉图像的特征点的数量。匹配单元 23 通过将匹配的特征点的数量除以关于用户的静脉图像所提取的特征点的数量来计算相似度。可替代地，当使用图案匹配时，匹配单元 23 计算一化的互相关值，从而改变用户的生物图像与其中捕获到注册用户的静脉图像的生物图像之间的相对位置。匹配单元 23 将归一化的互相关值的最大值设置为相似度。

[0056] 当相似度大于或等于用于认证的阈值时，匹配单元 23 判定用户的生物信息与待匹配的注册用户的生物信息匹配。匹配单元 23 将该用户认证为注册用户。

[0057] 当相似度小于用于认证的阈值时，匹配单元 23 判定用户的生物信息与待匹配的注册用户的生物信息不匹配。在这种情况下，匹配单元 23 不认证该用户。处理单元 7 使显示单元 2 显示表示认证结果的认证结果信息。

[0058] 优选的是，将用于认证的阈值设置成一个值，使得匹配单元 23 仅当注册用户他自己 / 她自己是用户时成功认证。优选的是，将用于认证的阈值设置成一个值，使得匹配单元 23 在用户与注册用户不同的人时认证失败。例如，用于认证的阈值可以是通过将相似度可以采用的最大值与最小值的差异乘以 0.7 所获得的值相加至相似度的最小值所获得的值。

[0059] 图 6 是包括图像校正处理的生物认证处理的操作流程图。每当从生物信息图像捕获设备 4 中接收到生物图像时，处理单元 7 执行生物认证处理。注意，生物认证处理中的步骤 S101 和步骤 S102 的处理对应于图像校正处理。

[0060] 校正因子计算单元 21 计算与具有 R 滤光器的传感器元件相对应的像素的校正因子以及与具有 B 滤光器的传感器元件相对应的像素的校正因子（步骤 S101）。在该步骤中，校正因子计算单元 21 计算该校正因子，使得通过将与具有 R 滤光器或 B 滤光器的传感器元件相对应的像素的亮度值乘以校正因子所获得的值和与该像素相邻的且与具有 G 滤光器的传感器元件相对应的像素的亮度值之间的差异变为最小。
关于待校正的、具有滤光器的每个传感器元件相对应的像素，校正单元 22 通过将亮度值乘以所获得的相应的校正因子来校正像素中的每个像素的亮度值。从而，校正单元 22 生成校正因子图像（步骤 S102）。

匹配单元 23 从校正生物图像提取目标区（步骤 S103）。然后，匹配单元 23 根据目标区来生成表示生物信息的特征的匹配数据（步骤 S104）。通过将用户的匹配数据与通过经由输入单元 3 接收的识别信息所识别的注册用户的匹配数据进行匹配，匹配单元 23 计算用户与注册用户的生物信息之间的相似度（步骤 S105）。然后，匹配单元 23 判定相似度是否大于或等于用于认证的阈值（步骤 S106）。

当相似度大于或等于用于认证的阈值（在步骤 S106 处为“是”）时，匹配单元 23 将该用户认证为由识别信息指定的注册用户（步骤 S107）。另外，当相似度小于用于认证的阈值（在步骤 S106 处为“否”）时，匹配单元 23 不认证该用户（步骤 S108）。处理单元 7 在步骤 S107 或步骤 S108 之后终止生物认证处理。

如上所述，即使当具有颜色滤光器的图像传感器用于生成生物图像时，包括生物校正设备的生物认证设备可以补偿由于滤光器之间的对近红外光的透射率差所引起的像素之间的亮度差。因此，生物认证设备可以抑制滤光器的图案出现在生物图像上。在该示例中，每当从生物信息图像捕获设备中获得生物图像时，生物认证设备基于生物图像来计算校正因子，并且使用校正因子对生物图像进行校正。因此，不需要预先获得校正因子的校准处理。此外，由于不需要预先存储校正因子，所以可以减小非易失性存储器的容量。另外，在生物图像处理时，设置在图像传感器的每个传感器元件上的滤光器对于近红外光的透射率可以根据环境条件例如温度或湿度而变化。即使在这样的情况下，根据本实施方式的生物认证设备每当获得生物图像时基于生物图像来计算校正因子。因此，即使当滤光器特性由于环境条件而变化时，生物图像也可以被适当地被校正。此外，通过利用具有校正亮度的生物图像，生物认证设备可以抑制由于具有对于近红外光的不同的透射率的滤光器的布置而引起的认证精确度的降低。

注意，由于在生物图像上的背景区中什么也没捕获到，所以背景区中的每个像素的亮度值可以变得很低。在这样的情况下，具有低亮度值的这样的像素的亮度值受到其他原因如电噪声而非滤光器透射率的影响。由生物认证处理使用的区域是目标区。因此，校正因子计算单元 21 可以从生物图像中提取目标区，以仅对于包括在目标区域中的这些像素根据公式（1）和公式（2）来计算校正因子 a_1 和 a_2。从而，校正因子计算单元 21 可以更适当地确定校正因子 a_1 和 a_2。

另外，优选的是，由于不能适当地给出滤光器透射率的差异，所以校正因子计算单元 21 不利用其亮度值饱和的像素用于计算校正因子。因此，校正因子计算单元 21 可从校正因子的计算中排除具有比从像素可以采用的亮度值的最大值（例如，255）中减去预定偏移值（例如，5 至 10）所获得的值更高的亮度值的像素。

当相邻像素之间的亮度值差异较大时，捕获的目标中的结构的边缘（例如，静脉与其外围之间的边界）可能存在于相邻像素之间。当这样的像素用于校正因子的计算时，不能适当地计算校正因子。因此，校正因子计算单元 21 还可以从校正因子的计算中排除相邻像素之间的亮度值的差异的绝对值 $|x_{ij} - x_{i+1j}|$ 于或等于预定阈值（例如，20 至 50）的像素。

此外，根据其他修改示例，校正单元 22 可以从生物图像中提取目标区，以通过使
用校正因子仅对包括在所提取的目标区域中的像素的亮度值进行校正。因此，由于校正后的像素的数量变小，所以图像校正处理的操作量也减少。

【0069】注意，为了从生物图像中提取目标区域，校正因子计算单元 21 和校正单元 22 可以执行例如与关于匹配单元 23 所说明的用于提取目标区域的处理相似的处理。当校正因子计算单元 21 和校正单元 22 中的任一个提取目标区域时，匹配单元 23 可以不在执行目标区域提取处理。

【0070】依赖于图像传感器，每个像素的亮度值可以由与到达像素的光量成比例的分量和偏置分量的总和来表示。在这种情况下，例如，与具有 R 过滤器的传感器元件相对应的像素的亮度值以及与具有 G 过滤器的传感器元件相对应的像素的亮度值分别由下列公式表示：

【0071】\[x'_r = a \cdot y_r x + b\]

【0072】\[x'_g = a \cdot y_g x + b\] (3)

【0073】其中，a 和 b 分别是常数。另外，x 表示到达像素的光量，以及 x_r' 和 x_g' 分别表示与具有 R 过滤器的传感器元件相对应的像素的亮度值以及与具有 G 过滤器的传感器元件相对应的像素的亮度值。y_r 和 y_g 分别是 R 过滤器对于近红外光的透射率以及 G 过滤器对于近红外光的透射率。注意，也为与具有 B 过滤器的传感器元件相对应的像素的亮度值来建立公式 (3)。

【0074】在这种情况下，在与具有 R 过滤器或 B 过滤器的传感器元件相对应的像素的亮度值和相邻于该像素的与具有 G 过滤器的传感器元件对应的像素的亮度值之间建立下式：

【0075】\[x_{t, 1} = a \times x_{t, 1} + \beta\] (4)

【0076】其中，\(a\) 和 \(\beta\) 是校正因子。\(x_{t, 1}\) 是与具有 R 过滤器或 B 过滤器的传感器元件相对应的像素的亮度值，以及 \(x_{t, 1}^t\) 是相邻于该像素的与具有 G 过滤器的传感器元件对应的像素的亮度值。

【0077】如果对于包括在生物图像中的多个像素建立公式 (4)，则公式 (4) 可以表示为下式。

\[
\begin{pmatrix}
 x_{2, 1} \\
 x_{2, 2} \\
 x_{2, 3} \\
 \vdots
\end{pmatrix} = \begin{pmatrix}
 x_{1, 1} & 1 \\
 x_{1, 2} & 1 \\
 x_{1, 3} & 1 \\
 \vdots & \vdots
\end{pmatrix} \begin{pmatrix}
 a \\
 \beta
\end{pmatrix}
\]

(5)

【0079】因此，校正因子计算单元 21 可以对于 R 过滤器和 B 过滤器中的每个滤镜根据下式来计算校正因子 \(a\) 和 \(\beta\)。

\[
\begin{pmatrix}
 a \\
 \beta
\end{pmatrix} = B^+ A
\]

(6)

【0080】\(B^+ = (B^T B)^{-1} B^T\)

【0081】
[0082] \[
\begin{pmatrix}
 x_{2,1} \\
 x_{2,2} \\
 x_{2,3} \\
 \vdots
\end{pmatrix} = A
\begin{pmatrix}
 x_{1,1} & 1 \\
 x_{1,2} & 1 \\
 x_{1,3} & 1 \\
 \vdots & \vdots
\end{pmatrix} = B
\]

[0083] 在这种情况下，校正单元 22 可以对于与具有 R 滤光器的传感器元件相对应的像素以及与具有 B 滤光器的传感器元件相对应的像素中的每个像素根据公式 (4) 来计算校正亮度值。与具有 R 滤光器或 B 滤光器的传感器元件相对应的像素的亮度值（该亮度值使用所获得的相应因子 α 或 β 被校正）和与具有 G 滤光器的传感器元件相对应的像素的亮度值之间的差的绝对值变得小于校正之前的亮度值之间的差的绝对值。

[0084] 注意，包括在生物信息图像捕获设备 4 中的图像传感器可以包括根据阵列图案而非拜耳阵列而布置的颜色滤光器。在这种情况下，校正因子计算单元 21 可以将图像上的与具有多个颜色滤光器中的对应于任何颜色的滤光器的传感器元件相对应的像素的亮度值设置为 \(x_{2,1} \)，以及将与具有对应于其他颜色的滤光器的传感器元件相对应的像素的亮度值设置为 \(x_{1,1} \)。然后，校正因子计算单元 21 可以根据公式 (2) 或 (6) 来计算校正因子。此外，尽管优选的是，对应于 \(x_{1,1} \) 的像素与对应于 \(x_{2,1} \) 的像素之间的距离小以避免由于所捕获的图像的结构所引起的影响，但是这些像素不被彼此相邻。

[0085] 另外，在用户没有将包括生物信息的身体部分适当地放置到生物信息图像捕获设备 4 的情况下，无法从生物图像中适当地提取生物信息的特征部分，因此在生物认证中生物认证设备可能会失败。在这种情况下，生物认证设备可以使用生物信息图像捕获设备 4 再次捕获用户的生物信息，并重新生成生物图像，并且使用重新生成的生物图像再次执行生物认证处理。因此，存储单元 6 可以暂时存储所计算的校正因子预定时间段（例如，五至十分钟），以及对于当存储单元存储校正因子时所生成的这些生物图像，处理单元 7 可以使用这些存储的校正因子对生物图像进行校正。从而，由于每当生成生物图像时不需要计算校正因子，对处理单元 7 来说可以减少操作量。

[0086] 本文中所记载的所有示例和条件语言意在教学目的以帮助读者理解本发明以及由发明人贡献以促进本领域的概念，并且可以被理解为不仅限于这样的具体记载的示例和条件，也不是本说明书中的与本发明的优势和劣势的示例有关的这样的示例的组。尽管已经详细描述了本发明的实施方式，应当理解的是，在不偏离本发明的精神和范围的情况下，可以对其做出各种变化、替换和修改。
图 1
图 4

图 5
根据生物图像计算出具有对于红色滤波器的传感器元件和具有对于蓝色滤波器的传感器元件相对应的像素的校正因子

通过使用校正因子对与具有对于红色滤波器的传感器元件和具有对于蓝色滤波器的传感器元件相对应的像素的亮度值进行校正来生成校正生物图像

从校正生物图像中提取目标区

根据目标区来生成匹配数据

通过将注册匹配数据与匹配数据进行匹配来计算注册用户的信息与用户的生物信息之间的相似度

相似度大于或等于用于认证的阈值？

是

用户被认证

否

用户未被认证

结束

图6