(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2017/180147 A1

- (43) International Publication Date 19 October 2017 (19.10.2017)
- (51) International Patent Classification: F25D 23/06 (2006.01) B29C 51/14 (2006.01)
- (21) International Application Number:

PCT/US2016/027736

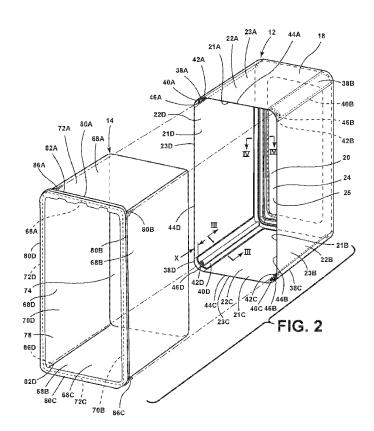
(22) International Filing Date:

15 April 2016 (15.04.2016)

(25) Filing Language:

English

(26) Publication Language:


English

- (71) Applicant: WHIRLPOOL CORPORATION [US/US]; 2000 North M-63, MD 3601, Benton Harbor, Michigan 49022 (US).
- (72) Inventors: WESTLAKE, Lorraine J.; 2000 North M-63, MD 3601, Benton Harbor, Michigan 49022 (US). DHERDE, Eric J.; 2000 North M-63, MD 3601, Benton Harbor, Michigan 49022 (US).

- (74) Agent: CALLAGHAN, Terry S.; Price Heneveld LLP, 695 Kenmoor, S.E., P.O. Box 2567, Grand Rapids, Michigan 49501-2567 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page]

(54) Title: VACUUM INSULATED REFRIGERATOR CABINET

(57) Abstract: A method of making a vacuum insulated refrigerator cabinet structure includes thermoforming a first polymer sheet to form a wrapper having a base wall and four sidewalls. The method also includes thermoforming a second polymer sheet to form a liner having a base wall and four sidewalls. Elongated corner stiffeners are adhesively secured to inside corners of the wrapper. A resilient ring is adhesively secured to the wrapper and liner. The resilient ring includes pins that are received in openings of the elongated corner stiffeners. Porous material is disposed in a vacuum cavity between the wrapper and the liner.

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, Published: LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

VACUUM INSULATED REFRIGERATOR CABINET

BACKGROUND OF THE INVENTION

[0001] Various types of insulated refrigerator cabinet structures have been developed. A known type of refrigerator cabinet includes a metal wrapper and a polymer liner. Polyurethane foam is injected between the wrapper and the liner to provide insulation and support the wrapper and liner. Various types of vacuum insulated refrigerator cabinet structures have also been developed. However, known refrigerator cabinets may suffer from various drawbacks.

SUMMARY OF THE INVENTION

[0002] One aspect of the present invention is a method of making a vacuum insulated refrigerator cabinet structure. The method includes thermoforming a first polymer sheet to form a wrapper having a base wall and four sidewalls, wherein each sidewall includes inner and outer sides. The four sidewalls extend transversely from the base wall to form four elongated inside corners and a main opening. The method also includes thermoforming a second polymer sheet to form a liner having a base wall and four sidewalls, wherein each sidewall includes inner and outer sides. The sidewalls extend transversely from the base wall. Each sidewall of the liner includes a free edge opposite the base wall forming a main opening. The method further includes adhesively securing an elongated corner stiffener to each elongated inside corner of the wrapper. Each elongated corner stiffener includes an opening. A resilient ring is secured to the liner adjacent to the free edges of the sidewalls. The resilient ring includes four corners, and each corner includes a pin projecting from the corner. The method further includes positioning the liner inside the wrapper to form a cavity between the wrapper and the liner. The pins of the resilient ring are received in the openings of the elongated corner stiffeners. The resilient ring extends between the inner sides of the wrapper sidewalls and the outer sidewalls of the liner to seal the cavity. The resilient ring is adhesively sealed to the wrapper and to the liner. Porous material is disposed in the cavity between the wrapper and the liner. A vacuum is formed in the cavity, and the cavity is sealed to maintain the vacuum.

[0003] These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is an isometric view of a refrigerator;

[0006] FIG. 2 is an exploded isometric view of a liner and wrapper assembly of the refrigerator of FIG. 1;

[0007] FIG. 3 is a cross-sectional view of a portion of the wrapper assembly of FIG. 2;

[0008] FIG. 4 is a cross-sectional view of a portion of the wrapper assembly of FIG. 2;

[0009] FIG. 5 is an isometric view of a liner and resilient ring during assembly;

[0010] FIG. 6 is an isometric view of a liner and resilient ring during assembly; and

[0011] FIG. 7 is a cross-sectional view of a portion of the liner, wrapper, and resilient ring in an assembled condition.

DETAILED DESCRIPTION OF EMBODIMENTS

[0012] For purposes of description herein the terms "upper," "lower," "right," "left," "rear," "front," "vertical," "horizontal," and derivatives thereof shall relate to the device as oriented in FIG. 1. However, it is to be understood that the device may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.

[0013] With reference to FIG. 1, a refrigerator 1 includes a cabinet 2 and doors 4 and 6 that are movably mounted to the cabinet 2 for rotation about a vertical axis in a manner that is generally known in the art. Refrigerator 1 may include a refrigeration system 8 of a known type including a compressor, condenser, expansion valve, evaporator, tubing, and/or other related components (not shown).

[0014] Refrigerator 1 includes a vacuum insulated cabinet structure 10 that includes a wrapper assembly 12 and a liner assembly 14 (see also FIG. 2). An outer covering 16 may optionally be positioned over the cabinet structure 10 to provide the desired exterior appearance. The outer covering 16 may comprise sheet metal or other suitable material.

[0015] With reference to FIG. 2, wrapper assembly 12 includes a polymer wrapper member 18 that is thermoformed from a sheet of polymer material utilizing known thermoforming processes. The polymer wrapper member 18 includes a generally rectangular base wall 20 and four sidewalls 22A-22D that extend transversely from the base wall 20 to form corners 36. Base wall 20 includes an inner surface 17, and an outer surface 19 (FIG. 4). Sidewalls 22A-22D include inner surfaces 21A-21D, respectively, and outer surfaces 23A-23D, respectively. The base wall 20 has a generally planar central portion 24, and may optionally include one or more reinforcing features such as transverse portions 26 and raised portions 28 and 29 (see also FIG. 4) that extend around a perimeter 32 of base wall 20 to provide stiffening and/or to provide location features for an optional base stiffener member 34. As discussed in more detail below, the optional base stiffener member 34 is ring-shaped, and may be adhesively secured to corner 36 which is formed at the junction of base wall 20 and sidewalls 22A and 22D.

[0016] The wrapper member 18 may be thermoformed from suitable polymer materials such as ABS, HIPS, PVC, etc., utilizing known methods. Corners 38A-38D formed at the intersection of the sidewalls 22A-22D may have a relatively large radius. For example, the corners 38A-38D may have a radius of about 1.0 inch to about 6.0 inches or more. The enlarged radii at corners 38A-38D facilitates thermoforming of wrapper member 18, and eliminates a sharp outer corner that may be subject to damage. However, it will be understood that the corners 38A-38D may alternatively comprise sharp corners having a radius of 0.0 inches to 1.0 inch. During assembly, after thermoforming of the wrapper member 18, elongated corner stiffeners 40A-40D are adhesively secured to corners 38A-38D, respectively. Elongated corner stiffeners 40A-40D include openings 42A-42D, respectively that face towards peripheral edges 44A-44D of sidewalls 22A-22D, respectively, of wrapper member 18. The outer ends 46A-46D of elongated corner stiffeners 40A-40D, respectively, are spaced inwardly from peripheral edges 44A-44D by a distance "X." As discussed in more detail below, this provides clearance for assembly with liner assembly 14.

[0017] With reference to FIG. 3, the corner stiffeners 40A-40D include an elongated cylindrical cavity 48 that forms open ends 42A-42D. A cylindrical sidewall 50 includes a cylindrical outer surface portion 52, such that the sidewall 50 has a generally uniform thickness except in a region 54 adjacent corners 38A-38D. The elongated corner stiffeners 40A-40D also include flaps or wings 56A and 56B that extend outwardly from sidewall 50 along the sidewalls 22A-22D of wrapper member 18. Adhesive 58 is disposed between the corner stiffeners 40A-40D and wrapper member 18 to adhesively secure the corner stiffeners 40A-40D to the wrapper member 18. Adhesive 58 may comprise 3M™ DP125 epoxy adhesive, Henkel Loctite® E90-FL 1 epoxy adhesive, or other suitable known adhesive. The elongated corner stiffeners 40A-40D may be made from a polymer material such as ABS, HIPS, PVC, etc., or other suitable material. Although the corner stiffeners 40 preferably comprise a polymer material, corner stiffeners 40 may comprise extruded aluminum or the like.

[0018] With further reference to FIG. 4, an optional base stiffener member 34 may be adhesively secured to inside 60 of corner 36 of wrapper 18. If a base stiffener member 34 is to be installed, the base stiffener member 34 is preferably installed prior to installation of the corner stiffeners 40A-40D. Adhesive 62 may be utilized to secure the base stiffener member 34. Adhesive 62 may be identical to adhesive 58, or other suitable adhesive. The base stiffener member 34 may comprise a polymer material such as ABS, HIPS, PVC, etc., or other suitable polymer or metal material. The base stiffener member 34 is preferably a one piece ring-shaped member. However, base stiffener member 32 may also comprise a multi-piece member.

[0019] With further reference to FIGS. 5 and 6, liner assembly 14 includes a liner member 15 and a resilient ring 64 that is installed to liner member 15 by sliding resilient ring 64 onto liner member 15 in the direction of the arrow "A" (FIG. 5). As discussed in more detail below, resilient ring 64 includes pins 86A-86D that are received in openings 42A-42D, respectively, of corner stiffeners 40A-40D, respectively, when liner assembly 14 is assembled with wrapper assembly 12. Liner member 15 is thermoformed from a sheet of polymer material utilizing known processes. Liner member 15 includes a base wall 66 and sidewalls 68A-68D that extend transversely from base wall 66 (see also FIG. 2). Sidewalls 68A-68D include inner surfaces 70A-70D, respectively, and outer surfaces 72A-72D, respectively. Sidewalls 68A-68D include edges 80A-80D that extend around opening

78 of liner member 15 to form peripheral edge 80. The intersections of sidewalls 68A-68D form corners 82A-82B, and the intersection of sidewalls 68A-68D with base wall 66 forms corners 84A-84D, respectively. The corners 82A-82D and 84A-84D may have relatively large radii such that a generally uniform gap is formed between the corners of liner member 15 and wrapper member 18.

[0020] With further reference to FIG. 7 peripheral edge 80 of liner member 15 includes a first transverse portion 94 that extends outwardly, and a second portion 96 that includes a curved end portion or lip 98 that forms a concave groove 100 that faces away from opening 78. Resilient ring 64 is generally S-shaped in cross section, and forms a first channel 102 that faces inwardly, and a second channel 104 that faces outwardly. Resilient ring 64 is preferably made of a flexible polymeric or elastomeric material. A flap or edge 106 of resilient ring 64 includes an outer surface 108 that seals against inner surfaces 21A-21D of wrapper member 18. The outer dimension defined by outer surface of flap 106 is preferably somewhat greater than the dimension across opening 25 of wrapper member 18 such that the resilient ring 64 forms an interference fit when assembled as shown in FIG. 7.

[0021] As discussed above, resilient ring 64 is initially installed on liner member 15 by sliding resilient ring 64 onto liner member 15 as shown in FIGS. 5 and 6. As the resilient ring 64 is moved to the fully installed position shown in FIGS. 6 and 7, a curved portion 110 of resilient ring 64 forming channel 102 contacts concave surface 100 of curved end portion 98 of edge 80 of liner member 15. Adhesive such as 3M™ DP125 or Loctite® E90-FL or other suitable adhesive is utilized to adhesively secure resilient ring 64 to liner member 15.

[0022] Prior to positioning liner assembly 14 in wrapper assembly 12, adhesive 90 may be positioned in first channel 102 to ensure that seam 112 is sealed at the line of contact between liner member 15 and resilient ring 64. Adhesive 92 may also be positioned in elongated cavities 48A-48D of corner stiffeners 40A-40D, respectively, adjacent the openings 42A-42D.

[0023] After the corner stiffeners 40 are adhesively secured to wrapper member 18 to form wrapper assembly 12, and after resilient ring 64 is adhesively secured to liner member 15 to form liner assembly 14, the liner assembly 14 is then positioned inside of wrapper assembly 12. As the liner assembly 14 is positioned in wrapper assembly 12, the

pins 86A-86D are received in openings 42A-42D, and the pins 86A-86D become embedded in the adhesive 92. Pins 86A-86D may have a tapered end portion 114 to facilitate insertion of pins 86A-86D into openings 42A-42D during assembly. As shown in FIG. 7, pins 86A-86D may have an outer diameter D1 that is significantly smaller than an inner diameter D2 of cylindrical cavities 48A-48D. The large clearance facilitates assembly while maintaining a required degree of alignment between the components. After the liner assembly 14 is inserted into wrapper assembly 12, adhesive 88 may be deposited into second channel 104 to ensure that the seams 116 and 118 formed between resilient ring 64 and wrapper member 18 and liner member 15, respectively, are sealed. Adhesive 88 may fill channel 104 and also fill region 102 between curved end portion 98 of liner member 15 and wrapper member 18. Adhesives 88, 90, and 92 may be identical to adhesive 58, or other suitable adhesive. Alternatively, other suitable adhesive may be utilized. After the liner assembly 14 is installed in wrapper assembly 12, a trim member 122 may be adhesively secured to liner member 15 and/or wrapper member 18 to close off channel 104 and to provide a smooth exterior appearance. Also, a sheet metal outer skin may be positioned over the wrapper assembly 12 to provide a finished outer surface that includes sharp outer corners 11A-11D (FIG. 1).

[0024] After the adhesive 88, 90, and 92 cures, the cabinet structure 10 forms a rigid structure defining a cavity 124 between the wrapper assembly 12 and liner assembly 14. Sidewalls 22A-22D and base wall 20 of wrapper 12 may be spaced apart from sidewalls 68A-68D and base wall 66, respectively, of liner 14 such that cavity 124 extends around substantially the entire cabinet structure 10. The cavity 124 may be filled with porous filler material 126. The porous filler material 126 may comprise silica powder that is introduced through one or more openings 128 in liner member 15 and/or wrapper member 18. The cabinet structure 10 may then be subject to a vacuum to thereby evacuate cavity 124, and one or more caps 130 or other suitable devices may be utilized to close and seal openings 128 to ensure that cavity 124 maintains a vacuum. The vacuum may be formed by positioning the cabinet structure 10 in a vacuum chamber (not shown) prior to installing caps 130 over openings 128. The caps 130 may then be installed to seal openings 128 while the cabinet structure 10 is in the vacuum chamber, and the cabinet structure 10 is then be removed from the vacuum chamber.

[0025] Liner member 15 and/or wrapper member 18 may be thermoformed from a thermoplastic polymer sheet including outer layers that comprise a suitable thermoplastic polymer material such as High Impact Polystyrene (HIPS) or Acrylonitrile, Butadiene and Styrene (ABS). The sheet may include a barrier layer that comprises a thermoplastic polymer material that is impervious to one or more gasses such as nitrogen, oxygen, water vapor, carbon dioxide, etc. such that the liner member 15 and wrapper member 18 provide a barrier to permit forming a vacuum in cavity 124. The barrier layer preferably comprises a material that blocks both oxygen and water vapor simultaneously. Examples of such material include Polyvinylidene Chloride (PVdC), nylon, or liquid crystal polymer.

[0026] Alternatively, the inner and/or outer surfaces of liner member 15 and/or wrapper member 18 may be coated after thermoforming utilizing plasma polymerization or Physical Vapor Deposition (PVD) processes. The coatings applied by these processes block oxygen, nitrogen, water vapor, and other gasses. The coating may comprise an organic or inorganic material such as silicon oxide that is deposited utilizing a plasma polymerization process. The coating may comprise a metallic layer such as aluminum, stainless steel, chrome, or other suitable metal that is applied utilizing a Plasma Vapor Deposition (PVD) process. The coating provides a barrier that blocks gasses to maintain the vacuum formed in cavity 124. An additional outer layer (not shown) in the form of a polymer protective cap may optionally be applied over the barrier coating. Resilient ring 64 may also include a barrier layer and/or a barrier coating.

[0027] Referring again to FIG. 1, the liner member 15 and wrapper member 18 may optionally include a stepped lower rear portion 132 that includes an upright wall portion 134 and a horizontal wall portion 136. The stepped portion 132 provides a space 138 that is outside of the cavity 140 of cabinet structure 10 to permit mounting of refrigerator system components 8.

[0028] It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

What is claimed is:

1. A method of making a vacuum insulated refrigerator cabinet structure, the method comprising:

thermoforming a first thermoplastic polymer sheet to form a wrapper having a base wall and four sidewalls having inner and outer sides and extending transversely from the base wall to form four elongated inside corners and a main opening;

thermoforming a second thermoplastic polymer sheet to form a liner having a base wall and four sidewalls having inner and outer sides and extending transversely from the base wall, wherein each sidewall includes a free edge opposite the base wall forming a main opening;

adhesively securing an elongated corner stiffener to each elongated inside corner of the wrapper, wherein each elongated corner stiffener includes an opening;

securing a resilient ring to the liner adjacent to the free edges of the sidewalls, the resilient ring including four corners and wherein each corner includes a pin projecting from the corner;

positioning the liner inside the wrapper to form a cavity between the wrapper and the liner, wherein the pins of the resilient ring are received in the openings of the elongated corner stiffeners, and wherein the resilient ring extends between the inner sides of the wrapper sidewalls and the outer sidewalls of the liner to seal the cavity;

adhesively sealing the resilient ring to the wrapper and to the liner;

causing porous material to be disposed in the cavity between the wrapper and the liner;

forming a vacuum in the cavity; and sealing the cavity to maintain the vacuum.

2. The method of claim 1, wherein:

thermoforming the wrapper includes forming the base wall of the wrapper into a rectangular shape, and forming the four sidewalls of the wrapper into a generally flat shape.

3. The method of claim 1 or claim 2, wherein:

utilizing polymer sheets including at least one barrier layer of polymer that is substantially impervious to at least one of gaseous oxygen, gaseous nitrogen, gaseous carbon dioxide, water vapor and gaseous carbon monoxide to form the wrapper and the liner .

4. The method of any one of claims 1-3, including:

filling at least a portion of the openings of the elongated corner stiffeners with adhesive such that the pins are disposed in the adhesive.

5. The method of any one of claims 1-4, wherein:

the resilient ring includes an outer surface having a dimension that is greater than a dimension between opposite inner sides of the liner adjacent the main opening of the liner to form an interference fit between the resilient ring and the liner such that the resilient ring is deformed when the liner is positioned inside the wrapper.

6. The method of any one of claims 1-5, wherein:

the sidewalls of the liner include edge flanges adjacent the free edges that extend transversely outward; and including:

causing the resilient ring to contact the edge flanges.

- 7. The method of any one of claims 1-6, including: adhesively bonding the resilient ring to the edge flanges.
- 8. The method of any one of claims 1-7, wherein:

thermoforming the liner includes forming the edge flanges to form an elongated ring-shaped inner channel extending around the liner, wherein the inner channel faces the cavity between the wrapper and the liner;

the resilient ring includes a raised ridge that is received in the elongated inner channel.

9. The method of any one of claims 1-8, wherein:

the resilient ring is S-shaped in cross section to form inner and outer ring-shaped channels that face in opposite directions;

a portion of the resilient ring is disposed in the inner channel;

an edge portion of the resilient ring adjacent the outer channel forms a flexible flap that engages the inner surfaces of the sidewalls of the wrapper.

- The method of any one of claims 1-9, including:filling at least a portion of the outer channel with adhesive material.
- 11. The method of any one of claims 1-10, wherein:

 the cavity between the wrapper and the liner is filled with porous powder after the liner is positioned inside the wrapper.
- 12. A vacuum insulated refrigerator cabinet structure, comprising:

a wrapper having a base wall and four sidewalls having inner and outer sides and extending transversely from the base wall to form four elongated inside corners and a first peripheral edge extending around a first main opening;

a liner disposed inside the wrapper to define a vacuum cavity between the wrapper and the liner, the liner having a base wall and four sidewalls having inner and outer sides and extending transversely from the base wall, wherein each sidewall includes a free edge opposite the base wall forming a second peripheral edge extending around a second main opening, wherein the first and second peripheral edges are spaced apart to form a gap;

porous material disposed in the vacuum cavity between the wrapper and the liner; elongated corner stiffeners disposed at each elongated inside corner of the wrapper, wherein each elongated corner stiffener includes an opening having adhesive disposed therein;

a resilient ring disposed in the gap, the resilient ring including four corners, wherein each corner includes a pin projecting from the corner into the openings of the elongated corner stiffeners and into the adhesive disposed in the openings, and wherein the resilient ring is adhesively secured to the wrapper and to the liner.

13. The vacuum insulated refrigerator cabinet structure of claim 12, wherein:

the base wall of the wrapper has a rectangular shape, and the four sidewalls of the wrapper have a generally flat shape.

14. The vacuum insulated refrigerator cabinet structure of claim 12 or claim 13, wherein:

the wrapper and the liner are thermoformed from polymer sheets including at least one barrier layer that is substantially impervious to at least one of gaseous oxygen, gaseous nitrogen, gaseous carbon dioxide, water vapor and gaseous carbon monoxide.

15. The vacuum insulated refrigerator cabinet structure of any one of claims 12-14, wherein:

the resilient ring includes an outer surface having a dimension that is greater than a dimension between opposite inner sides of the liner adjacent the main opening of the liner prior to assembly of the wrapper and the liner such that an interference fit is formed between the resilient ring and the liner.

16. The vacuum insulated refrigerator cabinet structure of any one of claims 12-15, wherein:

the sidewalls of the liner include edge flanges adjacent the free edges that extend transversely outward, and wherein the resilient ring contacts the edge flanges.

17. The vacuum insulated refrigerator cabinet structure of any one of claims 12-16, wherein:

the resilient ring is adhesively bonded to the edge flanges.

18. The vacuum insulated refrigerator cabinet structure of any one of claims 12-17, wherein:

the edge flanges of the liner include an elongated ring-shaped inner channel extending around the liner, wherein the inner channel faces the cavity between the wrapper and the liner; and

the resilient ring includes a raised ridge that is disposed in the elongated inner channel.

19. The vacuum insulated refrigerator cabinet structure of any one of claims 12-18, wherein:

the resilient ring is S-shaped in cross section and defines inner and outer ringshaped channels that face in opposite directions;

a portion of the resilient ring is disposed in the inner channel;

an edge portion of the resilient ring adjacent the outer channel forms a flexible flap that engages the inner surfaces of the sidewalls of the wrapper.

20. The vacuum insulated refrigerator cabinet structure of any one of claims 12-19, wherein:

at least a portion of the outer channel is filled with adhesive material.

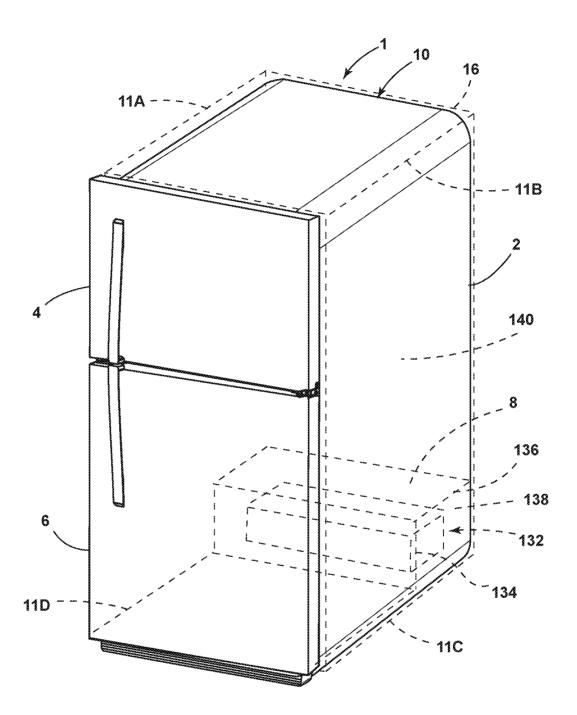
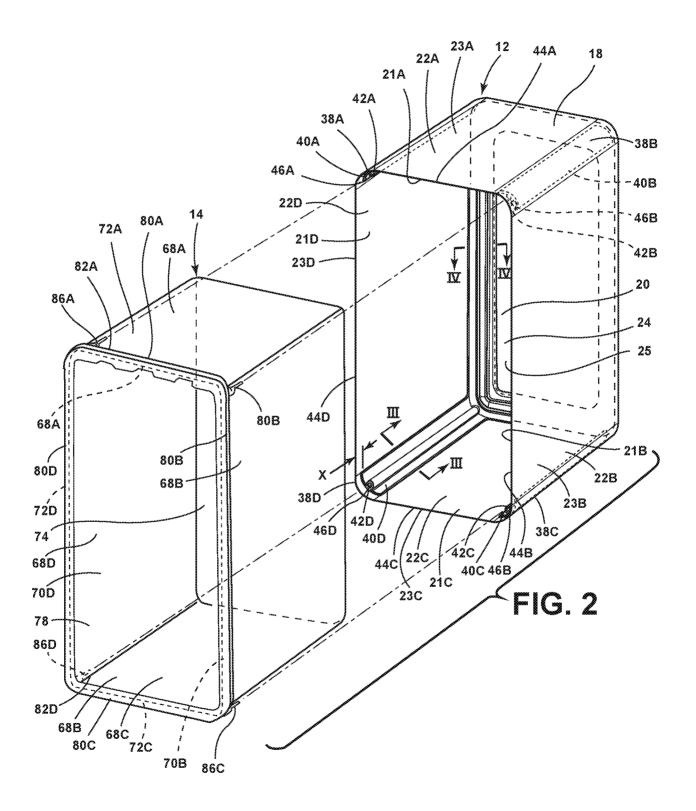



FIG. 1

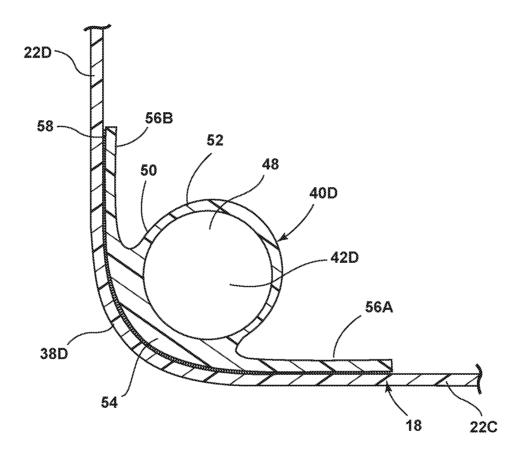


FIG. 3

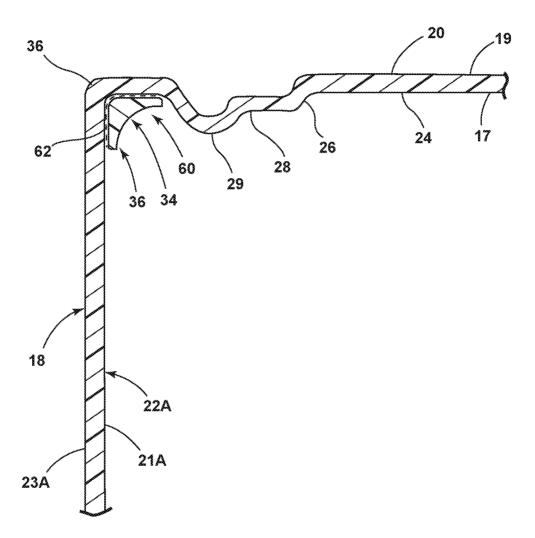
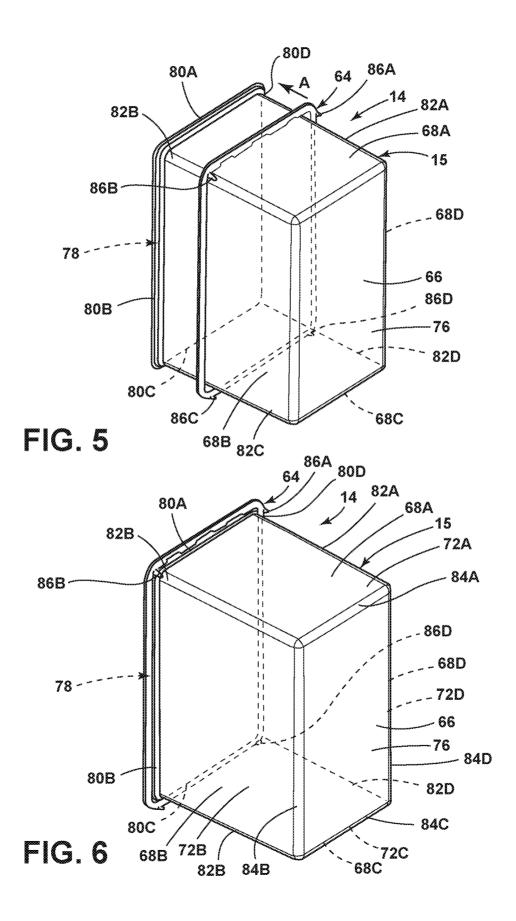



FIG. 4



FIG. 7

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 2016/027736

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. X Claims Nos.: 4-11, 15-20 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US 2016/027736

CLASSIFICATION OF SUBJECT MATTER F25D 23/06 (2006.01) **B29C 51/14** (2006.01) According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) F25D 11/00-11/02, 23/00-23/12, 17/00-17/06, B29C 51/00, 51/14, 51/20 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) PatSearch (RUPTO internal), USPTO, PAJ, Esp@cenet, DWPI, EAPATIS, PATENTSCOPE DOCUMENTS CONSIDERED TO BE RELEVANT C. Relevant to claim No. Category* Citation of document, with indication, where appropriate, of the relevant passages Α WO 2002/052208 A1 (ARCELIK A.S. et al.) 04.07.2002 1-3, 12-14 WO 2006/120198 A2 (WHIRLPOOL CORPORATION et al.) 16.11.2006 1-3, 12-14 US 2013/0256319 A1 (WHIRLPOOL CORPORATION) 03.10.2013 1-3, 12-14 Α Α WO 1999/020964 A1 (BSH BOSCH UND SIEMENS HAUSGERAETE GMBH) 1-3, 12-14 29.04.1999 Further documents are listed in the continuation of Box C. See patent family annex. "T" Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand "A" document defining the general state of the art which is not considered the principle or theory underlying the invention "X" to be of particular relevance document of particular relevance; the claimed invention cannot be "E" earlier document but published on or after the international filing date considered novel or cannot be considered to involve an inventive "L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone "Y" cited to establish the publication date of another citation or other document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 10 October 2016 (10.10.2016) 10 November 2016 (10.11.2016) Name and mailing address of the ISA/RU: Authorized officer Federal Institute of Industrial Property, Berezhkovskaya nab., 30-1, Moscow, G-59, T. Darina GSP-3, Russia, 125993

Telephone No. 8-499-240-25-91

Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37