(22) Date de dépôt/Filing Date: 1992/04/30
(41) Mise à la disp. pub./Open to Public Insp.: 1992/11/02
(45) Date de délivrance/Issue Date: 2002/12/17
(30) Priorité/Priority: 1991/05/01 (9109442.5) GB

(51) Cl.Int.5/Int.Cl.5 A61L 9/03
(72) Inventeurs/Inventors:
GILLET, COLIN, GB;
HAMPShIRE, MICHAEL JOHN, GB;
HAmMOND, GEOFFREY ROBERT, GB

(73) Propriétaire/Owner:
RECKITT & COLMAN PRODUCTS LIMITED, GB

(74) Agent: MCFADDEN, FINCHAM

(54) Titre : APPAREIL SERVANT A PROJETER UN AGENT CHIMIQUE
(54) Title: APPARATUS FOR EMITTING A CHEMICAL AGENT

(57) Abrégé/Abstract:
An apparatus (10) for emitting a chemical agent such as a fragrance or an insecticide comprises a container (46) for the agent sealed by a temperature sensitive semi-permeable membrane (50). A heater (22) is provided in the apparatus for heating the chemical agent to facilitate the release of the chemical agent through the membrane (50). The container (46) and heater (22) are relatively movable so as to vary the emission of the chemical agent through the membrane (50).
ABSTRACT

FIG. 1

APPARATUS FOR EMITTING A CHEMICAL AGENT

An apparatus (10) for emitting a chemical agent such as a fragrance or an insecticide comprises a container (46) for the agent sealed by a temperature sensitive semi-permeable membrane (50). A heater (22) is provided in the apparatus for heating the chemical agent to facilitate the release of the chemical agent through the membrane (50). The container (46) and heater (22) are relatively movable so as to vary the emission of the chemical agent through the membrane (50).
APPARATUS FOR EMITTING A CHEMICAL AGENT

This invention relates to an apparatus for emitting a chemical agent and particularly but not exclusively to an apparatus for emitting a fragrance or an insecticide.

It is known to provide a fragrance in gel form in a plastics moulding sealed by a temperature sensitive semi-permeable membrane. A 1.32 watt heater consisting of a thin metallic helical filament wound on a fibrous core is provided in the moulding. The heater produces a temperature of approximately 55°C at the base of the gel container. When heated the semi-permeable membrane acts to emit the fragrance. However, the amount of fragrance emitted per unit time may not be varied by this known device.

The present invention has been made from a consideration of this problem.

According to the present invention there is provided an apparatus for releasing a chemical agent, said apparatus having or receiving a container for the chemical agent, at least a part of said container being operable to release the chemical agent, said part being temperature sensitive, wherein the apparatus comprises
heater means for heating the container and means for varying the heat supplied to the container so as to vary the emission of the chemical agent.

In a preferred embodiment of the invention the means for varying the heat supplied to the container comprises means for moving the container relative to the heater means such as relatively movable cooperating formations.

The apparatus may comprise at least two parts, one of the parts being movable relative to the other part. One part may comprise and/or be secured to the heater means and the other part may comprise and/or be secured to the container. The two parts may comprise cooperating screw threads. The heater means is preferably electrically powered. The heater means may comprise at least one resistor which may be in series with a light output device. The light output device may also act as a fuse. Means may be provided, for example on the part of the apparatus comprising the heater means, for indicating the distance between the heater means and the container. This may consist of a marking such as a scale or more preferably a triangular shaped marking.

The apparatus may comprise an absorbent material in order to absorb any chemical agent which may leak
from the container.

The container may comprise any suitable chemical agent, preferably in a fluid form, such as at least one of a fragrance or an insecticide.

In order that the invention may be more readily understood a specific embodiment thereof will now be described by way of example only with reference to the accompanying drawings in which:-

Fig. 1 is a cross sectional view of one apparatus in accordance with the invention;

Fig. 2 is a plan view of the apparatus of Fig. 1;

Fig. 3 is a plan view of the heater means of the apparatus of Figs. 1 and 2; and

Fig. 4 is a circuit diagram of the heater means of Fig. 3.

Referring to the drawings an apparatus 10 for emitting a chemical agent comprises a housing made substantially of 50% glass-filled, high impact nylon 6 plastics. The housing has a lower part 12 having a cylindrical body 14. Live, neutral and earth electrical pins 16,18,20 extend from the body 14 in a
manner conventional for a United Kingdom 240V a/c mains powered domestic electrical appliance. The live pin 16 and neutral pin 18 are connected to the circuitry of a heating means 22 which is embedded about 2 mm below the surface 24 of the cylindrical body 14. The circuitry of the heater means 22 is shown in Fig. 4. The circuit comprises two 15K ohm resistors in series with a light emitting diode (LED) 26. Preferably the tails from the resistors are not cut short and large oversized crimps are used thus spreading more metal in the hot zone increasing dissipation and providing more uniform heating. A diode is provided across the LED in the opposing polarity to the LED. The provision of two 15k ohm resistors rather than one 30 ohm resistor is considered advantageous in that this doubles the power dissipation and likewise increases heat generated by doubling the element area. Further the second resistor provides a convenient connection to one of the pins of the LED without substantially increasing the cost. Failure of a single component to a short circuit will also not provide excessive current.

The presence of an operating indicator light via the LED is considered advantageous. The current required by the heater for 240 V a/c operation is about 8 mA. As this falls within the normal operating range of LEDs the LED can conveniently be incorporated
into the circuit. Furthermore the LED is designed with a fine filamentary contact to the semiconductor surface and on excessive current overload the LED should fail to an open circuit condition thereby acting as a fuse. It is considered that a separate fuse will not be necessary.

The LED produces light only on the forward conduction cycle, and typically will drop about 2.5 volts. Hence at 8 mA the power dissipation for the forward half cycle is 10 mWatts. On the reverse cycle the same current of 8 mA will flow and a voltage of about 6 volts is likely, giving a power dissipation of 24 mWatts. The total dissipation is, therefore, 34 mWatts, and is within the capabilities of most of the larger 3mm diameter LEDs, which are typically rated at 40 mWatts. A further diode is preferably used to take the reverse current with a volts drop of say 1 volt giving a reverse dissipation of only 4 mWatts. The further diode allows a more efficient LED to be used to increase the light output. However, the extra diode component must be fitted the correct way round in relation to the orientation of the LED, the direction of which is irrelevant as regards the live neutral.

An upstanding wall 28 is provided around the periphery of the cylindrical body 14. A screw thread is provided on the exterior surface of the upstanding
wall 28.

The upper part 32 of the apparatus comprises an aesthetically pleasing hollow cover 34, the cover 34 having a depending wall 38. Perforations 36 are provided in the cover for the release of the fragrance. Two spaced apart members 40,42 extend inwardly from the cover 34. A screw thread 44 is provided on the interior of the depending wall 38 for cooperation with the screw thread of the upstanding wall 28 such that the upper and lower parts 12,32 may be moved relative to each other in a controlled manner by way of a twisting movement.

A right angled triangular marking 30 is provided on one part of the exterior surface of the cover 34. The two perpendicular sides of the triangle 30 extend vertically and horizontally in the orientation of the apparatus as illustrated. When fully engaged the vertical line of the triangular mark 30 is in line with the LED. On rotation of the cover a smaller area of the triangle is aligned with the LED.

A polypropylene container 46 comprises a cylindrical housing 48 having a flange extending outwardly from the top of the cylindrical housing 48. A temperature sensitive semi-permeable membrane 50 is provided across the top of the cylindrical housing 48.
In use the membrane 50 is protected from physical damage by the cover 34. About 6ml of a liquid fragrance are provided in the cylindrical housing 48. In normal use this amount of fragrance is estimated to last for about 30 days after which time the container is replaced. Fine capillary grooves (not shown) are provided on the internal sides of the container 46 so that the liquid fragrance will rise to wet the membrane, so enabling the emission of fragrance even when the liquid is not in contact with the membrane's surface.

In use, the apparatus is plugged into an electricity supply socket, such as a wall mounted socket, by way of the electrical pins 16,18,20. This activates the heating circuit and the LED will light. The heat supplied by the dissipation of heat from the resistors in the circuit will heat the base of the container 46 and then the fragrance and semi-permeable membrane. As the semi-permeable membrane is temperature sensitive the heating of the membrane will allow release of the liquid fragrance.

The rate of release of the liquid fragrance may be controlled by moving the base of the container 46 relative to the heater.

When fully engaged the container 46 is in
intimate contact with the heated surface 24 of the cylindrical body 14. As the container 46 is unscrewed a gap appears between the heater and the base and this progressively increases in a controlled manner, thereby increasing the heat losses and reducing the temperature of the fragrance housed in the capsule. Furthermore the separation between the heater and the cylinder and thus the degree of heating and fragrance emission is indicated by the amount of the triangular mark lined up with the LED.

In the apparatus shown the cylinder is heated by the dissipation of about 2 watts to a temperature in the region of 40°C. At this temperature the release of the fragrance through the membrane is appreciable.

With the apparatus illustrated the rate of the release of fragrance is considered to approximately double for every 10°C rise in temperature.

It is to be understood that the above described embodiment is by way of illustration only. Many modifications and variations are possible.

Additional ventilation may be provided to the heated surface, for example by providing apertures on opposite sides of the cover in order to increase air flow. If the apparatus is to be mounted
vertically the apertures are preferably provided at the top and base of the apparatus.

Preferably an absorbent pad is provided in the interior of the apparatus such as on the part of the walls on which no screw thread is provided. The absorbent material would be used to absorb any fragrance which may leak from the container should the membrane be punctured. The pad could be made from foam or felt with sufficient absorptive capacity to hold the maximum amount of fluid provided in the container such as 6ml in the embodiment described above.

The container may comprise any chemical agent in addition to or in place of the fragrance such as an insecticide.

The electrical connection may be adapted to meet the requirements of any electricity supply.

The filled container may comprise any suitable amount of fluid such as from 1 to 20 mls.

The heater means may be embedded any suitable distance from the surface of the lower part of the apparatus such as a distance in the range from 0.5 to 4 mm.
The apparatus may comprise any suitable material such as any sufficiently heat resistant plastics material.

The containers for the chemical agent may be disposable or re-usable.
THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. An apparatus for releasing a chemical agent, said apparatus having or receiving a container for the chemical agent, at least a part of said container being operable to release the chemical agent, said part being temperature sensitive, wherein the apparatus comprises heater means for heating the container and means for varying the heat supplied to the container so as to vary the emission of the chemical agent.

2. An apparatus for releasing a chemical agent as claimed in claim 1, wherein the apparatus comprises at least two relatively movable parts.

3. An apparatus for releasing a chemical agent as claimed in claim 2, wherein one part comprises and/or is secured to the heater means and the other part comprises and/or is secured to the container.

4. An apparatus for releasing a chemical agent as claimed in claim 2 or claim 3, wherein the two parts comprise relatively movable co-operating formations.

5. An apparatus for releasing a chemical agent as
claimed in claim 4, wherein the co-operating formations comprise screw threads.

6. An apparatus for releasing a chemical agent as claimed in claim 1, wherein the heater means comprises at least one resistor.

7. An apparatus for releasing a chemical agent as claimed in claim 1, wherein the heater means comprises a light output device which acts as a power indicator and a fuse.

8. An apparatus for releasing a chemical agent as claimed in claim 1, wherein the apparatus comprises means for indicating the distance between the heater means and the container.

9. An apparatus for releasing a chemical agent as claimed in claim 1, wherein the apparatus comprises an absorbant material in order to absorb any chemical agent which may leak from the container.

10. An apparatus for releasing a chemical agent as claimed in claim 1, wherein the chemical agent comprises at least one of a fragrance or an insecticide.
11. An apparatus for releasing a chemical agent, said apparatus having or receiving a container for the chemical agent, at least a part of said container being operable to release the chemical agent, said part being temperature sensitive, wherein the container comprises heater means for heating the container, the apparatus comprising means for moving the container relative to the heater means so as to control the emission of the chemical agent.